\bullet

 involve

 involve} a journal of mathematics

Lifting representations of finite reductive groups: a character relation

Jeffrey D. Adler, Michael Cassel, Joshua M. Lansky, Emma Morgan and Yifei Zhao

Lifting representations of finite reductive groups: a character relation

Jeffrey D. Adler, Michael Cassel, Joshua M. Lansky, Emma Morgan and Yifei Zhao

(Communicated by Ken Ono)

Given a connected reductive group \widetilde{G} over a finite field k, and a semisimple k-automorphism ε of \widetilde{G} of finite order, let G denote the connected part of the group of ε-fixed points. Two of the authors have previously shown that there exists a natural lifting from series of representations of $G(k)$ to series for $\widetilde{G}(k)$. In the case of Deligne-Lusztig representations, we show that this lifting satisfies a character relation analogous to that of Shintani.

0. Introduction

Suppose k is a finite field, \widetilde{G} is a connected reductive k-group, and ε is a semisimple k-automorphism of \widetilde{G} of finite order ℓ. Let G be the connected part of the group $\widetilde{G}^{\varepsilon}$ of ε-fixed points of \widetilde{G}. We will see (Proposition 1) that G is also a connected reductive k-group. Two of the authors have constructed a natural lifting [Adler and Lansky 2014] from series of irreducible representations of $G(k)$ to analogous series for $\widetilde{G}(k)$. In certain cases, this lifting is known to coincide with the Shintani lifting (see [Gyoja 1979, Theorem 7.2], [Digne 1987, Corollary 3.6], or [Silberger and Zink 2005, Proposition B4.4], for example), so it is natural to ask whether there is a relation, analogous to that of Shintani, between the character of a representation π of $G(k)$ and the ε-twisted character of its lift $\tilde{\pi}$. The purpose of this note is to prove an affirmative answer in the case where π is a Deligne-Lusztig representation, irreducible or not.

Let \widetilde{G}^{*} and G^{*} denote the duals of \widetilde{G} and G. For each semisimple element $z \in G^{*}(k)$, one obtains a collection $\mathcal{E}_{z}(G(k))$ of irreducible representations of $G(k)$, and these collections, known as rational Lusztig series, partition the set $\mathcal{E}(G(k))$ of (equivalence classes of) irreducible representations of $G(k)$ [Lusztig 1984, §14.1]. For example, suppose that z is regular in G^{*}, and let $T^{*} \subseteq G^{*}$ be the unique maximal

[^0]k-torus containing z. Then the pair $\left(T^{*}, z\right)$ corresponds to a pair (T, θ), where $T \subseteq G$ is a maximal k-torus, and θ is a complex-valued character of $T(k)$. This latter pair is uniquely determined up to $G(k)$-conjugacy. The Lusztig series $\mathcal{E}_{z}(G(k))$ corresponding to z is the set of irreducible components of the Deligne-Lusztig virtual representation whose character is $\mathrm{R}_{T}^{G} \theta$. An earlier work [Adler and Lansky 2014, Corollary 11.3] presents a natural map from semisimple conjugacy classes in $G^{*}(k)$ to semisimple classes in $\widetilde{G}^{*}(k)$, thus lifting each Lusztig series for $G(k)$ to one for $\widetilde{G}(k)$. The series of representations coming from $\pm \mathrm{R}_{T}^{G} \theta$ lifts to that coming from $\pm \mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}$, where we will see that $\widetilde{T}:=C_{\widetilde{G}}(T)$ is a maximal k-torus in \widetilde{G}, and $\tilde{\theta}=\theta \circ \mathcal{N}$, where $\mathcal{N}: \widetilde{T} \rightarrow T$ is the norm map defined by
$$
\mathcal{N}(t)=t \varepsilon(t) \cdots \varepsilon^{\ell-1}(t)
$$
(Of course, one could define a similar map \mathcal{N} on any ε-invariant torus in \widetilde{G}.) In order to understand better this lifting of representations, one would like to have a relation between the character $\mathrm{R}_{T}^{G} \theta$ (for θ an arbitrary character of $T(k)$, not necessarily associated to a regular element of $\left.G_{\tilde{\widetilde{T}}}^{\tilde{\sigma}}(k)\right)$ and the ε-twisted character $\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}\right)_{\varepsilon}$ associated to the ε-invariant character $\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}$. We prove that such a relation holds at sufficiently regular points, provided that one gathers together a "packet" of characters of $G(k)$, including $\mathrm{R}_{T}^{G} \theta$, that each lift to $\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}$.

