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The Temperley–Lieb algebra is a finite-dimensional associative algebra that arose in
the context of statistical mechanics and occurs naturally as a quotient of the Hecke
algebra arising from a Coxeter group of type A. It is often realized in terms of a
certain diagram algebra, where every diagram can be written as a product of “simple
diagrams”. These factorizations correspond precisely to factorizations of the
so-called fully commutative elements of the Coxeter group that index a particular
basis. Given a reduced factorization of a fully commutative element, it is straight-
forward to construct the corresponding diagram. On the other hand, it is generally
difficult to reconstruct the factorization given an arbitrary diagram. We present an
efficient algorithm for obtaining a reduced factorization for a given diagram.

1. Introduction

The Temperley–Lieb algebra [1971] is a finite-dimensional associative algebra that
arose in the context of statistical mechanics. Penrose [1971] and Kauffman [1990]
showed that this algebra can be faithfully represented by a diagram algebra that
has a basis given by certain diagrams. Jones [1999] showed that the Temperley–
Lieb algebra occurs naturally as a quotient of the Hecke algebra arising from a
Coxeter group of type A (whose underlying group is the symmetric group). This
realization of the Temperley–Lieb algebra as a Hecke algebra quotient was later
generalized to the case of an arbitrary Coxeter group by Graham [1995]. These
generalized Temperley–Lieb algebras have a basis indexed by the fully commutative
elements (in the sense of Stembridge [1996]) of the underlying Coxeter group. In
cases when diagrammatic representations are known to exist, it turns out that every
diagram can be written as a product of “simple diagrams”. Each factorization
of a diagram corresponds precisely to a factorization of the fully commutative
element that indexes the diagram. Given a diagrammatic representation and a
reduced factorization of a fully commutative element, it is easy to construct the
corresponding diagram. However, given an arbitrary basis diagram, it is generally
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difficult to reconstruct the factorization of the corresponding group element. In the
(type A) Temperley–Lieb algebra, we have devised an algorithm for obtaining a
reduced factorization for a given diagram.

This paper is organized as follows. In Section 2, we recall the basic terminology
of Coxeter groups, fully commutative elements, heaps, and the Temperley–Lieb
algebra, as well as establish our notation and review several necessary results.
Section 3 describes the construction of the diagram algebra that is a faithful rep-
resentation of the Temperley–Lieb algebra. This section includes a description of
both the so-called simple diagrams that generate the algebra, as well as the basis
that is indexed by the fully commutative elements of the Coxeter group of type A.
We present our algorithm for factoring a given Temperley–Lieb diagram in terms
of the heap associated to the corresponding fully commutative element in Section 4.
We conclude with Section 5, which details potential further research.

2. Preliminaries

Coxeter groups. A Coxeter system is a pair (W, S) consisting of a finite set S of
generating involutions and a group W, called a Coxeter group, with presentation

W =
〈
S | (st)m(s,t) = e for m(s, t) <∞

〉
,

where e is the identity, m(s, t) = 1 if and only if s = t , and m(s, t) = m(t, s). It
follows that the elements of S are distinct as group elements and that m(s, t) is the
order of st [Humphreys 1990]. Coxeter groups are generalizations of reflection
groups, where each generator s ∈ S can be thought of as a reflection. Recall that
the composition of two reflections is a rotation by twice the angle between the
corresponding hyperplanes. So if s, t ∈ S, we can think of st as a rotation with
order m(s, t).

Since elements of S have order 2, the relation (st)m(s,t) = e can be written as

sts · · ·︸ ︷︷ ︸
m(s,t)

= tst · · ·︸ ︷︷ ︸
m(s,t)

(1)

with m(s, t)≥ 2 factors. If m(s, t)= 2, then st = ts is called a commutation relation
since s and t commute. Otherwise, if m(s, t)≥ 3, then the corresponding relation
is called a braid relation. The replacement

sts · · ·︸ ︷︷ ︸
m(s,t)

7→ tst · · ·︸ ︷︷ ︸
m(s,t)

will be referred to as a commutation if m(s, t)= 2 and a braid move if m(s, t)≥ 3.
We can represent the Coxeter system (W, S) with a unique Coxeter graph 0 with

(1) vertex set S = {s1, . . . , sn} and

(2) edges {si , sj } for each m(si , sj )≥ 3.



FACTORIZATION OF TEMPERLEY–LIEB DIAGRAMS 91

s1 s2 s3
· · ·

sn−1 sn

Figure 1. Coxeter graph of type An .

Each edge {si , sj } is labeled with its corresponding bond strength m(si , sj ). Since
bond strength 3 is the most common, we typically omit the labels of 3 on those edges.

