On nonabelian representations of twist knots

James C. Dean and Anh T. Tran

On nonabelian representations of twist knots

James C. Dean and Anh T. Tran
(Communicated by Jim Hoste)

Abstract

We study representations of the knot groups of twist knots into $\mathrm{SL}_{2}(\mathbb{C})$. The set of nonabelian $\mathrm{SL}_{2}(\mathbb{C})$ representations of a twist knot K is described as the zero set in $\mathbb{C} \times \mathbb{C}$ of a polynomial $P_{K}(x, y)=Q_{K}(y)+x^{2} R_{K}(y) \in \mathbb{Z}[x, y]$, where x is the trace of a meridian. We prove some properties of $P_{K}(x, y)$. In particular, we prove that $P_{K}(2, y) \in \mathbb{Z}[y]$ is irreducible over \mathbb{Q}. As a consequence, we obtain an alternative proof of a result of Hoste and Shanahan that the degree of the trace field is precisely two less than the minimal crossing number of a twist knot.

1. Introduction

Let $J(k, l)$ be the two-bridge knot/link in Figure 1, where $k, l \neq 0$ denote the numbers of half-twists in the boxes. Positive (resp. negative) numbers correspond to right-handed (resp. left-handed) twists. Note that $J(k, l)$ is a knot if and only if $k l$ is even. The knots $J(2,2 n)$, where $n \neq 0$, are known as twist knots. Moreover, $J(2,2)$ is the trefoil knot and $J(2,-2)$ is the figure-eight knot. For more information about $J(k, l)$, see [Hoste and Shanahan 2004].

We study representations of the knot groups of twist knots into $\mathrm{SL}_{2}(\mathbb{C})$, where $\mathrm{SL}_{2}(\mathbb{C})$ denotes the set of all 2×2 matrices with determinant 1 . From now on we fix a twist knot $J(2,2 n)$. By [Hoste and Shanahan 2001] the knot group of $J(2,2 n)$ has a presentation $\pi_{1}(J(2,2 n))=\langle c, d \mid c u=u d\rangle$, where c, d are meridians and $u=\left(c d^{-1} c^{-1} d\right)^{n}$. This presentation is closely related to the standard presentation of the knot group of a two-bridge knot. Note that $J(2,2 n)$ is the twist knot $K_{2 n}$ in [Hoste and Shanahan 2001]. In this note we will follow [Tran 2015b, Lemma 1.1] and use a different presentation,

$$
\pi_{1}(J(2,2 n))=\langle a, b \mid a w=w b\rangle,
$$

where a, b are meridians and $w=\left(a b^{-1}\right)^{-n} a\left(a b^{-1}\right)^{n}$. This presentation has been shown to be useful for studying invariants of twist knots; see [Nagasato and Tran 2013; Tran 2013a; 2015a; 2015b].

MSC2010: primary 57 N 10 ; secondary 57 M 25.
Keywords: Chebychev polynomial, nonabelian representation, parabolic representation, trace field, twist knot.

Figure 1. The two-bridge knot/link $J(k, l)$.

A representation $\rho: \pi_{1}(J(2,2 n)) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is called nonabelian if the image of ρ is a nonabelian subgroup of $\mathrm{SL}_{2}(\mathbb{C})$. Suppose $\rho: \pi_{1}(J(2,2 n)) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$
\rho(a)=\left[\begin{array}{cc}
s & 1 \\
0 & s^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
s & 0 \\
2-y & s^{-1}
\end{array}\right],
$$

where $s \neq 0$ and $y \neq 2$ satisfy a polynomial equation $P_{n}(s, y)=0$. The polynomial P_{n} can be chosen so that $P_{n}(s, y)=P_{n}\left(s^{-1}, y\right)$, and hence it can be considered as a polynomial in the variables $x:=s+s^{-1}$ and y. Note that $x=\operatorname{tr} \rho(a)=\operatorname{tr} \rho(b)$ and $y=\operatorname{tr} \rho\left(a b^{-1}\right)$. An explicit formula for $P_{n}(x, y)$ will be derived in Section 2 and it is given by

