\bullet

 involve

 involve} a journal of mathematics

The lifting of graphs to 3-uniform hypergraphs and some applications to hypergraph Ramsey theory
Mark Budden, Josh Hiller, Joshua Lambert and Chris Sanford

The lifting of graphs to 3-uniform hypergraphs and some applications to hypergraph Ramsey theory

Mark Budden, Josh Hiller, Joshua Lambert and Chris Sanford (Communicated by Joshua Cooper)

Abstract

Given a simple graph Γ, we describe a "lifting" to a 3-uniform hypergraph $\varphi(\Gamma)$ that sends the complement of Γ to the complement of $\varphi(\Gamma)$. We consider the effects of this lifting on cycles, complete subhypergraphs, and complete subhypergraphs missing a single hyperedge. Our results lead to natural lower bounds for some hypergraph Ramsey numbers.

1. Introduction

The subject of extremal graph theory arose from the observation that as the cardinality of a set increases, one becomes able to predict the existence of specific complex structures within the set. In particular, Ramsey theory provides a plentiful garden, ripe with open problems for all extremal graph theorists. In Ramsey theory, mathematicians focus their attention on the determination of the Ramsey number $R\left(K_{s}, K_{t}\right)$, defined to the be least natural number n with the following property: if a graph G has order at least n, then G contains a K_{s}-subgraph (a subgraph isomorphic to the complete graph K_{s} on s vertices), or the complement \bar{G} contains a K_{t}-subgraph. While only a handful of Ramsey numbers are known, many Ramsey numbers can be found to live within certain bounds (see Radziszowski's dynamic survey [1994] for a current list of known values and restrictions). Since determining exact values for Ramsey numbers is very difficult, we often shift our attention to finding a specific graph H that does not contain a K_{s}-subgraph and whose complement \bar{H} does not contain a K_{t}-subgraph to improve upon known lower bounds for these elusive numbers.

The self-complementary graphs known as Paley graphs provide a natural lower bound for the diagonal Ramsey numbers, which take the form $R\left(K_{s}, K_{s}\right)$. To define the Paley graph G_{q}, let

$$
q=p^{f} \equiv 1(\bmod 4)
$$

MSC2010: primary $05 \mathrm{C} 65,05 \mathrm{C} 55$; secondary 05 C 35.
Keywords: cliques, Ramsey number, Turán graphs.
be a power of the prime number p and let \mathbb{F}_{q} denote the finite field containing exactly q elements. Then G_{q} has vertex set $V\left(G_{q}\right):=\mathbb{F}_{q}$ and edge set

$$
E\left(G_{q}\right):=\left\{a b \mid b-a \in \mathbb{F}_{q}^{\times 2}\right\},
$$

where $\mathbb{F}_{q}^{\times 2}$ denotes the subgroup of the multiplicative group \mathbb{F}_{q}^{\times}consisting of squares:

$$
\mathbb{F}_{q}^{\times 2}:=\left\{y \in \mathbb{F}_{q}^{\times} \mid y=x^{2} \text { for some } x \in \mathbb{F}^{\times}\right\} .
$$

Note that the assumed congruence $q \equiv 1(\bmod 4)$ implies that $-1 \in \mathbb{F}_{q}^{\times 2}$ and hence, $a-b \in \mathbb{F}_{q}^{\times 2}$ if and only if $b-a \in \mathbb{F}_{q}^{\times 2}$.

Determining the aforementioned lower bound for a Ramsey number coincides with finding the clique number of a graph G, which we shall denote by $\omega(G)$ throughout this paper, along with the clique number of its complement \bar{G}. The clique number of a hypergraph is denoted analogously. Early discovery of lower bounds for Ramsey numbers hinged upon the results $\omega\left(G_{5}\right)=2$ and $\omega\left(G_{17}\right)=3$, which gave us $R\left(K_{3}, K_{3}\right) \geq 6$ and $R\left(K_{4}, K_{4}\right) \geq 18$. In fact, these bounds are optimal since $R\left(K_{3}, K_{3}\right)=6$ and $R\left(K_{4}, K_{4}\right)=18$. With the algebraic structure of Paley graphs providing a methodology for the determination of certain clique numbers, numerous generalizations of the concept of a Paley graph have been introduced (see [Budden et al. 2011; 2013] and [Su et al. 2002; Wu et al. 2010], where new lower bounds for several Ramsey numbers resulted).

