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Given two sets of points A and B in the plane (called the focal sets), the equidis-
tant set (or midset) of A and B is the locus of points equidistant from A and B.
This article studies envelope curves as realizations of focal sets. We prove two
results: First, given a closed convex focal set A that lies within the convex region
bounded by the graph of a concave-up function h, there is a second focal set B
(an envelope curve for a suitable family of circles) such that the graph of h lies in
the midset of A and B. Second, given any function y = h(t) with a continuous
third derivative and bounded curvature, the envelope curves A and B associated
to any family of circles of sufficiently small constant radius centered on the graph
of h will define a midset containing this graph.

1. Introduction

Given two sets of points A and B in the plane (called the focal sets), the equidistant
set (or midset) of A and B is the locus of points equidistant from A and B. For this
definition to make sense, we need to know how to find the distance dA(p) from a
point p to a set A. Intuitively, this is the smallest distance from p to a point of A;
however, since the minimum distance may not exist if A is not closed, we define

dA(p)= inf{d(a, p) | a ∈ A}. (1)

If there is a point a ∈ A such that dA(p)= d(p, a), we call a a foot point of p with
respect to A.

We now present a few examples of equidistant sets (see Figure 1).

Example 1.1. It is well known that the locus of points equidistant from two points
in the plane is the perpendicular bisector of the line segment joining the two points.

Example 1.2. It is equally well known that the locus of points equidistant from a
point (the focus) and a line not containing the point (the directrix) is a parabola.
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Figure 1. Clockwise from the upper left, the figures illustrate
Examples 1.1, 1.2, 1.3, and 1.4.

Example 1.3. If two disjoint circles are taken as focal sets, the resulting midset
is a conic section. Example 1.1 can be viewed as a special case in which the two
circles have degenerated to two points, and the midset is a circle of infinite radius
(the perpendicular bisector of the segment joining the two points).

Example 1.4. If the two focal sets are line segments, the midset is a curve pieced
together from line segments and parabolic arcs.

The reader is encouraged to try to construct the midsets of other pairs of focal sets.
It soon becomes clear that computing the exact midset of two focal sets can be a
daunting problem even for relatively simple focal sets. In spite of this, certain general
facts are known: For example, Ponce and Santibáñez [2014, Theorem 11, p. 28] show
that under mild hypotheses on the focal sets, the equidistant sets vary continuously
with the focal sets. They also suggest that the midsets associated to certain pairs of
focal sets be viewed as generalized conics, by analogy with Examples 1.2 and 1.3.

In general, the results in the literature deal with the problem of describing the
midset, given hypotheses on the focal sets. Our work arises from asking whether,
given one focal set A and a proposed midset M , it is possible to find a second focal
set B such that M is the midset (or a subset thereof) defined by A and B.

As an example, we can turn Example 1.2 on its head. Instead of being given
a point (focus) and a line (directrix) and asked to find the parabolic midset they
define, suppose that one is given a parabola and a point A lying in the convex region
bounded by the parabola. Taking the parabola as the set M , one can ask if there
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Figure 2. Another view of Example 1.2, showing how the family
of circles with centers on the parabola and passing through the
focus define the directrix (the line y =−1) as an envelope curve.

is a set B such that M is the midset of A and B. If such a set B were to exist,
then for every point m ∈ M , the circle centered at m and passing through A would
have to touch the boundary of B, since m must be equidistant from A and B (see
Figure 2). This suggests that we can find B by constructing the envelope curves for
the family of circles centered at points m ∈ M and passing through A. In Section 4,
we carry out this procedure for the more general situation in which M is the graph
of a concave-up function y = h(t) (that is, h′′(t) > 0 for all t), and the point A is
replaced by a closed convex set that lies “above” (in a sense to be made precise)
the curve M . To set the stage, we first discuss convex sets A and the distance
functions dA they define in Section 2, and envelope curves of circles in Section 3.

In Section 5, we present our second result, which arose from asking what would
happen if we started with a point A and a midset curve M that is not of uniform
concavity, such as the graph of h(t) = t3, and tried to find a second focal set B.
We will see that the construction in Section 4 yields an envelope curve B such that
the midset of A and B contains only a subset of M (not all of M). This leads to
the question of how to realize the graph of h(t) = t3 (or any sufficiently smooth
graph M of varying concavity) as a midset. Our solution is to use the two envelope
curves determined by a suitable family of circles of constant radius with centers
on M : the key point is that the radius of the circles must be less than the reciprocal
of the maximum curvature of M .