There is a one-to-one correspondence between Coxeter systems and Coxeter
graphs. Given a Coxeter graph 0, we can construct the corresponding Coxeter
system (W, S). In this case, we say that (W, S), or just W, is of type 0. If (W, S)
is of type 0, for emphasis, we may write (W, S) as (W (0), S(0)). Note that
generators si and sj are connected by an edge in the Coxeter graph 0 if and only if
si and sj do not commute [Humphreys 1990].

The Coxeter system of type An is given by the Coxeter graph in Figure 1. In this
case, W (An) is generated by S(An)= {s1, s2, . . . , sn} and has defining relations

(1) si si = e for all i ;

(2) si sj = sj si when |i − j |> 1;

(3) si sj si = sj si sj when |i − j | = 1.

The Coxeter group W (An) is isomorphic to the symmetric group Sn+1 under the
mapping that sends si to the adjacent transposition (i, i+1). This paper focuses on
an associative algebra whose underlying structure is a Coxeter system of type An .

Let S∗ denote the free monoid over S. If a word w = sx1sx2 · · · sxm ∈ S∗ is equal
to w when considered as an element of W, we say that w is an expression for w.
(Expressions will be written in sans serif font for clarity.) Furthermore, if m is
minimal among all possible expressions for w, we say that w is a reduced expression
for w, and we call m the length of w, denoted `(w). Each element w ∈ W can
have several different reduced expressions that represent it. The following theorem,
called Matsumoto’s theorem [Geck and Pfeiffer 2000], indicates how all of the
reduced expressions for a given group element are related.

Proposition 2.1. In a Coxeter group W, any two reduced expressions for the same
group element differ by a finite sequence of commutations and braid moves. �

Let w be a reduced expression forw∈W. We define a subexpression of w to be any
subsequence of w. We will refer to a consecutive subexpression of w as a subword.

Example 2.2. Let w = s1s2 s4 s5 s2 s6 s5 be an expression for w ∈W (A6). Then

s1s2 s4 s5 s2 s6 s5 = s1s4s2 s5 s2 s6 s5 = s1s4 s5s2 s2 s6 s5 = s1s4 s5 s6 s5,

where the blue subword indicates the location where a commutation is applied
to obtain the next expression and the green subword indicates the location where
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two adjacent occurrences of the same generator are canceled to obtain the last
expression. This shows that w is not reduced. It turns out that s1s4 s5 s6 s5 is a
reduced expression for w and hence `(w)= 5.

Example 2.3. Let w = s1s2 s3 s4 s2 be a reduced expression for w ∈W (A4). Then
the set of all reduced expressions for w is given by

{s1s2 s3s4 s2, s1s2 s3 s2 s4, s1s3s2 s3 s4, s3 s1s2 s3 s4},

where the blue subwords indicate the location where a commutation is applied to
obtain the next expression in the set and the pink subword indicates the location
where a braid move is applied to obtain the third expression from the second
expression. Note that `(w)= 5.

Fully commutative elements. Let (W, S) be a Coxeter system of type 0 and let
w ∈W. Following [Stembridge 1996], we define a relation ∼ on the set of reduced
expressions for w. Let w and w′ be two reduced expressions for w. We define
w ∼ w′ if we can obtain w′ from w by applying a single commutation move of the
form st 7→ ts, where m(s, t)= 2. Now, define the equivalence relation ≈ by taking
the reflexive transitive closure of ∼. Each equivalence class under ≈ is called a
commutation class. Two reduced expressions are said to be commutation equivalent
if they are in the same commutation class.

Example 2.4. Let w= s1s2 s3 s4 s5 s2 and w′= s1s2 s3 s2 s4 s5 be two different reduced
expressions for w ∈W (A5). Then w and w′ are commutation equivalent since

s1s2 s3 s4 s5 s2 = s1s2 s3 s4 s2 s5 = s1s2 s3 s2 s4 s5,

where the blue subwords indicate the location where a commutation is applied to
obtain the next expression. By applying a braid relation to w′, we obtain

s1s2 s3 s2 s4 s5 = s1s3 s2 s3 s4 s5,

where the location of the braid move has been highlighted in pink. It turns out that
the last reduced expression above is neither commutation equivalent to w nor w′,
and hence w has more than one commutation class. Specifically, the commutation
classes are

{s1s2 s3 s4 s5 s2, s1s2 s3 s4 s2 s5, s1s2 s3 s2 s4 s5} and {s1s3 s2 s3 s4 s5, s3 s1s2 s3 s4 s5}.

