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We give a complete characterization of the spectrum of composition operators,
induced by an automorphism of the open unit disk, acting on a family of Banach
spaces of analytic functions that includes the Bloch space and BMOA. We show
that for parabolic and hyperbolic automorphisms the spectrum is the unit circle.
For the case of elliptic automorphisms, the spectrum is either the unit circle or a
finite cyclic subgroup of the unit circle.

1. Introduction

For an analytic self-map ϕ of the open unit disk D and a Banach space X of functions
analytic on D, we define the composition operator with symbol ϕ, denoted Cϕ , by
the rule Cϕ f = f ◦ ϕ for all f ∈ X . The study of composition operators began
formally with Nordgren’s paper [1968], where he explored properties of composition
operators acting on the Hardy Hilbert space H 2. Since then the study has proved
to be an active area of research, most likely due to the fact that the study of such
operators lies at the intersection of complex function theory and operator theory.

The spectrum of Cϕ has been studied on many classical spaces of analytic
functions, such as the Hardy spaces, Bergman spaces, weighted Hardy and Bergman
spaces, Besov spaces, and the Dirichlet space. The interested reader is directed to
[Cowen and MacCluer 1995] for general references.

The motivation for this paper was to determine the spectrum of a composition
operator, induced by a disk automorphism, acting on the Bloch space. The Bloch
space is the largest space of analytic functions on D that is Möbius invariant. This
is one reason the Bloch space is a welcoming environment to study composition
operators. The techniques developed apply to a larger class of spaces that includes
the Bloch space.

The purpose of this paper is to determine the spectrum of Cϕ acting on a family
of Banach spaces, where ϕ is a disk automorphism. The spectrum will depend on

MSC2010: primary 47A10, 47B33; secondary 30H05.
Keywords: composition operator, spectrum, automorphism.

813

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2016.9-5
http://dx.doi.org/10.2140/involve.2016.9.813


814 ROBERT F. ALLEN, THONG M. LE AND MATTHEW A. PONS

the fixed point classification of the automorphisms of D. This is a standard approach
to the study of composition operators induced by automorphisms. We show the
spectrum of Cϕ , acting on a particular family of Banach spaces, induced by a disk
automorphism, must be a subset of the unit circle ∂D, and in some instances is
the entire unit circle. Finally, we compare these results to particular examples of
classical spaces.

2. Preliminaries

2A. Automorphisms. The automorphisms of the open unit disk D={z∈C : |z|<1}
are precisely the analytic bijections on D which have the form

ϕ(z)= λ
a− z
1− az

,

where λ is a unimodular constant and a is a point in D. These automorphisms form
a group under composition denoted by Aut(D). Every element of Aut(D) has two
fixed points (counting multiplicity), and thus can be classified by the location of
the fixed points:

elliptic: one fixed point in D and one in the complement of D;

parabolic: one fixed point on the unit circle ∂D (of multiplicity 2);

hyperbolic: two distinct fixed points on ∂D.

Two disk automorphisms ϕ and ψ are conformally equivalent if there exists a
disk automorphism τ for which ψ = τ ◦ϕ◦τ−1. Many properties of automorphisms
are preserved under conformal equivalence. The main advantage of conformal
equivalence is in the placement of the fixed points. Every elliptic disk automorphism
is conformally equivalent to one whose fixed point in D is the origin.

Lemma 2.1. Let ϕ be an elliptic disk automorphism with fixed point a in D. Then
ϕ is conformally equivalent to ψ(z)= λz where λ= ϕ′(a).

Proof. Let τa be the involution automorphism which interchanges 0 and a, that is

τa(z)=
a− z
1− az

.

Define ψ = τa ◦ϕ ◦ τ
−1
a on D. Since a is a fixed point of ϕ, ψ fixes the origin, and

is a rotation. So there is a unimodular constant λ such that ψ(z)= λz. To complete
the proof, we will show λ= ϕ′(a). Observe ψ ′(z)= λ for all z ∈ D. In particular

λ= ψ ′(0)= τ ′a
(
ϕ(τa(0))

)
ϕ′
(
τa(0)

)
τ ′a(0)= ϕ

′(a)τ ′a(a)τ
′

a(0)= ϕ
′(a).

Thus ϕ is conformally equivalent to the rotation ψ(z)= ϕ′(a)z. �
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Every parabolic disk automorphism is conformally equivalent to one whose fixed
point (of multiplicity 2) is 1. The following lemma is found as Exercise 2.3.5c of
[Cowen and MacCluer 1995], and a complete proof can be found in [Pons 2007].

