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We study representations of the knot groups of twist knots into SL2(C). The set
of nonabelian SL2(C) representations of a twist knot K is described as the zero
set in C×C of a polynomial PK (x, y)= QK (y)+x2 RK (y)∈Z[x, y], where x is
the trace of a meridian. We prove some properties of PK (x, y). In particular, we
prove that PK (2, y) ∈ Z[y] is irreducible over Q. As a consequence, we obtain
an alternative proof of a result of Hoste and Shanahan that the degree of the trace
field is precisely two less than the minimal crossing number of a twist knot.

1. Introduction

Let J (k, l) be the two-bridge knot/link in Figure 1, where k, l 6= 0 denote the
numbers of half-twists in the boxes. Positive (resp. negative) numbers correspond to
right-handed (resp. left-handed) twists. Note that J (k, l) is a knot if and only if kl is
even. The knots J (2, 2n), where n 6= 0, are known as twist knots. Moreover, J (2, 2)
is the trefoil knot and J (2,−2) is the figure-eight knot. For more information about
J (k, l), see [Hoste and Shanahan 2004].

We study representations of the knot groups of twist knots into SL2(C), where
SL2(C) denotes the set of all 2× 2 matrices with determinant 1. From now on we
fix a twist knot J (2, 2n). By [Hoste and Shanahan 2001] the knot group of J (2, 2n)
has a presentation π1(J (2, 2n))= 〈c, d | cu = ud〉, where c, d are meridians and
u = (cd−1c−1d)n. This presentation is closely related to the standard presentation
of the knot group of a two-bridge knot. Note that J (2, 2n) is the twist knot K2n in
[Hoste and Shanahan 2001]. In this note we will follow [Tran 2015b, Lemma 1.1]
and use a different presentation,

π1(J (2, 2n))= 〈a, b | aw = wb〉,

where a, b are meridians and w = (ab−1)−na(ab−1)n. This presentation has been
shown to be useful for studying invariants of twist knots; see [Nagasato and Tran
2013; Tran 2013a; 2015a; 2015b].
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Figure 1. The two-bridge knot/link J (k, l).

A representation ρ : π1(J (2, 2n))→ SL2(C) is called nonabelian if the image
of ρ is a nonabelian subgroup of SL2(C). Suppose ρ : π1(J (2, 2n))→ SL2(C) is a
nonabelian representation. Up to conjugation, we may assume that

ρ(a)=
[

s 1
0 s−1

]
and ρ(b)=

[
s 0

2− y s−1

]
,

where s 6= 0 and y 6= 2 satisfy a polynomial equation Pn(s, y)= 0. The polynomial
Pn can be chosen so that Pn(s, y)= Pn(s−1, y), and hence it can be considered as
a polynomial in the variables x := s+ s−1 and y. Note that x = tr ρ(a)= tr ρ(b)
and y = tr ρ(ab−1). An explicit formula for Pn(x, y) will be derived in Section 2
and it is given by

Pn(x, y)= 1− (y+ 2− x2)Sn−1(y)(Sn−1(y)− Sn−2(y)),

where the Sk(z) are the Chebychev polynomials of the second kind defined by
S0(z) = 1, S1(z) = z and Sk(z) = zSk−1(z) − Sk−2(z) for all integers k. Note
that Pn(x, y) is different from the Riley polynomial [1984] of the two-bridge knot
J (2, 2n); see, e.g., [Nagasato and Tran 2013]. Moreover, Pn(2, y) is also different
from the polynomial 8−n(y) studied in [Hoste and Shanahan 2001].

In this note we prove the following two properties of Pn(x, y).

Theorem 1. Suppose x2
0 ∈ R such that 4− 1/|n| < x2

0 ≤ 4. Then the polynomial
Pn(x0, y) has no real roots y if n < 0, and has exactly one real root y if n > 0.

Theorem 2. The polynomial Pn(2, y) ∈ Z[y] is irreducible over Q.