2. Convex sets

Recall that a set A ⊆ Rn is convex if and only if for p, q ∈ A the segment pq lies
in A. In the following discussion, we restrict attention to closed convex sets A⊆R2.

Lemma 2.1. For any point p external to the (closed and convex) set A, there is a
unique foot point f (p) in A (in fact, in the boundary of A).

Proof. Replacing A by the nonempty compact set

A′ = A∩ {p′ | d(p, p′)≤ dA(p)+ 1},
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we see that there exists at least one point q ∈ A′ ⊆ A such that dA(p) = d(p, q),
so a foot point exists. If there were two distinct foot points q1 and q2 for p, then
the segment q1q2 would be a subset of A, since A is convex. From this it follows
immediately that there would be a point of A lying closer to p than either foot
point, which is a contradiction. Finally, it is clear that a foot point for p cannot lie
in the interior of A. �

A line L is a support line of a plane set A if and only if L contains at least one
boundary point of A and is such that the entire set A is contained in one of the two
half-planes determined by L .

Lemma 2.2. Let p be a point external to A, and f (p) = q the associated foot
point. Let L be the line through q that is orthogonal to the segment pq. Then L is a
support line of A such that A lies in the half-plane of L that does not contain p.

Proof. Let d be the distance from p to q . If all the points of A lie in the half-plane
of L that does not contain p, we are done. If not, then there is a point q ′ in the
(open) half-plane of L containing p. Since L is tangent at q to the circle C of
radius d centered at p, the line joining q and q ′ intersects C at two points, and
therefore the segment qq ′ lies partially in the interior of C . Since A is convex, qq ′

lies in A; this implies that there are points of A that lie closer to p than d . This is a
contradiction, whence the result. �

Lemma 2.3. The map p 7→ f (p) = q, sending each point not in A to its unique
foot point, is continuous.

Proof. Let (pn) be a sequence of points external to A that converges to p, and
let (qn) be the associated sequence of foot points. By discarding the first N ≥ 1
terms of this sequence, we may assume that d(pn, p) < 1 for all n. The triangle
inequality then yields that

d(pn, q)≤ d(pn, p)+ d(p, q) < d(p, q)+ 1 for all n.

We claim that qn → q. To see this, we first observe that since the distance
from pn to A is minimized at qn ,

d(p, qn)≤ d(p, pn)+ d(pn, qn)≤ d(p, pn)+ d(pn, q) < d(p, q)+ 2.

In other words, the sequence (qn) lies in the (compact) intersection of A and the
disk of radius d(p, q)+ 2 centered at p, whence the sequence has a convergent
subsequence (qnk ) with limit q∗. We then have

d(p, q∗)≤ d(p, pnk )+ d(pnk , qnk )+ d(qnk , q∗) for all nk;

since (pnk )→ p and (qnk )→ q∗, we obtain d(p, q∗)≤ d(p, q). The uniqueness of
foot points (Lemma 2.1) then yields q∗ = q . Indeed, the same argument shows that
any subsequential limit of (qn) must equal q; it follows that (qn) converges to q . �



ENVELOPE CURVES AND EQUIDISTANT SETS 843

Corollary 2.4. Let A ⊆ R2 be closed and convex. Then the distance function dA

(restricted to points p /∈ A) is continuous.

Proof. Let (pn)→ p be a sequence external to A, and qn the associated sequence
of foot points. Then by the preceding lemma,

dA(pn)= d(pn, qn)→ d(p, q)= dA(p),

which yields the result. �

The situation is even better than this; indeed, we have the following (see [Gi-
aquinta and Modica 2012, Theorem 2.21 (Motzkin), p. 75]):

Lemma 2.5. Let A ⊆ R2 be closed and convex. Then the distance function dA

(restricted to points p /∈ A) is differentiable. �

Before proceeding to the next section, we need one more result connected to the
convexity of the set A.

Lemma 2.6. Let p1 6= p2 be two points external to A, and let their foot points
be q1, q2, respectively. Then d(q1, q2)≤ d(p1, p2).

Proof. Consider the segments p1q1 and p2q2. All the points on pi qi (i = 1, 2),
except for qi , are external to A; otherwise qi would not be the foot point of pi . We
claim that exactly one of the following cases holds:

Case 1: One of the segments contains the other, in which case q1 = q2.