Example 2.5. Let w= s2 s1s3 s4 s2 be a reduced expression for w ∈W (A4). In this
case, w has exactly five reduced expressions, including w. From this, it is easy to
verify that all reduced expressions for w are commutation equivalent. This implies
that there is a unique commutation class for w:

{s2 s1s3 s4 s2, s2 s3 s1s4 s2, s2 s1s3 s2 s4, s2 s3 s1s2 s4, s2 s3 s4 s1s2}.
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If w has exactly one commutation class, then we say that w is fully commutative,
or just FC. The set of all fully commutative elements of W is denoted by FC(0),
where 0 is the corresponding Coxeter graph. For consistency, we say that a reduced
expression w is FC if it is a reduced expression for some w ∈ FC(0). Note that the
element in Example 2.4 is not FC since there are two commutation classes, while
the element in Example 2.5 is FC.

Given some w ∈ FC(0) and a starting reduced expression for w, observe that the
definition of fully commutative states that one only needs to perform commutations
to obtain all the reduced expression forw, but the following result due to Stembridge
[1996] states that when w is FC, performing commutations is the only possible way
to obtain another reduced expression for w.

Proposition 2.6. An element w ∈ W is FC if and only if no reduced expression
for w contains

sts · · ·︸ ︷︷ ︸
m(s,t)

as a subword when m(s, t)≥ 3. �

In other words, an element is FC if and only if there is no opportunity to apply
a braid move. For example, we can conclude that the element in Example 2.4
is not FC without actually computing the commutation classes since there is an
opportunity to apply a braid move, which we highlighted in pink.

Stembridge classified the irreducible Coxeter groups that contain only finitely
many fully commutative elements, called the FC-finite Coxeter groups. This paper
is mainly concerned with W (An), which is a finite group, so it has finitely many
FC elements. However, there exist infinite Coxeter groups that contain only finitely
many FC elements. For example, Coxeter groups of type En with n ≥ 9 are infinite,
but they have only finitely many FC elements. It is well known that the number of
FC elements in W (An) is equal to the (n+1)-th Catalan number, where the k-th
Catalan number is given by

Ck =
1

k+1

(2k
k

)
.

Heaps. Each reduced expression is associated with a labeled partially ordered set
called a heap. Heaps provide a visual representation of the reduced expression
while preserving the relations of the generators. We follow the development in
[Ernst 2010; Stembridge 1996].

Let (W, S) be a Coxeter system. Suppose w= sx1sx2 · · · sxk is a reduced expression
for w ∈W, and as in [Stembridge 1996], define a partial ordering ≺ on the indices
{1, . . . , k} by the transitive closure of the relation j≺ i if i < j and sxi and sx j do
not commute. In particular, j≺ i if i < j and sxi = sx j , by transitivity and the fact
that w is reduced. This partial order with i labeled sxi is called the heap of w. Note
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s2

s1 s3

s2
s4

s5 s5

s4s2

s1 s3

s2

Figure 2. Labeled Hasse diagram and lattice point representation
of a heap.

that for simplicity, we are omitting the labels of the underlying poset but retaining
the labels of the corresponding generators.

Example 2.7. Let w= s2 s1s3 s2 s4 s5 be a reduced expression for w ∈W (A5). Since
`(w)= 6, the expression w is indexed by {1, 2, 3, 4, 5, 6}. We see that 4≺ 3 since
3 < 4 and the third and fourth factors (namely, s3 and s2) do not commute. The
labeled Hasse diagram for the heap of w is shown in Figure 2 (left).

Let w be a fixed reduced expression for w ∈ W (An). As in [Billey and Jones
2007; Ernst 2010], we represent a heap for w as a set of lattice points embedded in
{1, . . . , n} ×N. To do so, we assign coordinates (x, y) ∈ {1, . . . , n} ×N to each
entry of the labeled Hasse diagram for the heap of w in such a way that

(1) an entry labeled si in the heap has coordinates (x, y) if and only if x = i ;

(2) an entry with coordinates (x, y) is greater than an entry with coordinates
(x ′, y′) in the heap if and only if y > y′.

It follows from the definition that there is an edge in the Hasse diagram from (x, y)
to (x ′, y′) if and only if x = x ′± 1, y > y′, and there are no entries (x ′′, y′′) such
that x ′′ ∈ {x, x ′} and y′ < y′′ < y. This implies that we can completely reconstruct
the edges of the Hasse diagram and the corresponding heap poset from a lattice
point representation.

Note that our heaps are upside-down versions of the heaps that appear in [Billey
and Jones 2007] and several other papers. That is, in this paper, entries on top of a
heap correspond to generators occurring to the left, as opposed to the right, in the
corresponding reduced expression. One can form similar lattice point representations
for heaps when 0 is a straight line Coxeter graph.

