indolve

a journal of mathematics

Prime labelings of generalized Petersen graphs
Steven A. Schluchter, Justin Z. Schroeder, Kathryn Cokus, Ryan Ellingson, Hayley Harris, Ethan Rarity and Thomas Wilson

Prime labelings of generalized Petersen graphs

Steven A. Schluchter, Justin Z. Schroeder, Kathryn Cokus, Ryan Ellingson, Hayley Harris, Ethan Rarity and Thomas Wilson
(Communicated by Joseph A. Gallian)

Abstract

A graph G is called prime if the vertices of G can be assigned distinct labels $1,2, \ldots,|V(G)|$ such that the labels on any two adjacent vertices are relatively prime. By showing that for every even $n \leq 2.468 \times 10^{9}$ there exists $s \in[1, n-1]$ such that both $n+s$ and $2 n+s$ are prime, we prove the generalized Peterson graph $P(n, 1)$ is prime for all even $n \in\left[4,2.468 \times 10^{9}\right]$. Moreover, for a fixed n we describe a method for labeling $P(n, k)$ that is a prime labeling for multiple values of k. Using this method, we prove $P(n, k)$ is prime for all even $n \leq 50$ and all odd $k \in[1, n / 2)$.

1. Introduction

For a simple graph G with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and edge set E, a prime labeling of G is a bijection $f: V \rightarrow\{1,2, \ldots, m\}$ such that $f\left(v_{i}\right)$ and $f\left(v_{j}\right)$ are relatively prime for all $\left\{v_{i}, v_{j}\right\} \in E$. A graph is called prime if it admits a prime labeling. This concept was proposed by Entringer, who conjectured that all trees are prime, and the first appearance of this problem in print was due to Tout, Dabboucy, and Howalla [Tout et al. 1982]. Since then, many families of graphs have been shown to be prime, including all trees on $m \leq 50$ vertices [Pikhurko 2002; 2007] and the grid graph $P_{m} \times P_{n}$ when $m \leq n$ and n is prime [Sundaram et al. 2006]. More recently, Kh. Md. Mominul Haque, Lin Xiaohui, Yang Yuansheng and Zhao Pingzhong have shown that the generalized Petersen graph $P(n, k)$ is prime for all even $n \leq 2500$ when $k=1$ [Haque et al. 2010] and for all even $n \leq 100$ when $k=3$ [Haque et al. 2011]. Both Diefenderfer et al. [2015] and Prajapati and Gajjar [2014] have shown that $P(n, 1)$ is prime for an infinite family of values of n, the former for $n-1$ prime and the latter for $n+1$ prime. Their results are presented as labelings of the prism graph $C_{n} \times P_{2}$, which is isomorphic to $P(n, 1)$. For a more thorough treatment of graph labeling, including prime labeling, see [Gallian 2015].

MSC2010: 05C78.

Keywords: graph labeling, generalized Petersen graph, prime graph.

Figure 1. The graph $P(8,3)$ and a prime labeling of $P(8,3)$.

We follow the notation of [Haque et al. 2010; 2011]. Since all edges under consideration are undirected, we will write the edge $\{v, w\}$ as $v w$ or $w v$. For integers $n \geq 3$ and $k \in[1, n / 2)$, the generalized Petersen graph $P(n, k)$ is defined to be the graph with vertex set $V=\left\{v_{i}, u_{i}: i \in[0, n-1]\right\}$ and edge set $E=\left\{v_{i} v_{i+1}, v_{i} u_{i}, u_{i} u_{i+k}: i \in[0, n-1]\right\}$, where all subscripts are reduced modulo n. We will refer to the vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ as the v-vertices of $P(n, k)$ and the vertices $u_{0}, u_{1}, \ldots, u_{n-1}$ as the u-vertices of $P(n, k)$. An unlabeled $P(8,3)$ and a prime labeling of $P(8,3)$ are shown in Figure 1.

An independent set in a graph G is a subset of the vertices of G, no two of which are adjacent. Let $\alpha(G)$ denote the independence number of G, i.e., the size of a maximum independent set in G. Given a prime labeling of a graph G with m vertices, the vertices with even labels necessarily form an independent set; thus, $\alpha(G) \geq\lfloor m / 2\rfloor$. It was shown in [Fox et al. 2012] that $\alpha(P(n, k))<n$ if n is odd or k is even, which leads immediately to the following result (an alternate proof is given in [Prajapati and Gajjar 2015]).

Theorem 1.1. If n is odd or k is even, then $P(n, k)$ is not prime.
In this paper, we build on the work appearing in [Diefenderfer et al. 2015; Haque et al. 2010; 2011; Prajapati and Gajjar 2014] by considering prime labelings of $P(n, 1)$ for $n>2500$ and $P(n, k)$ for small n and $k>3$. In Section 2, we conjecture that for every even n there exists $s \in[1, n-1]$ such that both $n+s$ and $2 n+s$ are prime. In Section 3, we demonstrate a labeling scheme that relies on this conjecture and use computer-generated results to establish that $P(n, 1)$ is prime for all even $n \in\left[4,2.468 \times 10^{9}\right]$, which improves considerably upon the upper bound given in [Haque et al. 2010]. In Section 4, we fix $n \leq 50$ and describe a method that produces a labeling of $P(n, k)$ that is prime for multiple values of k; with some minor ad hoc switching, this labeling method is used to show $P(n, k)$ is prime for all even $n \in[4,50]$ and all odd $k \in[1, n / 2)$. Together the results of Sections 3 and 4 provide evidence that $P(n, k)$ is prime precisely when n is even and k is odd (as
conjectured in [Prajapati and Gajjar 2015]). Since this is a necessary and sufficient condition for $P(n, k)$ to be bipartite, we reformulate the conjecture as follows.

Conjecture 1.2. $P(n, k)$ is prime if and only if it is bipartite.
The property of being bipartite is, in general, neither a necessary nor a sufficient condition for a graph to be prime. The cycle C_{n} is prime but not bipartite for odd $n \geq 3$, and the complete bipartite graph $K_{n, n}$ is bipartite but not prime for all $n \geq 3$.