Lemma 2.2 [Pons 2007, Lemma 4.1.2]. Let ϕ be a parabolic disk automorphism.
Then ϕ is conformally equivalent to either

ψ1(z)=
(1+ i)z− 1

z+ i − 1
or ψ2(z)=

(1− i)z− 1
z− i − 1

.

Every hyperbolic disk automorphism is conformally equivalent to one whose
fixed points in ∂D are ±1.

Lemma 2.3 [Nordgren 1968, Theorem 6]. Let ϕ be a hyperbolic disk automorphism.
Then, for some r ∈ (0, 1), ϕ is conformally equivalent to

ψ(z)=
z+ r

1+ r z
.

2B. The space of bounded analytic functions. The set of analytic functions on D

is denoted by H(D). The space of bounded analytic functions on D, denoted
H∞= H∞(D), is a Banach space under the norm

‖ f ‖∞ = sup
z∈D

| f (z)|.

The bounded analytic functions on D is a rich space containing many interesting
types of functions, such as polynomials and Blaschke products. In addition, the
disk algebra A(D), the set of analytic functions on D continuous to ∂D, is a closed
subspace of H∞.

The following two families of functions will be used in the next section. To
prove these functions are in H∞, we take a geometric approach using conformal
mappings of the plane. To this effect let H` and Hr denote the open left and right
half planes respectively, i.e., H` = {Re z < 0} and Hr = {Re z > 0}.

Lemma 2.4. For s ≥ 0, the function

fs(z)= exp
s(z+ 1)

z− 1

is in H∞.

Proof. If s = 0, then fs is identically 1. So, fs(z) is in H∞. Now suppose s > 0.
The function fs is comprised of the functions

(1) z 7→ (z+ 1)/(z− 1) (mapping D onto H`),

(2) z 7→ sz (mapping H` onto H`),

(3) z 7→ ez (mapping H` onto D \ {0}).
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z+1
z−1 sz ez

Figure 1. Map fs(z)= exp s(z+1)
z−1

for s > 0.

So fs maps D into D, as in Figure 1, and thus fs(z) is an element of H∞. �

Lemma 2.5. For real value t , the function

ft(z)=
(

1+ z
1− z

)i t

is in H∞.

Proof. For t = 0, ft is identically 1, and thus is in H∞. Now suppose t > 0. We
will rewrite the function ft as

ft(z)= exp
(

i t log
1+ z
1− z

)
,

where log is the principle branch of the logarithm. Then ft is comprised of the
functions

(1) z 7→ (1+ z)/(1− z) (mapping D onto Hr ),

(2) z 7→ log z (mapping Hr onto the horizontal strip Sh = {0< Im z < 2π}),

(3) z 7→ i t z (mapping Sh onto the vertical strip Sv = {−2π < Re z < 0}),

(4) z 7→ ez (mapping Sv into A(e−2π , 1)= {e−2π < |z|< 1}).

So ft maps D into A(e−2π , 1) ⊆ D, as depicted in Figure 2. In the case of
t < 0, the vertical strip Sv becomes {0 < Re z < 2π}. The map z 7→ ez takes Sv
into A(1, e2π )⊆ e2πD, as depicted in Figure 3. In either case, ft(z) is an element
of H∞ since ‖ ft‖∞ < e2π for all t ∈ R. �

1+z
1−z log z i t z ez

Figure 2. Map ft(z)= exp
(

i t log 1+z
1−z

)
for t > 0.
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1+z
1−z log z i t z ez

Figure 3. Map ft(z)= exp
(

i t log 1+z
1−z

)
for t < 0.

These functions above, together with the monomials, play such a pivotal role in
Section 3 that we denote the union of these functions by F , i.e.,

F = { fs : s ≥ 0} ∪ { ft : t ∈ R} ∪ {zk
: k ∈ N}.

2C. Spectrum of Cϕ . In this section we collect useful results regarding the spec-
trum of operators on Banach spaces. For a bounded linear operator T on a Banach
space X , the spectrum of T is given by

σ(T )= {λ ∈ C : T − λI is not invertible}

where I denotes the identity operator on X . The spectrum is a nonempty, closed
subset of C. The spectral radius of T is given by

ρ(T )= sup {|λ| : λ ∈ σ(T )}.

Due to the fact that the spectrum is closed, we have the spectrum of T is contained
in the closed disk centered at the origin of radius ρ(T ).

Determining the spectrum of a particular composition operator can be difficult
depending on the symbol of the operator and the space on which it is acting.
However, the difficulties can be avoided if the operator is similar to a “simpler”
operator. Linear operators S and T (not necessarily bounded) on a Banach space X
are similar if there exists a bounded linear operator U on X , having bounded inverse,
such that T = U SU−1. If S and T are both bounded operators, then similarity
preserves the spectrum.