Case 2: The two segments intersect (only) at q1 = q2.

Case 3: The two segments are disjoint.

To prove the claim, we consider the various possibilities: If the two segments
are disjoint, we are in Case 3. If they meet, then they either overlap or they meet in
exactly one point. If they overlap, then a moment’s reflection shows that we are in
Case 1. If they meet in one point p∗, then it is possible that p∗ = q1 = q2, which is
Case 2. If we had (say) p∗ = q1 6= q2, then p∗ ∈ A would be closer to p2 than q2,
contradicting that q2 is the foot point of p2. Since we are assuming p1 6= p2, we
see that if the segments meet in a single point p∗ and we are not in Case 2, then p∗

must be in the interior of both segments. Supposing this to be the case, we now
complete the proof of the claim by deriving a contradiction: Let L denote the line
perpendicular to p1q1 at q1, which by Lemma 2.2 is a support line of A. Since
q2 ∈ A, we know that q2 must lie in the half-plane of L that does not contain p1.
There are now two subcases (see Figure 3):

Subcase 1: The point p2 lies in the same (open) half-plane of L as does p1. In this
case, we see that the angle p2q1q2 must be obtuse, which implies that d(p2, q1) <

d(p2, q2), contradicting that q2 is the foot point of p2.
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Figure 3. The two subcases of Lemma 2.6; Subcase 1 to the left
and Subcase 2 to the right.

Subcase 2: The point p2 lies in the (closed) half-plane of L that does not contain p1.
Then, since p∗ is in the other half-plane of L , we see that the segment p2 p∗

intersects L . From this it follows that q2 lies in the open half-plane of L that
contains p1, which in turn implies that q2 /∈ A, and again we have a contradiction.

Since both cases lead to contradictions, the claim is proved.
In Cases 1 and 2, we have that d(q1, q2)= 0 and d(p1, p2) > 0, so the desired

inequality is immediate. It remains to prove the inequality in Case 3. To this
end, consider the segment q1q2 and the angles that the segments pi qi make with
it for i = 1, 2 (see Figure 4). Since q1q2 ⊆ A, the support line L perpendicular
to pi qi at qi must be such that the segment q1q2 lies in the (closed) half-plane not
containing pi ; this implies that the angle θi between pi qi and q1q2 is either right or
obtuse. It is then a routine geometric exercise to show that d(q1, q2)≤d(p1, p2). �

L1

q2 L2

q1
θ1

θ2

p1

p2

Figure 4. The angle θ1 is drawn obtuse and the second angle θ2

is right. One can see that if either of these angles was acute, then
the segment q1q2 would lie on the “wrong” side of the associated
support line L i . In the case illustrated, p1 and p2 lie on the same
side of the line through q1 and q2; the reader can check that the
desired conclusion still holds if one or both of p1 and p2 are either
on this line or lie on opposite sides of it.
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3. Envelopes of circles

In this section we recall the definition of the envelope of a family of circles, and
show how to find parametric equations of the envelope curves. We will assume that
the circles have centers on the graph of a differentiable function y = h(t), and radii
given by a differentiable function r(t). Then the family of circles is described by

F(x, y, t)= (x − t)2+ (y− h(t))2− r2(t)= 0; (2)

that is, a point (x, y) lies on one of the circles if and only if there is a value of t such
that (2) holds. As explained in, e.g., [Bruce and Giblin 1992, Chapter 5, pp. 99–103]
or [Cox et al. 1992, Chapter 3, Section 4, pp. 139–144], the point (x, y) lies on one
of the envelope curves if and only if there is a t such that both (2) and the following
equation hold:

∂F(x, y, t)
∂t

=−2(x − t)− 2(y− h(t))h′(t)− 2r(t)r ′(t)= 0. (3)

Solving (3) for x , we obtain

x = t − (y− h(t))h′(t)− r(t)r ′(t); (4)

substituting this into (2) yields a quadratic equation for y:(
−(y− h(t))h′(t)− r(t)r ′(t)

)2
+ (y− h(t))2− r2(t)= 0. (5)

From the quadratic formula, we obtain parametric equations for the two envelope
curves (i = 1, 2):

yi (t)=
h(t)+h(t)h′(t)2−r(t)r ′(t)h′(t)+(−1)i+1

√
r(t)2(1+h′(t)2−r ′(t)2)

1+h′(t)2
,

xi (t)= t−(yi (t)−h(t))h′(t)−r(t)r ′(t).