Suppose we have a Borel-torus pair (B, T) for G; that is, we have a maximal k-torus $T \subseteq G$, together with a Borel subgroup $B \subseteq G$ containing T, not necessarily defined over k. From Proposition 1, we will obtain an ε-invariant Borel-torus pair $(\widetilde{B}, \widetilde{T})$ in \widetilde{G}, where $\widetilde{T}=C_{\widetilde{G}}(T)$ as above. Let $\langle\varepsilon\rangle$ be the group generated by ε. Recall that an element of a reductive group is regular if the connected part of its centralizer is a torus.
Theorem. Suppose $\tilde{s} \in \widetilde{G}(k)$ belongs to an ε-invariant, maximal k-torus \tilde{S} and $\mathcal{N}(\tilde{s})$ is regular in \widetilde{G}. Then

$$
\begin{equation*}
\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}\right)_{\varepsilon}(\tilde{s})=\left(\sum_{\tilde{g} \in G(k) \backslash(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon}} \mathrm{R}_{\tilde{g} T}^{G} \tilde{g}_{\theta}\right)(\mathcal{N}(\tilde{s})) \tag{0-1}
\end{equation*}
$$

Remark. Let us comment on some of the terms in (0-1).
(a) Here is what we mean by $\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}\right)_{\varepsilon}$. Since $\tilde{\theta}$ is an ε-invariant character of $\left.\underset{\sim}{\widetilde{T}} \underset{\sim}{\widetilde{T}} \underset{\sim}{k}\right)$, we have that ε acts on the Deligne-Lusztig variety corresponding to $(\widetilde{B}, \widetilde{T}, \tilde{\theta})$, and thus on the virtual representation whose character is $\mathrm{R}_{\widetilde{T}}^{\tilde{\theta}} \tilde{\theta}$. That is, even if this representation is reducible, we can form its ε-twisted character. To do so, extend $\tilde{\theta}$ to a character of $\widetilde{\widetilde{T}}(k) \rtimes\langle\varepsilon\rangle$ by setting $\tilde{\theta}(\varepsilon)=1$. Define the $\varepsilon \tilde{\tilde{\sigma}}$-twisted Deligne-Lusztig character $\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}\right)_{\varepsilon}$ induced from $\tilde{\theta}$ by $\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}\right)_{\varepsilon}(g)=\left(\mathrm{R}_{\widetilde{T} \rtimes\langle\varepsilon\rangle}^{\widetilde{G}}\langle\varepsilon)(g \varepsilon)\right.$ for $g \in \widetilde{G}(k)$. (See [Digne and Michel 1994] for the definition of Deligne-Lusztig induction for nonconnected groups.)