For positive integers a and b, we let $\operatorname{gcd}(a, b)$ denote the greatest common divisor of a and b. Then a and b are relatively prime if and only if $\operatorname{gcd}(a, b)=1$. Note that if $d \mid a$ and $d \mid b$, then $d \mid(a+b)$ and $d \mid(a-b)$. From this we make the following observation.

Lemma 1.3. Let a and b be positive integers. Then $\operatorname{gcd}(a, b)=1$ if any of the following hold:
(1) $a=1$;
(2) $b=a+1$;
(3) $a+b$ is prime;
(4) $a-b=p$ is prime and a and b are not multiples of p;
(5) $a=n+1, b=2 n$ for some even n.

2. On the distribution of prime numbers

In a letter to Euler in 1742, Goldbach conjectured that every integer greater than 2 could be written as the sum of three primes (note that he was including 1 as a prime). Euler then reformulated this conjecture in the form in which it is now famous; see [Dickson 2005, pp. 421-424].

Goldbach conjecture. Every even number greater than 2 can be written as the sum of two primes.

A closely related conjecture, whose first appearance is due to Maillet [1905], states that every even number can be written as the difference of two primes; both this and the Goldbach conjecture remain unsolved. For more information on these conjectures, see [Dickson 2005].

We are going to strengthen Maillet's conjecture by requiring that the two primes be taken from specific intervals. Namely, we conjecture that every even integer n can be written as the difference of primes p_{1} and p_{2}, where $n<p_{1}<2 n$ and $2 n<p_{2}<3 n$. We reformulate this as follows.

Conjecture 2.1. For every even integer $n \geq 2$, there exists $s \in[1, n-1]$ such that $n+s$ and $2 n+s$ are prime.

n	s	S_{n}									
2	1	1	52	9	3	102	7	10	152	27	6
4	3	1	54	5	5	104	3	5	154	3	7
6	1	2	56	15	4	106	21	5	156	1	16
8	3	1	58	15	3	108	23	5	158	15	7
10	3	2	60	7	8	110	3	5	160	33	8
12	5	2	62	27	2	112	15	6	162	29	11
14	3	2	64	3	5	114	13	11	164	3	6
16	15	1	66	5	9	116	51	3	166	15	6
18	1	3	68	3	5	118	21	6	168	11	15
20	3	1	70	9	5	120	11	15	170	9	9
22	9	2	72	7	6	122	27	3	172	9	8
24	5	4	74	9	4	124	3	6	174	5	12
26	15	2	76	21	3	126	5	12	176	15	8
28	3	2	78	1	7	128	21	4	178	3	8
30	1	6	80	3	5	130	9	6	180	13	13
32	9	2	82	15	4	132	5	11	182	9	9
34	3	2	84	5	10	134	3	8	184	15	5
36	1	7	86	21	3	136	21	4	186	7	14
38	3	3	88	15	5	138	1	11	188	3	7
40	3	4	90	11	11	140	27	9	190	3	12
42	5	5	92	9	6	142	9	4	192	5	15
44	9	3	94	3	5	144	5	10	194	33	8
46	15	2	96	1	9	146	21	6	196	27	7
48	5	6	98	3	5	148	15	6	198	1	16
50	3	3	100	27	7	150	7	16	200	33	5

Table 1. The minimum value of s such that $n+s$ and $2 n+s$ are prime for even $n \in[2,200]$. Additionally, the number of good s-values S_{n} is given for each even $n \in[2,200]$.

For a fixed n, call s good if both $n+s$ and $2 n+s$ are prime. Table 1 lists good s-values for even $n \in[2,200]$, and we have obtained good s-values for all even $n \in\left[2,2.468 \times 10^{9}\right]$ by computer.

Some interesting patterns also occur when we consider S_{n}, the number of good s-values for each n. The first 100 values of S_{n} are shown in Table 1. Note that $S_{n}=1$ for half of the first 10 values of n, but then $S_{n}>1$ for all n up to at least 300 million. Moreover, the graph of S_{n} appears to almost always have a peak at each multiple of 6 and higher peaks at multiples of 30 , indicating a strong correlation between S_{n} and the number of distinct prime factors of n. The portion of this graph from $n=190,100$ to $n=190,200$, with straight line segments joining discrete data points, appears in Figure 2 (note that $S_{190,190}$ is a peak that does not occur at a multiple of 6).

Figure 2. The graph of S_{n} from $n=190,100$ to $n=190,200$.

3. Prime labelings of $\boldsymbol{P}(\boldsymbol{n}, 1)$

The following labeling scheme for $P(n, 1)$ is an expansion and generalization of one employed in [Diefenderfer et al. 2015; Haque et al. 2010; Prajapati and Gajjar 2014].

For any value of k, we know v-vertices with consecutive indices are adjacent. Thus, if we set $f\left(v_{i}\right)=i+1$ for all $i \in[0, n-1]$, adjacent v-vertices will either have consecutive integer labels or be labeled with 1 and n; these labels will be relatively prime by Lemma 1.3(2) or (1), respectively. Without loss of generality, we refer to this as a clockwise labeling of the v-vertices (see Figure 3).

If $k=1$, then u-vertices with consecutive indices are also adjacent, so we label the u-vertices consecutively with $n+1, n+2, \ldots, 2 n$. Now adjacent u-vertices

Figure 3. Prime labelings of $P(10,1)$ using both a clockwise labeling and a counterclockwise labeling for the u-vertices. Note that the difference of inner and outer labels in the clockwise labeling is always 1 or 11 , and the sum of inner and outer labels in the counterclockwise labeling is always 13 or 23 .
will either have consecutive integer labels or be labeled with $n+1$ and $2 n$; since n is even, these labels will be relatively prime by Lemma 1.3(2) or (5), respectively.