Let w= sx1 · · · sxk be any reduced expression forw∈W (An). We let H(w) denote
a lattice representation of the heap poset in {1, . . . , n}×N described in the paragraph
above. There are many possible coordinate assignments for the entries of H(w), yet
the x-coordinates for each entry will be fixed. If sxi and sx j are adjacent generators
in the Coxeter graph with i < j , then we must place the point labeled by sxi at a level
that is above the level of the point labeled by sx j . In particular, two entries labeled
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by the same generator may only differ by the amount of vertical space between them
while maintaining their relative vertical position to adjacent entries in the heap.

Because generators that are not adjacent in the Coxeter graph commute, points
whose x-coordinates differ by more than 1 can slide past each other or land at the
same level. To visualize the labeled heap poset of a lattice representation we will
enclose each entry of the heap in a block in such a way that if one entry covers
another, the blocks overlap halfway.

It follows from [Stembridge 1996, Proposition 2.2] that heaps are well-defined up
to commutation class. In particular, there is a one-to-one correspondence between
commutation classes and heaps. That is, if w and w′ are two reduced expressions
for w ∈W that are in the same commutation class, then the heaps of w and w′ are
equal. Conversely, if w and w′ belong to different commutation classes, then the
corresponding heaps will be different. In particular, if w is FC, then it has a single
commutation class, and so there is a unique heap associated to w. In this case, if w
is FC, then we may write H(w) to denote the heap of any reduced expression for w.
We will not make a distinction between H(w) and its lattice point representation.

There are potentially many different ways to represent a heap, each differing
by the vertical placement of blocks. For example, we can place blocks in vertical
positions that are as high as possible, as low as possible, or some combination
of high and low. When w is FC, we wish to make a canonical choice for the
representation of H(w) by giving all blocks at the top of the heap the same vertical
position and placing all other blocks as high as possible. Note that our canonical
representation of heaps of FC elements corresponds precisely to the unique heap
factorization of [Viennot 1986, Lemma 2.9] and to the Cartier–Foata normal form
for monomials [Cartier and Foata 1969; Green 2006].

Example 2.8. The canonical lattice point representation of H(w) for the reduced
expression given in Example 2.7 is shown in Figure 2 (right).

Example 2.9. Consider w ∈ W (A5) from Example 2.4. This element has two
commutation classes, and hence two heaps as given in Figure 3, where we have
color-coded in pink the blocks of each heap that correspond to the braid re-
lation s2 s3 s2 = s3 s2 s3. Figure 3 (left) corresponds to the commutation class
{s1s2 s3 s4 s5 s2, s1s2 s3 s4 s2 s5, s1s2 s3 s2 s4 s5}, while Figure 3 (right) corresponds to
the commutation class {s1s3 s2 s3 s4 s5, s3 s1s2 s3 s4 s5}.

Given a heap, we can write a reduced expression for the corresponding group
element by reading off the generators, starting at the top, moving left to right and
then down. The expression we obtain is commutation equivalent to any expression
to which the heap corresponds.

The Temperley–Lieb algebra. Given a Coxeter graph 0, we can form the associa-
tive algebra TL(0), which we call the Temperley–Lieb algebra of type 0 [Graham
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Figure 3. Two different heaps corresponding to the same non-FC element.

1995]. For a complete description of the construction of TL(0), see [Ernst 2010;
Graham 1995; Green 2006]. For our purposes, it suffices to define TL(An) in terms
of generators and relations. We are using [Green 2006, Proposition 2.6] (also see
[Graham 1995, Proposition 9.5]) as our definition.

The Temperley–Lieb algebra of type An , denoted by TL(An), is the unital
Z[δ]-algebra generated by {b1, b2, . . . , bn} with defining relations

(1) b2
i = δbi for all i ;

(2) bi bj = bj bi if |i − j |> 1;

(3) bi bj bi = bi if |i − j | = 1.

Suppose w lies in FC(An) and has reduced expression w = sx1sx2 · · · sxk . Define
the element bw ∈ TL(An) via

bw = bx1bx2 · · · bxk .

Notice that since w is required to be fully commutative, the definition of bw
is independent of choice of reduced expression for w. It is well known (and
follows from [Green 2006, Proposition 2.4]) that the set {bw | w ∈ FC(An)} forms
a Z[δ]-basis for TL(An), called the monomial basis.

3. The Temperley–Lieb diagram algebra

Next, we establish our notation and introduce all of the terminology required to
define an associative diagram algebra that is a faithful representation of TL(An).

Let k be a nonnegative integer. The standard k-box is a rectangle with 2k points,
called nodes, labeled as in Figure 4. We will refer to the top of the rectangle as the
north face and the bottom as the south face.

A concrete pseudo k-diagram is composed of a finite number of disjoint curves
(planar), called edges, embedded in the standard k-box with two restrictions:

(1) Every node of the box is the endpoint of exactly one edge, which meets the
box transversely.

