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The Kinoshita graph is the most famous example of a Brunnian theta graph, a
nontrivial spatial theta graph with the property that removing any edge yields an
unknot. We produce a new family of diagrams of spatial theta graphs with the
property that removing any edge results in the unknot. The family is parameter-
ized by a certain subgroup of the pure braid group on four strands. We prove that
infinitely many of these diagrams give rise to distinct Brunnian theta graphs.

1. Introduction

A spatial theta graph is a theta graph (two vertices and three edges, each joining
the two vertices) embedded in the 3-sphere S3. There is a rich theory of spatial
theta graphs and they show up naturally in knot theory. (For instance, the union of
a tunnel number 1 knot with a tunnel having distinct endpoints is a spatial theta
graph.) A trivial spatial theta graph is any spatial theta graph which is isotopic into
a 2-sphere in S3. A spatial theta graph G ⊂ S3 has the Brunnian property if for
each edge e ⊂ G the knot Ke = G \ e which is the result of removing the interior
of e from G is the unknot. A spatial theta graph is Brunnian (or almost unknotted
or minimally knotted) if it is nontrivial and has the Brunnian property.

By far the best known Brunnian theta graph is the Kinoshita graph [1958;1972].
The Kinoshita graph was generalized by Wolcott [1987] to a family of Brunnian theta
graphs now called the Kinoshita–Wolcott graphs. They are pictured in Figure 1. In-
spection shows that they have the Brunnian property. There are several approaches to
showing that the Kinoshita graph (and perhaps all of the Kinoshita–Wolcott graphs)
are nontrivial: Wolcott [1987] uses double branched covers; Litherland [1989] uses
a version of the Alexander polynomial; Scharlemann [1992] and Livingston [1995]
use representations of certain associated groups; McAtee et al. [2001] use quandles;
Thurston [1997] showed that the Kinoshita graph is hyperbolic (i.e., the exterior
supports a complete hyperbolic structure with totally geodesic boundary).
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−i

− j −k

Figure 1. The Kinoshita–Wolcott graphs (figure based on [Lither-
land 1989, Figure 4]). The labels −i , − j , and −k indicate the
number of full twists in each box (with the sign of −i , − j , −k
indicating the direction of the twisting). If i = j = k = 1, the graph
is the Kinoshita graph. If one of i , j or k is zero, then the graph is
trivial; otherwise, it is Brunnian [Wolcott 1987, Theorem 2.1].

In this paper, we produce an infinite family of diagrams for spatial theta graphs
G(A, t1, t2) having the Brunnian property. These graphs depend on braids A lying
in a certain subgroup of the pure braid group on 4 strands and on integers t1, t2
which represent certain twisting parameters. Our main theorem shows that infinitely
many braids A give rise to Brunnian theta graphs.

Theorem 5.1 (rephrased). For all n ∈ Z, there exists a braid An such that for all
m ∈Z, the graph 0(n,m)=G(An,−n,m) is a Brunnian theta graph. Furthermore,
suppose that for a given (n,m)∈Z×Z, the set S(n,m)⊂Z×Z has the property that
if (a, b)∈ S(n,m) then0(a, b) is isotopic to0(n,m) and if (a, b), (a′, b′)∈ S(n,m)
are distinct, then a+ b 6= a′+ b′. Then S(n,m) has at most three distinct elements.
In particular, there exist infinitely many n ∈ Z such that the graphs 0(n, 0) are
pairwise nonisotopic Brunnian theta graphs.

2. Notation

We work in either the PL or smooth category. For a topological space X , we let |X |
denote the number of components of X . If Y ⊂ X then η(Y ) is a closed regular
neighborhood of Y in X and η̊(Y ) is an open regular neighborhood. More generally,
Y̊ denotes the interior of Y .

3. Constructing new Brunnian theta graphs

There are two natural methods for constructing new Brunnian theta graphs: vertex
sums and clasping.
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G1 G1

G1#3G2

Figure 2. A schematic depiction of the vertex sum of two spatial
theta graphs.

Vertex sums. Suppose that G1 ⊂ S3 and G2 ⊂ S3 are spatial theta graphs. Let
v1 ∈ G1 and v2 ∈ G2 be vertices. We can construct a new spatial theta graph
G1#3G2⊂ S3 by taking the connected sum of S3 with S3 by removing regular open
neighborhoods of v1 and v2 and gluing the resulting 3-balls B1 and B2 together
by a homeomorphism ∂B1→ ∂B2 taking the punctures G1 ∩ ∂B1 to the punctures
G2∩∂B2. See Figure 2. The subscripted 3 represents the fact that we are performing
the connected sum along a trivalent vertex and is used to distinguish the vertex sum
from the connected sum of graphs occurring along edges of a graph (which, when
both G1 and G2 are theta graphs, does not produce a theta graph).