One generalization of Ramsey theory worth considering is the corresponding theory in the context of 3-uniform hypergraphs. With Paley graphs playing such a vital role in the determination of the diagonal Ramsey numbers, we wish to determine the analogues of Paley graphs in this context. After some investigation, we noticed that the Paley graph G_{q} can be used to define an analogous hypergraph $G_{q}^{(3)}$ by setting $V\left(G_{q}^{(3)}\right):=\mathbb{F}_{q}$ and defining the hyperedge set

$$
E\left(G_{q}^{(3)}\right):=\left\{a b c \mid(b-a)(c-b)(a-c) \in \mathbb{F}_{q}^{\times 2}\right\}
$$

Then $G_{q}^{(3)}$ is self-complementary and maintains much of the algebraic structure inherent in Paley graphs. In fact, using a character sum similar to the one used to enumerate triangles in character difference graphs in [Budden et al. 2011; 2013], one can easily show that $G_{q}^{(3)}$ contains exactly

$$
\frac{1}{192} q(q-1)(q-3)(q-5)
$$

subhypergraphs isomorphic to $K_{4}^{(3)}$ (where $K_{n}^{(3)}$ denotes the complete 3-uniform hypergraph on n vertices). From this calculation, we see that the first 3-uniform Paley graph that contains a $K_{4}^{(3)}$-subhypergraph is $G_{13}^{(3)}$, and it is well-known that $R\left(K_{4}^{(3)}, K_{4}^{(3)} ; 3\right)=13$ (see [McKay and Radziszowski 1991]). Here, $R\left(K_{s}^{(r)}, K_{t}^{(r)} ; r\right)$ is the Ramsey number for r-uniform hypergraphs.

The observation that $G_{q}^{(3)}$ seems to be the appropriate analogue for Paley graphs in the 3-uniform setting led us to consider how an arbitrary graph might naturally be lifted to form a 3 -uniform hypergraph, while maintaining properties that are useful to Ramsey theory. In Section 2, we describe a natural way to lift a graph to a 3-uniform hypergraph, show that our lifting preserves complements, and consider the lifting of cycles. In Section 3, we consider which graphs map to complete subhypergraphs and complete subhypergraphs missing a single hyperedge, allowing us to relate the clique number of a graph to that of its 3-uniform lifting.

In Section 4, we focus on applications of our results to generalized Ramsey theory. One of the more well-known results in hypergraph Ramsey theory is the "stepping-up" lemma, usually credited to Erdős and Hajnal (see [Graham et al. 1990]). It states that if $s>r \geq 3$, then

$$
R\left(K_{s}^{(r)}, K_{s}^{(r)} ; r\right)>m \quad \Longrightarrow \quad R\left(K_{2 s+r-4}^{(r+1)}, K_{2 s+r-4}^{(r+1)} ; r+1\right)>2^{m}
$$

Despite the strength of this result, it begins with $r=3$, for which there exist only a small number of known lower bounds. In fact, the only known 3-uniform Ramsey number for complete hypergraphs is $R\left(K_{4}^{(3)}, K_{4}^{(3)} ; 3\right)=13$ (see [Radziszowski 1994]), but many new bounds have recently been determined for Ramsey numbers of various hypergraphs that are not complete; see [Budden et al. 2015]. A weak version of Theorem 9 in Section 4 implies that when $s \geq 3$ and $t \geq 3$, we have

$$
R\left(K_{2 s-1}^{(3)}, K_{2 t-1}^{(3)} ; 3\right) \geq R\left(K_{s}, K_{t}\right)
$$

This allows one to use known lower bounds for diagonal Ramsey numbers to deduce bounds for corresponding higher-uniform Ramsey numbers via the stepping-up lemma.

2. Lifting graphs to 3-uniform hypergraphs

Let \mathcal{G}_{2} denote the set of all (simple) graphs of order at least three and let \mathcal{G}_{3} denote the set of all 3-uniform (simple) hypergraphs of order at least three. Define the $\operatorname{map} \varphi: \mathcal{G}_{2} \rightarrow \mathcal{G}_{3}$ to send a graph Γ to a 3-uniform hypergraph $\varphi(\Gamma)$ satisfying $V(\varphi(\Gamma))=V(\Gamma)$, and letting $E(\varphi(\Gamma))$ consist of all unordered 3-tuples $a b c$ of distinct vertices in $V(\varphi(\Gamma))$ such that exactly one or all of $a b, b c$, and $a c$ are in $E(\Gamma)$. We easily confirm that $\varphi\left(G_{q}\right)=G_{q}^{(3)}$, as we defined in the previous section. One can also check that if two graphs in \mathcal{G}_{2} are isomorphic, then their images under the lifting φ must also be isomorphic. It is easily demonstrated that the converse is not true.

Denoting the complement of a graph (or hypergraph) Γ by $\bar{\Gamma}$, we note that $a b c \in E(\varphi(\Gamma))$ if and only if all three of $a b, b c$, and $a c$ are edges in Γ (and hence, none of them form edges in $\bar{\Gamma}$) or if exactly one of $a b, b c$, and $a c$ is an edge in Γ (in
which case, exactly two of them form edges in $\bar{\Gamma})$. Observing that $\varphi(\bar{\Gamma})$ consists of hyperedges $a b c$ such that exactly zero or two of $a b, b c$, and $a c$ are in Γ, it follows that

$$
\overline{\varphi(\bar{\Gamma})} \cong \varphi(\bar{\Gamma})
$$

In particular, if Γ is self-complementary, then $\varphi(\Gamma)$ is self-complementary. The preservation of complements under the map φ further emphasizes this choice of lifting for its potential implications in Ramsey theory.