A nonabelian representation ρ : π1(J (2, 2n))→ SL2(C) is called parabolic if
the trace of a meridian is equal to 2. The zero set in C of the polynomial Pn(2, y)
describes the set of all parabolic representations of the knot group of J (2, 2n) into
SL2(C). Theorem 1 is related to the problem of determining the existence of real
parabolic representations in the study of the left-orderability of the fundamental
groups of cyclic branched covers of two-bridge knots; see [Hu 2015; Tran 2015a].

As in the proof of [Hoste and Shanahan 2001, Theorem 1], Theorem 2 gives
an alternative proof of a result of Hoste and Shanahan that the degree of the
trace field is precisely two less than the minimal crossing number of a twist knot.
Indeed, by definition the trace field of a hyperbolic knot K is the extension field
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Q(tr ρ0(g) : g ∈ π1(K )), where ρ0 : π1(K )→ SL2(C) is a discrete faithful repre-
sentation. The representation ρ0 is a parabolic representation. Since Pn(2, y) is
irreducible over Q, the trace field of the twist knot J (2, 2n) is Q(y0), where y0 is a
certain complex root of Pn(2, y) corresponding to the presentation ρ0. Consequently,
the degree of Pn(2, y) gives the degree of the trace field. The conclusion follows,
since the minimal crossing number of J (2, 2n) is 2n+1 if n>0 and is 2−2n if n<0.

The rest of this note is devoted to the proofs of Theorems 1 and 2.

2. Proofs of Theorems 1 and 2

In this section we first recall some properties of the Chebychev polynomials Sk(z).
We then compute the polynomial Pn(x, y). Finally, we prove Theorems 1 and 2.

Chebychev polynomials. Recall that the Sk(z) are the Chebychev polynomials
defined by S0(z)= 1, S1(z)= z and Sk(z)= zSk−1(z)− Sk−2(z) for all integers k.
Note that Sk(2) = k + 1 and Sk(−2) = (−1)k(k + 1). Moreover, if z = t + t−1,
where t 6= ±1, then

Sk(z)=
tk+1
− t−(k+1)

t − t−1 .

It is easy to see that S−k(z)=−Sk−2(z) for all integers k.
The following lemma is elementary; see, e.g., [Tran 2013b, Lemma 1.4].

Lemma 2.1. One has

S2
k (z)− zSk(z)Sk−1(z)+ S2

k−1(z)= 1

for all integers k.

Lemma 2.2. For all k ≥ 1 one has

Sk(z)=
k∏

j=1

(
z− 2 cos

jπ
k+ 1

)
,

Sk(z)− Sk−1(z)=
k∏

j=1

(
z− 2 cos

(2 j − 1)π
2k+ 1

)
.

Proof. We prove the second formula. The first one can be proved similarly.
Since Sk(z)− Sk−1(z) is a polynomial of degree k, it suffices to show that its

roots are

2 cos
(2 j − 1)π

2k+ 1
,

where 1≤ j ≤ k. Let

θj =
(2 j − 1)π

2k+ 1
.
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Then ei(2k+1)θj =−1. Hence, if z = 2 cos θj = eiθj + e−iθj then we have

Sk(z)=
ei(k+1)θj − e−i(k+1)θj

eiθj − e−iθj
=
−e−ikθj + eikθj

eiθj − e−iθj
= Sk−1(z).

This means that z = 2 cos θj is a root of Sk(z)− Sk−1(z). �

Lemma 2.3. Suppose z ∈ R such that −2≤ z ≤ 2. Then

|Sk−1(z)| ≤ |k|

for all integers k.

Proof. See [Tran 2015a, Lemma 2.6]. �

Lemma 2.4. Suppose M ∈ SL2(C). Then

Mk
= Sk−1(z)M − Sk−2(z)I

for all integers k, where I is the 2× 2 identity matrix and z := tr M.

Proof. Since det M= 1, by the Cayley–Hamilton theorem we have M2
−zM+ I = 0.

This implies that Mk
− zMk−1

+Mk−2
= 0 for all integers k. Then, by induction

on k we have Mk
= Sk−1(z)M − Sk−2(z)I for all k ≥ 0.

For k < 0, since tr M−1
= tr M = z we have

Mk
= (M−1)−k

= S−k−1(z)M−1
− S−k−2(z)I

=−Sk−1(z)(z I −M)+ Sk(z)I.