An orientation on a spatial theta graph is a choice of one vertex to be the source,
one vertex to be the sink, and a choice of a total order on the edges of the graph.
If G1 and G2 are oriented theta graphs, we insist that the connected sum produce
an oriented theta graph (so that the sink vertex of G1 is glued to the source vertex
of G2 and so that the edges of G1#3G2 can be given an ordering which restricts to
the given orderings on the edges of G1 and G2. Wolcott [1987] showed that the
vertex sum of oriented theta graphs is independent (up to ambient isotopy of the
graph) of the choice of homeomorphism ∂B1→ ∂B2.

If G1 and G2 both have the Brunnian property, then G1#3G2 does as well since
the connected sum of two knots is the unknot if and only if both of the original
knots are unknots. If G1 (say) is trivial, then G1#3G2 is isotopic to G2. Similarly,
if at least one of G1 or G2 is nontrivial then G1#3G2 is nontrivial [Wolcott 1987].
Consequently:

Theorem 3.1 (Wolcott). If G1 and G2 are Brunnian theta graphs so is G1#3G2.

We say that a spatial theta graph is vertex-prime if it is not the vertex sum of
two other nontrivial spatial theta graphs. The Kinoshita graph is vertex prime
[Calcut and Metcalf-Burton 0]. Using Thurston’s hyperbolization theorem for
Haken manifolds, it is possible to show that if G1 and G2 are theta graphs, then
G1#3G2 is hyperbolic if and only if G1 and G2 are hyperbolic.
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α1 α2 α3

α4

α5

Figure 3. The clasp move in the case when all three edges of the
graph are involved.

Clasping. Clasping [Simon and Wolcott 1990] is a second method for converting a
Brunnian theta graph into another theta graph with the Brunnian property. Suppose
that G is a spatial theta graph in S3 which has been isotoped so that its intersection
with a 3-ball B⊂ S3 consists of four unknotted arcs (as on the left of Figure 3), num-
bered α1, α2, α3, α4, and α5. Assume that the first arc and the last two arcs belong to
the same edge (the “red edge”) of G and that the others belong to different, distinct
edges of G (the “green edge” and the “blue edge”). We require that as we traverse
the red edge, the arc α1 is traversed between α4 and α5. Letting e′ be the subarc of
the red edge containing α4 ∪α1 ∪α5, we also require that there is an isotopy of e′,
in the complement of the rest of the graph, to an unknotted arc in B. As in Figure 3,
we may then perform crossing changes to introduce a clasps between adjacent arcs.
It is easily checked that this clasp move preserves the Brunnian property.

Although the clasp move creates many Brunnian theta graphs, it is not clear how
to keep track of fundamental properties (such as hyperbolicity) under the clasp
move. Additionally, very little is known about sequences of clasp moves relating
two Brunnian theta graphs.

We can, however, use clasping to show that there exist Brunnian theta graphs
which are not hyperbolic. Figure 4 shows an example of a Brunnian theta graph with

Figure 4. A toroidal Brunnian theta graph. The swallow-follow
torus for the double-stranded trefoil on the right is an essential
torus in the exterior of the theta graph.
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an essential torus in its exterior. It was created by isotoping a Kinoshita–Wolcott
graph to the position required to apply the clasping move via an isotopy which
moved a point on one of the edges around a trefoil knot. A graph with an essential
torus in its exterior is neither hyperbolic nor a trivial graph.

4. New examples of Brunnian theta graphs

Besides the Kinoshita graph and vertex sums of the Kinoshita graph with itself,
are there other hyperbolic Brunnian theta graphs? In this section, we give a new
infinite family of examples of diagrams of spatial theta curves. In the next section
we will prove that infinitely many of them are also nontrivial. These examples have
the property that they are of low bridge number. Forthcoming work of Taylor and
Tomova will show that this implies that these graphs are vertex-prime. Furthermore,
since they are low bridge number it is likely that they are hyperbolic. Section 6
concludes this paper with some questions for further research.