In order to gain an understanding of the map φ, we begin by considering its effects on cycles. For any (hyper)graph G and subset $S \subseteq V(G)$, we shall use $G[S]$ to denote the sub(hyper)graph of G induced by S. We employ the standard notation of writing

$$
x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}
$$

to indicate that the vertices $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in a graph $\Gamma \in \mathcal{G}_{2}$ form a cycle of length n. There are two possible concepts of cycles in the 3-uniform case: loose and tight cycles. We say that $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a loose cycle in $\varphi(\Gamma)$ if

$$
x_{1} x_{2} x_{3}, x_{3} x_{4} x_{5}, x_{5} x_{6} x_{7}, \ldots, x_{n-1} x_{n} x_{1}
$$

are all hyperedges. We say that $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a tight cycle in $\varphi(\Gamma)$ if

$$
x_{1} x_{2} x_{3}, x_{2} x_{3} x_{4}, x_{3} x_{4} x_{5}, \ldots, x_{n} x_{1} x_{2}
$$

are all hyperedges. Note that for loose cycles, it is necessary that n be even and every even tight cycle is also a loose cycle (having fewer hyperedges). Given a cycle $x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}$ in $\Gamma \in \mathcal{G}_{2}$, we first focus on when its image

$$
\varphi(\Gamma)\left[x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]
$$

forms a loose or tight cycle in $\varphi(\Gamma)$. The liftings of cycles when $n=3,4$ are easy to work out and the following two theorems handle the remaining cases.

Theorem 1. Let $x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}$ be a cycle in $\Gamma \in \mathcal{G}_{2}$ with $n>5$. If n is even and

$$
x_{1}-x_{3}-x_{5}-\cdots-x_{n-1}-x_{1}
$$

is a cycle in Γ, then $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a loose cycle in $\varphi(\Gamma)$, and if it a cycle in $\bar{\Gamma}$, then $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a loose cycle in $\varphi(\bar{\Gamma})$.

Proof. Assuming that $x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}$ is a cycle in Γ, it follows that for each potential hyperedge $x_{i-1} x_{i} x_{i+1}$, both $x_{i-1} x_{i}$ and $x_{i} x_{i+1}$ form edges in Γ. Thus, $x_{i-1} x_{i} x_{i+1}$ is a hyperedge in $\varphi(\Gamma)$ if and only if $x_{i-1} x_{i+1}$ is an edge in Γ and it is a hyperedge in $\varphi(\bar{\Gamma})$ if and only if $x_{i-1} x_{i+1}$ is an edge in $\bar{\Gamma}$.

Figure 1. Parallel cycles when $n=7$.
Theorem 2. Let $x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}$ be a cycle in $\Gamma \in \mathcal{G}_{2}$ with $n \geq 5$. If n is odd and

$$
x_{1}-x_{3}-x_{5}-\cdots-x_{n}-x_{2}-x_{4}-x_{6}-\cdots-x_{n-1}-x_{1}
$$

is a cycle in Γ, then $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a tight cycle in $\varphi(\Gamma)$, and if it is a cycle in $\bar{\Gamma}$, then $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a tight cycle in $\varphi(\bar{\Gamma})$. If n is even and both

$$
x_{1}-x_{3}-x_{5}-\cdots-x_{n-1}-x_{1} \quad \text { and } \quad x_{2}-x_{4}-x_{6}-\cdots-x_{n}-x_{2}
$$

form cycles in Γ, then $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a tight cycle in $\varphi(\Gamma)$, and if they are both cycles in $\bar{\Gamma}$, then $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ form a tight cycle in $\varphi(\bar{\Gamma})$.

Proof. This theorem follows from a similar argument to the one that was used in the proof of the previous theorem. The details are left to the reader.

Figures 1 and 2 provide visual representations for the underlying cycles in Theorem 2 when $n=7$ and $n=16$, respectively. In each graph, the cycle

$$
x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}
$$

Figure 2. Parallel cycles when $n=16$.
uses solid edges and all other cycles are represented with dashed edges. Whether or not dashed edges appear in Γ or $\bar{\Gamma}$ determines the location of the corresponding tight cycles in the lifting.

Although we are able to understand how cycles may lift, the subgraphs which map to loose and tight hypergraph cycles have a much less predictable structure, preventing such a nice characterization. So, we turn our attention to complete subhypergraphs and those that are missing a single hyperedge.