$$
P_{n}(x, y)=1-\left(y+2-x^{2}\right) S_{n-1}(y)\left(S_{n-1}(y)-S_{n-2}(y)\right),
$$

where the $S_{k}(z)$ are the Chebychev polynomials of the second kind defined by $S_{0}(z)=1, S_{1}(z)=z$ and $S_{k}(z)=z S_{k-1}(z)-S_{k-2}(z)$ for all integers k. Note that $P_{n}(x, y)$ is different from the Riley polynomial [1984] of the two-bridge knot $J(2,2 n)$; see, e.g., [Nagasato and Tran 2013]. Moreover, $P_{n}(2, y)$ is also different from the polynomial $\Phi_{-n}(y)$ studied in [Hoste and Shanahan 2001].

In this note we prove the following two properties of $P_{n}(x, y)$.
Theorem 1. Suppose $x_{0}^{2} \in \mathbb{R}$ such that $4-1 /|n|<x_{0}^{2} \leq 4$. Then the polynomial $P_{n}\left(x_{0}, y\right)$ has no real roots y if $n<0$, and has exactly one real root y if $n>0$.

Theorem 2. The polynomial $P_{n}(2, y) \in \mathbb{Z}[y]$ is irreducible over \mathbb{Q}.
A nonabelian representation $\rho: \pi_{1}(J(2,2 n)) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is called parabolic if the trace of a meridian is equal to 2 . The zero set in \mathbb{C} of the polynomial $P_{n}(2, y)$ describes the set of all parabolic representations of the knot group of $J(2,2 n)$ into $\mathrm{SL}_{2}(\mathbb{C})$. Theorem 1 is related to the problem of determining the existence of real parabolic representations in the study of the left-orderability of the fundamental groups of cyclic branched covers of two-bridge knots; see [Hu 2015; Tran 2015a].

As in the proof of [Hoste and Shanahan 2001, Theorem 1], Theorem 2 gives an alternative proof of a result of Hoste and Shanahan that the degree of the trace field is precisely two less than the minimal crossing number of a twist knot. Indeed, by definition the trace field of a hyperbolic knot K is the extension field
$\mathbb{Q}\left(\operatorname{tr} \rho_{0}(g): g \in \pi_{1}(K)\right)$, where $\rho_{0}: \pi_{1}(K) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is a discrete faithful representation. The representation ρ_{0} is a parabolic representation. Since $P_{n}(2, y)$ is irreducible over \mathbb{Q}, the trace field of the twist knot $J(2,2 n)$ is $\mathbb{Q}\left(y_{0}\right)$, where y_{0} is a certain complex root of $P_{n}(2, y)$ corresponding to the presentation ρ_{0}. Consequently, the degree of $P_{n}(2, y)$ gives the degree of the trace field. The conclusion follows, since the minimal crossing number of $J(2,2 n)$ is $2 n+1$ if $n>0$ and is $2-2 n$ if $n<0$.

The rest of this note is devoted to the proofs of Theorems 1 and 2 .

2. Proofs of Theorems 1 and 2

In this section we first recall some properties of the Chebychev polynomials $S_{k}(z)$. We then compute the polynomial $P_{n}(x, y)$. Finally, we prove Theorems 1 and 2.