Note that if ε is quasicentral, i.e., the Weyl groups $W(G, T)$ and $W(\widetilde{G}, \widetilde{T})$ satisfy $W(G, T)=W(\widetilde{G}, \widetilde{T})^{\varepsilon}$ (see [Digne and Michel 1994, Définition-Théorème 1.15] for equivalent formulations), then $\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{T}} \tilde{\theta}\right)_{\varepsilon}$ doesn't depend on the choice of \widetilde{B}, from the remark after [Digne and Michel 1994, Théorème 4.5]. More generally, there could be several Borel subgroups $\widetilde{B} \subseteq \widetilde{G}$ such that $\left(\widetilde{B}^{\varepsilon}\right)^{\circ}=B$, and we don't know if the twisted character is independent of the choice of \widetilde{B}. However, our theorem will remain valid for any such choice.
(b) On the right-hand side of (0-1), \tilde{g} runs over a set of double coset representatives. For each such \tilde{g}, we have that ${ }^{\tilde{g}} T$ is a maximal k-torus in G and ${ }^{\tilde{g}} \theta$ is a complexvalued character of ${ }^{\tilde{s}} T(k)$. The choice of representative \tilde{g} affects the pair $\left({ }^{\tilde{g}} T,{ }^{\tilde{s}} \theta\right)$ only up to $G(k)$-conjugacy, so it does not affect the character $\mathrm{R}_{\tilde{g}_{T}}^{G} \tilde{g}_{\theta}$ appearing in the corresponding summand.
(c) We note that $G(k) \backslash(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon}$ can be viewed as the set of $G(k)$-conjugacy classes of ε-invariant Borel-torus pairs that are $\tilde{G}(k)$-conjugate to $(\tilde{B}, \widetilde{T})$. As \tilde{g} runs over a set of double coset representatives, the k-tori ${ }^{\tilde{g}} T \subset G$ are related in a way that is analogous to stable conjugacy, where $\widetilde{G}(k)$ plays the role usually played by $G(\bar{k})$, where \bar{k} is an algebraic closure of k. Moreover, the set of characters appearing in the right-hand side of $(0-1)$ is analogous to an L-packet, and their sum is "stable", in the sense that it is constant on the intersections with $G(k)$ of appropriate conjugacy classes in $\widetilde{G}(k)$.

Now let's consider some special cases.
(a) One can show that when ε is quasicentral, the index set for the summation is a singleton, so the theorem asserts that $\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}\right)_{\varepsilon}(\tilde{s})=\left(\mathrm{R}_{T}^{G} \theta\right)(\mathcal{N}(\tilde{s}))$.
(b) In particular, suppose $\widetilde{G}=R_{E / k} G$ is obtained from G via restriction of scalars over a cyclic extension E / k and ε is the algebraic k-automorphism of \widetilde{G} associated to the action of a generator of the Galois group $\operatorname{Gal}(E / k)$. Given a representation π of $G(k)$, one often has an associated representation $\tilde{\pi}$ of $\widetilde{G}(k)$, known as the Shintani lift of π. (See [Kawanaka 1987] for a discussion.) The character of π and the ε-twisted character of $\tilde{\pi}$ satisfy the Shintani relation $\Theta_{\tilde{\pi}, \varepsilon}=\Theta_{\pi} \circ \mathcal{N}$, where \mathcal{N} has been extended to a map on all (not necessarily semisimple) conjugacy classes. From work of Digne [1999, Corollaire 3.6], one already knows that if $\mathrm{R}_{T}^{G} \theta$ has a Shintani lift, then it must be $\mathrm{R}_{\widetilde{T}}^{\tilde{G}} \tilde{\theta}$. Thus, if one restricts attention to Deligne-Lusztig characters and to the kind of elements that we consider, our character relation is a generalization of Shintani's.
(c) Consider the automorphism of GL(2) given by $\varepsilon(g)={ }^{t} g^{-1}$. Then a relation analogous to that in our theorem holds for all irreducible characters, not just those of Deligne-Lusztig type. Moreover, the relation can be extended to unipotent elements, but it fails if \tilde{s} is regular but $\mathcal{N}(\tilde{s})$ is singular.

Comparing our theorem with [Digne and Michel 1994, Proposition 2.12], we see the latter shows that the restriction to $G(k)$ of a twisted character of $\widetilde{G}(k)$ is a certain twisted character of $G(k)$, at least in the case where ε is quasicentral. On the other hand, our theorem concerns a lifting of characters from $G(k)$ to $\widetilde{G}(k)$ via the norm map, and this lifting is not an inverse of restriction. As expected, the two formulas agree in those situations where both are applicable, but such situations are rare. Moreover, while we make regularity assumptions on our element \tilde{s}, we do not assume that ε is quasicentral.