(2) All other edges must be closed (isotopic to circles) and disjoint from the box.
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1 2 k

1′ 2′ k ′

· · ·

· · ·

Figure 4. Standard k-box.

Figure 5. Example of a concrete pseudo 6-diagram together with a nonexample.

Example 3.1. The diagram in Figure 5 (left) is an example of a concrete pseudo
6-diagram, whereas the diagram in Figure 5 (right) does not represent a concrete
pseudo 6-diagram since the diagram contains edges that are not disjoint (i.e., they
intersect), node 4 is the endpoint for more than one edge, nodes 3 and 6′ are not
endpoints for any edge, and the edge leaving node 6 does not have a node as its
second endpoint.

We now define an equivalence relation on the set of concrete pseudo k-diagrams.
Two concrete pseudo k-diagrams are (isotopically) equivalent if one concrete
diagram can be obtained from the other by isotopically deforming the edges such
that any intermediate diagram is also a concrete pseudo k-diagram. Note that an
isotopy of the k-box is a 1-parameter family of homeomorphisms of the k-box to
itself that are stationary on the boundary.

A pseudo k-diagram is defined to be an equivalence class of equivalent concrete
pseudo k-diagrams. We denote the set of pseudo k-diagrams by Tk . Note that we
used the word “pseudo” in our definition to emphasize that we allow loops to appear
in our diagrams.

Remark 3.2. When representing a pseudo k-diagram with a drawing, we pick
an arbitrary concrete representative among a continuum of equivalent choices.
When no confusion can arise, we will not make a distinction between a concrete
pseudo k-diagram and the equivalence class that it represents. We say that two
concrete pseudo k-diagrams are vertically equivalent if they are equivalent in the
above sense by an isotopy that preserves setwise each vertical cross-section of
the k-box.

Example 3.3. The concrete pseudo 5-diagrams in Figure 6 are equivalent since
each diagram can be obtained from the other by isotopically deforming the edges.
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Figure 6. Isotopically equivalent diagrams.

d0 := · · ·

Figure 7. Unique loop-free diagram having only propagating edges.

Let d be a diagram and let e be an edge of d. If e is a closed curve occurring
in d , then we call e a loop. For example, the diagram in Figure 5 (left) has a single
loop. If e joins node i in the north face to node j ′ in the south face, then e is called
a propagating edge from i to j ′. If e is not propagating, loop or otherwise, it will be
called nonpropagating. It is clear that there is a unique loop-free diagram consisting
only of propagating edges. This diagram, denoted by d0, is depicted in Figure 7.

We wish to define an associative algebra that has the pseudo k-diagrams as a
basis. Let R be a commutative ring with 1. The associative algebra Pk over R is
the free R-module having Tk as a basis. We define multiplication (referred to as
diagram concatenation) in Pk by defining multiplication in the case where d and d ′

are basis elements, and then extending bilinearly. If d, d ′ ∈ Tk , the product d ′d is
the element of Tk obtained by placing d ′ on top of d , so that node i ′ of d ′ coincides
with node i of d , and then removing the identified boundary to recover a standard
k-box. If desired, one can then vertically rescale the resulting rectangle.

Example 3.4. Figure 8 depicts the product of two pseudo 5-diagrams in P5.

We now restrict our attention to the base ring Z[δ], which is the ring of poly-
nomials in δ with integer coefficients. We define the Temperley–Lieb diagram
algebra DTL(An) to be the associative Z[δ]-algebra equal to the quotient of Pn+1

determined by the relation depicted in Figure 9.

=

Figure 8. Example of multiplication in P5.
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= δ

Figure 9. Defining relation of DTL(An).

It is well known [Kauffman 1987; 1990] that DTL(An) is the free Z[δ]-module
with basis given by the elements of Tn+1 having no loops. The multiplication is
inherited from the multiplication on Pn+1 except we multiply by a factor of δ for each
resulting loop and then discard the loop. It is easy to see that the identity in DTL(An)

is the diagram d0 given in Figure 7. Technically, the identity diagram is the image
of d0 in the quotient algebra, but there is no danger of identifying the two diagrams.

Example 3.5. Figure 10 depicts the product of three basis diagrams from DTL(A4).

Define the simple diagrams d1, d2, . . . , dn as in Figure 11. Note that the sim-
ple diagrams are elements of the basis for DTL(An). It turns out [Kauffman
1987; 1990] (and follows from Proposition 3.6 below) that the set of loop-free
diagrams of DTL(An) is generated as a unital algebra by the set of simple diagrams
{d1, d2, . . . , dn}. In fact, DTL(An) is often defined to be the unital Z[δ]-algebra
generated by the simple diagrams subject to the relation given in Figure 9.