The lemma follows, since zSk−1(z)− Sk(z)= Sk−2(z). �

The polynomial Pn. Recall that the knot group of J (2, 2n) has the presentation

π1(J (2, 2n))= 〈a, b | aw = wb〉,

where a, b are meridians andw= (ab−1)−na(ab−1)n. See [Tran 2015b, Lemma 1.1].
Suppose ρ : π1(J (2, 2n)) → SL2(C) is a nonabelian representation. Up to

conjugation, we may assume that

ρ(a)=
[

s 1
0 s−1

]
and ρ(b)=

[
s 0

2− y s−1

]
,

where s 6= 0 and y 6= 2 satisfy a polynomial equation Pn(s, y)= 0. We now compute
the polynomial Pn from the matrix equation ρ(aw)= ρ(wb).

Since

ρ(ab−1)=

[
y− 1 s

s−1(y− 2) 1

]
,
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by Lemma 2.4 we have

ρ((ab−1)n)= Sn−1(y)ρ(ab−1)− Sn−2(y)I

=

[
(y− 1)Sn−1(y)− Sn−2(y) sSn−1(y)

s−1(y− 2)Sn−1(y) Sn−1(y)− Sn−2(y)

]
.

Hence, by a direct (but lengthy) calculation we have

ρ(aw)− ρ(wb)= ρ
(
a(ab−1)−na(ab−1)n

)
− ρ

(
(ab−1)−na(ab−1)nb

)
=

[
(y− 2)Pn(s, y) s Pn(s, y)

−s−1(y− 2)Pn(s, y) 0

]
,

where

Pn(s, y)= (s2
+ s−2

+ 1− y)S2
n−1(y)− (s

2
+ s−2)Sn−1(y)Sn−2(y)+ S2

n−2(y).

By Lemma 2.1 we have S2
n−1(y)− ySn−1(y)Sn−2(y)+ S2

n−2(y)= 1. Hence

Pn(s, y)= 1− (y− s2
− s−2)Sn−1(y)(Sn−1(y)− Sn−2(y)).

Since Pn(s, y)= Pn(s−1, y), from now on we consider Pn as a polynomial in the
variables x = s+ s−1 and y. With these new variables we have

Pn(x, y)= 1− (y+ 2− x2)Sn−1(y)(Sn−1(y)− Sn−2(y)).

Proof of Theorem 1. We first prove the following lemma.

Lemma 2.5. Suppose x2
0 ∈ R such that 4− 1/|n| < x2

0 ≤ 4. If y ∈ R satisfies
Pn(x0, y)= 0, then y > 2.

Proof. Since Pn(x0, y)= 0, we have Sn−1(y)(Sn−1(y)− Sn−2(y))= (y+2− x2
0)
−1.

Hence (
(y+ 2− x2

0)Sn−1(y)
)−2
= (Sn−1(y)− Sn−2(y))2

= 1+ (y− 2)Sn−1(y)Sn−2(y)

= 1+ (y− 2)
(
S2

n−1(y)− (y+ 2− x2
0)
−1),

which implies that

1= (y+ 2− x2
0)(4− x2

0)S
2
n−1(y)+ (y− 2)(y+ 2− x2

0)
2S4

n−1(y).

Assume y ≤ 2. Then it follows from the above equation that

1≤ (y+ 2− x2
0)(4− x2

0)S
2
n−1(y). (2-1)

In particular, y > x2
0 − 2 > −2. Since −2 < y ≤ 2, by Lemma 2.3 we have

S2
n−1(y)≤ n2. Hence

(y+ 2− x2
0)(4− x2

0)S
2
n−1(y)≤ (4− x2

0)
2n2 < 1.

This contradicts (2-1). �
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We now complete the proof of Theorem 1. Suppose x2
0 ∈R and 4−1/|n|< x2

0 ≤4.
By Lemma 2.5, it suffices to consider Pn(x0, y), where y is a real number greater
than 2. The equation P(x0, y)= 0 is equivalent to

x2
0 − 4= y− 2−

1
Sn−1(y)(Sn−1(y)− Sn−2(y))

. (2-2)

Denote by fn(y) the right-hand side of (2-2), where y > 2. We now use the
factorizations of Sn−1(y) and Sn−1(y)− Sn−2(y) in Lemma 2.2.