1. Preliminary results

Given any algebraic group H, we denote by H° the connected component of the identity in H. If S is an algebraic subgroup of H, then $C_{H}(S)$ denotes the centralizer of S in H. Similarly, for an element $h \in H$, we let $C_{H}(h)$ denote its centralizer.

As in Section 0, let k denote a finite field, \tilde{G} a connected reductive k-group, and ε a semisimple k-automorphism of \tilde{G} of finite order ℓ, and let $G=\left(\widetilde{G}^{\varepsilon}\right)^{\circ}$.

Most of the following result appears in the statement or proof of [Steinberg 1968, Theorem 8.2]. Other versions appear in [Kottwitz and Shelstad 1999, Theorem 1.1.A; Digne and Michel 1994, Théorème 1.8]. A version that includes the rationality of G is in [Adler and Lansky 2014, Proposition 3.5].

Proposition 1. With notation as above, one has:

- G is a connected reductive k-group.
- For every ε-invariant Borel-torus pair $(\widetilde{B}, \widetilde{T})$ for \widetilde{G}, one has a Borel-torus pair $\left(\left(\widetilde{B}^{\varepsilon}\right)^{\circ},\left(\widetilde{T}^{\varepsilon}\right)^{\circ}\right)$ for G. Moreover, $\left(\widetilde{T}^{\varepsilon}\right)^{\circ}=\widetilde{T} \cap G$.
- For every Borel-torus pair (B, T) for G, one has an ε-invariant Borel-torus pair $(\widetilde{B}, \widetilde{T})$, where $\widetilde{T}=C_{\widetilde{G}}(T)$ and such that $\left(\widetilde{B}^{\varepsilon}\right)^{\circ}=B$.

From now on, we fix a maximal k-torus $T \subseteq G$, and thus obtain an ε-invariant maximal k-torus $\widetilde{T}=C_{\widetilde{G}}(T)$ as in Proposition 1, and a norm map $\mathcal{N}: \widetilde{T} \rightarrow T$ as in Section 0.

The following result concerns conjugacy and twisted conjugacy in G and \tilde{G}.
Lemma 2. Suppose \widetilde{S} is an ε-invariant maximal k-torus in \widetilde{G}. Let $S=\tilde{S} \cap G$. Suppose that $\tilde{s} \in \widetilde{S}(k)$ and that $s:=\mathcal{N}(\tilde{s}) \in S(k)$ is regular in \widetilde{G}. Let $\tilde{g} \in \widetilde{G}(k)$.
(i) There is an ε-invariant Borel subgroup of \widetilde{G} containing \widetilde{S}.
(ii) If $\tilde{g}^{-1} s \tilde{g} \in T(k)$, then $\tilde{g}^{-1} \tilde{S} \tilde{g}=\widetilde{T}$.
(iii) If $\tilde{g}^{-1} \tilde{s} \tilde{g} \in \widetilde{T}(k)$ and $\tilde{g}^{-1} \varepsilon(\tilde{g}) \in \widetilde{T}(k)$, then $\tilde{g}^{-1} S \tilde{g}=T$.
(iv) If $\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g}) \in \widetilde{T}(k)$, then $\tilde{g}^{-1} \varepsilon(\tilde{g}) \in \widetilde{T}(k)$.

Proof. To prove (i), let S^{\prime} be a maximal k-torus in G such that $s \in S^{\prime}(k)$, and let $\widetilde{S^{\prime}}=C_{\widetilde{G}}\left(S^{\prime}\right)$. From Proposition 1, we have that \widetilde{S}^{\prime} is a maximal torus in \widetilde{G}, and it is contained in an ε-invariant Borel subgroup of \widetilde{G}. But $\widetilde{S}^{\prime}=C_{\widetilde{G}}\left(S^{\prime}\right) \subseteq C_{\widetilde{G}}(s)^{\circ}=\widetilde{S}$, and therefore, $\widetilde{S}^{\prime}=\widetilde{S}$.