(6)

For example, when h(t)= sin t and r(t)= 2/(2+ t2), the two envelope curves
are shown in Figure 5. Also note that in order for the envelope curves to be defined
as real curves, the expression under the radical must be nonnegative, which in turn
requires that

1+ h′(t)2− r ′(t)2 ≥ 0. (7)

In other (less precise) words, the radius function cannot change too rapidly.
We conclude this section with one more lemma concerning the envelope curves

of families of circles. We begin by defining the following vector-valued functions
(i = 1, 2), viewing R2 as the xy-plane in R3:

v(t)= (1, h′(t), 0),

fi (t)=
(
xi (t)−t, yi (t)−h(t), 0

)
.

(8)
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(t,h(t))

f1(t)

f2(t)

v(t)
(x1(t), y1(t))

(x2(t), y2(t))

Figure 5. The envelope curves for the circles with centers on the
curve y= sin x and radii given by r(t)= 2/(2+t2) are shown. The
vectors fi (t)= (xi (t)− t, yi (t)−h(t)) make equal angles with the
vector v(t)= (1, h′(t)), as asserted by Lemma 3.1.

Lemma 3.1. The angles between v(t) and the vectors fi (t), i = 1, 2, are equal and
lie on opposite sides of v(t) at (t, h(t)) (see Figure 5). Concomitantly, the cross
products v(t)× fi (t) have nonzero third components that are equal in magnitude
and opposite in sign, with the sign being positive for i = 1.

Proof. By direct computation, one obtains the following equations (note that the
first is equivalent to (3)):

v(t) · fi (t)=−r(t)r ′(t),

v(t)× fi (t)= (−1)i+1(0, 0,
√

r(t)2(h′(t)2− r ′(t)2+ 1)
)
.

(9)

Since v(t) · f1(t)= v(t) · f2(t), we obtain the equality of the angles. Moreover, it
is clear that the third components of the cross products v(t)× fi (t), i = 1, 2, are
equal in magnitude and opposite in sign, with the sign being positive for i = 1. �

We will say that the envelope curve (xi (t), yi (t)) lies above (resp. below) the
curve (t, h(t)) if and only if the sign of the third component of v(t)× fi (t) is
positive (resp. negative) (see Figure 5).

4. Generating a focal set B from a midset M and a focal set A

Let y= h(t) be a function satisfying h′′(t)> 0 for all t on some open interval (a, b),
so that the graph of h is concave up on (a, b). (The graph of h is our intended
midset M .) Let A be a closed and convex set, and f the foot-point map taking each
point p /∈ A to its unique foot point f (p)= q ∈ A. For points p = (t, h(t)) on the
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A (x(t), y(t))

f (t)

(t,h(t))

v(t)

Figure 6. This picture illustrates the general situation we are
considering: the closed and convex set A lies above a concave-up
curve y= h(t). The vectors v(t) and f (t) are shown.

graph of h, the points f (t, h(t))= (x(t), y(t)) lie on a parametrized curve that we
will call the foot-point curve.

Lemma 4.1. The foot-point curve (x(t), y(t)) is continuous.

Proof. Since the foot-point map f is continuous by Lemma 2.3, and the curve
(t, h(t)) is continuous (in fact, twice differentiable) by hypothesis, we have that
(x(t), y(t)) is the composition of continuous functions, and hence continuous. �

Let
f (t)= (x(t)−t, y(t)−h(t), 0). (10)

We assume that A lies above the graph of h in the sense that v(t)× f (t) is nonzero
and points in the positive z-direction for all t ∈ (a, b) (see Figure 6).

We define the radius function r as

r(t)= d
(
(t, h(t)), (x(t), y(t))

)
= ‖ f (t)‖. (11)

Lemma 2.5 yields the following result.

Lemma 4.2. The radius function r(t) is (continuous and) differentiable.

Proof. This is an immediate consequence of the fact that r(t) = (dA ◦ h)(t) is a
composition of differentiable functions. �
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We now consider the envelope curves (6) for the family of circles with centers
on the curve y = h(t) and radii given by r(t) for t ∈ (a, b). Note that condition (7)
holds in this case, since the rate at which r(t) changes cannot possibly be greater
than the speed with which the point (t, h(t)) moves, which is equivalent to (7). Our
first main result is the following:

Proposition 4.3. The first envelope curve (x1(t), y1(t)) is equal to the foot-point
curve (x(t), y(t)).