3. Complete hypergraphs and complete hypergraphs missing a single hyperedge

From the definition of φ, it is clear that if H is a complete subgraph of $\Gamma \in \mathcal{G}_{2}$ having order at least three, then its image $\varphi(H)$ is a complete subhypergraph of the same order in $\varphi(\Gamma)$. Now we turn our attention to understanding which subgraphs map to complete subhypergraphs under φ.

Lemma 3. Suppose that $\Gamma \in \mathcal{G}_{2}, S \subseteq V(\Gamma)$ is a subset containing at least three elements, and $K:=\Gamma[S]$. If $\varphi(K)$ is complete and C is a component of K, then C is complete.

Proof. Suppose that C is a component of K that is not complete (which necessarily requires the order of C to be at least two). Then there exist vertices $b_{1}, b_{2} \in V(C)$ that do not form an edge in C. If $x \in V(K)-V(C)$, then neither $b_{1} x$ nor $b_{2} x$ form edges in K, and $b_{1} b_{2} x$ is not a hyperedge in $\varphi(K)$, contradicting the assumption that $\varphi(K)$ is complete. If no such x exists, then $V(K)=V(C)$, and for every vertex $y \in V(C)-\left\{b_{1}, b_{2}\right\}$, exactly one of $b_{1} y$ and $b_{2} y$ must be in $E(K)$. Since C is assumed to be connected, it must have order at least four. Let $N_{b_{1}}$ and $N_{b_{2}}$ denote the sets of neighbors of b_{1} and b_{2}, respectively, in $V(C)$. Note that each $N_{b_{j}}$ is nonempty or else b_{j} would be disconnected from the rest of C. Also, since C is connected, it follows that $N_{b_{1}} \cap N_{b_{2}} \neq \varnothing$. So, let $z \in N_{b_{1}} \cap N_{b_{2}}$. Then $b_{1} b_{2} z$ is not a hyperedge in $\varphi(K)$, contradicting the assumption that $\varphi(K)$ is complete. Thus, we find that C must be complete.

Lemma 3 greatly restricts the structure of the possible subgraphs of a graph Γ that can map to a complete subhypergraph of $\varphi(\Gamma)$. The following theorem completely classifies the relevant subgraphs.

Theorem 4. Suppose that $\Gamma \in \mathcal{G}_{2}, S \subseteq V(\Gamma)$ is a subset containing at least three elements, and $K:=\Gamma[S]$. Then $\varphi(K)$ is complete if and only if K is complete or K is the union of exactly two disjoint complete subgraphs.

Proof. From Lemma 3, it suffices to prove that $\varphi(K)$ is complete if and only if K contains at most two components. To prove the forward implication, assume that $\varphi(K)$ is complete and K consists of at least three components. Suppose that
C_{1}, C_{2}, C_{3} are three components of K and for each $1 \leq i \leq 3$, choose a vertex $a_{i} \in V\left(C_{i}\right)$. Since the components are disconnected from one another, it follows that $\varphi(K)$ lacks the hyperedge $a_{1} a_{2} a_{3}$, contradicting our assumption that $\varphi(K)$ is complete. Hence, K contains at most two components. Now we consider the converse. Clearly, if K is a complete subgraph of order at least three, then $\varphi(K)$ must also be complete. Otherwise, assume that K is the disjoint union of two complete subgraphs having vertex sets S_{1} and S_{2}. For every three vertices $a, b, c \in V(K)$, either all three are in one of S_{1} or S_{2}, and hence form a hyperedge in $\varphi(K)$, or they are divided up between S_{1} and S_{2}. Without loss of generality, assume that $a \in S_{1}$ and $b, c \in S_{2}$. Exactly one of $a b, b c$, and $a c$ are edges in K, making $a b c \in E(\varphi(K))$. It follows that $\varphi(K)$ is complete.

The previous theorem gives us an immediate corollary pertaining to the lifting of a complete bipartite graph.

Corollary 5. For the complete bipartite graph $K_{m, n}$ where either m or n is greater than 2 , we have $\varphi\left(K_{m, n}\right)$ is isomorphic to the empty 3-uniform hypergraph of order $m+n$.

Proof. Recall that $\overline{K_{m, n}} \simeq K_{m} \cup K_{n}$. Since the lifting φ preserves complements, we just apply the previous theorem to obtain our desired result.