Theorem 2.6. Let S and T be bounded operators on a Banach space X. If S and
T are similar, then σ(S)= σ(T ).

Proof. Suppose S and T are similar operators on X . By definition, there exists an
invertible, bounded operator U such that T =U SU−1. Let λ ∈ C and observe that

T − λI =U SU−1
− λI

=U SU−1
− λUU−1

=U SU−1
−U (λI )U−1

=U (S− λI )U−1.
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Thus, we have that S− λI is not invertible if and only if T − λI is not invertible.
Therefore σ(S)= σ(T ). �

3. Main results

In this section, we determine the spectrum of Cϕ for ϕ a disk automorphism acting
on a particular family of Banach spaces of analytic functions. The spaces we
consider will be denoted by X and have the following properties:

(i) X contains F ,

(ii) for all ϕ ∈ Aut(D), Cϕ is bounded on X and ρ(Cϕ)= 1.

The set of automorphisms of D, as seen previously, is a very nice subset of the
analytic self-maps of D. By property (ii), every composition operator induced by
a disk automorphism is bounded on X . In fact, every such composition operator
is invertible. This result, that we prove below, can be viewed as a consequence of
Theorem 1.6 of [Cowen and MacCluer 1995].

Proposition 3.1. Let ϕ be a disk automorphism and Cϕ the induced composition
operator on X . Then Cϕ is invertible with inverse C−1

ϕ = Cϕ−1 .

Proof. Since ϕ ∈ Aut(D), ϕ is invertible, and ϕ−1 is an automorphism. The
composition operator Cϕ−1 is bounded by property (ii) and

Cϕ(Cϕ−1( f ))= Cϕ( f ◦ϕ−1)= f ◦ϕ−1
◦ϕ = f,

Cϕ−1(Cϕ( f ))= Cϕ−1( f ◦ϕ)= f ◦ϕ ◦ϕ−1
= f .

Therefore, Cϕ is invertible with C−1
ϕ = Cϕ−1 . �

Since the spectral radius of Cϕ on X is 1 for ϕ ∈ Aut(D), we see that the search
for the spectrum can be restricted to subsets of D. However, our search can be
refined further to subsets of the unit circle.

Theorem 3.2. Let ϕ be a disk automorphism and Cϕ the induced composition
operator on X . Then σ(Cϕ)⊆ ∂D.

Proof. By property (ii) of X , we have ρ(Cϕ) = 1. So, σ(Cϕ) ⊆ D. Since, by
Proposition 3.1, Cϕ is invertible with the inverse C−1

ϕ = Cϕ−1 , then 0 /∈ σ(Cϕ).
So, the function f (z) = z−1 is analytic in some neighborhood of σ(Cϕ). By the
Spectral Mapping Theorem (see Theorem 5.14 of [MacCluer 2009]), we have
σ( f ◦Cϕ)= f (σ (Cϕ)), and so,

σ(Cϕ−1)= σ(C−1
ϕ )= σ(Cϕ)−1

= {λ−1
: λ ∈ σ(Cϕ)} .

Since ϕ−1
∈ Aut(D), σ(Cϕ−1)⊆ D. Thus for λ ∈ σ(Cϕ), both λ and λ−1 are in D.

This implies λ ∈ ∂D. So σ(Cϕ)⊆ ∂D, as desired. �
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Since the disk automorphisms are classified into three categories, according to
fixed points, we will treat each type of automorphism separately. However, the
strategy to determine σ(Cϕ) is the same. For a disk automorphism ϕ, we have
shown ϕ to be conformally equivalent to a particularly “nice” disk automorphism:
in the elliptic case a disk automorphism that fixes 0, in the parabolic case a disk
automorphism that fixes 1, and in the hyperbolic case a disk automorphism that
fixes ±1. In the next result, we show that conformally equivalent automorphisms
induce similar composition operators on X . This result is not unique to the space
X , but is true for any space for which automorphisms induce bounded composition
operators (see p. 250 of [Cowen and MacCluer 1995]).

Proposition 3.3. Let ϕ and ψ be conformally equivalent disk automorphisms. Then
the induced composition operators Cϕ and Cψ on X are similar.

Proof. Suppose ϕ and ψ are conformally equivalent disk automorphisms. Then
there exists a disk automorphism τ such that ψ = τ ◦ϕ ◦ τ−1. For f ∈ X , observe

Cψ f = f ◦ (τ ◦ϕ ◦ τ−1)= (( f ◦ τ) ◦ϕ) ◦ τ−1
= (Cτ−1CϕCτ ) f.