To prove (ii), note that $\tilde{g}^{-1} \tilde{S} \tilde{g}=\tilde{g}^{-1} C_{\tilde{G}}(s)^{\circ} \tilde{g}=C_{\tilde{G}}\left(\tilde{g}^{-1} s \tilde{g}\right)^{\circ}=\widetilde{T}$.
For (iii), it follows immediately from the assumptions that $\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g}) \in \widetilde{T}(k)$. Then $\tilde{g}^{-1} s \tilde{g}=\mathcal{N}\left(\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g})\right) \in \mathcal{N}(\widetilde{T}(k)) \subseteq T(k)$. From (ii), $\tilde{g}^{-1} \tilde{\tilde{S}} \tilde{g}=\widetilde{T}$. From (i) and Proposition 1, it is thus enough to show that $\left(\tilde{g}^{-1} \tilde{S} \tilde{g}\right)^{\varepsilon}=\tilde{g}^{-1} \tilde{S}^{\varepsilon} \tilde{g}$. For $x \in \widetilde{S}(\bar{k})$,

$$
\begin{aligned}
\varepsilon\left(\tilde{g}^{-1} x \tilde{g}\right) & =\varepsilon(\tilde{g})^{-1} \varepsilon(x) \varepsilon(\tilde{g}) \\
& =\left[\tilde{g}^{-1} \varepsilon(\tilde{g})\right]^{-1} \cdot \tilde{g}^{-1} \varepsilon(x) \tilde{g} \cdot\left[\tilde{g}^{-1} \varepsilon(\tilde{g})\right] \\
& =\tilde{g}^{-1} \varepsilon(x) \tilde{g}
\end{aligned}
$$

so $\varepsilon(x)=x$ if and only if $\varepsilon\left(\tilde{g}^{-1} x \tilde{g}\right)=\tilde{g}^{-1} x \tilde{g}$.
To prove (iv), note that as above, $\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g}) \in \widetilde{T}(k)$ implies $\tilde{g}^{-1} s \tilde{g} \in T(k)$. By (ii), we have $\tilde{g}^{-1} \tilde{s} \tilde{g} \in \tilde{T}(k)$. Therefore,

$$
\tilde{g}^{-1} \varepsilon(\tilde{g})=\left(\tilde{g}^{-1} \tilde{s} \tilde{g}\right)\left(\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g})\right)^{-1} \in \widetilde{T}(k)
$$

Now we consider a property of certain double coset spaces, whose proof is straightforward.

Lemma 3. Let \tilde{R} denote a set of representatives for the double coset space

$$
G(k) \backslash(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon} .
$$

Define the map $\phi: G(k) \times \tilde{R} \rightarrow(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon}$ by $(g, \tilde{r}) \mapsto g \tilde{r} \widetilde{T}(k)$. Then
(i) the map ϕ is surjective;
(ii) we have $\phi(g, \tilde{r})=\phi\left(g^{\prime}, \tilde{r}^{\prime}\right)$ if and only if $\tilde{r}=\tilde{r}^{\prime}$ and $g^{-1} g^{\prime} \in{ }^{\tilde{r}} T(k)$.