Since every complete subgraph with at least three vertices in $\Gamma \in \mathcal{G}_{2}$ maps to a complete subhypergraph of $\varphi(\Gamma)$, we have

$$
\omega(\varphi(\Gamma))=m \geq 3 \quad \Longrightarrow \quad \omega(\Gamma) \leq m
$$

and the previous theorem implies that

$$
\omega(\Gamma)=n \geq 3 \quad \Rightarrow \quad \omega(\varphi(\Gamma)) \leq 2 n .
$$

From these observations, we obtain the following corollary.
Corollary 6. Every graph $\Gamma \in \mathcal{G}_{2}$ with $\omega(\Gamma) \geq 3$ satisfies

$$
\begin{aligned}
\omega(\Gamma) \leq \omega(\varphi(\Gamma)) & \leq 2 \omega(\Gamma) \\
\frac{1}{2} \omega(\varphi(\Gamma)) \leq \omega(\Gamma) & \leq \omega(\varphi(\Gamma))
\end{aligned}
$$

Now let H be a subgraph of $\Gamma \in \mathcal{G}_{2}$ of order at least three that is isomorphic to a complete graph with a single edge missing. Without loss of generality, assume that $V(H)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ with $a_{1} a_{2} \notin E(H)$. Then for every $x \in\left\{a_{3}, \ldots, a_{k}\right\}$, we have $a_{1} a_{2} x \notin E(\varphi(H))$. However, every unordered 3-tuple of distinct elements in $\left\{a_{3}, \ldots, a_{k}\right\}$ forms a hyperedge in $\varphi(H)$ as does any 3-tuple of vertices from $V(H)$ that contains exactly one of a_{1} and a_{2}. So, $\varphi(H)$ is isomorphic to a complete 3 -uniform hypergraph with exactly $k-2$ hyperedges missing (those containing
a_{1} and a_{2}). Now we consider which graphs (if any) lift under φ to hypergraphs isomorphic to complete hypergraphs missing a single hyperedge.

Theorem 7. Suppose $n \geq 4$ and $\Gamma \in \mathcal{G}_{2}$. The lifting $\varphi(\Gamma)$ cannot contain an induced subhypergraph isomorphic to $K_{n}^{(3)}-e$ (i.e., a complete 3 -uniform hypergraph on n vertices that is missing a single hyperedge).

Proof. Assume $\varphi(\Gamma)$ contains an induced subhypergraph isomorphic to $K_{n}^{(3)}-e$. Let $S=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ denote the vertices of the $\left(K_{n}^{(3)}-e\right)$-subhypergraph of $\varphi(\Gamma)$. Without loss of generality, let $b_{1} b_{2} b_{3}$ be the missing hyperedge. There exist two possibilities. Either none of $b_{1} b_{2}, b_{2} b_{3}$, and $b_{1} b_{3}$ are in $E(\Gamma)$ or exactly two of the aforementioned edges exist in Γ. In the former case, note that $b_{1} b_{2} b_{4} \in E(\varphi(\Gamma))$, from which we see that exactly one of $b_{1} b_{4}$ and $b_{2} b_{4}$ must be in $E(\Gamma)$. Without loss of generality, assume that $b_{1} b_{4} \in E(\Gamma)$. In a similar manner, it can be shown that $b_{2} b_{3} b_{4} \in E(\varphi(\Gamma))$ implies that $b_{3} b_{4} \in E(\Gamma)$. Then $b_{1} b_{3} b_{4}$ cannot be contained in $E(\varphi(\Gamma))$, contradicting the assumption that $b_{1} b_{2} b_{3}$ was the only missing hyperedge. In the latter case, exactly two of $b_{1} b_{2}, b_{2} b_{3}$, and $b_{1} b_{3}$ are in $E(\Gamma)$. Without loss of generality, assume that $b_{1} b_{2}$ and $b_{2} b_{3}$ are in $E(\Gamma)$. Then $b_{1} b_{3} b_{4} \in E(\varphi(\Gamma))$ implies that exactly one of $b_{1} b_{4}$ and $b_{3} b_{4}$ is in $E(\Gamma)$. Without loss of generality, assume that $b_{1} b_{4} \in E(\Gamma)$. Then $b_{1} b_{2} b_{4} \in E(\varphi(\Gamma))$ implies that $b_{2} b_{4} \in E(\Gamma)$. Similarly, $b_{2} b_{3} b_{4} \in E(\varphi(\Gamma))$ implies that $b_{3} b_{4} \in E(\Gamma)$, contradicting our assumption. Hence, we have shown in both cases that if $\varphi(\Gamma)$ contains a $\left(K_{n}^{(3)}-e\right)$-subhypergraph, then it must contain a $K_{n}^{(3)}$-subhypergraph.

4. Applications to Ramsey theory

From the specific subhypergraphs that we have chosen to consider under the lifting φ, it should be obvious that our interests lie in applications to extremal graph theory. In particular, our focus on the behavior of complete sub(hyper)graphs indicates an underlying interest in Ramsey theory. The multicolor Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is defined to be the least natural number n such that for every arbitrary coloring of the edges of K_{n} with k colors, there exists a subgraph in color i isomorphic to G_{i} for some i. The multicolor 3-uniform hypergraph Ramsey number $R\left(G_{1}, G_{2}, \ldots, G_{k} ; 3\right)$ is defined analogously.