Let Q={(x, y, z)∈R3
: −1≤ z≤ 1}. A pure n-braid representative consists of n

arcs (called strands) in Q such that the i-th strand has endpoints at (i, 0,±1) and
for each arc projecting onto the z-axis is a strictly monotonic function. Two pure
n-braid representatives are equivalent if there is an isotopy in Q from one to the
other which fixes ∂Q. The set of equivalence classes is PB(n). Two pure n-braid
representatives can be “stacked” to create another pure n-braid representative by
placing one on top of the other and then scaling in the z-direction by 1

2 . Applying
this operation to equivalence classes we obtain the group operation for PB(n). If σ
and ρ are elements of PB(n), we let σρ denote the braid having a representative
created by stacking a representative for σ on top of a representative for ρ and then
scaling in the z-direction by 1

2 .
Let φ : PB(4)→ PB(2) be the homomorphism which forgets the last two strands.

For each A ∈ kerφ we will construct a family G(A, t1, t2) for t1, t2 ∈ Z of theta
graphs with the Brunnian property. We will construct G(A, t1, t2) by placing braids
into the boxes in the template shown in Figure 5. Let ρ : PB(4) → PB(6) be
a monomorphism which “doubles” each of the last two strands of A ∈ PB(4)
(i.e., in ρ(A) the fourth strand is parallel to the third and the sixth strand is parallel
to the fifth). For a given A ∈ kerφ, we place ρ(A) into the top braid box of Figure 5.
The shading indicates the doubled strands. There is more than one choice for the
monomorphism ρ, as the doubled strands may be allowed to twist around each
other (i.e., we may vary the framing). We will always choose the homomorphism
determined by the “blackboard framing” (i.e., in our diagram the doubled strands
are two edges of a rectangle embedded in the plane). Into the second and fourth
boxes from the top we place the braid A−1. In the third box we place the element
from PB(2) consisting of two strands with t1 full twists. We use the convention



862 B. JANG, A. KRONAEUR, P. LUITEL, D. MEDICI, S. A. TAYLOR AND A. ZUPAN

ρ(A)

A−1

A−1

t1

t2

Figure 5. The template for the graph G A.

that, giving the strands a downward orientation, if t1 > 0 there are 2|t1| left-handed
crossings and if t1 < 0 there are 2|t1| right-handed twists. Into the bottom box we
place t2 full twists, using the same orientation convention as for t1.

Considering the plane of projection in Figure 5 as the xy plane, the plane 5
perpendicular to the plane of projection and cutting between the second and third
boxes from the top functions as a “bridge plane” for G(A, t1, t2). Observe that if
we measure the height of a point x ∈ G(A, t1, t2) by its projection onto the y-axis,
each edge of G(A, t1, t2) has a single local minimum for the height function and no
other critical points in its interior. This implies that 5 cuts G(A, t1, t2) into trees
with special properties. The two trees above 5 have a single vertex which is not a
leaf and their union is isotopic (relative to endpoints) into 5. The three trees below
5 are all edges (i.e., each is a tree with two vertices and single edge) and their
union can be isotoped relative to the endpoints into5. Thus, 5 is a bridge plane for
G(A, t1, t2) and |G(A, t1, t2)∩5| = 6. We might, therefore, say that G(A, t1, t2)
has “bridge number at most 3”. The precise definition of bridge number for theta
graphs has been a matter of dispute (see [Motohashi 2000]). The forthcoming paper
of Taylor and Tomova explores bridge number for spatial graphs in detail.

Theorem 4.1. For each A ∈ kerφ and t1, t2 ∈ Z, the graph G(A, t1, t2) has the
Brunnian property.
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Figure 6. The constituent knots KB , KR , and KV of G(A, t1, t2).

Proof. The proof is easy and diagrammatic. Color the edges coming out of the top
vertex in the diagram in Figure 5 by blue, red, and verdant from left to right. Then
the edges entering into the bottom vertex are also blue, red, and verdant from left
to right. In Figure 6, we have the knots KB , KR , and KV obtained by removing the
blue, red, and verdant edges respectively. Observe that the top braid box of KR

and KV contains the braid A. In each of the diagrams for KB , KR , and KV we have
labeled certain portions with lower case letters. We now explain those regions and
why each diagram can be simplified to the standard diagram for the unknot.

Consider the diagram for KB . Since the third and fourth strands of the top braid
box of G(A, t1, t2) are parallel, we may untwist the diagram at region a and at
region b. At regions c and d , we may also untwist at the minima. The end result is
a diagram of a knot having a single crossing. The knot KB must, therefore, be the
unknot.

Consider the diagram for KR . At region a we have the trivial 2-braid since
A ∈ kerφ. The braid A in the top braid box may therefore be canceled with the
braid A−1 in the third-from-the-top braid box. Finally, we may untwist the t2 full
twists in the final braid box to arrive at the standard diagram for the unknot.