It is easy to verify that the simple diagrams of DTL(An) satisfy the defining
relations of TL(An). That is, we have

(1) di di = δdi for all i ;

(2) di dj = dj di when |i − j |> 1;

(3) di dj di = di when |i − j | = 1.

For example, Figure 12 illustrates the third relation above for the case j = i + 1.
Indeed, TL(An) and DTL(An) are isomorphic as Z[δ]-algebras (for instance, see
[Kauffman 1990, §3]).

= δ3

Figure 10. Example of multiplication in DTL(A4).
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d1 := · · ·

1 2 n n+1

...

di := · · · · · ·

1 i i+1 n+1

...

dn := · · ·

1 2 n n+1

Figure 11. Simple diagrams.

di di+1di =

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

i i+1 i+2

= · · · · · ·

= di

Figure 12. Special case of one of the relations in DTL(An).

Proposition 3.6. Let θ :TL(An)→DTL(An) be the function determined by bi 7→di .
Then θ is a well-defined Z[δ]-algebra isomorphism that maps the monomial basis
of TL(An) to the set of loop-free diagrams in DTL(An). �
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R R′
R R′

(a) (b) (c)

Figure 13. Multiplication of simple diagrams together with the corre-
sponding simple representation and resulting product. The 1-regions
of the simple representation and product have been shaded.

Letw be an element of FC(An) and define dw to be the image of the monomial bw.
It follows that if w has sx1 · · · sxk as reduced expression, then dw = dx1 · · · dxk . That
is, given a reduced factorization for w ∈ FC(An), we can easily obtain a reduced
factorization of dw in terms of simple diagrams. However, given a loop-free
diagram d , it is more difficult to obtain a factorization. Resolving this difficulty is
the content of Section 4.

Let w = sx1 · · · sxk be a reduced expression for w ∈ FC(An). For each simple
diagram dxi , fix a concrete representation such that the propagating edges are
straight and the pair of nonpropagating edges never double-back on themselves
(i.e., the nonpropagating edges never intersect any vertical line more than once).
Now, consider the concrete diagram that results from concatenating the concrete
simple diagrams dx1, . . . , dxk , rescaling vertically to recover the standard (n+1)-
box, but not deforming any of the nonpropagating edges. Since w is FC and vertical
equivalence respects commutation, given any two reduced expressions for w, the
corresponding concrete diagrams constructed as above will be vertically equivalent
(see Remark 3.2). We define the corresponding vertical equivalence class to be
the simple representation of dw. The simple representation of dw is designed to
replicate the structure of the corresponding heap.

Example 3.7. Let w = s1 s3 s2 s4 s3 be a reduced expression for w ∈ FC(A4). The
factorization for dw determined by w together with its simple representation is
shown in Figure 13(a) and (b), respectively. The resulting product is dw, which is
shown in Figure 13(c). The shaded regions in Figure 13(b) and (c) indicate that the
pair of edges bounding the top and bottom of the region arise from the same factor.
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In light of Proposition 3.6, it follows that if d is a loop-free diagram from
DTL(An), then there exists a unique w ∈ FC(An) such that dw = d . The upshot is
that it makes sense to refer to the simple representation of d .

4. Main results

In this section, we assume that all diagrams are loop-free and that no edge ever
double-backs on itself (i.e., other than vertical propagating edges, edges never
intersect any vertical line more than once). If d is a k-diagram, we section the
corresponding k-box into columns by connecting node i in the north face to node i ′

in the south face. The i-th column Ci lies between nodes i and i+1. The connected
components of the complement of the edges in each column are called regions.
For example, the columns and regions for the diagram given in Figure 14(a) are
depicted in Figure 14(b).

Lemma 4.1. The number of edges within a single column of a diagram is even.

Proof. This is clear for the simple representation of a diagram as each simple
diagram di contributes precisely two edges to the column Ci . Isotopically deforming

R′R

(a) A loop-free diagram d (b) Regions R, R′ are horizontally adjacent

A D

I
GF

C
BE

H

(c) Shaded 1-regions of d (d) Directed graph Gd

s4

s7

s7

s8s6
s5

s3s2s1 s1 s7

s2 s6

s8s3 s5

s7s4

(e) Labeled directed graph GS
d (f) Heap corresponding to GS

d

Figure 14. Shaded 1-regions, directed graph Gd , and labeled
directed graph GS

d for a diagram d together with the lattice point
representation of the corresponding heap.
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edges (while avoiding edges doubling-back on themselves) does not change the
parity of the number of edges within the column. �

Lemma 4.2. The number of regions in each column is odd.