When studying the behavior of cliques in graphs, a class of graphs known as Turán graphs possess certain optimal parameters. Suppose $n \geq 3$ and $q \geq 2$ are integers. By the division algorithm, there exist unique integers $m \geq 0$ and $0 \leq r<q$ such that $n=m q+r$. The Turán graph $T_{q}(n)$ is the complete q-partite graph whose vertices are partitioned into balanced sets (i.e., sets with cardinalities as equal as possible). Such graphs contain K_{q}-subgraphs but lack K_{q+1}-subgraphs. In fact, Turán [1941] proved that out of all graphs of order n, they possess the maximum
number of edges possible without containing a K_{q+1}-subgraph. When considering the lifting of Turán graphs, we obtain the following theorem.

Theorem 8. Let $n \geq 3, q \geq 2$, and $n=m q+r$, where $0 \leq r<q$. Then we have the following:
(1) If $n=q m$, then $R\left(K_{q+1}^{(3)}-e, K_{2 m+1}^{(3)}-e ; 3\right)>n$.
(2) If $n=q m+1$, then $R\left(K_{q+1}^{(3)}-e, K_{2 m+2}^{(3)}-e\right.$; 3$)>n$.
(3) If $n=q m+r$ with $r \geq 2$, then $R\left(K_{q+1}^{(3)}-e, K_{2 m+3}^{(3)}-e ; 3\right)>n$.

Proof. Regardless of the value of r, note that $T_{q}(n)$ contains a K_{q}-subgraph, but not a K_{q+1}-subgraph. Also, at most one vertex of a complete subgraph can come from any one connected set of vertices. So, $\varphi\left(\underline{T_{q}(n)}\right)$ contains a $K_{q}^{(3)}$-subhypergraph, but not a $K_{q+1}^{(3)}$-subhypergraph. Note that $\overline{T_{q}(n)}$ consists of disconnected complete subgraphs of orders m and $m+1$. By Theorem 4, we obtain the following cases. If $n=q m$, then all of the sets of vertices have cardinality m and $\varphi\left(\overline{T_{q}(n)}\right)$ contains a $K_{2 m}^{(3)}$-subhypergraph, but not a $K_{2 m+1}^{(3)}$-subhypergraph. If $n=q m+1$, then exactly one vertex set has cardinality $m+1$ and $\varphi\left(\overline{T_{q}(n)}\right)$ contains a $K_{2 m+1}^{(3)}$-subhypergraph, but not a $K_{2 m+2}^{(3)}$-subhypergraph. For the remaining cases, in which $n=q m+r$ with $2 \leq r<q$, at least two vertex sets have cardinality $m+1$, and we find that $\varphi\left(\overline{T_{q}(n)}\right)$ contains a $K_{2 m+2}^{(3)}$-subhypergraph, but not a $K_{2 m+3}^{(3)}$-subhypergraph. These results, along with the implication of Theorem 7, prove the theorem.

Now we shift our attention to proving a relationship between standard Ramsey numbers and certain corresponding 3-uniform Ramsey numbers for complete hypergraphs missing a single hyperedge.

Theorem 9. Let $s, t \in \mathbb{N}$ with $s \geq 3$ and $t \geq 3$. Then

$$
R\left(K_{2 s-1}^{(3)}-e, K_{2 t-1}^{(3)}-e ; 3\right) \geq R\left(K_{s}, K_{t}\right)
$$

Proof. Assume $m=R\left(K_{s}, K_{t}\right)$. Then there exists a graph G of order $m-1$ that does not contain a K_{s}-subgraph, and whose complement does not contain a K_{t}-subgraph. From Theorem 4, it follows that $\varphi(G)$ does not contain a $K_{2 s-1}^{(3)}$-subhypergraph, and its complement does not contain a $K_{2 t-1}^{(3)}$-subhypergraph. Theorem 7 then implies that $\varphi(G)$ does not contain a $\left(K_{2 s-1}^{(3)}-e\right)$-subhypergraph, and its complement does not contain a $\left(K_{2 t-1}^{(3)}-e\right)$-subhypergraph. Thus,

$$
R\left(K_{2 s-1}^{(3)}-e, K_{2 t-1}^{(3)}-e ; 3\right)>m-1=R\left(K_{s}, K_{t}\right)-1
$$

completing the proof of the theorem.
Note that Theorem 9 implies

$$
R\left(K_{2 s-1}^{(3)}, K_{2 t-1}^{(3)} ; 3\right) \geq R\left(K_{s}, K_{t}\right)
$$

which can be used with the stepping-up lemma. Recently, Conlon, Fox, and Sudakov [Conlon et al. 2013] also proved an analogue of the stepping-up lemma, which lifts from graphs to 3 -uniform hypergraphs. In the spirit of the original stepping-up lemma, it focused on the diagonal case. Namely, they proved that

$$
R\left(K_{s}, K_{s}\right)>m \quad \Longrightarrow \quad R\left(K_{s+1}^{(3)}, K_{s+1}^{(3)}, K_{s+1}^{(3)}, K_{s+1}^{(3)} ; 3\right)>2^{m}
$$

Of course since $R(4,4)=18$, this result implies $R(5,5,5,5 ; 3)>131,072$. The following theorem handles some off-diagonal cases.