Consider the diagram for KV . The braids A and A−1 cancel, at which point we
may untwist the t1 full twists. We may also untwist at region a. Thus, KV is also
the unknot. �

Given a graph G(A, t1, t2) we can construct other theta graphs of bridge number
at most 3 with the Brunnian property by using the clasping technique in such a
way that we do not introduce any additional critical points in the interior of any
edge, so it is highly unlikely that the template in Figure 5 encompasses all possible
theta graphs of bridge number at most 3 with the Brunnian property. On the other
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P12 P13 P14

P23 P24 P34

Figure 7. The generators for PB(4).

hand, there are infinitely many braids A such that G(A, 0, 0) is a diagram of the
trivial theta graph (see below), so the question as to what braids in kerφ produce
nontrivial theta graphs is somewhat subtle.

5. Braids producing Brunnian theta graphs

In this section we produce an infinite family of braids A ∈ kerφ ⊂ PB(4) such that
there exists t1 such that G(A, t1, t2) is Brunnian for all t2. To describe the braids A
more precisely, we recall the standard generating set for PB(4). For i, j ∈{1, 2, 3, 4}
with i < j , let Pi j denote the element of PB(4) obtained by “looping” the i-th strand
around the j -th strand, as in Figure 7. Observe that Pk

23 produces a twist box in the
second and third strands with k full twists, using the sign convention from earlier.

There are nontrivial braids A for which G(A, 0, 0) is trivial. For example, for
every n, t1, and t2, the graphs G(Pn

23, t1, t2) are all trivial. To show that there are
infinitely many braids producing nontrivial graphs, let An = P−n

23 P13 and for m ∈ Z,
let 0(n,m)= G(An,−n,m) (see Figure 8 for a diagram of A2).

Figure 8. The braid A2.
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Theorem 5.1. For all n,m ∈ Z, the graph 0(n,m) is a Brunnian theta graph.
Furthermore, suppose that for a given (n,m) ∈ Z× Z, the set S(n,m) ⊂ Z× Z

has the properties that if (a, b) ∈ S(n,m) then 0(a, b) is isotopic to 0(n,m) and
if (a, b), (a′, b′) ∈ S(n,m) are distinct, then a+ b 6= a′+ b′. Then S(n,m) has at
most three distinct elements. In particular, there exist infinitely many n ∈ Z such
that the graphs 0(n, 0) are pairwise distinct Brunnian theta graphs.

Before proving the theorem, we establish some background. A handlebody is
the regular neighborhood of a finite graph embedded in S3 and its genus is the
genus of the boundary surface. We will be considering genus 2 handlebodies. A
disc D properly embedded in a handlebody H whose boundary does not bound
a disc in ∂H is called an essential disc in H . If H has genus 2 and if D ⊂ H is
an essential nonseparating disc, the space H \ η̊(D) is homeomorphic to S1

× D2.
A knot isotopic to the core of that solid torus is called a constituent knot of H .
If G ⊂ S3 is a spatial theta graph and if H = η(G), then a disc D ⊂ H intersecting
an edge e of G exactly once transversally and disjoint from the other edges of G is
called a meridian disc for e. Thus, if D is a meridian disc for e, then H \ η̊(D) is a
regular neighborhood of Ke. Observe that if G is a theta graph and if e ⊂ G is an
edge, then any meridian disc D for e is an essential disc in the handlebody η(G),
as D does not separate η(G).

If G and G ′ are spatial theta graphs such that G is isotopic to G ′ then the isotopy
can be extended to an isotopy of the handlebody η(G) to the handlebody η(G ′).
Furthermore, if the isotopy takes an edge e⊂ G to an edge e′ ⊂ G ′ then the isotopy
takes any meridian disc for e to a meridian disc for e′. On the other hand, an isotopy
of η(G) to η(G ′) does not necessarily correspond to an isotopy of G to G ′. Instead,
an isotopy of η(G) to η(G ′) corresponds to a sequence of isotopies and “edge slides”
of G. An edge slide of an edge e ⊂ G of a graph involves sliding one end of e
across edges of G (see [Scharlemann and Thompson 1994]). As in Figure 9, an
edge slide of a theta graph may convert a theta graph into a spatial graph that is not
a theta graph. Conversely, any sequence of edge slides and isotopies of a graph G
corresponds to an isotopy of η(G).