Since Cτ−1 is bounded and invertible on X with C−1
τ−1 =Cτ , then Cψ =Cτ−1CϕC−1

τ−1 .
Therefore Cϕ and Cψ are similar. �

With Proposition 3.3 and Lemmas 2.1, 2.2, and 2.3, it suffices to determine the
spectrum of composition operators induced by these “nice” disk automorphisms,
since similarity of bounded operators preserves the spectrum.

Theorem 3.4. Let ϕ be an elliptic disk automorphism with fixed point a in D. Then
the spectrum of Cϕ acting on X is the closure of the positive powers of ϕ′(a).
Moreover, this closure is a finite subgroup of the unit circle if ϕ′(a)n = 1 for some
natural number n, and is the unit circle otherwise.

Proof. By Lemma 2.1, ϕ is conformally equivalent to ψ(z)= λz where λ= ϕ′(a).
By Proposition 3.3, it suffices to show that σ(Cψ) is the closure of the positive
powers of λ. Let G = 〈λ〉 = {λk

: k ∈N}, which is a subset of ∂D since |λ| = 1. For
each k ∈N, the function fk(z)= zk is in X by property (i), and we have (Cψ fk)(z)=
λk fk(z). Thus λk is an eigenvalue of Cψ corresponding to the eigenfunction fk . So
G ⊆ σ(Cψ), and since the spectrum is closed, we have G ⊆ σ(Cψ) = σ(Cϕ). If
the order of λ is infinite, then G is dense in ∂D, and so G = ∂D.

Now suppose λ has order m <∞. Then G = {λk
: k = 1, . . . ,m}. So, G = G.

We now wish to show σ(Cψ)⊆ G. Since σ(Cψ)⊆ ∂D by Theorem 3.2 it suffices
to show that if µ ∈ ∂D \G then µ /∈ σ(Cψ). Suppose µ ∈ ∂D \G.

Since µ /∈ G, it clear that µ /∈ G and µm
6= 1. In order to show µ /∈ σ(Cψ), we

will show that Cψ −µI is invertible by proving that for every g ∈ X , there exists a
unique f ∈ X such that f ◦ψ −µ f = g.



820 ROBERT F. ALLEN, THONG M. LE AND MATTHEW A. PONS

Since the order of λ is m, we have

ψ (m)(z)= (ψ ◦ · · · ◦ψ︸ ︷︷ ︸
m−times

)(z)= λmz = z.

By repeated composition with ψ , we obtain the system of linear equations:

f ◦ψ −µ f = g

f ◦ψ (2)−µ( f ◦ψ)= g ◦ψ
...

f −µ( f ◦ψ (m−1))= g ◦ψ (m−1) .

This system of linear equations can be expressed as the matrix equation AEx = Eb
where

A =



−µ 1 0 0 · · · 0
0 −µ 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . .
. . .

...

0
...

. . .
. . . 1

1 0 · · · · · · 0 −µ


, Ex =



f
f ◦ψ
...
...

f ◦ψ (m−2)

f ◦ψ (m−1)


, and Eb =



g
g ◦ψ
...
...

g ◦ψ (m−2)

g ◦ψ (m−1)


.

The determinant of A is (−1)m(µm
− 1), which is not zero since µ /∈ G. Thus

there is a unique solution for Ex . It gives us the unique solution f , which is a finite
linear combination of function in X of the form g ◦ψ ( j−1) for j = 1, . . . ,m, and
thus f is in X . It follows that Cψ −µI is invertible. So, µ /∈ σ(Cψ). Therefore,
σ(Cϕ)= σ(Cψ)⊆ G. �

Theorem 3.5. Let ϕ be a parabolic disk automorphism. Then the spectrum of Cϕ
acting on X is the unit circle.

Proof. From Lemma 2.2, ϕ is conformally equivalent to either

ψ1(z)=
(1+ i)z− 1

z+ i − 1
or ψ2(z)=

(1− i)z− 1
z− i − 1

.

By Theorems 3.2 and 3.3 it suffices to show that ∂D is a subset of σ(Cψ1)

and σ(Cψ2).
First suppose ϕ is conformally equivalent to ψ1. Consider the function

fs(z)= exp
s(z+ 1)

z− 1



SPECTRUM OF A COMPOSITION OPERATOR 821

for s ≥ 0. By property (i), fs is in X . Observe

(Cψ1 fs)(z)= fs(ψ1(z))= fs

(
(1+ i)z− 1

z+ i − 1

)
= exp

s
(
(1+i)z−1

z+i−1 + 1
)

(1+i)z−1
z+i−1 − 1

= exp
s((1+ i)z− 1+ z+ i − 1)
(1+ i)z− 1− z− i + 1

= exp
s((2+ i)z+ i − 2)

i(z− 1)
= exp

s((1− 2i)z+ 1+ 2i)
z− 1

= exp
(

s(z+ 1)
z− 1

− 2is
)
= ei(−2s) fs(z).