Proof. Assume for the moment that we know that (x(t), y(t)) is one of the two
envelope curves. Then, since v(t)× f (t) has positive third component by hypothesis,
Lemma 3.1 implies that (x(t), y(t))= (x1(t), y1(t)), as desired. So we are reduced
to showing that the foot-point curve (x(t), y(t)) satisfies conditions (2) and (3)
defining the envelope curves.

It is clear that (x(t), y(t)) satisfies (2), since (x(t), y(t)) lies at distance r(t)
from (t, h(t)), by definition. We proceed to show that (x(t), y(t)) satisfies (3),
which (as noted in the proof of Lemma 3.1) can be rearranged to read

r(t)r ′(t)=−(1, h′(t)) · (x(t)−t, y(t)−h(t))=−v(t) · f (t). (12)

It is in fact straightforward to prove (12) at any point t at which the foot-point
curve (x(t), y(t)) is differentiable. We simply differentiate the (differentiable, by
Lemma 4.2) function r(t)2 = (x(t)− t)2+ (y(t)− h(t))2 at t using the chain rule:

2r(t)r ′(t)= 2(x(t)−t)(x ′(t)−1)+2(y(t)−h(t))(y′(t)−h′(t)),

r(t)r ′(t)= (x(t)−t, y(t)−h(t))·(x ′(t), y′(t))−(x(t)−t, y(t)−h(t))·(1,h′(t)).

We see that (3) will hold at t provided that the first term on the right-hand side of the
last equation vanishes, but this follows immediately from the fact that the function

dd(u)= d
(
(t, h(t)), (x(u), y(u))

)2
= (x(u)− t)2+ (y(u)− h(t))2

has a global minimum at the point u = t , so that

d
du
(dd)(t)=

(
(x(t)−t, y(t)−h(t)) · (x ′(t), y′(t)

)
= 0. (13)

The proof of the proposition is now complete for any case in which the foot-point
curve (x(t), y(t)) is differentiable everywhere on its domain. (Such cases include A
being a point or a disk.) Unfortunately, (x(t), y(t)) is not in general differentiable
everywhere; however, we claim that it is always differentiable almost everywhere
(that is, off of a set of measure 0). Indeed, we already know from Lemma 4.1
that (x(t), y(t)) is continuous, so that each component function is continuous. We
will presently show that each component function has bounded variation on any
closed interval [c, d] in its domain, from which it follows that each component
function is differentiable almost everywhere on [c, d] (see, e.g., [Bressoud 2008,



ENVELOPE CURVES AND EQUIDISTANT SETS 849

Theorem 7.4, p. 213]). The foregoing then implies that (x(t), y(t)) and the envelope
curve (x1(t), y1(t)) agree almost everywhere, whence, since both of these curves
are continuous, it follows that they are equal.

It remains to show that the functions x(t) and y(t) have bounded variation on
any closed interval [c, d] in the domain of h. The argument for x(t) proceeds as
follows; the argument for y(t) is similar. By definition, we must show that there
is a real number B > 0 such that, for every partition P = {t0, t1, . . . , tn} of [c, d],

n∑
i=1

|x(ti )− x(ti−1)| ≤ B.

However,

n∑
i=1

|x(ti )− x(ti−1)| ≤

n∑
i=1

d
(
(x(ti ), y(ti )), (x(ti−1), y(ti−1))

)
≤

n∑
i=1

d
(
(ti , h(ti )), (ti−1, h(ti−1))

)
≤

∫ d

c

√
1+ h′(t)2 = length of curve (t, h(t)) on [c, d].