Given a spatial theta graph G and an edge e, an essential nonseparating disc E
in η(G) is along e if it lies in a regular neighborhood of e, is not a meridian of e,
if there is a meridian disc D for e such that |D ∩ E | (the number of components
of D ∩ E) is equal to 1. Observe that if E is along e, then η(G) \ η̊ is a solid torus

Figure 9. An edge slide converting a theta graph into a nontheta graph.
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Figure 10. Two ways of unzipping an edge of a spatial theta graph.
As is suggested by the picture, the θ-graph may be embedded in
S3 in some, potentially complicated, way. We do, however, require
that the unzipping produce a knot and not a 2-component link.

since E is nonseparating. If E is along e, then we say that the knot which is the
core of η(G) \ η̊(E) is obtained by unzipping the edge e. Figure 10 shows two
different ways of unzipping an edge. The proof of Lemma 5.5 will also be helpful
in understanding the relationship between the definition of unzipping given above
and the diagrams in Figure 10. The term “unzipping” is taken from Bar-Natan
and D. Thurston (see, for example, [Thurston 2002]). It is a form of an operation
also known as “attaching a band” to Ke or “distance 1 rational tangle replacement”
on Ke.

Since an isotopy of a handlebody in S3 to another handlebody takes discs in the
first handlebody to discs in the second and preserves the number of intersections
between discs, we have:

Lemma 5.2. Suppose that G and G ′ are isotopic spatial theta graphs such that the
isotopy takes an edge e of G to an edge e′ of G ′. If K ⊂ S3 is a knot obtained by
unzipping the edge e, then there is a knot K ′ ⊂ S3 which is obtained by unzipping
the edge e′ such that K and K ′ are isotopic.

Rational tangles. The key step in our proof of Theorem 5.1 is to show that unzip-
ping 0(n,m) does not produce any knot that can be obtained by unzipping a trivial
theta graph along one of its edges. Analyzing the knots we do get will show, as a
by-product, that infinitely many of the 0(n,m) are distinct. We use rational tangles
to analyze our knots.

A rational tangle is a pair (B, τ ) where B is a 3–ball and τ ⊂ B is a properly
embedded pair of arcs which are isotopic into ∂B relative to their endpoints. We
mark the points ∂τ ⊂ ∂B by NW, NE, SW, and SE as in Figure 11. Two rational
tangles (B, τ ) and (B, τ ′) are equivalent if there is a homeomorphism of pairs
h : (B, τ )→ (B ′, τ ′) which fixes ∂B pointwise. Conway [1970] showed how to
associate a rational number r ∈ Q∪ {1/0} to each rational tangle in such a way
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N W N E

SW SE

R(1/0) R(0/1)

h

v

Figure 11. The basic transformations of a rational tangle.

that two rational tangles are equivalent if and only if they have the same associated
rational number. We briefly explain the association, using the conventions of
[Gordon 2009, Lecture 4]. Using the 3-ball with marked points as in Figure 11, we
let the rational tangle R(0/1) consist of a pair of horizontal arcs having no crossings
and we associate to it the rational number 0 = 0/1. The rational tangle R(1/0),
consisting of a pair of vertical arcs having no crossings, is given the rational number
1/0 (thought of as a formal object). Let h : B→ B and v : B→ B be the horizontal
and vertical half-twists, as shown in Figure 11. Observe that the rational tangle
v2kR(0/1) is a twist box with −k full twists, using the orientation convention from
earlier.

Let a1, a2, . . . , ak be a finite sequence of integers such that a2, . . . , ak 6= 0. Let
R(a1, . . . , ak) be the rational tangle defined by

R(a1, a2, . . . , ak)=

{
ha1va2 · · · hak−1vak R(1/0) if k is even,
ha1va2 · · · vak−1hak R(0/1) if k is odd.

We assign the rational number

p

q
= a1+

1

a2+
1

a3+
1

· · · +
1
ak

to R(a1, a2, . . . , ak) and we define R(p/q) = R(a1, . . . , ak), with p and q rela-
tively prime.

We define the distance between two rational tangles R(p/q) and R(p′/q ′) to
be 1(p/q, p′/q ′) = |pq ′ − p′q|. Observe that in the 3-ball B, there is a disc
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R(p/q)

Figure 12. On the left is the denominator closure D(R(p/q)) of
the rational tangle R(p/q). On the right, we see that the right-
handed trefoil is the denominator closure of the rational tangle
R(1/3).