Chebychev polynomials. Recall that the $S_{k}(z)$ are the Chebychev polynomials defined by $S_{0}(z)=1, S_{1}(z)=z$ and $S_{k}(z)=z S_{k-1}(z)-S_{k-2}(z)$ for all integers k. Note that $S_{k}(2)=k+1$ and $S_{k}(-2)=(-1)^{k}(k+1)$. Moreover, if $z=t+t^{-1}$, where $t \neq \pm 1$, then

$$
S_{k}(z)=\frac{t^{k+1}-t^{-(k+1)}}{t-t^{-1}}
$$

It is easy to see that $S_{-k}(z)=-S_{k-2}(z)$ for all integers k.
The following lemma is elementary; see, e.g., [Tran 2013b, Lemma 1.4].
Lemma 2.1. One has

$$
S_{k}^{2}(z)-z S_{k}(z) S_{k-1}(z)+S_{k-1}^{2}(z)=1
$$

for all integers k.
Lemma 2.2. For all $k \geq 1$ one has

$$
\begin{aligned}
S_{k}(z) & =\prod_{j=1}^{k}\left(z-2 \cos \frac{j \pi}{k+1}\right), \\
S_{k}(z)-S_{k-1}(z) & =\prod_{j=1}^{k}\left(z-2 \cos \frac{(2 j-1) \pi}{2 k+1}\right) .
\end{aligned}
$$

Proof. We prove the second formula. The first one can be proved similarly.
Since $S_{k}(z)-S_{k-1}(z)$ is a polynomial of degree k, it suffices to show that its roots are

$$
2 \cos \frac{(2 j-1) \pi}{2 k+1}
$$

where $1 \leq j \leq k$. Let

$$
\theta_{j}=\frac{(2 j-1) \pi}{2 k+1}
$$

Then $e^{i(2 k+1) \theta_{j}}=-1$. Hence, if $z=2 \cos \theta_{j}=e^{i \theta_{j}}+e^{-i \theta_{j}}$ then we have

$$
S_{k}(z)=\frac{e^{i(k+1) \theta_{j}}-e^{-i(k+1) \theta_{j}}}{e^{i \theta_{j}}-e^{-i \theta_{j}}}=\frac{-e^{-i k \theta_{j}}+e^{i k \theta_{j}}}{e^{i \theta_{j}}-e^{-i \theta_{j}}}=S_{k-1}(z)
$$

This means that $z=2 \cos \theta_{j}$ is a root of $S_{k}(z)-S_{k-1}(z)$.
Lemma 2.3. Suppose $z \in \mathbb{R}$ such that $-2 \leq z \leq 2$. Then

$$
\left|S_{k-1}(z)\right| \leq|k|
$$

for all integers k.
Proof. See [Tran 2015a, Lemma 2.6].
Lemma 2.4. Suppose $M \in \mathrm{SL}_{2}(\mathbb{C})$. Then

$$
M^{k}=S_{k-1}(z) M-S_{k-2}(z) I
$$

for all integers k, where I is the 2×2 identity matrix and $z:=\operatorname{tr} M$.
Proof. Since det $M=1$, by the Cayley-Hamilton theorem we have $M^{2}-z M+I=0$. This implies that $M^{k}-z M^{k-1}+M^{k-2}=0$ for all integers k. Then, by induction on k we have $M^{k}=S_{k-1}(z) M-S_{k-2}(z) I$ for all $k \geq 0$.

For $k<0$, since $\operatorname{tr} M^{-1}=\operatorname{tr} M=z$ we have

$$
\begin{aligned}
M^{k}=\left(M^{-1}\right)^{-k} & =S_{-k-1}(z) M^{-1}-S_{-k-2}(z) I \\
& =-S_{k-1}(z)(z I-M)+S_{k}(z) I
\end{aligned}
$$

The lemma follows, since $z S_{k-1}(z)-S_{k}(z)=S_{k-2}(z)$.
The polynomial $\boldsymbol{P}_{\boldsymbol{n}}$. Recall that the knot group of $J(2,2 n)$ has the presentation

$$
\pi_{1}(J(2,2 n))=\langle a, b \mid a w=w b\rangle
$$

where a, b are meridians and $w=\left(a b^{-1}\right)^{-n} a\left(a b^{-1}\right)^{n}$. See [Tran 2015b, Lemma 1.1].
Suppose $\rho: \pi_{1}(J(2,2 n)) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is a nonabelian representation. Up to conjugation, we may assume that

$$
\rho(a)=\left[\begin{array}{cc}
s & 1 \\
0 & s^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
s & 0 \\
2-y & s^{-1}
\end{array}\right],
$$

where $s \neq 0$ and $y \neq 2$ satisfy a polynomial equation $P_{n}(s, y)=0$. We now compute the polynomial P_{n} from the matrix equation $\rho(a w)=\rho(w b)$.