If we apply a clockwise labeling to the u-vertices as well, then labels on each adjacent $v u$-pair will have a constant difference d (modulo n). By varying our starting point (i.e., where we place the label $n+1$), we can obtain different values of d. The prime labeling of $P(10,1)$ in Figure 3 employs a clockwise labeling on the u-vertices starting at u_{9}. For each i the labels on v_{i} and u_{i} differ by 1 or $11(d \equiv 1(\bmod 10))$, and since $d=1$ implies consecutive integers and $d=11$ is prime, these labels are relatively prime by Lemma 1.3(2) or (4), respectively.

If, instead, we apply a counterclockwise labeling to the u-vertices, then labels on each adjacent $v u$-pair will have a constant $\operatorname{sum} s($ modulo $n)$. Once again, varying the starting point will lead to different values of s. The prime labeling of $P(10,1)$ in Figure 3 employs a counterclockwise labeling on the u-vertices starting at u_{1}. For each i the labels on v_{i} and u_{i} sum to 13 or $23(s \equiv 3(\bmod 10))$, and since both 13 and 23 are prime, these labels are relatively prime by Lemma 1.3(3).

The value of s in the preceding paragraph corresponds to a good s-value from Conjecture 2.1. Let $\mathcal{N}_{s}=\{n: n+s$ is prime $\}$ and $\mathcal{N}_{s}^{*}=\{n: 2 n+s$ is prime $\}$.
Theorem 3.1 [Diefenderfer et al. 2015, Theorem 4.1]. If $n \in \mathcal{N}_{-1}$, then $P(n, 1)$ is prime.

Theorem 3.2 [Prajapati and Gajjar 2014, Theorem 2.10]. If $n \in \mathcal{N}_{1}$, then $P(n, 1)$ is prime.

Theorem 3.1 can be obtained by first applying a clockwise labeling to the v-vertices and a clockwise labeling to the u-vertices starting at u_{1}. Then, switching the labels 1 and $n-1$ on the vertices v_{0} and v_{n-2} results in a prime labeling. Note that in [Diefenderfer et al. 2015] the labels n and $2 n$ were also switched, but this is not necessary to obtain a prime labeling. Theorem 3.2 was obtained by applying a clockwise labeling to the v-vertices and a clockwise labeling to the u-vertices starting at u_{n-1}.

The following result utilizes a counterclockwise labeling on the u-vertices.
Theorem 3.3. Let $n \geq 4$ be even, and suppose $n \in \mathcal{N}_{1}^{*}$ or $n \in \mathcal{N}_{s} \cap \mathcal{N}_{s}^{*}$ for some $s \in[3, n-1]$. Then $P(n, 1)$ is prime.

Proof. Throughout this proof, we apply a clockwise labeling to the v-vertices starting at v_{0} (given by $f\left(v_{i}\right)=i+1$ for all $i \in[0, n-1]$) and a counterclockwise labeling to the u-vertices starting at some u_{j}. We have already shown that adjacent v-vertices and adjacent u-vertices will have relatively prime labels, so it remains to consider the labels on v_{i} and u_{i} for each i.

If $n \in \mathcal{N}_{1}^{*}$, then apply a counterclockwise labeling to the u-vertices starting at u_{n-1}. Formally, let $f\left(u_{i}\right)=2 n-i$ for all $i \in[0, n-1]$. Then the sum of labels
on the edge $v_{i} u_{i}$ is $i+1+2 n-i=2 n+1$ for all $i \in[0, n-1]$. Since $2 n+1$ is prime, these labels are relatively prime by Lemma 1.3(3).

If $n \in \mathcal{N}_{s} \cap \mathcal{N}_{s}^{*}$ for some $s \in[3, n-1]$, then apply a counterclockwise labeling to the u-vertices starting at u_{s-2}. Formally, let

$$
f\left(u_{i}\right)= \begin{cases}n+s-i-1 & \text { if } i \in[0, s-2] \\ 2 n+s-i-1 & \text { if } i \in[s-1, n-1]\end{cases}
$$

Then the sum of labels on the edge $v_{i} u_{i}$ is either $i+1+n+s-i-1=n+s$ (if $i \in[0, s-2]$) or $i+1+2 n+s-i-1=2 n+s$ (if $i \in[s-1, n-1]$). Since both $n+s$ and $2 n+s$ are prime, these labels are relatively prime by Lemma 1.3(3).

For an example of the counterclockwise labeling used in Theorem 3.3, see Figure 3. Since $n=10 \in \mathcal{N}_{3} \cap \mathcal{N}_{3}^{*}$, we apply a counterclockwise labeling to the u-vertices starting at u_{1}. The sum of labels on the edge $v_{i} u_{i}$ is $n+s=13$ for $i=0,1$ and $2 n+s=23$ for $i \in[2,9]$.

We have verified Conjecture 2.1 for $n \in\left[4,2.468 \times 10^{9}\right]$ by computer, and so we have the following result, which further supports the conjecture made in [Haque et al. 2010] that $P(n, 1)$ is prime for all even $n \geq 4$.
Corollary 3.4. $P(n, 1)$ is prime for all even $n \in\left[4,2.468 \times 10^{9}\right]$.
In addition to this bound, note that $\mathcal{N}_{-1} \cup \mathcal{N}_{1}$ yields an infinite family of generalized Petersen graphs $P(n, 1)$ that are prime.

4. Prime labelings of $P(n, k)$ for even $n \leq 50$ and odd $k>1$

Here we will give an example of how we produce a labeling of $P(n, k)$ that is a prime labeling for multiple values of $k>1$. Specifically, we will describe a method of labeling $P(18, k)$ that is prime for $k \in\{3,5\}$ and show that swapping just two labels also produces a prime labeling of $P(18,7)$. The tables at the end of this section contain prime labelings of $P(n, k)$ for all even $n \leq 50$ and all odd $k \in[5, n / 2)$ obtained using slight variations on the method for $P(18, k)$ (the case $k=3$ is handled in [Haque et al. 2011]).