Now we recall some facts about Deligne-Lusztig virtual characters.
Lemma 4. One has the following:
(i) If $x \in G(k)$ is a regular element and θ is a complex character of $T(k)$, then

$$
\left(\mathrm{R}_{T}^{G} \theta\right)(x)=\sum_{\substack{g \in G(k) / T(k) \\ g^{-1} x g \in T(k)}} \theta\left(g^{-1} x g\right)
$$

(ii) Suppose that $\tilde{x} \in \tilde{G}(k)$ and that $\tilde{x} \varepsilon$ is a regular element of $\tilde{G}(k) \rtimes\langle\varepsilon\rangle$. Let $\tilde{\theta}$ be an ε-invariant character of $\widetilde{T}(k)$, extended trivially to $\widetilde{T}(k) \rtimes\langle\varepsilon\rangle$. Then

$$
\left(\mathrm{R}_{\widetilde{T}}^{\widetilde{G}} \tilde{\theta}\right)_{\varepsilon}(\tilde{x})=\frac{1}{|\widetilde{T}(k) \rtimes\langle\varepsilon\rangle|} \sum_{\substack{\tilde{h} \in \tilde{G}(k) \rtimes(\varepsilon\rangle \\ \tilde{x} \varepsilon \in \tilde{h}(\widetilde{T}(k) \rtimes\langle\varepsilon\rangle) \tilde{h}^{-1}}} \tilde{\theta}\left(\tilde{h}^{-1}(\tilde{x} \varepsilon) \tilde{h}\right) .
$$

Proof. For each formula, see [Digne and Michel 1994, Proposition 2.6]. For the second formula, note that $C_{\tilde{G}}(\tilde{x} \varepsilon)$ contains no nontrivial unipotent elements. Thus, if we let S denote its connected part, then S is a torus, and the Green function $Q_{S(k)}^{S(k)}$ that arises in this proposition takes the value $|S(k)|$ at $(1,1)$.

2. Proof of the main theorem

From Lemma 2(i), we know \widetilde{S} is contained in an ε-invariant Borel subgroup of \widetilde{G}, so it follows from Proposition 1 that $S:=\widetilde{S} \cap G$ is a maximal k-torus in G, and $\widetilde{S}=C_{\widetilde{G}}(S)$.

Since $(\tilde{s} \varepsilon)^{\ell}=\mathcal{N}(\tilde{s})$, which is assumed regular in \widetilde{G} and thus in $\widetilde{G} \rtimes\langle\varepsilon\rangle$, we must have that $\tilde{s} \varepsilon$ is also regular in $\widetilde{G} \rtimes\langle\varepsilon\rangle$. Lemma 4(ii) then implies that the left-hand side of (0-1) (hereafter denoted LHS) is equal to

$$
\frac{1}{\ell|\widetilde{T}(k)|} \sum \tilde{\theta}\left(\tilde{h}^{-1}(\tilde{s} \varepsilon) \tilde{h}\right)=\frac{1}{\ell|\widetilde{T}(k)|} \sum \tilde{\theta}\left(\tilde{h}^{-1} \cdot \tilde{s} \cdot \varepsilon(\tilde{h}) \cdot \varepsilon\right)
$$

where each sum is over the set

$$
\left\{\tilde{h} \in \widetilde{G}(k) \rtimes\langle\varepsilon\rangle \mid \tilde{s} \varepsilon \in \tilde{h}(\widetilde{T}(k) \rtimes\langle\varepsilon\rangle) \tilde{h}^{-1}\right\} .
$$

If $\tilde{g} \in \widetilde{G}(k)$, then $\tilde{g} \varepsilon^{i}$ belongs to the index set if and only if $\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g}) \in \widetilde{T}(k)$. The set of such elements \tilde{g} is a union of left cosets of $\widetilde{T}(k)$. Thus,