Since

$$
\rho\left(a b^{-1}\right)=\left[\begin{array}{cc}
y-1 & s \\
s^{-1}(y-2) & 1
\end{array}\right],
$$

by Lemma 2.4 we have

$$
\begin{aligned}
\rho\left(\left(a b^{-1}\right)^{n}\right) & =S_{n-1}(y) \rho\left(a b^{-1}\right)-S_{n-2}(y) I \\
& =\left[\begin{array}{cc}
(y-1) S_{n-1}(y)-S_{n-2}(y) & s S_{n-1}(y) \\
s^{-1}(y-2) S_{n-1}(y) & S_{n-1}(y)-S_{n-2}(y)
\end{array}\right] .
\end{aligned}
$$

Hence, by a direct (but lengthy) calculation we have

$$
\begin{aligned}
\rho(a w)-\rho(w b) & =\rho\left(a\left(a b^{-1}\right)^{-n} a\left(a b^{-1}\right)^{n}\right)-\rho\left(\left(a b^{-1}\right)^{-n} a\left(a b^{-1}\right)^{n} b\right) \\
& =\left[\begin{array}{cc}
(y-2) P_{n}(s, y) & s P_{n}(s, y) \\
-s^{-1}(y-2) P_{n}(s, y) & 0
\end{array}\right]
\end{aligned}
$$

where

$$
P_{n}(s, y)=\left(s^{2}+s^{-2}+1-y\right) S_{n-1}^{2}(y)-\left(s^{2}+s^{-2}\right) S_{n-1}(y) S_{n-2}(y)+S_{n-2}^{2}(y) .
$$

By Lemma 2.1 we have $S_{n-1}^{2}(y)-y S_{n-1}(y) S_{n-2}(y)+S_{n-2}^{2}(y)=1$. Hence

$$
P_{n}(s, y)=1-\left(y-s^{2}-s^{-2}\right) S_{n-1}(y)\left(S_{n-1}(y)-S_{n-2}(y)\right) .
$$

Since $P_{n}(s, y)=P_{n}\left(s^{-1}, y\right)$, from now on we consider P_{n} as a polynomial in the variables $x=s+s^{-1}$ and y. With these new variables we have

$$
P_{n}(x, y)=1-\left(y+2-x^{2}\right) S_{n-1}(y)\left(S_{n-1}(y)-S_{n-2}(y)\right) .
$$

Proof of Theorem 1. We first prove the following lemma.
Lemma 2.5. Suppose $x_{0}^{2} \in \mathbb{R}$ such that $4-1 /|n|<x_{0}^{2} \leq 4$. If $y \in \mathbb{R}$ satisfies $P_{n}\left(x_{0}, y\right)=0$, then $y>2$.
Proof. Since $P_{n}\left(x_{0}, y\right)=0$, we have $S_{n-1}(y)\left(S_{n-1}(y)-S_{n-2}(y)\right)=\left(y+2-x_{0}^{2}\right)^{-1}$. Hence

$$
\begin{aligned}
\left(\left(y+2-x_{0}^{2}\right) S_{n-1}(y)\right)^{-2} & =\left(S_{n-1}(y)-S_{n-2}(y)\right)^{2} \\
& =1+(y-2) S_{n-1}(y) S_{n-2}(y) \\
& =1+(y-2)\left(S_{n-1}^{2}(y)-\left(y+2-x_{0}^{2}\right)^{-1}\right)
\end{aligned}
$$

which implies that

$$
1=\left(y+2-x_{0}^{2}\right)\left(4-x_{0}^{2}\right) S_{n-1}^{2}(y)+(y-2)\left(y+2-x_{0}^{2}\right)^{2} S_{n-1}^{4}(y)
$$