If $k>1$, then u-vertices with consecutive indices are no longer adjacent, so we abandon the clockwise and counterclockwise labeling schemes altogether. Instead, we seek to harness the structure of a bipartition of the vertices of $P(n, k)$. Let $A=\left\{u_{0}, v_{1}, u_{2}, v_{3}, \ldots, u_{n-2}, v_{n-1}\right\}$ and $B=\left\{v_{0}, u_{1}, v_{2}, u_{3}, \ldots, v_{n-2}, u_{n-1}\right\}$ denote the blocks of a bipartition of the vertices of $P(n, k)$; in Figure 4, the top row of vertices forms A while the bottom row forms B. We will place the odd labels on A and the even labels on B in such a way that the resulting labeling is prime for several different values of k.

We begin by placing the even multiples of 3 from left to right in ascending order on the vertices in B with the lowest index (whether v-vertices or u-vertices). We

Figure 4. The graph $P(18, k)$ (edges suppressed) labeled with the multiples of 3 .
will place the odd multiples of 3 only on v-vertices in A that are not adjacent to any vertex in B labeled with a multiple of 3 . However, a simple counting argument shows there will always be one odd multiple of 3 that cannot be placed on a v-vertex; we assume this label is 3 and place the remaining odd multiples of 3 from left to right in ascending order based on the highest prime factor of the label (in the case of a tie, we simply place the smallest integer first - thus 15 is placed before 45 , for example). To make this a prime labeling for small values of k, we place 3 on the u-vertex in A whose index is the furthest from the index of any u-vertex in B labeled with a multiple of 3. This first step for $P(18, k)$ is shown in Figure 4.

We continue in a likewise manner for the multiples of 5 and 7, placing the even multiples on the vertices in B with the lowest index and the odd multiples on the available v-vertices in A. If $n \geq 18$, then 35 - the only odd multiple of both 5 and 7 -is placed on v_{n-1}. Placing these labels may yield adjacent v-vertices that share 5 or 7 as divisors; to correct this, we rearrange the even multiples of 3 . In the partial labeling of $P(18, k)$ shown in Figure 5, the labels 25 and 30 on the edge $v_{3} v_{4}$ have a conflict which is fixed in Figure 6 by swapping the labels on v_{4} and u_{5}. It is also possible for larger values of n to have some multiples of 5 or 7 that do not fit on v-vertices; in that case, some additional ad hoc label switching is required.

The remaining even labels with an odd prime factor are placed on the unused vertices in B from left to right in ascending order based on smallest odd prime factor. If there is only one remaining label that is an even multiple of some prime p,

Figure 5. The graph $P(18, k)$ (edges suppressed) labeled with the multiples of 3,5 , and 7 . Note that the labels 25 and 30 on the edge $v_{3} v_{4}$ have a conflict, which is addressed in Figure 6.

Figure 6. The graph $P(18, k)$ (edges suppressed) labeled with all available even labels and the odd multiples of 3,5 , and 7 . Note that the labels on v_{4} and u_{5} have been switched to fix the conflict on the edge $v_{3} v_{4}$.

Figure 7. A prime labeling of $P(18, k)$ (edges suppressed) for $k=3$ or 5 . For a prime labeling of $P(18,7)$, swap the labels on u_{6} and u_{12}.
then it is placed on the next available u-vertex. Finally, the multiples of 2 are placed on the unused B vertices, and any necessary label switching from earlier steps is completed. The partial labeling that results for $P(18, k)$ is shown in Figure 6.

Since $2 n<11^{2}$, the only unused odd multiple of a prime $p>7$ is p itself; thus, the only odd labels remaining are 1 and the primes greater than 7 and less than $2 n$. Each odd prime p less than n is placed on the u-vertex in A whose index is as close as possible to the indices of the u-vertices in B labeled with multiples of p. The remaining labels (1 and the primes greater than n) can be placed arbitrarily on the unlabeled vertices in A. For some n, additional ad hoc label switching may be required. However, for our example $n=18$, the resulting labeling is prime for $k=3$ and $k=5$ (see Figure 7). To obtain a prime labeling for $k=7$, simply swap the labels on u_{6} and u_{12}. For the sake of comparison, the prime labeling of $P(18,5)$ in Figure 7 is also given in Table 2.

The following result covers the aforementioned ad hoc switching and establishes that, for $n \in[4,50]$, we have $P(n, k)$ prime precisely when n is even and k is odd (recall from Theorem 1.1 that $P(n, k)$ is not prime if n is odd or k is even).
Theorem 4.1. $P(n, k)$ is prime for all even $n \in[4,50]$ and all odd $k \in[1, n / 2)$.
Proof. The case $k=1$ was covered in [Haque et al. 2010] and $k=3$ in [Haque et al. 2011]. Tables 2 and 3 provide a prime labeling of $P(n, k)$ for every even

Table 2. A prime labeling of $P(n, 5)$ for even $n \in[12,22]$. A prime labeling of $P(n, k)$ for even $n \in[16,22]$ and odd $k \in(n / 3, n / 2)$ can be obtained by swapping the starred labels within a column.
$n \in[12,42]$ and every odd $k \in[5, n / 3$). If $k>n / 3$ is odd (note that n is even, so $n / 3$ is also even), then the u-vertex labeled with 3 is adjacent to another u-vertex labeled with a multiple of 3 in the given labeling. Swapping the starred labels in the prime labeling of $P(n, 5)$ yields a prime labeling of $P(n, k)$ for even $n \in[16,42]$ and every odd $k \in(n / 3, n / 2)$.

Prime labelings of $P(n, k)$ for even $n \in[44,50]$ and all odd $k \in[5, n / 2)$ are given in Tables 4-7. To check these tables, note that for any value of k the labels on all $v_{i} v_{i+1}$ edges are given by adjacent vertical pairs in the column labeled v_{i} and the labels on all $v_{i} u_{i}$ edges are given by adjacent horizontal pairs. The labels on all $u_{i} u_{i+k}$ edges are given by vertical pairs at a distance of k in the column labeled u_{i}.