The first inequality is obvious, the second follows from Lemma 2.6, and the third is
due to the fact that (t, h(t)) is concave up, so that every polygonal approximation
to its length obtained from a partition is an underestimate. �

We now want to show that the envelope curve (x2(t), y2(t)) gives us a second
focal set B such that the midset of A and B contains all the points (t, h(t)) for
t ∈ (a, b). To do this, we must show that the distance from (t, h(t)) to the curve B
is equal to r(t) = d

(
(t, h(t)), (x2(t), y2(t))

)
, or, in other words, that the point

(x2(t), y2(t)) in B is a foot point for the point (t, h(t)). Proposition 4.3 tells us that
(x1(t), y1(t)) = (x(t), y(t)) is the foot point of (t, h(t)) in A, which implies that
the following inequality holds for all u, t ∈ (a, b):

(x1(u)− t)2+ (y1(u)− h(t))2−
(
(x1(t)− t)2+ (y1(t)− h(t))2

)
≥ 0. (14)

Theorem 4.4. Let B be the set of points of the envelope curve (x2(t), y2(t)). Then
the point (x2(t), y2(t)) is a foot point of (t, h(t)) in B; consequently, (t, h(t)) is in
the midset of A and B.

Proof. We will show that the inequality obtained from (14) by replacing x1(t), y1(t)
by x2(t), y2(t), respectively, holds. This will imply that the distance from (t, h(t))
to B is minimized at the point (x2(t), y2(t)), from which the theorem follows at
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Figure 7. Another look at the example shown in Figure 6. The
second envelope curve (x2(t), y2(t)) is indicated with large black
dots. A subset of the circles forming the two envelope curves is
shown; the result of Proposition 4.3 — that the first envelope curve
(x1(t), y1(t)) is the same as the foot point curve (x(t), y(t))— is
also illustrated.

once. In fact, we will prove that

(x2(u)− t)2+ (y2(u)− h(t))2−
(
(x2(t)− t)2+ (y2(t)− h(t))2

)
≥ (x1(u)− t)2+ (y1(u)− h(t))2−

(
(x1(t)− t)2+ (y1(t)− h(t))2

)
≥ 0.

Define x1(t), x2(t), y1(t), and y2(t) as in (6). Let

ddi (u)= (xi (u)− t)2+ (yi (u)− h(t))2 for i = 1, 2.

Using Mathematica to simplify (dd2(u)− dd2(t))− (dd1(u)− dd1(t)), we arrive at

−
4
(
−h(t)+ h(u)+ (t − u)h′(u)

)√
r(u)2(1+ h′(u)2− r ′(u)2)

1+ h′(u)2
.

Recalling that the constraint (7) holds, the above Mathematica computation
shows that the desired inequality will hold if and only if

−h(t)+ h(u)+ (t − u)h′(u)≤ 0.

Since this factor vanishes when u = t , we must show that it is nonpositive when
u 6= t . However, this follows from our hypothesis that h is concave up (h′′ > 0).
Indeed, if t < u, then by the mean value theorem, there is a v ∈ (t, u) such that

h(u)− h(t)
u− t

= h′(v) < h′(u) =⇒ h′(u)(u− t)− h(u)+ h(t) > 0

=⇒ h′(u)(t − u)+ h(u)− h(t) < 0,

as desired, and a similar proof applies if u < t . This completes the proof of the
theorem. �

Figure 7 illustrates the theorem in the case previously shown in Figure 6.
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A
p1

p2p3

B

Figure 8. The first focal set A is the circle of radius 1
4 centered

at (0, 1). The dashed curve is the second envelope curve B for the
family of circles centered on the graph of y = t3 and with radii
r(t) equal to the distance from (t, t3) to A. The point p1 appears
to be equidistant from A and B, but this is clearly not the case for
p2 and p3.

5. Envelopes of curves as focal sets

The investigation in this section was undertaken in response to the question of how
to realize the graph of y = h(t)= t3 as a midset. The idea of the preceding section
doesn’t work, as Figure 8 shows. Instead, we will explore the idea of using the
envelope curves A and B defined by a family of circles of constant radius centered
on the graph of h as the focal sets. Figure 9 shows the envelope curves corresponding
to two different radii; it becomes apparent that for this idea to work, the radius
cannot be chosen too large. (Note that if r(t) = c is constant, then r ′(t) = 0 and
the constraint (7) is automatically satisfied.)

We now generalize to the case of a function y = h(t) with at least a continuous
third derivative defined on an open interval (a, b). We no longer assume h has
constant concavity, as in the preceding section. We study the envelope curves (6)
defined by the family of circles of constant radius r(t) = c and centered on the
graph of h. It is clear that under these conditions xi (t) and yi (t) have continuous
second derivatives on (a, b).