So, fs is an eigenfunction of Cψ1 for s ≥ 0. Then, ∂D= {ei(−2s)
: s ≥ 0} is a subset

of σ(Cψ1). If ϕ is conformally equivalent to ψ2, then by a similar calculation, we
have

(Cψ2 fs)(z)= e2is fs(z),

and so ∂D = {e2is
: s ≥ 0} is a subset of σ(Cψ2). Therefore, σ(Cϕ) = ∂D, as

desired. �

Theorem 3.6. Let ϕ be a hyperbolic disk automorphism. Then the spectrum of Cϕ
acting on X is the unit circle.

Proof. From Lemma 2.3, ϕ is conformally equivalent to ψ(z)= (z+ r)/(1+ r z)
for some r ∈ (0, 1). By Theorems 3.2 and 3.3 it suffices to show that ∂D⊆ σ(Cψ).
Consider the function

ft(z)=
(

1+ z
1− z

)i t

for t ∈ R. By property (i), ft is in X . Observe

(Cψ ft)(z)= ft(ψ(z))= ft

(
z+ r

1+ r z

)

=

(
1+ z+r

1+r z

1− z+r
1+r z

)i t

=

(
1+ r z+ z+ r
1+ r z− z− r

)i t

=

(
(r + 1)z+ (r + 1)
(r − 1)z− (r − 1)

)i t

=

(
r + 1
r − 1

)i t

ft(z).

So, ft is an eigenfunction of Cψ for t real. Then ∂D =
{(
(r + 1)/(r − 1)

)i t
:

0 < r < 1, t ∈ R
}

is a subset of σ(Cψ) = σ(Cϕ). Therefore σ(Cϕ) = ∂D, as
desired. �
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4. Examples and comparisons

In this section we first consider examples of spaces that satisfy the properties of X .
For these spaces, our results characterize the spectrum of composition operators
induced by disk automorphisms. Lastly, we consider spaces that do not satisfy the
properties of X but for which the spectrum of composition operators induced by
automorphisms is known. We will compare the spectra for those spaces with the
characterization for X .

4A. Examples. First, we will discuss examples of spaces that satisfy the properties
of X .

4A1. Bounded analytic functions. The property (i) of X is satisfied by H∞ by
Lemmas 2.4 and 2.5. In fact, on H∞, any analytic self-map of D induces a bounded
composition operator Cϕ such that ‖Cϕ‖ = 1. Equality is achieved since H∞

contains the constant function 1. The spectral radius formula (see Theorem 5.15
of [MacCluer 2009]) then implies that ρ(Cϕ)= 1. Thus, property (ii) is satisfied.
Thus H∞ belongs to the family of Banach spaces of analytic functions X .

4A2. Bloch space. The Bloch space on D, denoted B = B(D), is the space of
analytic functions on D such that β f = supz∈D (1−|z|

2)| f ′(z)|<∞. The quantity
β f is a seminorm, called the Bloch seminorm. The Bloch space is a Banach space
under the norm

‖ f ‖B = | f (0)| +β f .

It is well-known that B is a Banach space of analytic functions that contains H∞,
and thus satisfies property (i) of X . In fact, every analytic self-map of D induces a
bounded composition operator on B (see [Arazy et al. 1985, p. 126]). Donaway, in
his Ph.D. thesis, proved the spectral radius of every composition operator induced
by an analytic function on D, and in particular the disk automorphisms, is 1, by
[Donaway 1999, Corollary 3.9]. So the Bloch space satisfies all the properties of X .

4A3. Analytic functions of bounded mean oscillation. The space of analytic func-
tions on D with bounded mean oscillation on ∂D, denoted BMOA, is defined to be
the set of functions in H(D) such that

‖ f ‖∗ = sup
z∈D

‖ f ◦ τa − f (z)‖H2 <∞,

where H 2 is defined in Section 4B1. The space BMOA is a Banach space under
the norm

‖ f ‖BMOA = | f (0)| + ‖ f ‖∗.

It is well-known that BMOA is a Banach space of analytic functions, a subspace
of the Bloch space, and contains H∞ as a subspace since ‖ f ‖BMOA ≤ 3‖ f ‖∞.
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Thus property (i) is satisfied by BMOA. The following result shows property (ii) is
satisfied by BMOA also.