Remark. If n is even one can expand the definition of generalized Petersen graphs to include $P(n, n / 2)$. The result is a multigraph with two edges joining u_{i} and $u_{i+n / 2}$ for all $i \in[0, n / 2-1]$; for prime labeling purposes, these parallel edges can

$\begin{aligned} & P(22, k), \\ & k \in[5,7] \end{aligned}$	$\begin{aligned} & P(24, k) \\ & k \in[5,7] \end{aligned}$	$\begin{aligned} & P(26, k), \\ & k \in[5,7] \end{aligned}$	$\begin{aligned} & P(28, k), \\ & k \in[5,9] \end{aligned}$	$\begin{aligned} & P(30, k), \\ & k \in[5,9] \end{aligned}$	$\begin{aligned} & P(32, k), \\ & k \in[5,9] \end{aligned}$
$i v_{i} u_{i}$	$v_{i} u_{i}$	$\begin{array}{lll}i & v_{i} & u_{i}\end{array}$	$\begin{array}{lll}i & v_{i} & u_{i}\end{array}$	$\begin{array}{lll}i & v_{i} & u_{i}\end{array}$	${ }_{i} v_{i} \quad u_{i}$
$\begin{array}{lll}0 & 6 & 1\end{array}$	$\begin{array}{llll}0 & 42 & 1\end{array}$	$\begin{array}{lll}0 & 6 & 1\end{array}$			
$\begin{array}{llll}1 & 5 & 12\end{array}$	$1 \begin{array}{lll}1 & 5 & 12\end{array}$				
$\begin{array}{lll}2 & 18 & 23\end{array}$	$\begin{array}{llll}2 & 18 & 29\end{array}$	$\begin{array}{llll}2 & 18 & 29\end{array}$	$\begin{array}{llll}2 & 18 & 29\end{array}$	$\begin{array}{llll}2 & 18 & 31\end{array}$	$\begin{array}{llll}2 & 18 & 37\end{array}$
$\begin{array}{llll}3 & 25 & 24\end{array}$	$\begin{array}{llll}3 & 25 & 24\end{array}$	$\begin{array}{llll}3 & 25 & 42\end{array}$	$\begin{array}{llll}3 & 25 & 42\end{array}$	$\begin{array}{llll}3 & 25 & 42\end{array}$	$\begin{array}{llll}3 & 25 & 24\end{array}$
$430 \quad 29$	$\begin{array}{llll}4 & 48 & 31\end{array}$	$\begin{array}{llll}4 & 48 & 31\end{array}$	$\begin{array}{llll}4 & 54 & 31\end{array}$	$\begin{array}{llll}4 & 54 & 37\end{array}$	44241
$\begin{array}{lll}5 & 7 & 36\end{array}$	$\begin{array}{llll}5 & 35 & 36\end{array}$	$\begin{array}{llll}5 & 7 & 36\end{array}$	$\begin{array}{llll}5 & 55 & 36\end{array}$	$\begin{array}{llll}5 & 55 & 36\end{array}$	$\begin{array}{llll}5 & 55 & 36\end{array}$
$\begin{array}{llll}6 & 42 & 31\end{array}$	$\begin{array}{llll}6 & 6 & 37\end{array}$	$\begin{array}{lll}6 & 24 & 37\end{array}$	$\begin{array}{llll}6 & 24 & 37\end{array}$	$\begin{array}{llll}6 & 24 & 41\end{array}$	$\begin{array}{llll}6 & 48 & 43\end{array}$
$\begin{array}{llll}7 & 37 & 10\end{array}$	$7 \quad 730$	$7 \quad 4930$	$\begin{array}{llll}7 & 7 & 48\end{array}$	$\begin{array}{lll}7 & 7 & 48\end{array}$	$7 \quad 4930$
8 20 41*	810 41*	810 41*	$8 \quad 3041$	$8 \quad 30 \quad 43$	$8 \quad 5447$
$9 \quad 9 \quad 40$	$\begin{array}{llll}9 & 9 & 20\end{array}$	$\begin{array}{llll}9 & 9 & 20\end{array}$	$\begin{array}{llll}9 & 49 & 10\end{array}$	94960	9760
$\begin{array}{lll}10 & 14 & 43\end{array}$	$10 \quad 4043$	$10 \quad 4043$	$1020 \mathbf{4 3}^{*}$	$\begin{array}{llll}10 & 10 & 47\end{array}$	$1010 \mathbf{5 3}^{*}$
$\begin{array}{lll}11 & 27 & 28\end{array}$	$\begin{array}{lll}11 & 27 & 14\end{array}$	$\begin{array}{llll}11 & 27 & 50\end{array}$	$11 \quad 940$	$\begin{array}{llll}11 & 9 & 20\end{array}$	$11 \quad 920$
$\begin{array}{lll}12 & 26 & 11\end{array}$	$\begin{array}{lll}12 & 28 & 11\end{array}$	$\begin{array}{llll}12 & 14 & 47\end{array}$	$12 \quad 5047$	$\begin{array}{llll}12 & 40 & 53\end{array}$	$12 \quad 4059$