If n =−1 then

fn(y)= y− 2+ 1
y−1

> 0≥ x2
0 − 4.

Hence fn(y)= x2
0 − 4 has no solutions on (2,∞).

If n <−1 then, by letting m =−n > 1, we have

fn(y)= y− 2+
1

Sm−1(y)(Sm(y)− Sm−1(y))

= y− 2+
1∏m−1

k=1
(
y− 2 cos kπ

m

)∏m
l=1
(
y− 2 cos (2l−1)π

2m+1

) > 0≥ x2
0 − 4.

Hence fn(y)= x2
0 − 4 has no solutions on (2,∞).

If n = 1 then fn(y) = y− 3. Since x2
0 > 3, the equation fn(y) = x2

0 − 4 has a
unique solution y = x2

0 − 1 on (2,∞).
If n > 1 then we have

fn(y)= y− 2−
1∏n−1

k=1
(
y− 2 cos kπ

n

)∏n−1
l=1

(
y− 2 cos (2l−1)π

2n−1

) .
It is easy to see that fn(y) is increasing on (2,∞). Moreover, limy→∞ fn(y)=∞
and limy→2 fn(y)=−1/n < x2

0 − 4. Hence fn(y)= x2
0 − 4 has a unique solution

on (2,∞).
The proof of Theorem 1 is complete.

Proof of Theorem 2. We write Pn(y) for Pn(2, y). Let y = t2
+ t−2. Then

Pn(y)= (Sn−1(y)− Sn−2(y))2− (y− 2)S2
n−1(y)

=
(t2n
+ t2−2n)2− t2(t2n

− t−2n)2

(t2+ 1)2

=
(t2n
+ t2−2n

+ t2n+1
− t1−2n)(t2n

+ t2−2n
− t2n+1

+ t1−2n)

(t2+ 1)2
.

Up to a factor tk, each of t2n
+ t2−2n

+ t2n+1
− t1−2n and t2n

+ t2−2n
− t2n+1

+ t1−2n

is obtained from the other by replacing t by t−1. To show that Pn(y) is irreducible
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over Q, it suffices to show that

t4n
+ t4n−1

+ t − 1= (t2
+ 1)Qn(t), (2-3)

where Qn(t) ∈ Z[t] is irreducible over Q.
As in the proof of [Baker and Petersen 2013, Lemma 6.8], we will use the

following theorem of Ljunggren [1960]. Consider a polynomial of the form R(t)=
tk1 + ε1tk2 + ε2tk3 + ε3, where ε j =±1 for j = 1, 2, 3. Then, if R has r > 0 roots
of unity as roots then R can be decomposed into two factors, one of degree r which
has these roots of unity as zeros and the other which is irreducible over Q. Hence,
to prove (2-3) it suffices to show that ±i are the only roots of unity which are roots
of t4n

+ t4n−1
+ t − 1 and these occur with multiplicity 1.

Let t be a root of unity such that t4n
+ t4n−1

+ t − 1= 0. Write t = eiθ , where
θ ∈ R. Since t2n−1

+ t1−2n
+ t2n

− t−2n
= 0, we have

2 cos(2n− 1)θ + 2i sin 2nθ = 0,

which implies that both cos(2n − 1)θ and sin 2nθ are equal to zero. There exist
integers k, l such that (2n − 1)θ =

(
k + 1

2

)
π and 2nθ = lπ . This implies that

(2k+1)/ l = (2n−1)/n. Since (2n−1)/n is a reduced fraction, there exists an odd
integer m such that 2k+1=m(2n−1) and l =mn. Hence θ = 1

2 mπ , which implies
that t = eiθ

=±i . It is easy to verify that ±i are roots of t4n
+ t4n−1

+ t − 1= 0
with multiplicity 1.

Ljunggren’s theorem then completes the proof of Theorem 2.
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