Theorem 10. If $q \geq 3$, then

$$
R\left(K_{5}^{(3)}, K_{q+1}^{(3)}-e, K_{2 s-1}^{(3)}-e, K_{2 t-1}^{(3)}-e ; 3\right)>q\left(R\left(K_{s}, K_{t}\right)-1\right) .
$$

Proof. Suppose $m=R\left(K_{s}, K_{t}\right)$ and $q \geq 3$, and let $n=q(m-1)$. Denote the partitioned vertex sets in $T_{q}(n)$ by $V_{1}, V_{2}, \ldots, V_{k}$. We have already noted that $\varphi\left(T_{q}(n)\right)$ contains a $K_{q}^{(3)}$-subhypergraph, but not a $K_{q+1}^{(3)}$-subhypergraph. From Theorem 7, it follows that it does not contain a $\left(K_{q+1}^{(3)}-e\right)$-subhypergraph. Color the hyperedges in $\varphi\left(T_{q}(n)\right)$ yellow. Note that $\overline{T_{q}(n)}$ consists of q disconnected K_{m-1}-subgraphs. Since $R(s, t)=m$, there exists a red/blue coloring of the edges of K_{m-1} that does not contain a red K_{s}-subgraph or a blue K_{t}-subgraph. When lifting just a single K_{m-1} colored in this way, the lifted hypergraph contains at most a red $K_{2 s-2}^{(3)}$-subhypergraph or a blue $K_{2 t-2}^{(3)}$-subhypergraph by Theorem 4. In fact by Theorem 9, the lifted hypergraph does not contain a red $\left(K_{2 s-1}^{(3)}-e\right)$-subhypergraph or a blue $\left(K_{2 t-1}^{(3)}-e\right)$-subhypergraph. We apply this coloring to the hyperedges in $\varphi\left(\overline{T_{q}(n)}\right)$ that arise from the individual liftings of the disjoint vertex sets. The remaining hyperedges in $\varphi\left(\overline{T_{q}(n)}\right)$ are precisely those that include one vertex from V_{i} and the other two vertices from V_{j}, where $i \neq j$. Color these hyperedges green. A complete subhypergraph formed using only these edges includes at most two vertices from any V_{i} and vertices from no more than two of the partitioned vertex sets. Hence, the green hyperedges may contain a $K_{4}^{(3)}$-subhypergraph, but not a $K_{5}^{(3)}$-subhypergraph. From this coloring, we find that

$$
R\left(K_{5}^{(3)}, K_{q+1}^{(3)}-e, K_{2 s-1}^{(3)}-e, K_{2 t-1}^{(3)}-e ; 3\right)>n=q(m-1)
$$

from which the theorem follows.
Although the result of [Conlon et al. 2013] is stronger than Theorem 10 for diagonal Ramsey numbers, our results improve on many known lower bounds for off-diagonal 4-color 3-uniform Ramsey numbers. For example, using the explicit known lower bounds in Table IIc of [Radziszowski 1994], we obtain the following bound on an off-diagonal Ramsey number:
$R(22,22)>29,940 \quad \Longrightarrow \quad R\left(K_{5}^{(3)}, K_{43}^{(3)}-e, K_{43}^{(3)}-e, K_{43}^{(3)}-e ; 3\right)>1,257,480$.

The main advantage to considering the lifting φ is that one is able to sufficiently restrict the structure of hypergraphs in the image by knowing the structure of graphs in the domain. Many open questions naturally arise from this construction. One obvious question is whether or not analogous liftings can be constructed from graphs to r-uniform hypergraphs. This question was recently considered in [Budden and Rapp 2015], but since the liftings did not preserve complements when $r>3$, it did not lead to new implications in Ramsey theory. We conclude with a list of several other avenues of potential inquiry:
(1) Besides cycles, complete hypergraphs, and complete hypergraphs missing a single hyperedge, what other hypergraph images have predictable preimages?
(2) Can one classify the hypergraphs in \mathcal{G}_{3} that are not in the range of φ ?
(3) Is it possible to classify all graphs in the preimage of a particular hypergraph in the range of φ ?
(4) The fact that the lifting φ preserves complements means that it can be thought of as mapping a 2-coloring of the edges of K_{n} to a 2-coloring of the hyperedges in $K_{n}^{(3)}$. Can φ be used to describe a mapping of a k-coloring of the edges in K_{n} to a k-coloring of the hyperedges in $K_{n}^{(3)}$? If so, one may be able to use known bounds for multicolor Ramsey numbers to obtain analogous results in the setting of 3-uniform hypergraphs.