$\begin{array}{llll}13 & 15 & 44\end{array}$	$\begin{array}{llll}13 & 15 & 22\end{array}$	$\begin{array}{llll}13 & 15 & 28\end{array}$	$\begin{array}{lll}13 & 27 & 14\end{array}$	$\begin{array}{llll}13 & 27 & 50\end{array}$	$\begin{array}{lll}13 & 27 & 50\end{array}$
$14 \begin{array}{ll}14 & 22\end{array}$	$\begin{array}{lll}14 & 44 & 13\end{array}$	$1 \begin{array}{lll}14 & 26 & 11\end{array}$	$\begin{array}{lll}14 & 28 & 53\end{array}$	$\begin{array}{llll}14 & 14 & 59\end{array}$	$\begin{array}{lll}14 & 14 & 61\end{array}$
$\begin{array}{lll}15 & 21 & 2\end{array}$	$15 \quad 45 \quad 26$	$15 \quad 4544$	$\begin{array}{lll}15 & 15 & 56\end{array}$	$\begin{array}{llll}15 & 15 & 28\end{array}$	$\begin{array}{lll}15 & 15 & 28\end{array}$
$\begin{array}{lll}16 & 34 & 13\end{array}$	$\begin{array}{lll}16 & 2 & 3^{*}\end{array}$	$\begin{array}{lll}16 & 22 & 3\end{array}$	$16 \quad 2611$	$\begin{array}{llll}16 & 56 & 11\end{array}$	$\begin{array}{lll}16 & 56 & 11\end{array}$
$\begin{array}{llll}17 & 33 & 4\end{array}$	$\begin{array}{lll}17 & 21 & 34\end{array}$	$\begin{array}{llll}17 & 21 & 52\end{array}$	$17 \quad 4544$	$\begin{array}{lll}17 & 45 & 22\end{array}$	$\begin{array}{llll}17 & 45 & 22\end{array}$
$\begin{array}{llll}18 & 38 & 17\end{array}$	$\begin{array}{lll}18 & 4 & 17\end{array}$	$\begin{array}{lll}18 & 2 & 13\end{array}$	$18 \quad 223^{*}$	$\begin{array}{llll}18 & 44 & 13\end{array}$	$\begin{array}{lll}18 & 44 & 13\end{array}$
19398	$\begin{array}{llll}19 & 33 & 38\end{array}$	$\begin{array}{llll}19 & 33 & 34\end{array}$	$19 \quad 2152$	$\begin{array}{llll}19 & 21 & 26\end{array}$	$\begin{array}{lll}19 & 21 & 26\end{array}$
$\begin{array}{llll}20 & 16 & 19\end{array}$	$\begin{array}{llll}20 & 8 & 19\end{array}$	$\begin{array}{llll}20 & 4 & 17\end{array}$	$\begin{array}{llll}20 & 2 & 13\end{array}$	$\begin{array}{llll}20 & 52 & 3^{*}\end{array}$	$\begin{array}{llll}20 & 52 & 17\end{array}$
$\begin{array}{llll}21 & 35 & 32\end{array}$	213946	$\begin{array}{llll}21 & 39 & 38\end{array}$	$\begin{array}{llll}21 & 33 & 34\end{array}$	$\begin{array}{llll}21 & 33 & 34\end{array}$	$21 \quad 63 \quad 34$
-	$\begin{array}{llll}22 & 16 & 23\end{array}$	$\begin{array}{llll}22 & 8 & 19\end{array}$	$\begin{array}{llll}22 & 4 & 17\end{array}$	$\begin{array}{llll}22 & 2 & 17\end{array}$	22.23^{*}
	$\begin{array}{llll}23 & 47 & 32\end{array}$	$\begin{array}{llll}23 & 51 & 46\end{array}$	$\begin{array}{llll}23 & 39 & 38\end{array}$	$\begin{array}{llll}23 & 39 & 38\end{array}$	$\begin{array}{llll}23 & 33 & 38\end{array}$
		$\begin{array}{llll}24 & 16 & 23\end{array}$	$\begin{array}{llll}24 & 8 & 19\end{array}$	$\begin{array}{llll}24 & 4 & 19\end{array}$	$\begin{array}{llll}24 & 4 & 19\end{array}$
		$\begin{array}{llll}25 & 35 & 32\end{array}$	$\begin{array}{llll}25 & 51 & 46\end{array}$	$25 \quad 5146$	$25 \quad 3946$
			$\begin{array}{llll}26 & 16 & 23\end{array}$	$\begin{array}{llll}26 & 8 & 23\end{array}$	$\begin{array}{llll}26 & 8 & 23\end{array}$
			$\begin{array}{llll}27 & 35 & 32\end{array}$	$\begin{array}{llll}27 & 57 & 58\end{array}$	$\begin{array}{llll}27 & 51 & 58\end{array}$
				$\begin{array}{llll}28 & 16 & 29\end{array}$	$\begin{array}{llll}28 & 16 & 29\end{array}$
				$29 \quad 35 \quad 32$	$\begin{array}{llll}29 & 57 & 62\end{array}$
					$\begin{array}{llll}30 & 32 & 31\end{array}$
					$31 \quad 35 \quad 64$