Assume $y \leq 2$. Then it follows from the above equation that

$$
\begin{equation*}
1 \leq\left(y+2-x_{0}^{2}\right)\left(4-x_{0}^{2}\right) S_{n-1}^{2}(y) \tag{2-1}
\end{equation*}
$$

In particular, $y>x_{0}^{2}-2>-2$. Since $-2<y \leq 2$, by Lemma 2.3 we have $S_{n-1}^{2}(y) \leq n^{2}$. Hence

$$
\left(y+2-x_{0}^{2}\right)\left(4-x_{0}^{2}\right) S_{n-1}^{2}(y) \leq\left(4-x_{0}^{2}\right)^{2} n^{2}<1 .
$$

This contradicts (2-1).

We now complete the proof of Theorem 1. Suppose $x_{0}^{2} \in \mathbb{R}$ and $4-1 /|n|<x_{0}^{2} \leq 4$. By Lemma 2.5, it suffices to consider $P_{n}\left(x_{0}, y\right)$, where y is a real number greater than 2 . The equation $P\left(x_{0}, y\right)=0$ is equivalent to

$$
\begin{equation*}
x_{0}^{2}-4=y-2-\frac{1}{S_{n-1}(y)\left(S_{n-1}(y)-S_{n-2}(y)\right)} \tag{2-2}
\end{equation*}
$$

Denote by $f_{n}(y)$ the right-hand side of (2-2), where $y>2$. We now use the factorizations of $S_{n-1}(y)$ and $S_{n-1}(y)-S_{n-2}(y)$ in Lemma 2.2.

If $n=-1$ then

$$
f_{n}(y)=y-2+\frac{1}{y-1}>0 \geq x_{0}^{2}-4
$$

Hence $f_{n}(y)=x_{0}^{2}-4$ has no solutions on $(2, \infty)$.
If $n<-1$ then, by letting $m=-n>1$, we have

$$
\begin{aligned}
f_{n}(y) & =y-2+\frac{1}{S_{m-1}(y)\left(S_{m}(y)-S_{m-1}(y)\right)} \\
& =y-2+\frac{1}{\prod_{k=1}^{m-1}\left(y-2 \cos \frac{k \pi}{m}\right) \prod_{l=1}^{m}\left(y-2 \cos \frac{(2 l-1) \pi}{2 m+1}\right)}>0 \geq x_{0}^{2}-4
\end{aligned}
$$

Hence $f_{n}(y)=x_{0}^{2}-4$ has no solutions on $(2, \infty)$.
If $n=1$ then $f_{n}(y)=y-3$. Since $x_{0}^{2}>3$, the equation $f_{n}(y)=x_{0}^{2}-4$ has a unique solution $y=x_{0}^{2}-1$ on $(2, \infty)$.

If $n>1$ then we have

$$
f_{n}(y)=y-2-\frac{1}{\prod_{k=1}^{n-1}\left(y-2 \cos \frac{k \pi}{n}\right) \prod_{l=1}^{n-1}\left(y-2 \cos \frac{(2 l-1) \pi}{2 n-1}\right)} .
$$

It is easy to see that $f_{n}(y)$ is increasing on $(2, \infty)$. Moreover, $\lim _{y \rightarrow \infty} f_{n}(y)=\infty$ and $\lim _{y \rightarrow 2} f_{n}(y)=-1 / n<x_{0}^{2}-4$. Hence $f_{n}(y)=x_{0}^{2}-4$ has a unique solution on $(2, \infty)$.