$$
\begin{aligned}
\text { LHS } & =\frac{1}{\ell|\widetilde{T}(k)|} \sum_{i=0}^{\ell-1} \sum_{\substack{\tilde{g} \in \widetilde{G}(k) \\
\tilde{g}^{-1} \tilde{\tilde{s} \varepsilon}(\tilde{g}) \in \widetilde{T}(k)}} \tilde{\theta}\left(\left(\tilde{g} \varepsilon^{i}\right)^{-1} \cdot \tilde{s} \cdot \varepsilon\left(\tilde{g} \varepsilon^{i}\right) \cdot \varepsilon\right) \\
& =\frac{1}{|\widetilde{T}(k)|} \sum_{\substack{\tilde{\tilde{g}} \in \widetilde{G}(k) \\
\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g}) \in \widetilde{T}(k)}} \tilde{\theta}\left(\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g})\right) \\
& =\sum_{\substack{\tilde{g} \in \widetilde{G}(k) / \widetilde{T}(k) \\
\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g}) \in \widetilde{T}(k)}}^{\tilde{\theta}\left(\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g})\right)} \\
& =\sum_{\substack{\tilde{g} \in(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon} \\
\tilde{g}-1}} \tilde{\theta}\left(\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g} \in \widetilde{T}(k))\right.
\end{aligned}
$$

where the last equality follows from Lemma 2(iv). Let $s=\mathcal{N}(\tilde{s})$ and note that $\mathcal{N}\left(\tilde{g}^{-1} \tilde{s} \varepsilon(\tilde{g})\right)=\tilde{g}^{-1} s \tilde{g}$ for $\tilde{g} \in \widetilde{G}(k)$. Thus LHS is equal to

$$
\begin{equation*}
\sum_{\substack{\tilde{g} \in(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon} \\ \tilde{g}-1 \tilde{s} \tilde{\mathcal{s}} \in \tilde{T}(k)}} \tilde{g}_{\theta} \theta(s) . \tag{2-1}
\end{equation*}
$$

On the other hand, it follows from Lemma 4(i) that the right-hand side of (0-1) is equal to

$$
\begin{aligned}
& \sum_{\tilde{x} \in G(k) \backslash(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon}}\left(\mathrm{R}_{\tilde{x}_{T}}^{G} \tilde{x}_{\theta}\right)(s)=\sum_{\tilde{x} \in G(k) \backslash(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon}} \sum_{\substack{g \in G(k) / \tilde{\tilde{x}} T(k) \\
g^{-1} s g \in^{\tilde{x}} T(k)}} \tilde{x}_{\theta}\left(g^{-1} s g\right) \\
& =\sum_{\tilde{x} \in G(k) \backslash(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon}} \sum_{\substack{g \in G(k) / \tilde{x} T(k) \\
\left(g \tilde{)^{-1}} s(g \tilde{x}) \in T(k)\right.}}{ }^{s \tilde{x}} \theta(s) \\
& =\sum_{\substack{\tilde{g} \in(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon} \\
\tilde{g}-1 \\
\tilde{g} \tilde{g} \in T(k)}} \tilde{g}_{\theta}(s),
\end{aligned}
$$

where the final equality follows from Lemma 3 . The last sum above is equal to (2-1) by Lemma 2(ii) and (iii), which together imply that for $\tilde{g} \in(\widetilde{G}(k) / \widetilde{T}(k))^{\varepsilon}$, we have $\tilde{g}^{-1} s \tilde{g} \in T(k)$ if and only if $\tilde{g}^{-1} \tilde{s} \tilde{g} \in \widetilde{T}(k)$.

Acknowledgements

The authors were partially supported by a National Science Foundation Focused Research Group grant (DMS-0854844). Morgan was partially supported by the Frank Cox Jones Scholarship Fund and a Dean's Undergraduate Research Award from the College of Arts and Sciences of American University. We have benefited from conversations with Prof. Jeffrey Hakim and from the comments of an anonymous referee.