Table 3. A prime labeling of $P(n, k)$ for even $n \in[24,42]$ and odd $k \in[5, n / 3)$. A prime labeling of $P(n, k)$ for even $n \in[24,42]$ and odd $k \in(n / 3, n / 2)$ can be obtained by swapping the starred labels within a column.
(Continued on next page.)

$\begin{gathered} P(34, k), \\ k \in[5,11] \end{gathered}$			$\begin{gathered} P(36, k), \\ k \in[5,11] \end{gathered}$			$\begin{gathered} P(38, k), \\ k \in[5,11] \end{gathered}$			$\begin{gathered} P(40, k), \\ k \in[5,13] \end{gathered}$			$\begin{gathered} P(42, k), \\ k \in[5,13] \end{gathered}$		
i	v_{i}			v_{i}			v_{i}							
0	6			6			6							
	5	12		5			5	12						12
2	18	37		18	37			41	2	18	43	2	18	43
3	25	24		25	24		25	24	3	25	42		25	24
4	66	41		36	41		36	43	4	78	47		42	7
5	65	36		55	48	5	55	48	5	55	36	5	55	36
6	42	43		42	43		42	47	6	24	53		84	53
7	55	48	7	65	54	7	65	54	7	65	48	7	65	48
8	54	47		66			66	53	8	54	59	8	66	59
9	7	60		7	72		7	72	9	7	60		7	54
10	30	53		305	53		30	59	10	66	61	10	78	61
	49	10	11	49			49	60	11	49	72	11	49	72
12	20	59*		10	59*	12	10	61*	12	30	67	12	30	67
13	9	40	13	2	20	13	9	20	13	77	10	13	77	60
14	50	61	14	40	61	14	40	67	14	20	71*	14	10	71
15	27	14	15	27	50		27	50	15	9	40	15	9	20
16	28	67	16	70	67	16	70	71	16	50	73	16	40	73
17	15	56	17	39	14		39	14	17	27	70	17	27	50
18	26	11	18	28	71	18	28	73	18	2	79	18	70	79
19	45	44	19	45	56	19	45	56	19	15	14	19	81	80
20	22	13	20	26	11	20	26	11	20	28	11	20	14	83
21	21	52	21	21	44	21	75	44	21	45	56	21	15	28
22	34	3*	22	22	13	22	22	13	22	22	13	22	56	11
23	63	68	23	635	52	23	21	52	23	75	44	23	45	22
24	2	1	24	34	3*	24	34	3*	24	26	17	24	44	13
25	33	38	25	33	68	25	63	68	25	21	52	25	75	26
26	4	19	26	38	17	26	38	17	26	34	3 *	26	52	7
27	39	46	27	15	2	27	33	76	27	63	68	27	63	
28	8	23		46	19	28	46	19	28	38	23	28	68	
	51	58	29	51	4	29	15	2	29	33	76	29		38
30	16	29	30	58	23	30	58	23	30	80	19	30	20	19
	57	62		57	8	31	51	4	31	39	46	31		46
32	32	31		62	29	32	62	29	32	4	29	32	76	23
33	35	64		69	16	33	57	8	33	17	58	33		58

i	v_{i}	u_{i}	departures	i	v_{i}	u_{i}	departures
0	6	1		22	56	11	
1	5	12		23	45	22	
2	18	47		24	44	13	
3	55	84		25	75	88	
4	78	53		26	26	17	
5	85	36		27	21	52	
6	42	59		28	34	3	$u_{28}=73$ for $k \in[15,21]$
7	65	48		29	63	68	
8	54	61		30	38	9	$u_{30}=77$ for $k=15$,
9	25	72					$u_{30}=43$ for $k \in[17,21]$
10	66	67		31	33	76	
11	7	60		32	46	19	
12	30	71		33	39	2	
13	49	24		34	4	29	
14	10	73	$u_{14}=3$ for $k \in[15,21]$	35	51	58	
15	77	20	$v_{15}=9$ for $k=15$	36	8	31	
16	40	79		37	57	62	
17	27	50		38	16	37	
18	70	83		39	69	74	
19	81	80		40	32	41	
20	14	23		41	87	82	
21	15	28		42	64	43	$u_{42}=9$ for $k \in[17,21]$
				43	35	86	

Table 4. A prime labeling of $P(44, k)$ for all odd $k \in[15,21]$.
be suppressed to a single edge. When $n \in[14,50]$ and $n / 2$ is odd, the prime labeling of $P(n, n / 2-2)$ given in Theorem 4.1 is also a prime labeling of $P(n, n / 2)$. It is a simple exercise to show that $P(6,3)$ and $P(10,5)$ are prime, and additional results concerning prime labelings of $P(n, n / 2)$ can be found in [Prajapati and Gajjar 2015].

Acknowledgments

We thank the anonymous referee for calling our attention to the results on prime labelings of prism graphs in [Diefenderfer et al. 2015; Prajapati and Gajjar 2014].

References

[Dickson 2005] L. E. Dickson, History of the theory of numbers, Vol. I: Divisibility and primality, Dover, New York, 2005. Zbl

i	v_{i}	u_{i}	departures	i	v_{i}	u_{i}	departures
0	6	1		22	28	11	
1	65	12		23	15	56	
2	18	47		24	22	13	
3	55	24		25	45	44	
4	84	53		26	88	17	
5	85	36		27	75	26	
6	42	59		28	52	3	$v_{28}=4, u_{28}=91$ for $k \in[15,21]$
7	5	48		29	21	34	
8	78	61		30	68	9	$u_{30}=43$ for $k \in[17,21]$
9	25	54		31	63	38	
10	66	67		32	76	23	
11	7	72		33	33	46	
12	30	71		34	92	19	
13	49	60		35	39	58	
14	90	73		36	2	29	
15	77	10		37	51	62	
16	20	79		38	4	31	$v_{38}=52$ for $k \in[15,21]$
17	91	40	$v_{17}=3$ for $k \in[15,21]$	39	57	74	
18	50	83		40	8	37	
19	27	70		41	69	82	
20	80	89		42	16	41	
21	81	14		43	87	86	
				44	32	43	$u_{44}=9$ for $k \in[17,21]$

Table 5. A prime labeling of $P(46, k)$ for all odd $k \in[15,21]$.
[Diefenderfer et al. 2015] N. Diefenderfer, D. C. Ernst, M. Hastings, L. N. Heath, H. Prawzinsky, B. Preston, J. Rushall, E. White, and A. Whittemore, "Prime Vertex Labelings of Several Families of Graphs", preprint, 2015. To appear in Involve. arXiv
[Fox et al. 2012] J. Fox, R. Gera, and P. Stănică, "The independence number for the generalized Petersen graphs", Ars Combin. 103 (2012), 439-451. MR Zbl
[Gallian 2015] J. A. Gallian, "A dynamic survey of graph labeling", Electron. J. Combin. 5 (2015), Dynamic Survey 6, 389 pp.
[Haque et al. 2010] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, "On the prime labeling of generalized Petersen graph $P(n, 1) "$, Util. Math. 83 (2010), 95-106. MR Zbl
[Haque et al. 2011] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, "On the prime labeling of generalized Petersen graphs $P(n, 3)$ ", Int. J. Contemp. Math. Sci. 6:33-36 (2011), 1783-1800. MR Zbl
[Maillet 1905] E. Maillet, "Réponse à la question 574", L'Intermédiaire des mathématiciens $\mathbf{1 2}$ (1905), 107-109.
[Pikhurko 2002] O. Pikhurko, "Every tree with at most 34 vertices is prime", Util. Math. 62 (2002), 185-190. MR Zbl