Referring to Figure 9, it appears that one constraint to the envelope curves serving
as focal sets is the presence of singularities. A parametrized curve (x(t), y(t))
with differentiable component functions has singularities only at points where
x ′(t)= 0 and y′(t)= 0. We proceed to find these points on the parametrized curves



852 MARK HUIBREGTSE AND ADAM WINCHELL

Figure 9. The envelope curves associated to the families of circles
of constant radius 1

4 and 1 and centered on the curve y = t3. It is
plausible that the dashed envelope curves have the central cubic
as their midset, but this visibly cannot be the case for the solid
envelope curves.

(xi (t), yi (t)); solving the system of equations x ′i (t)= 0 and y′i (t)= 0 for c (using
Mathematica), we obtain

c =±
(1+ h′(t)2)3/2

h′′(t)
.

The keen observer will notice that the right-hand side is (up to sign) equal to the
reciprocal of the curvature of the graph of h at (t, h(t)) (see, e.g., [Stewart 2012,
Equation 11, p. 881]). To avoid singularities in the envelope curves, we should (if
possible1) choose c such that

0< c < inf
t∈(a,b)

(1+ h′(t)2)3/2

|h′′(t)|
. (15)

We will refer to this upper bound for c (if it exists) as the critical radius; henceforth
we will assume that h is such that the critical radius on (a, b) exists. Thus we have
proved the following proposition.

Proposition 5.1. If c is less than the critical radius, then the envelope curves
(xi (t), yi (t)) will have no singularities. �

For the proof of our main result, we need two more lemmas that also rely on c
being less than the critical radius.

Lemma 5.2. If c is less than the critical radius, then x ′i (t) > 0 for all t .

1For example, the function h(t)= sin(1/t) does not have a critical radius on the interval (0, 1),
since the curvature at the extreme points tn = 1/(nπ +π/2) is unbounded as n→∞.
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Proof. Setting r(t)= c (so r ′(t)= 0), we find that

x ′i (t)=
(−1)i h′′(t)

√
c2(h′(t)2+ 1)+ h′(t)4+ 2h′(t)2+ 1

(h′(t)2+ 1)2
.

The quantity will be positive so long as

|h′′(t)|
√

c2(h′(t)2+ 1)≤ (h′(t)2+ 1)2,

but this holds provided that

c ≤
(h′(t)2+ 1)3/2

|h′′(t)|
,

which certainly holds for all t if c is less than the critical radius. �

Lemma 5.3. For a fixed t , let di denote the function

di (u)= d
(
(t, h(t)), (xi (u), yi (u))

)
.

If c is less than the critical radius, then di (t) = c is a local minimum value of di ;
indeed, di (u) > di (t)= c for all u in some deleted neighborhood of t .

Proof. With r(t)= c, we again define the function

ddi (u) := (xi (u)− t)2+ (yi (u)− h(t))2,

that is, ddi (u) = d 2
i (u). Our hypothesis on h implies that ddi has a continuous

second derivative. We find that using Mathematica to simplify dd ′i (t) returns 0 and
simplifying dd ′′i (t) returns

2
(
1+ 2h′(t)2+ h′(t)4+ (−1)i

√
c2(1+ h′(t)2) h′′(t)

)
1+ h′(t)2

.

An argument similar to that used in the proof of the preceding lemma shows that
this quantity is positive if c is less than the critical radius, whence the first assertion
follows from the second derivative test. The second assertion now follows from
the fact that dd ′′i is continuous and positive at u = t , and so ddi is concave up on a
neighborhood of t . �

With these lemmas in hand we now present the main theorem of this section.

Theorem 5.4. Given any function h(t) on an interval (a, b) with a continuous
third derivative and having a critical radius, the minimum distance from the point
(t, h(t)) to either envelope curve (for the family of circles of constant radius c
less than the critical radius) is equal to c, so that (xi (t), yi (t)) is a foot point for
(t, h(t)) on the i-th envelope curve.
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(x1(t), y1(t))
w1(t) (x1(t ′′), y1(t ′′))

f1(t ′′)?
(t ′′,h(t ′′))?

f1(t ′′)?f1(t)

(t ′′,h(t ′′))?

(t,h(t))

c
w1(t ′′)

C

Figure 10. This figure illustrates the situation that arises in the
proof of Theorem 5.4.