References

[Budden and Rapp 2015] M. Budden and A. Rapp, "Constructing r-uniform hypergraphs with restricted clique numbers", North Carolina J. Math. Stat. 1 (2015), 30-34.
[Budden et al. 2011] M. Budden, N. Calkins, W. N. Hack, J. Lambert, and K. Thompson, "Enumeration of triangles in quartic residue graphs", Integers 11 (2011), Article ID \#A48. MR Zbl
[Budden et al. 2013] M. Budden, N. Calkins, W. N. Hack, J. Lambert, and K. Thompson, "Dirichlet character difference graphs", Acta Math. Univ. Comenian. (N.S.) 82:1 (2013), 21-28. MR Zbl
[Budden et al. 2015] M. Budden, J. Hiller, and A. Rapp, "Generalized Ramsey theorems for r-uniform hypergraphs", Australas. J. Combin. 63 (2015), 142-152. MR Zbl
[Conlon et al. 2013] D. Conlon, J. Fox, and B. Sudakov, "An improved bound for the stepping-up lemma", Discrete Appl. Math. 161:9 (2013), 1191-1196. MR Zbl
[Graham et al. 1990] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, 2nd ed., Wiley, New York, NY, 1990. MR Zbl
[McKay and Radziszowski 1991] B. D. McKay and S. P. Radziszowski, "The first classical Ramsey number for hypergraphs is computed", pp. 304-308 in Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1991), edited by A. Aggarwal, ACM, New York, NY, 1991. MR Zbl
[Radziszowski 1994] S. P. Radziszowski, "Small Ramsey numbers", Electron. J. Combin. 1 (1994), Dynamic Survey 1. MR Zbl
[Su et al. 2002] W. Su, Q. Li, H. Luo, and G. Li, "Lower bounds of Ramsey numbers based on cubic residues", Discrete Math. 250:1-3 (2002), 197-209. MR Zbl
[Turán 1941] P. Turán, "On an extremal problem in graph theory", Mat. Fiz. Lapok 48 (1941), 436-452. In Hungarian. MR Zbl
[Wu et al. 2010] K. Wu, W. Su, H. Luo, and X. Xu, "A generalization of generalized Paley graphs and new lower bounds for $R(3, q) "$, Electron. J. Combin. 17:1 (2010), Note \#N25. MR Zbl

Received: 2015-08-16 Revised: 2015-12-02 Accepted: 2015-12-13

mrbudden@email.wcu.edu	Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC 28723, United States
jphiller1@ufl.edu	Department of Mathematics, PO Box 118105, University of Florida, Gainesville, FL 32611, United States joshua.lambert@armstrong.edu
	Department of Mathematics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, GA 31419, United States
clsanfor@syr.edu	Department of Mathematics, Syracuse University, Syracuse, NY 13244, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US \$175/year for the electronic version, and $\$ 235 /$ year $(+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers

involve

Intrinsically triple-linked graphs in $\mathbb{R} P^{3}$
Jared Federman, Joel Foisy, Kristin McNamara and Emily Stark
A modified wavelet method for identifying transient features in time signals with applications to bean beetle maturation

David McMorris, Paul Pearson and Brian Yurk
A generalization of the matrix transpose map and its relationship to the twist of the polynomial ring by an automorphism

Andrew McGinnis and Michaela Vancliff
Mixing times for the rook's walk via path coupling
Cam McLeman, Peter T. Otto, John Rahmani and Matthew Sutter
The lifting of graphs to 3-uniform hypergraphs and some applications to 65 hypergraph Ramsey theory

Mark Budden, Josh Hiller, Joshua Lambert and Chris SANFORD
The multiplicity of solutions for a system of second-order differential equations
Olivia Bennett, Daniel Brumley, Britney Hopkins, Kristi Karber and Thomas Milligan

Factorization of Temperley-Lieb diagrams
Dana C. Ernst, Michael G. Hastings and Sarah K. Salmon
Prime labelings of generalized Petersen graphs
Steven A. Schluchter, Justin Z. Schroeder, Kathryn Cokus, Ryan Ellingson, Hayley Harris, Ethan Rarity and Thomas WILSON
A generalization of Zeckendorf's theorem via circumscribed m-gons
Robert Dorward, Pari L. Ford, Eva Fourakis, Pamela E. Harris, Steven J. Miller, Eyvindur Palsson and Hannah Paugh
Loewner deformations driven by the Weierstrass function
Joan Lind and Jessica Robins
Rank disequilibrium in multiple-criteria evaluation schemes
Jonathan K. Hodge, Faye Sprague-Williams and Jamie Woelk