i	v_{i}	u_{i}	departures	i	v_{i}	u_{i}	departures
0	6	43		24	56	11	
1	55	12		25	45	22	
2	18	47		26	44	13	
3	65	24		27	75	88	
4	84	1		28	26	17	
5	85	36		29	21	52	
6	42	53		30	34	27	$u_{30}=77$ for $k \in[15,23]$
7	95	48		31	63	68	
8	54	59		32	38	3	$u_{32}=73$ for $k \in[17,23]$
9	5	96		33	33	76	
10	66	61		34	46	9	$u_{34}=91$ for $k \in[15,23]$
11	25	72		35	39	92	
12	78	67		36	2	19	
13	7	30		37	51	58	
14	90	71		38	4	23	
15	49	60		39	57	62	
16	10	73	$u_{16}=3$ for $k \in[17,23]$	40	8	29	
17	77	20	$v_{17}=27$ for $k \in[15,23]$	41	69	74	
18	40	79		42	16	31	
19	91	50	$v_{19}=9$ for $k \in[15,23]$	43	87	82	
20	80	83		44	32	37	
21	81	70		45	93		
22	14	89		46	64		
23	15	28		47	35	94	

Table 6. A prime labeling of $P(48, k)$ for all odd $k \in[15,23]$.
[Pikhurko 2007] O. Pikhurko, "Trees are almost prime", Discrete Math. 307:11-12 (2007), 14551462. MR Zbl
[Prajapati and Gajjar 2014] U. M. Prajapati and S. J. Gajjar, "Some results on prime labeling", Open J. Discrete Math. 4:3 (2014), 60-66.
[Prajapati and Gajjar 2015] U. M. Prajapati and S. J. Gajjar, "Prime labeling of generalized Petersen graph", Int. J. Math. and Soft Comp. 5:1 (2015), 65-71.
[Sundaram et al. 2006] M. Sundaram, R. Ponraj, and S. Somasundaram, "On a prime labeling conjecture", Ars Combin. 79 (2006), 205-209. MR Zbl
[Tout et al. 1982] A. Tout, A. N. Dabboucy, and K. Howalla, "Prime labeling of graphs", Nat. Acad. Sci. Letters 11 (1982), 365-368.

Received: 2015-09-08 Revised: 2015-11-20 Accepted: 2015-11-28
sschluch@gmu.edu Department of Mathematical Sciences, George Mason University, 4400 University Drive, MS: 3F2, Fairfax, VA 22030, United States

i	v_{i}	u_{i}	departures	i	v_{i}	u_{i}	departures
0	6	43		25	45	56	
1	5	12		26	98	11	
2	18	47		27	75	22	
3	25	24	28	44	13		
4	84	1		29	21	88	
5	55	36	30	26	9	$u_{30}=77$ for $k \in[15,23]$	
6	42	53	31	63	52		
7	65	48	32	34	3	$u_{32}=73$ for $k \in[17,23]$	
8	54	59		33	15	68	
9	85	96	34	38	27	$u_{34}=91$ for $k \in[17,23]$	
10	66	61	35	99	76		
11	95	72	36	46	17		
12	78	67	37	39	92		
13	7	30		28	2	19	
14	90	71	39	51	58		
15	49	60		40	4	23	
16	10	73	$u_{16}=3$ for $k \in[17,23]$	41	57	62	
17	77	20	$v_{17}=27$ for $k \in[15,23]$	42	8	29	
18	40	79		43	69	74	
19	91	50	$v_{19}=9$ for $k \in[15,23]$	44	16	31	
20	80	83	45	87	82		
21	81	70		36	32	37	
22	100	89	47	93	86		
23	33	14	48	64	41		
24	28	97	49	35	94		

Table 7. A prime labeling of $P(50, k)$ for all odd $k \in[15,23]$.

justin@radstock.org	Mosaic Centre Radstock, Kej Bratstvo Edinstvo 45, 1230 Gostivar, Macedonia
kcokus@gmu.edu	George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
rellings@gmu.edu	George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
hharri15@gmu.edu	George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
erarity@gmu.edu	George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
twilso19@gmu.edu	George Mason University, 4400 University Drive, Fairfax, VA 22030, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US \$175/year for the electronic version, and $\$ 235 /$ year $(+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers

involve

Intrinsically triple-linked graphs in $\mathbb{R} P^{3}$
Jared Federman, Joel Foisy, Kristin McNamara and Emily Stark
A modified wavelet method for identifying transient features in time signals with applications to bean beetle maturation

David McMorris, Paul Pearson and Brian Yurk
A generalization of the matrix transpose map and its relationship to the twist of the polynomial ring by an automorphism

Andrew McGinnis and Michaela Vancliff
Mixing times for the rook's walk via path coupling
Cam McLeman, Peter T. Otto, John Rahmani and Matthew Sutter
The lifting of graphs to 3-uniform hypergraphs and some applications to 65 hypergraph Ramsey theory

Mark Budden, Josh Hiller, Joshua Lambert and Chris SANFORD
The multiplicity of solutions for a system of second-order differential equations
Olivia Bennett, Daniel Brumley, Britney Hopkins, Kristi Karber and Thomas Milligan

Factorization of Temperley-Lieb diagrams
Dana C. Ernst, Michael G. Hastings and Sarah K. Salmon
Prime labelings of generalized Petersen graphs
Steven A. Schluchter, Justin Z. Schroeder, Kathryn Cokus, Ryan Ellingson, Hayley Harris, Ethan Rarity and Thomas WILSON
A generalization of Zeckendorf's theorem via circumscribed m-gons
Robert Dorward, Pari L. Ford, Eva Fourakis, Pamela E. Harris, Steven J. Miller, Eyvindur Palsson and Hannah Paugh
Loewner deformations driven by the Weierstrass function
Joan Lind and Jessica Robins
Rank disequilibrium in multiple-criteria evaluation schemes
Jonathan K. Hodge, Faye Sprague-Williams and Jamie Woelk