D ⊂ B such that ∂D partitions the marked points {N W, SW, N E, SE} into pairs
and which separates the strands of a given rational tangle R(p/q). Indeed, given
a disc D ⊂ B whose boundary partitions the marked points into pairs, there is a
rational tangle R(p/q) (unique up to equivalence of rational tangles) such that D
separates the strands of R(p/q). We call D a defining disc for R(p/q). If D is
a defining disc for R(p/q) and D′ is a defining disc for R(p′/q ′) such that, out
of all such discs, D and D′ have been isotoped to intersect minimally, then it is
not difficult to show that 1(p/q, p′/q ′)= |D ∩ D′| (i.e., the distance between the
rational tangles is equal to the minimum number of arcs of intersection between
defining discs).

From a rational tangle R(p/q) we can create the unknot or a 2-bridge knot
or link K (p/q)= D(R(p/q)) by taking the so-called denominator closure D of
R(p/q) where we attach the point NW to the point SW and the point NE to the
point SE by an unknotted pair of arcs lying in the exterior of B, as in Figure 12.
Thus, the right-handed trefoil is K (1/3) and the left-handed trefoil is K (−1/3).

Theorem 5.3 [Schubert 1956]. Let p/q, p′/q ′ ∈Q∪ {1/0} with q, q ′ > 0 and the
pairs p, q and p′, q ′ relatively prime. The knot or link K (p/q) is isotopic (as an
unoriented knot or link) in S3 to the knot or link K (p′/q ′) if and only if q = q ′ and
either p ≡ p′ mod q or pp′ ≡ 1 mod q.

Remark 5.4. For more on Schubert’s theorem, see [Cromwell 2004, Theorem 8.7.2]
or [Kauffman and Lambropoulou 2003, Theorem 3]. Since we are using the denom-
inator closure of rational tangles our convention and the statement of Schubert’s
theorem differ from the usual convention and statement by exchanging numerators
and denominators. See the discussion following Theorem 3 of [Kauffman and
Lambropoulou 2003].

Unzipping the trivial graph. Since we want to show that each graph in a certain
family of graphs is nontrivial, the following will be useful.

Lemma 5.5. Suppose that G ⊂ S3 is the trivial theta graph and that K is a knot
obtained by unzipping an edge e of G. Then either K is the unknot or there exists
k ∈ Z, odd such that K is a (2, k) torus knot.
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G B

∂E τE

Figure 13. Upper Left: The trivial graph G. Upper Right: the ball
B = η(e). Lower Left: A disc E . Lower Right: The rational tangle
R(−3) with defining disc E .

Proof. Let G be the trivial theta graph and let e⊂ G be an edge. Observe that there
is an isotopy of G which interchanges any two edges. Thus, we may consider G to
be the union of the unit circle in R2 with a horizontal diameter e, as in Figure 13.
We may consider the neighborhood η(e) of e as a 3-ball B with a vertical disc as a
meridian disc for e. The graph G intersects B in four punctures, which we label
NW, NE, SW, and SE as usual. Take D to be the meridian disc for e and let E ⊂ B
be a disc with boundary an essential curve in ∂B \G, which cannot be isotoped
to be disjoint from D, and for which |D ∩ E | = 1. Observe that D is the defining
disc for the rational tangle R(1/0). If E is the defining disc for the rational tangle
R(k/`), then

1=1(1/0, k/`)= |`|.

Consequently, the rational tangle R(k/1) consists of k horizontal half twists. Thus
the knot which is the core of η(G) \ η̊(E) is a (2,±k) twist knot. �

The following corollary follows immediately from Lemmas 5.2 and 5.5.

Corollary 5.6. Suppose that G ⊂ S3 is a trivial spatial theta graph. Then for all
edges e ⊂ G and for any knot K obtained by unzipping e there exists an odd k ∈ Z

such that K is a (2, k) torus knot, i.e., K (1/k).

Proof of Theorem 5.1. The proof is similar in spirit to [Wolcott 1987, §3]. We do
not, however, use Wolcott’s theorem 3.11 as that theorem would require us to work
with links, rather than with knots. Potentially, however, a clever use of Wolcott’s
theorem would show that a much wider class of braids A create nontrivial graphs
G(A, t1, t2). Our method, however, also allows us, using a result of Eudave-Muñoz
[1992] concerning reducible surgeries on strongly invertible knots, to show that we
have infinitely many distinct Brunnian theta graphs.

Let n,m ∈ Z, and let G = 0(n,m). To prove that G is a Brunnian theta graph,
by Theorem 4.1, we need only show that G is nontrivial.
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Figure 14. On the left we have isotoped the template so that R
has no crossings. The shaded boxes denote doubled strands. In
the middle we have unzipped along R using a particular choice of
unzipping disc. On the right, we have simplified the unzipped knot
by using the parallel strands from the top braid box.