The proof of Theorem 1 is complete.
Proof of Theorem 2. We write $P_{n}(y)$ for $P_{n}(2, y)$. Let $y=t^{2}+t^{-2}$. Then

$$
\begin{aligned}
P_{n}(y) & =\left(S_{n-1}(y)-S_{n-2}(y)\right)^{2}-(y-2) S_{n-1}^{2}(y) \\
& =\frac{\left(t^{2 n}+t^{2-2 n}\right)^{2}-t^{2}\left(t^{2 n}-t^{-2 n}\right)^{2}}{\left(t^{2}+1\right)^{2}} \\
& =\frac{\left(t^{2 n}+t^{2-2 n}+t^{2 n+1}-t^{1-2 n}\right)\left(t^{2 n}+t^{2-2 n}-t^{2 n+1}+t^{1-2 n}\right)}{\left(t^{2}+1\right)^{2}}
\end{aligned}
$$

Up to a factor t^{k}, each of $t^{2 n}+t^{2-2 n}+t^{2 n+1}-t^{1-2 n}$ and $t^{2 n}+t^{2-2 n}-t^{2 n+1}+t^{1-2 n}$ is obtained from the other by replacing t by t^{-1}. To show that $P_{n}(y)$ is irreducible
over \mathbb{Q}, it suffices to show that

$$
\begin{equation*}
t^{4 n}+t^{4 n-1}+t-1=\left(t^{2}+1\right) Q_{n}(t) \tag{2-3}
\end{equation*}
$$

where $Q_{n}(t) \in \mathbb{Z}[t]$ is irreducible over \mathbb{Q}.
As in the proof of [Baker and Petersen 2013, Lemma 6.8], we will use the following theorem of Ljunggren [1960]. Consider a polynomial of the form $R(t)=$ $t^{k_{1}}+\varepsilon_{1} t^{k_{2}}+\varepsilon_{2} t^{k_{3}}+\varepsilon_{3}$, where $\varepsilon_{j}= \pm 1$ for $j=1,2,3$. Then, if R has $r>0$ roots of unity as roots then R can be decomposed into two factors, one of degree r which has these roots of unity as zeros and the other which is irreducible over \mathbb{Q}. Hence, to prove (2-3) it suffices to show that $\pm i$ are the only roots of unity which are roots of $t^{4 n}+t^{4 n-1}+t-1$ and these occur with multiplicity 1 .

Let t be a root of unity such that $t^{4 n}+t^{4 n-1}+t-1=0$. Write $t=e^{i \theta}$, where $\theta \in \mathbb{R}$. Since $t^{2 n-1}+t^{1-2 n}+t^{2 n}-t^{-2 n}=0$, we have

$$
2 \cos (2 n-1) \theta+2 i \sin 2 n \theta=0
$$

which implies that both $\cos (2 n-1) \theta$ and $\sin 2 n \theta$ are equal to zero. There exist integers k, l such that $(2 n-1) \theta=\left(k+\frac{1}{2}\right) \pi$ and $2 n \theta=l \pi$. This implies that $(2 k+1) / l=(2 n-1) / n$. Since $(2 n-1) / n$ is a reduced fraction, there exists an odd integer m such that $2 k+1=m(2 n-1)$ and $l=m n$. Hence $\theta=\frac{1}{2} m \pi$, which implies that $t=e^{i \theta}= \pm i$. It is easy to verify that $\pm i$ are roots of $t^{4 n}+t^{4 n-1}+t-1=0$ with multiplicity 1 .

Ljunggren's theorem then completes the proof of Theorem 2.

Acknowledgements

This research was supported by the Summer 2015 Pioneer REU in the Department of Mathematical Sciences at the University of Texas at Dallas. We would like to thank the referee for carefully reading our paper and for giving helpful comments and suggestions.