Theorem 4.1. Let ϕ be an analytic self-map of D. Then Cϕ acting on BMOA is
bounded and ρ(Cϕ)= 1.

Proof. As a result of the Littlewood subordination principle (see Theorem 1.7 of
[Duren 1970]), every analytic self-map ϕ of D induces a bounded composition
operator on BMOA.

To compute the spectral radius of Cϕ acting on BMOA, we first estimate the
norm. By Corollary 2.2 of [Laitila 2009] there is a constant M > 0, independent of
ϕ, such that

‖Cϕ‖ ≤ M
(

sup
a∈D

‖τϕ(a) ◦ϕ ◦ τa‖H2 + log
2

1− |ϕ(0)|2

)
. (4-1)

Since the function τϕ(a) ◦ϕ ◦ τa is a composition of self-maps of the disk, the first
term on the right is bounded above by 1. Also,

1
1− |ϕ(0)|2

≤
1+ |ϕ(0)|
1− |ϕ(0)|

≤
2

1− |ϕ(0)|

and hence

log
(

2
1− |ϕ(0)|2

)
≤ log

(
4

1− |ϕ(0)|

)
≤ 2 log 2− log(1− |ϕ(0)|).

Applying these estimates to Equation (4-1), we have

‖Cϕ‖ ≤ M(1+ 2 log 2)−M log(1− |ϕ(0)|).

This immediately implies that

‖Cϕn‖ ≤ M(1+ 2 log 2)−M log(1− |ϕn(0)|)

and it follows that ρ(Cϕ) = 1 for all bounded composition operators acting on
BMOA by Theorem 3.7 of [Donaway 1999]. �

Thus BMOA satisfies all the properties of X .

4B. Comparisons. We now investigate spaces that do not satisfy the properties of
X . We compare the spectrum of induced composition operators on these spaces
with those on X .

4B1. Hardy spaces. For 1≤ p <∞, the Hardy space, denoted H p
= H p(D), is

the space of analytic functions on D such that

‖ f ‖p
H p = sup

0<r<1

∫
D

∣∣ f (reiθ )
∣∣p dθ

2π
<∞.
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Under this norm, the Hardy spaces are Banach spaces and for p = 2 it is a Hilbert
space.

It is well known that H p is a Banach space of analytic functions that contains
H∞ as a subspace. For the cases of an elliptic or parabolic automorphism ϕ, it
is the case that ρ(Cϕ) = 1 and the spectrum of Cϕ on H p is the same as for Cϕ
acting on X (see Theorem 3.9 of [Cowen and MacCluer 1995]). However, it is
not the case that the spectral radius is 1 for every composition operator induced by
an automorphism. In fact, if ϕ is hyperbolic, then ρ(Cϕ)= ϕ′(a)−1/p where a is
the Denjoy–Wolff point of ϕ (see Theorem 3.9 of [Cowen and MacCluer 1995]).
In this situation, ϕ′(a) < 1 thus making ρ(Cϕ) > 1. In turn, the spectrum is the
annulus ϕ′(a)1/p

≤ |z| ≤ ϕ′(a)−1/p (see Theorem 4.9 of [Hyvärinen et al. 2013]).

4B2. Weighted Bergman spaces. For 1≤ p<∞ and α>−1, the standard weighted
Bergman space, denoted Ap

α = Ap
α(D), is the space of analytic functions on D such

that
‖ f ‖p

Ap
α
=

∫
D

(
1− |z|2

)α
| f (z)|p d A(z) <∞,

where d A(z) is the normalized Lebesgue area measure on D. The weighted Bergman
spaces are Banach spaces under the norm ‖·‖Ap

α
.

It is well known that Ap
α is a Banach space of analytic functions that contains

H∞ as a subspace. For the cases of an elliptic or parabolic automorphism ϕ, it is
the case that ρ(Cϕ)= 1 and the spectrum of Cϕ on Ap

α is the same as for Cϕ acting
on X (see Lemma 4.2 and Theorem 4.14 of [Hyvärinen et al. 2013]). However, as
was the case for the Hardy spaces, it is not the case that the spectral radius is 1 for
every composition operator induced by an automorphism. In fact, if ϕ is hyperbolic,
then

ρ(Cϕ)=max
{

1
ϕ′(a)s

,
1

ϕ′(b)s

}
where s = (α+ 2)/p, a is the Denjoy–Wolff point and b is the other fixed point
of ϕ (see Theorem 4.6 of [Hyvärinen et al. 2013]). In turn, the spectrum contains
the annulus

min
{

1
ϕ′(a)s

,
1

ϕ′(b)s

}
≤ |z| ≤max

{
1

ϕ′(a)s
,

1
ϕ′(b)s

}
(see Corollary 4.7 of [Hyvärinen et al. 2013]).