Let v+ be the upper vertex of G in Figure 5 and let v− be the lower vertex. Recall
that we color the edges of G (from left to right at each vertex) as blue, red, and
verdant. Isotope G so that the endpoint of the verdant edge V adjacent to v− is
moved near v+ by sliding it along the red edge, as on the left of Figure 14. This
isotopy creates a diagram of G such that red edge has no crossings. Let K be the
knot obtained by unzipping the red edge, as in the middle of Figure 14 (choosing
the unzip so that no twists are inserted in the diagram along V ). Using the doubled
strands in the top braid box, isotope K so that it has the diagram on the right of
Figure 14.

Inserting the braid An into the template, as specified in Figure 5, our knot K has
the diagram on the top left of Figure 15. Let 31 be the right-handed trefoil. Now
perform the isotopies indicated in Figure 15 to see that K is the connected sum
of 31 and the knot

K
(
−

3
6(m+ n)+ 5

)
= D(R(0,−2(m+ n)− 1,−1,−1,−1)).

Since torus knots are prime, K is not a (2, k) torus knot for any k ∈ Z unless
K (−3/(6(m+n)+ 5)) is the trivial knot, that is K (−3/(6(m+n)+ 5))=K (1).
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#

−n

n
−n

n
m

Figure 15. The isotopies showing that K is the connected sum of
a right handed trefoil and K (−3/(6(m+n)+ 5)). In the first step
we combine the lower two twist boxes into a single twist box with
m+ n full twists.

By Schubert’s theorem, this can only happen if 6(m+ n)+ 5= 1, an impossibility.
Thus, each 0(n,m) is a Brunnian theta graph.

To prove the part about distinctness, we use a theorem of Eudave-Muñoz [1992]
and the Montesinos trick [Montesinos 1975] (see also [Gordon 2009] for a nice
explanation). We begin by showing:

Claim. If a+ b 6= a′+ b′, then there is no isotopy from 0(a′, b′) to 0(a, b) which
takes the red edge of 0(a′, b′) to the red edge of 0(a, b).
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We prove this by contradiction. Let B ⊂ S3 be a regular neighborhood of the
red edge of 0(a, b) and let W = S3

\ B̊ be the complementary 3–ball. Mark the
points of 0(a, b)∩∂B by NE, SE, NW, SW so that a meridian disc for the red edge
of 0(a, b) corresponds to the rational tangle R(1/0) and the disc E , along which
we unzip 0(a, b) to produce K = 31#K (−3/(6(a+ b)+ 5)), corresponds to the
rational tangle R(0/1). Let τ = K ∩W .

The isotopy of 0(a, b) to 0(a′, b′) takes B to a regular neighborhood B ′ of the red
edge of 0(a′, b′). In B ′ there is a disc D′ which is along the red edge of 0(a′, b′)
such that unzipping 0(a′, b′) along D′ produces (31#K (−3/(6(a′ + b′)+ 5))).
Reversing the isotopy, takes D′ to a disc D ⊂ B which is along e. Let R(p/q) be
the rational tangle corresponding to D. The knot K ′= τ∪R(p/q)) is isotopic to the
result of unzipping 0(a′, b′) along D′ and so K ′ = (31#K (−3/(6(a′+ b′)+ 5))).
If the disc D is isotopic to the disc E , the rational tangles R(p/q) and R(0/1) are
equivalent. In which case, K is isotopic to K ′. But this implies that a+b= a′+b′,
a contradiction. Thus, the rational tangles R(0/1) and R(p/q) are distinct (since
the discs are not isotopic).

Since τ ∪R(1/0) is the unknot in S3, the double branched cover of W over τ
is the exterior of a strongly invertible knot L ⊂ S3. Since K = τ ∪R(0/1) and
K ′ = τ ∪R(p/q) are composite knots, the double branched covers of S3 over K
and K ′ are reducible. In particular there are distinct Dehn surgeries on L producing
reducible manifolds. The surgeries are distinct since R(0/1) is not equivalent
to R(p/q). However this contradicts that the Cabling Conjecture holds for strongly
invertible knots [Eudave-Muñoz 1992, Theorem 4]. Proving the claim. �

For a pair (n,m) ∈ Z× Z, let S(n,m) ⊂ Z× Z be a subset with the property
that for all (a, b) ∈ S(n,m), the graph 0(a, b) is isotopic to the graph 0(n,m) and
which has the property that for all pairs (a, b), (a′, b′) ∈ S(n,m) if a+ b= a′+ b′,
then (a, b) = (a′, b′). Observe that (n,m) ∈ S(n,m). We will show that for all
(n,m) ∈ Z×Z, the set S(n,m) has at most three elements.