Proof. We begin by defining the vector-valued functions

wi (t)= (x ′i (t), y′i (t), 0) for i = 1, 2. (16)

Machine computation yields that

wi (t)× fi (t)

=

(
0, 0, (−1)i+1 (−1)i c2h′′(t)+h′(t)2

√
c2(h′(t)2+1)+

√
c2(h′(t)2+1)

h′(t)2+1

)

=

(
0, 0, (−1)i+1c

(−1)i ch′′(t)+(1+h′(t)2)3/2

h′(t)2+1

)
, (17)

where fi (t) is defined in (8). Arguing as in the preceding lemmas, we see that
whenever c is less than the critical radius, the sign (−1)i+1 of the third component
of these cross products is an invariant of the envelope curve (xi , yi ) for i = 1, 2.
We claim that c= ‖ fi (t)‖ is the global minimum distance from (t, h(t)) to the i-th
envelope curve. We will prove this for i = 1, and invite the reader to check that a
similar proof applies when i = 2.

We first observe that w1(t) is perpendicular to f1(t), since, by Lemma 5.3, the
function dd1(u) has a local minimum at u = t (as in (13)). Hence, since x ′1(t) is
always positive, by Lemma 5.2, the vector w1(t) is never parallel to the y-axis;
therefore, the point (x1(t), y1(t)) lies in either the upper or lower (open) semicircle
of the circle C of radius c centered at (t, h(t)). From (17) we learn that w1(t)× f1(t)
has positive third component, whence (x1(t), y1(t)) must lie in the upper semicircle
(see Figure 10). (Put more simply, (x1(t), y1(t)) is the upper envelope curve, and
(x2(t), y2(t)) is the lower.)



ENVELOPE CURVES AND EQUIDISTANT SETS 855

Figure 11. The graph of the curvature function κ(t) for the func-
tion h(t)= t3 is shown, along with the horizontal line y = 9

5 . This
demonstrates that the critical radius on (−∞,∞) exists and is
slightly larger than 5

9 .

Arguing by contradiction, suppose that there is a point (x1(t ′), y1(t ′)) such that
its distance from the point (t, h(t)) is less than c; we suppose that t < t ′ and leave to
the reader to check that a similar argument applies when t > t ′. Since x ′1(t) is always
positive, we know that (x1(t ′), y1(t ′)) lies to the right of (x1(t), y1(t)) (indeed, this
is so for any parameter value greater than t). Furthermore, by Lemma 5.3, we know
that d1(u) > c for some u ∈ (t, t ′). We let

S = {t∗ ∈ (t, t ′) | d1(t∗)≥ c},

and let t ′′ = lub(S). By continuity, we know that d1(t ′′) = c, and we also know,
since d1(t∗) < c for t∗ ∈ (t ′′, t ′), that the tangent vector w1(t ′′) must either be
tangent to C or must enter C , as shown in Figure 10. The corresponding point
(t ′′, h(t ′′))must lie on the line perpendicular to the vector w1(t ′′) at (x1(t ′′), y1(t ′′)),
and at distance c from this point. There are consequently two possible positions for
(t ′′, h(t ′′)), to the left or to the right of (x1(t ′′), y1(t ′′)). However, it is easy to verify
that, as Figure 10 suggests, the left possibility implies that (t ′′, h(t ′′)) lies to the
left of (t, h(t)) (or, more precisely, that t ′′ ≤ t holds), which contradicts t < t ′′, and
that the right possibility implies that w1(t ′′)× f1(t ′′) has negative third component,
which contradicts our earlier observation that this sign is always positive for (x1, y1).
Since both possibilities lead to contradictions, we see that no point (x1(t ′), y1(t ′))
can lie closer than c to (t, h(t)), and we are done. �

Corollary 5.5. Under the hypotheses of the theorem, the points (t, h(t)) all lie on
the midset determined by the two envelope curves taken as focal sets. �

Remark 5.6. For h(t)= t3, the curvature function

κ(t)=
|6t |

(1+ (3t2)2)3/2

has the graph shown in Figure 11. We see that 9
5 is a slight overestimate of the

maximum curvature on (−∞,∞), which implies that 5
9 is a slight underestimate
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of the critical radius. Since 1
4 <

5
9 , we now have proved that the envelope curves

associated to the family of circles centered on the graph of h(t)= t3 and having
constant radius 1

4 are indeed a pair of focal sets for which the graph of h is their
midset, as Figure 9 suggests.
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