4B3. Weighted Banach spaces. For 0 < p <∞, the standard weighted Banach
space on D, denoted H∞p = H∞p (D), is the space of analytic functions on D such
that

‖ f ‖H∞p = sup
z∈D

(
1− |z|2

)p
| f (z)|<∞,

The weighted Banach spaces are, not surprisingly, Banach spaces under ‖·‖H∞p .
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It is well known that H∞p is a Banach space of analytic functions that contain
H∞ as a subspace. For the cases of an elliptic or parabolic automorphism ϕ, it is
the case that ρ(Cϕ)= 1 and the spectrum of Cϕ on H∞p is the same as for Cϕ acting
on X (see Lemma 4.2 and Theorem 4.14 of [Hyvärinen et al. 2013]). However, as
was the case for the Hardy spaces, it is not the case that the spectral radius is 1 for
every composition operator induced by an automorphism. In fact, if ϕ is hyperbolic,
then

ρ(Cϕ)=max
{ 1
ϕ′(a)s

,
1

ϕ′(b)s

}
where a is the Denjoy–Wolff point and b is the other fixed point of ϕ. In turn, the
spectrum contains the annulus

min
{ 1
ϕ′(a)p ,

1
ϕ′(b)p

}
≤ |z| ≤max

{ 1
ϕ′(a)p ,

1
ϕ′(b)p

}
(see Theorem 4.6 and Corollary 4.7 of [Hyvärinen et al. 2013]).

4B4. Dirichlet space. The Dirichlet space on D, denoted D, is the space of analytic
functions on D such that ∫

D

| f ′(z)|2 d A(z) <∞

where d A denotes the normalized Lebesgue area measure on D. Under the norm

‖ f ‖2D = | f (0)|
2
+

∫
D

| f ′(z)|2 d A(z)

the Dirichlet space has a Hilbert space structure. Although not every analytic
self-map of D induce bounded composition operators on D, univalent maps, and
thus the automorphisms, of D do.

Independently, Donaway [1999, Corollary 3.11] and Martín and Vukotić [2005,
Theorem 7] showed that composition operators on D induced by univalent self-
maps of D, and thus the automorphisms, have spectral radius 1. However, by
direct calculation, one can see that the functions in F are not contained in the
Dirichlet space; for the case of fs this is shown in [Pons 2010] (see p. 455). Despite
D not satisfying all the properties of X , the spectrum of automorphism induced
composition operators on D are precisely the same as those on X .

To overcome the lack of eigenfunctions, the authors in [Higdon 1997] and
[Gallardo-Gutiérrez and Montes-Rodríguez 2003] used two new approaches. In
[Higdon 1997], the author produces approximate eigenfunctions and in [Gallardo-
Gutiérrez and Montes-Rodríguez 2003] unitary similarity is the key tool.

Remark 4.2. For all of the spaces discussed in Sections 4A and 4B (and those
discussed in the next section), the spectrum of Cϕ when ϕ is elliptic will be the
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same as that for Cϕ acting on X . This is due to the fact that the eigenfunctions are
the monomials, which are contained in all of these spaces.

5. Open questions

We end this paper with open questions which were inspired while developing the
examples and comparisons in Sections 4A and 4B.

5A. The little Bloch space. While the Bloch space contains the polynomials, they
are not dense in B. The closure of the polynomials with respect to ‖·‖B is called
the little Bloch space, denoted B0 = B0(D). More formally, the little Bloch space
consists of the functions f ∈ B such that

lim
|z|→1

(
1− |z|2

)∣∣ f ′(z)
∣∣= 0.

From Theorem 12 of [Arazy et al. 1985], bounded composition operators on B0

are induced exactly by functions in B0, which include the automorphisms. Donaway
also proved the spectral radius of every bounded composition operator on B0 is 1.
Thus property (ii) is satisfied by B0. However, the following result shows that F is
not contained in B0, and thus property (i) of X is not satisfied.

Theorem 5.1. The functions fs and ft , for s > 0 and t 6= 0, are not contained in
the little Bloch space.

Proof. Consider the function

ft(z)= exp
(

i t log
1+ z
1− z

)
.

We show that this function is not in B0 for t ∈ R \ {0}. Taking the derivative,

f ′t (z)= ft(z)
(

i t
1− z
1+ z

)
2

(1− z)2
= ft(z)

2i t
(1− z)(1+ z)

.