Proof. Since the number of edges within any column is even, there must be an odd
number of regions within each column. �

Note that isotopically deforming the edges of a concrete diagram preserves the
relative adjacency of the regions in each column. We say that regions R and R′

of column C are vertically adjacent if they are adjacent across a common edge.
Within a single column, we will label the first region just below the north face with
a 0. Moving south, the next region will be labeled with a 1 and we continue this
way, alternating labels 0 and 1. We will refer to the labeled regions as 0-regions
and 1-regions, respectively. By Lemma 4.2, it is clear that the southernmost region
in each column is a 0-region. Figure 14(c) depicts a diagram and its 0-regions and
1-regions, where we have shaded the 1-regions.

Observe that if d is a diagram from DTL(An), then each 1-region in column Ci

of the simple representation for d corresponds precisely to the regions bounded
above and below by the pair of edges corresponding to a unique factor di .

Suppose R and R′ are regions of adjacent columns C and C ′, respectively, of
some diagram d. We say that R and R′ are horizontally adjacent if there exist
points p and p′ in R and R′, respectively, such that the line segment joining p
and p′ does not cross any edge of d. Loosely speaking, R and R′ are horizontally
adjacent if they are adjacent across the common vertical boundary of C and C ′.

Since we forbid edges from doubling-back on themselves, horizontal adjacency
of regions is preserved when isotopically deforming the edges of d. This implies
that horizontal adjacency is well-defined.

Figure 14(b) depicts two horizontally adjacent regions, R and R′. However, the
regions labeled R and R′ in the simple representation depicted in Figure 13(b) may
appear at first glance to be horizontally adjacent, but they are not. This is evident
by looking at the corresponding regions R and R′ in Figure 13(c).

If R is a region of column C in diagram d, then the depth of R, depth(R), is
defined to be the number of regions in C strictly between the north face of d and R.
For example, we have depth(R)= 1 and depth(R′)= 2 for the regions R and R′ in
Figure 14(b). Note that for any diagram, the northernmost region in each column
has depth 0. Moreover, every 1-region has an odd depth while every 0-region has
an even depth.

Lemma 4.3. If R and R′ are horizontally adjacent regions of a diagram d, then

(1) |depth(R)− depth(R′)| = 1, and

(2) R is a 1-region if and only if R′ is a 0-region.
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Proof. Induction on depth quickly yields (1), while (2) is an immediate consequence
of (1). �

We say that regions R and R′ of a diagram d are diagonally adjacent if there
exists a region S that is vertically adjacent to R and horizontally adjacent to R′. In
particular, if S lies below R, then we write R→ R′.

Lemma 4.4. If R→ R′ in a diagram d, then R is a 1-region if and only if R′ is a
1-region.

Proof. The result follows immediately from the construction of 0-regions and
1-regions together with Lemma 4.3. �

Example 4.5. In Figure 14(c), we see that

A→ B→ E→ H, A→ C→ F→ I, D→ F→ I, and D→ G→ I.

Remark 4.6. If Ci is not the leftmost or rightmost column, edges bounding
1-regions in column Ci must pass into its adjacent columns unless an edge connects
directly to a node at the top or bottom of Ci . In the leftmost column, C1, no edge
will pass through to the left. Similarly, in the rightmost column, Cn , no edge will
pass through to the right. This implies that if R and R′ are both 1-regions in the same
column Ci with depth(R′)= depth(R)+2 (i.e., R and R′ are consecutive 1-regions
in Ci with R′ below R), then there exist 1-regions T and T ′ in Ci−1 and Ci+1,
respectively, such that R→ T → R′ and R→ T ′→ R′. Loosely speaking, this
determines a local checkerboard pattern of 1-regions, as seen in Figure 14(c).

The checkerboard pattern of 0-regions and 1-regions motivates the following
definition. Let d be a diagram having 1-regions R1, . . . , Rn . Define Gd to be the
directed graph having

(1) vertex set V (Gd) := {R1, . . . , Rn} and

(2) directed edges (Rk, Rl) whenever Rk→ Rl .

Since we require the edges of d to not double-back on themselves, it is clear
that Gd is independent of choice of concrete representation for d; indeed, isotopically
deforming the edges and rescaling the rectangle preserves horizontal and vertical
adjacency and so diagonal adjacency is also preserved. In particular, if w indexes d ,
then we can construct Gd using the simple representation of dw.

Figure 14(d) shows the directed graph Gd for the diagram d given in Figure 14(a).
Observe that directed paths correspond to chains of diagonally adjacent regions.