References

[Adler and Lansky 2014] J. D. Adler and J. M. Lansky, "Lifting representations of finite reductive groups, I: Semisimple conjugacy classes", Canad. J. Math. 66:6 (2014), 1201-1224. MR 3270781 Zbl 1309.20037
[Digne 1987] F. Digne, "Shintani descent and \mathscr{L} functions on Deligne-Lusztig varieties", pp. 61-68 in The Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986), edited by P. Fong, Proc. Sympos. Pure Math. 47, Amer. Math. Soc., Providence, RI, 1987. MR 933350 Zbl 0657.20036
[Digne 1999] F. Digne, "Descente de Shintani et restriction des scalaires", J. London Math. Soc. (2) 59:3 (1999), 867-880. MR 1709085 Zbl 0947.20025
[Digne and Michel 1994] F. Digne and J. Michel, "Groupes réductifs non connexes", Ann. Sci. École Norm. Sup. (4) 27:3 (1994), 345-406. MR 1272294 Zbl 0846.20040
[Gyoja 1979] A. Gyoja, "Liftings of irreducible characters of finite reductive groups", Osaka J. Math. 16:1 (1979), 1-30. MR 527011 Zbl 0416.20032
[Kawanaka 1987] N. Kawanaka, "Shintani lifting and Gel'fand-Graev representations", pp. 147-163 in The Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986), edited by P. Fong, Proc. Sympos. Pure Math. 47, Amer. Math. Soc., Providence, RI, 1987. MR 933357 Zbl 0654.20046
[Kottwitz and Shelstad 1999] R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque 255, Société Mathématique de France, Paris, 1999. MR 1687096 Zbl 0958.22013
[Lusztig 1984] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies 107, Princeton University Press, 1984. MR 742472 Zbl 0556.20033
[Silberger and Zink 2005] A. J. Silberger and E.-W. Zink, "An explicit matching theorem for level zero discrete series of unit groups of \mathfrak{p}-adic simple algebras", J. Reine Angew. Math. 585 (2005), 173-235. MR 2164626 Zbl 1087.22012
[Steinberg 1968] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728 Zbl 0164.02902

Received: 2015-05-27 Revised: 2015-11-01 Accepted: 2015-11-03
jadler@american.edu Department of Mathematics and Statistics, American University, Washington, DC 20016, United States

Columbia University, New York, NY 10027, United States
Department of Mathematics and Statistics, American University, Washington, DC 20016, United States

Office of Institutional Research and Evaluation, Tufts University, Medford, MA 02155, United States
yifei@math.harvard.edu Department of Mathematics, Harvard University, Cambridge, MA 02138, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers

involve

An iterative strategy for Lights Out on Petersen graphs 721Bruce Torrence and Robert Torrence
A family of elliptic curves of rank ≥ 4 733FarZali Izadi and Kamran Nabardi
Splitting techniques and Betti numbers of secant powers 737Reza Akhtar, Brittany Burns, Haley Dohrmann, HannahHoganson, Ola Sobieska and Zerotti Woods
Convergence of sequences of polygons 751
Eric Hintikka and Xingping Sun
On the Chermak-Delgado lattices of split metacyclic p-groups 765Erin Brush, Jill Dietz, Kendra Johnson-Tesch and BriannePower
The left greedy Lie algebra basis and star graphs 783
Benjamin Walter and Aminreza Shiri
Note on superpatterns 797Daniel Gray and Hua Wang
Lifting representations of finite reductive groups: a character relation 805Jeffrey D. Adler, Michael Cassel, Joshua M. Lansky, EmmaMorgan and Yifei Zhao
Spectrum of a composition operator with automorphic symbol 813
Robert F. Allen, Thong M. Le and Matthew A. Pons
On nonabelian representations of twist knots 831
James C. Dean and Anh T. Tran
Envelope curves and equidistant sets 839Mark Huibregtse and Adam Winchell
New examples of Brunnian theta graphs 857Byoungwook Jang, Anna Kronaeur, Pratap Luitel, DanielMedici, Scott A. Taylor and Alexander Zupan
Some nonsimple modules for centralizer algebras of the symmetric group 877
Craig Dodge, Harald Ellers, Yukihide Nakada and Kelly POHLAND
Acknowledgement899

[^0]: MSC2010: primary 20C33; secondary 20G40.
 Keywords: finite reductive groups, Deligne-Lusztig representations, liftings, character relations.