References

[Baker and Petersen 2013] K. L. Baker and K. L. Petersen, "Character varieties of once-punctured torus bundles with tunnel number one", Internat. J. Math. 24:6 (2013), Article ID \#1350048. MR 3078072 Zbl 1275.57016
[Hoste and Shanahan 2001] J. Hoste and P. D. Shanahan, "Trace fields of twist knots", J. Knot Theory Ramifications 10:4 (2001), 625-639. MR 1831680 Zbl 1003.57014
[Hoste and Shanahan 2004] J. Hoste and P. D. Shanahan, "A formula for the A-polynomial of twist knots", J. Knot Theory Ramifications 13:2 (2004), 193-209. MR 2047468 Zbl 1057.57010
[Hu 2015] Y. Hu, "Left-orderability and cyclic branched coverings", Algebr. Geom. Topol. 15:1 (2015), 399-413. MR 3325741 Zbl 06425407
[Ljunggren 1960] W. Ljunggren, "On the irreducibility of certain trinomials and quadrinomials", Math. Scand. 8 (1960), 65-70. MR 0124313 Zbl 0095.01305
[Nagasato and Tran 2013] F. Nagasato and A. T. Tran, "Some families of minimal elements for a partial ordering on prime knots", preprint, 2013. To appear in Osaka J. Math. arXiv 1301.0138
[Riley 1984] R. Riley, "Nonabelian representations of 2-bridge knot groups", Quart. J. Math. Oxford Ser. (2) 35:138 (1984), 191-208. MR 745421 Zbl 0549.57005
[Tran 2013a] A. T. Tran, "On the twisted Alexander polynomial for representations into $\mathrm{SL}_{2}(\mathbb{C})$ ", J. Knot Theory Ramifications 22:10 (2013), Article ID \#1350059. MR 3125898 Zbl 1278.57023
[Tran 2013b] A. T. Tran, "The universal character ring of some families of one-relator groups", Algebr. Geom. Topol. 13:4 (2013), 2317-2333. MR 3073918 Zbl 1280.57014
[Tran 2015a] A. T. Tran, "On left-orderability and cyclic branched coverings", J. Math. Soc. Japan 67:3 (2015), 1169-1178. MR 3376583 Zbl 1328.57017
[Tran 2015b] A. T. Tran, "On left-orderable fundamental groups and Dehn surgeries on knots", J. Math. Soc. Japan 67:1 (2015), 319-338. MR 3304024 Zbl 06422613

Received: 2015-07-06 Revised: 2015-10-30 Accepted: 2015-11-03
jdean@udallas.edu
att140830@utdallas.edu
University of Dallas, Irving, TX 75062, United States
Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers

involve

An iterative strategy for Lights Out on Petersen graphs 721Bruce Torrence and Robert Torrence
A family of elliptic curves of rank ≥ 4 733FarZali Izadi and Kamran Nabardi
Splitting techniques and Betti numbers of secant powers 737Reza Akhtar, Brittany Burns, Haley Dohrmann, HannahHoganson, Ola Sobieska and Zerotti Woods
Convergence of sequences of polygons 751
Eric Hintikka and Xingping Sun
On the Chermak-Delgado lattices of split metacyclic p-groups 765Erin Brush, Jill Dietz, Kendra Johnson-Tesch and BriannePower
The left greedy Lie algebra basis and star graphs 783
Benjamin Walter and Aminreza Shiri
Note on superpatterns 797Daniel Gray and Hua Wang
Lifting representations of finite reductive groups: a character relation 805Jeffrey D. Adler, Michael Cassel, Joshua M. Lansky, EmmaMorgan and Yifei Zhao
Spectrum of a composition operator with automorphic symbol 813
Robert F. Allen, Thong M. Le and Matthew A. Pons
On nonabelian representations of twist knots 831
James C. Dean and Anh T. Tran
Envelope curves and equidistant sets 839Mark Huibregtse and Adam Winchell
New examples of Brunnian theta graphs 857Byoungwook Jang, Anna Kronaeur, Pratap Luitel, DanielMedici, Scott A. Taylor and Alexander Zupan
Some nonsimple modules for centralizer algebras of the symmetric group 877
Craig Dodge, Harald Ellers, Yukihide Nakada and Kelly POHLAND
Acknowledgement899