Next, we will append labels from the generating set of the Coxeter group to the
vertices of Gd . Define the vertex labeling function ν : V (Gd)→ S as follows. If R
is a 1-region that lies in column i , then ν(R)= si . That is, each region is labeled
with the generator of the corresponding column. Now, define GS

d to be the directed
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graph Gd together with the labels on the vertices assigned by ν. Figure 14(e) shows
the labeled directed graph GS

d for the diagram d given in Figure 14(a).
Each labeled directed graph GS

d naturally corresponds to a unique labeled Hasse
diagram of a heap for some element in W (An). It follows from Remark 4.6 and
Proposition 2.6 that this element is FC. Figure 14(f) shows the heap that corresponds
to the diagram d given in Figure 14(a). It remains to show that the heap determined
by GS

d corresponds to the group element that indexes the diagram d .
Since diagonal adjacency is preserved when isotopically deforming the edges

of d , as in the simple representation, a 1-region R in column Ci is bounded above
and below by a pair of edges corresponding to the simple diagram di . This region

s2

s1 s2

s3

s3

s4

s4 s5

s6

(a) (b)

s4

s3 s5

s2 s4

s6

s1 s3

s2

(c) (d)

(e)

Figure 15. Given a diagram d , we can obtain a reduced factorization
by constructing the corresponding labeled directed graph GS

d , which
yields the canonical representation of the heap that indexes d. We
have color-coded the corresponding 1-regions and entries of the heap.
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is labeled si in GS
d . The structure of GS

d determines w ∈ FC(An) satisfying d = dw,
and it follows that GS

d corresponds to H(w). Note that we find w by writing the
elements of S corresponding to the labels of each row of the heap left to right
starting from the top row and working toward the bottom of the heap.

The above discussion together with the preceding lemmas justifies the following
theorem.

Theorem 4.7. If d is a loop-free diagram in TL(An), then d is indexed by the heap
determined by GS

d . �

An immediate consequence of the above theorem is that we nonrecursively obtain
a factorization of a diagram d by reading off from top to bottom and left to right the
entries of the heap determined by GS

d . If we choose the canonical representation
of the heap, then the factorization of d corresponds to the Cartier–Foata normal
form of [Cartier and Foata 1969; Green 2006]. Our construction also yields the
following corollary, which appeared independently as Lemma 3.3 in [Green 1998].

Corollary 4.8. If d is a loop-free diagram in TL(An), then the number of occur-
rences of the simple diagram di in any factorization for d is equal to half the number
of edges passing through the column Ci .

Example 4.9. Consider the diagram d given in Figure 15(a). After forming columns,
we obtain a checkerboard of 0-regions and 1-regions, which yields the labeled
directed graph GS

d depicted in Figure 15(b). Then GS
d determines the canonical

representation of the heap given in Figure 15(c), where each row of the heap has a
unique color. In Figure 15(d), we have color-coded the 1-regions of d to match the
corresponding entries in the heap. By reading off the entries of the heap, we see
that d = dw, where

w = s2 s6 s1s3 s2 s4 s3 s5 s4.

Equivalently, we obtain the factorization

d = d2 d6 d1d3 d2 d4 d3 d5 d4,

which is shown (rotated counterclockwise by a quarter turn in the interest of space)
in Figure 15(e).

5. Closing remarks

If (W, S) is a Coxeter system of type 0, the associated Hecke algebra H(0) is an
algebra with a basis given by {Tw | w ∈W } and relations that deform the relations
of W by a parameter q. As mentioned in Section 1, the ordinary Temperley–
Lieb algebra TL(An) is a quotient of the corresponding Hecke algebra H(An).
This realization of the Temperley–Lieb algebra as a Hecke algebra quotient was
generalized by Graham [1995] to the case of an arbitrary Coxeter system. In
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general, the Temperley–Lieb algebra TL(0) is a quotient of H(0) having several
bases indexed by the FC elements of W [Graham 1995, Theorem 6.2].

When a faithful diagrammatic representation of TL(0) is known to exist, multi-
plication in the diagram algebra is given by applying local combinatorial rules to
the diagrams. In each case, one can choose a basis for the diagram algebra so that
each basis diagram is indexed by an FC element, where the diagrams indexed by
the distinguished generators of the Coxeter group form a set of “simple diagrams”
that generate the algebra. Every factorization of a basis diagram in terms of simple
diagrams corresponds precisely to a factorization of the FC element that indexes
the diagram.

Given a reduced expression for an FC element, obtaining the corresponding
diagram is straightforward. All one needs to do is concatenate the sequence of simple
diagrams determined by the reduced expression and then apply the appropriate local
combinatorial rules in the diagram algebra. However, it is another matter to reverse
this process. That is, given a basis diagram, can one obtain a factorization in terms
of simple diagrams, or equivalently obtain a reduced expression for the FC element
that indexes the diagram? Theorem 4.7 answers this question in the affirmative in the
case of type An . What happens with the other types where faithful diagrammatic rep-
resentations are known to exist? For example, can we find factorization algorithms
for the Temperley–Lieb diagram algebras of types Bn , Dn , En , Ãn , and C̃n?
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