Suppose, for a contradiction, that there exists (n,m) such that S(n,m) has at least
4 distinct elements (a1, b1), (a2, b2), (a3, b3), (n,m). Each isotopy between any two
graphs {0(a1, b1), 0(a2, b2), 0(a3, b3), 0(n,m)} induces a permutation of the set
{B, R, V } of blue, red, and verdant edges. For each i ∈{1, 2, 3}, choose an isotopy fi

from0(n,m) to0(ai , bi ) and let σi be the induced permutation of {B, R, V }. By the
claim and the definition of S(n,m) no σi fixes R and, whenever i 6= j , the permuta-
tion σiσ

−1
j also does not fix R. Hence, σi 6=σ j if i 6= j . In the permutations of the set

{B, R, V }, there are exactly four that do not fix R and of those, two are transpositions.
Thus, without loss of generality, we may assume that σ1 is a transposition.

Suppose that σ1 is the transposition (B, R, V )→ (B, V, R). Since neither σ2σ
−1
1

nor σ3σ
−1
1 fixes R and since σ2 6= σ3, the permutations σ2 and σ3 are the two permu-

tations taking R to B. But then the composition σ2σ
−1
3 takes R to R, a contradiction.
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The case when σ1 is the transposition (B, R, V )→ (R, B, V ) similarly gives rise
to a contradiction. Thus, for every (n,m) ∈ Z×Z, the set S(n,m) has at most three
elements (including (n,m)).

Define a sequence (ni ) in Z recursively. Let n1 ∈ Z and recall that, by the above,
0(n1, 0) is a Brunnian theta graph. Assume we have defined n1, . . . , ni so that
the graphs 0(n j , 0) for 1≤ j ≤ i are pairwise nonisotopic Brunnian theta graphs.
Let P ⊂ Z be such that n ∈ P if and only if 0(n, 0) is isotopic to 0(n j , 0) for
some 1 ≤ j ≤ i . Since for each j with 1 ≤ j ≤ i there are at most 3 elements n
of Z such that 0(n, 0) is isotopic to 0(n j , 0), the set P is finite. Hence, we may
choose ni+1 ∈ Z \ P . Thus, we may construct a sequence (ni ) in Z so that the
graphs 0(ni , 0) are pairwise disjoint Brunnian theta graphs. �

6. Questions and conjectures

Using the software [Heard 2013], and a lot of patience, it is possible to compute
(approximations to) hyperbolic volumes for some of the graphs G(A, t1, t2). Our
explorations suggest that “most” of the braids A ∈ PB(4) produce hyperbolic
Brunnian theta graphs for all t1, t2 ∈ Z. Indeed, the software suggests that for
a “sufficiently complicated” braid A ∈ PB(4), and for fixed t1, t2 the volume of
the exterior of G(An, t1, t2) grows linearly in n. This is to be contrasted with the
belief, based on the Thurston 2π theorem, that for a fixed A and t1, the volumes
of G(A, t1, t2) will converge as t2→∞. Furthermore, calculations of hyperbolic
volumes using Orb indicate that the graphs 0(n,m) of Theorem 5.1 are likely not
Kinoshita–Wolcott graphs. Since the calculations of hyperbolic volume are only
approximate and since we can only calculate the volumes of finitely many of the
graphs, we do not have a proof of that fact.

These investigations raise the following questions:

(1) For what braids A ∈ kerφ is G(A, 0, 0) a Brunnian theta graph?

(2) Can Litherland’s Alexander polynomial (or some other algebraic invariant)
prove that there are infinitely many braids A ∈ kerφ such that G(A, t1, t2) is a
Brunnian theta graph for some t1, t2 ∈ Z?

(3) Is any one of the Brunnian graphs 0(n,m) a Kinoshita–Wolcott graph?

(4) Are there infinitely many braids A such that the graph G(A, 0, 0) is a Brunnian
theta graph which is not a Kinoshita–Wolcott graph? We conjecture the answer
to be yes.

(5) For what A ∈ kerφ and t1, t2 ∈ Z is G(A, t1, t2) a hyperbolic Brunnian theta
graph? We conjecture that whenever G(A, t1, t2) is a Brunnian theta graph,
then it is hyperbolic.
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(6) Is it true that if G(A, t1, t2) is hyperbolic then G(An, t1, t2) is hyperbolic for
all n ∈ N? Does the hyperbolic volume of the exterior of G(An, t1, t2) grow
linearly in n?
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