For t > 0, | ft(z)| ≥ e−2π and, for t < 0, | ft(z)| ≥ 1. In either case, there is a
constant C > 0 such that | ft(z)| ≥ C for all t ∈ R \ {0} and all z ∈ D. Hence

| f ′t (z)| ≥
2C |t |

|z− 1||z+ 1|
.

To show that ft 6∈ B0, we need to show that

lim
|z|→1

(
1− |z|2

)
| f ′t (z)| 6= 0.

To see this, first observe that

lim
|z|→1

(
1− |z|2

)
| f ′t (z)| ≥ lim

|z|→1

(
1− |z|2

) 2C |t |
|z− 1||z+ 1|
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by our estimate from above. If we now take a radial path to 1, that is, we set z = r
and let r ↑ 1, we have

lim
r→1−

(
1− r2) 2C |t |

(1− r)(1+ r)
= 2C |t |> 0

when t 6= 0. Thus

lim
|z|→1

(
1− |z|2

) 2Ct
|z− 1||z+ 1|

6= 0

for t 6= 0, and hence ft is not in B0.
Next consider the function

fs(z)= exp
s(z+ 1)

z− 1
.

We will show that this function is not in B0 for s > 0. First observe that

f ′s (z)=
(

exp
s(z+ 1)

z− 1

)
−2s

(z− 1)2

and thus we aim to show that

lim
|z|→1

(
1− |z|2

)
| f ′s (z)| = lim

|z|→1

(
1− |z|2

)∣∣∣∣exp(
s(z+ 1)

z− 1

∣∣∣∣ 2s
|1− z|2

6= 0.

Fix x0 < 0 and consider the sequence {zn} defined by

zn =
x0+ in+ 1
x0+ in− 1

.

Since x0 < 0, this sequence is contained in the unit disk and {zn} → 1 as n→∞.
To obtain our conclusion, we show

lim
n→∞

(
1− |zn|

2)∣∣∣∣exp
s(zn + 1)

zn − 1

∣∣∣∣ 2s
|1− zn|

2 6= 0.

First observe that the map ψ(z)= (z+ 1)/(z− 1) is its own inverse and hence
ψ(zn)= x0+ in for each n ∈ N. Thus∣∣∣∣exp

s(zn + 1)
zn − 1

∣∣∣∣= ∣∣exp(sx0+ isn)
∣∣= esx0 > 0.

Substituting,

lim
n→∞

(
1− |zn|

2)∣∣∣∣exp
s(zn + 1)

zn − 1

∣∣∣∣ 2s
|1− zn|

2 = lim
n→∞

esx0
(
1− |zn|

2) 2s
|1− zn|

2 .

Next,

1− |zn|
2
=

−4x0

(x0− 1)2+ n2
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and
|1− zn|

2
=

4
(x0− 1)2+ n2 .

Thus

lim
n→∞

esx0
(
1− |zn|

2) 2s
|1− zn|

2 = lim
n→∞

esx0

(
−4x0

(x0− 1)2+ n2

)(
s
(
(x0− 1)2+ n2

)
2

)
= lim

n→∞
(−2sx0)esx0 > 0

and hence fs is not in B0 for s > 0. �

For the little Bloch space, we leave the reader with the following question.

Question 1. For ϕ a parabolic or hyperbolic automorphism, what is the spectrum
of Cϕ on the little Bloch space?

5B. Analytic functions of vanishing mean oscillation. Like the Bloch space, the
polynomials are contained in BMOA, but they are not dense in BMOA. We denote
by VMOA the closure of the polynomials in ‖·‖BMOA. VMOA is the space of
analytic functions with vanishing mean oscillation on ∂D, formally defined as the
functions f ∈ BMOA such that

lim
|a|→1

∥∥ f ◦ τa − f (a)
∥∥

H2 = 0.

By Corollary 4.2 of [Laitila 2009], Cϕ is bounded on VMOA if and only if
ϕ ∈ VMOA. So every automorphism induces a bounded composition operator on
VMOA. By the same argument as in Section 4A3, the spectral radius of Cϕ induced
by a disk automorphism is 1. Thus property (ii) of X is satisfied. Since VMOA is a
subspace of the little Bloch space (see [Gallardo-Gutiérrez et al. 2013]), it follows
that VMOA does not satisfy property (i), a corollary of Theorem 5.1.

Corollary 5.2. The functions fs and ft , for s > 0 and t 6= 0, are not contained in
VMOA.

For VMOA, we leave the reader with the following question.

Question 2. For ϕ parabolic or hyperbolic automorphism, what is the spectrum of
Cϕ on VMOA?
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