\bullet
 involve

 a journal of mathematicsSymplectic embeddings of four-dimensional ellipsoids into polydiscs
Madeleine Burkhart, Priera Panescu and Max Timmons

Symplectic embeddings of four-dimensional ellipsoids into polydiscs

Madeleine Burkhart, Priera Panescu and Max Timmons
(Communicated by Bjorn Poonen)

McDuff and Schlenk recently determined exactly when a four-dimensional symplectic ellipsoid symplectically embeds into a symplectic ball. Similarly, Frenkel and Müller recently determined exactly when a symplectic ellipsoid symplectically embeds into a symplectic cube. Symplectic embeddings of more complicated sets, however, remain mostly unexplored. We study when a symplectic ellipsoid $E(a, b)$ symplectically embeds into a polydisc $P(c, d)$. We prove that there exists a constant C depending only on d / c (here, d is assumed greater than c) such that if b / a is greater than C, then the only obstruction to symplectically embedding $E(a, b)$ into $P(c, d)$ is the volume obstruction. We also conjecture exactly when an ellipsoid embeds into a scaling of $P(1, b)$ for $b \geq 6$, and conjecture about the set of (a, b) such that the only obstruction to embedding $E(1, a)$ into a scaling of $P(1, b)$ is the volume. Finally, we verify our conjecture for $b=\frac{13}{2}$.

1. Introduction 219
2. Proof of Theorem 1.1 222
3. Proof of Theorem 1.2, Part I 224
4. Proof of Theorem 1.2, Part II 228
5. Proof of Theorem 1.2, Part III 236
6. Conjectures 238
Acknowledgments 241
References 242

1. Introduction

Statement of results. Let $\left(X_{0}, \omega_{0}\right)$ and $\left(X_{1}, \omega_{1}\right)$ be symplectic manifolds. A symplectic embedding of $\left(X_{0}, \omega_{0}\right)$ into $\left(X_{1}, \omega_{1}\right)$ is a smooth embedding φ such that

[^0]Keywords: symplectic geometry.
$\varphi^{*}\left(\omega_{1}\right)=\omega_{0}$. It is interesting to ask when one symplectic manifold embeds into another. For example, define the (open) four-dimensional symplectic ellipsoid

$$
\begin{equation*}
E(a, b)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b}<1\right\}, \tag{1-1}
\end{equation*}
$$

and define the (open) symplectic ball $B(a):=E(a, a)$. These inherit symplectic forms by restricting the standard form $\omega=\sum_{k=1}^{2} d x_{k} d y_{k}$ on $\mathbb{R}^{4}=\mathbb{C}^{2}$. McDuff and Schlenk [2012] determined exactly when a four-dimensional symplectic ellipsoid $E(a, b)$ embeds symplectically into a symplectic ball, and found that if b / a is small, then the answer involves an "infinite staircase" determined by the Fibonacci numbers with odd index, while if b / a is large then all obstructions vanish except for the volume obstruction.

To give another example, define the (open) four-dimensional polydisc

$$
\begin{equation*}
P(a, b)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: \pi\left|z_{1}\right|^{2}<a, \pi\left|z_{2}\right|^{2}<b\right\}, \tag{1-2}
\end{equation*}
$$

where $a, b \geq 1$ are real numbers and the symplectic form is again given by restricting the standard symplectic form on \mathbb{R}^{4}. Frenkel and Müller [2012] determined exactly when a four-dimensional symplectic ellipsoid symplectically embeds into a cube $C(a):=P(a, a)$ and found that part of the expression involves the Pell numbers. Cristofaro-Gardiner and Kleinman [2013] studied embeddings of four-dimensional ellipsoids into scalings of $E\left(1, \frac{3}{2}\right)$ and also found that part of the answer involves an infinite staircase determined by a recursive sequence.

Here we study symplectic embeddings of an open four-dimensional symplectic ellipsoid $E(a, b)$ into an open four-dimensional symplectic polydisc $P(c, d)$. By scaling, we can encode this embedding question as the function

$$
\begin{equation*}
d(a, b):=\inf \{\lambda: E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, b \lambda)\}, \tag{1-3}
\end{equation*}
$$

where a and b are real numbers that are both greater than or equal to 1 .
The function $d(a, b)$ always has a lower bound, $\sqrt{a /(2 b)}$, the volume obstruction. Our first theorem states that for fixed b, if a is sufficiently large then this lower bound is sharp, i.e., all embedding obstructions vanish aside from the volume obstruction:

Theorem 1.1. If $a \geq 9(b+1)^{2} /(2 b)$, then $d(a, b)=\sqrt{a /(2 b)}$.
This is an analogue of a result of Buse and Hind [2013] concerning symplectic embeddings of one symplectic ellipsoid into another.

From the previously mentioned work of McDuff and Schlenk, Frenkel and Müller, and Cristofaro-Gardiner and Kleinman, one expects that if a is small then the function $d(a, b)$ should be more rich. Our results suggest that this is indeed the case. For example, we completely determine the graph of $d\left(a, \frac{13}{2}\right)$ (see Figure 1).

Figure 1. The graph of $d\left(a, \frac{13}{2}\right)$. The red line represents the volume obstruction.

Theorem 1.2. For $b=\frac{13}{2}$, we have $d(a, b) \geq \sqrt{a / 13}$ and is equal to this lower bound for all a except in the following cases:
(i) $d\left(a, \frac{13}{2}\right)=1$ for all $a \in\left[1, \frac{25}{2}\right]$.
(ii) For $k \in \mathbb{Z}$, with $0 \leq k \leq 4$,

$$
d(a, b)= \begin{cases}\frac{2 a}{25+2 k} & \text { if } a \in\left[\alpha_{k}, 13+2 k\right], \\ \frac{26+4 k}{25+2 k} & \text { if } a \in\left[13+2 k, \beta_{k}\right],\end{cases}
$$

where

$$
\begin{array}{lllll}
\alpha_{0}=\frac{25}{2}, & \alpha_{1}=\frac{351}{25}, & \alpha_{2}=\frac{841}{52}, & \alpha_{3}=\frac{961}{52}, & \alpha_{4}=\frac{1089}{52}, \\
\beta_{0}=\frac{351}{25}, & \beta_{1}=\frac{1300}{81}, & \beta_{2}=\frac{15028}{841}, & \beta_{3}=\frac{18772}{961}, & \beta_{4}=\frac{2548}{121} .
\end{array}
$$

Interestingly, the graph of $d\left(a, \frac{13}{2}\right)$ has only finitely many nonsmooth points, in contrast to the infinite staircases in [McDuff and Schlenk 2012; Frenkel and Müller 2012; Cristofaro-Gardiner and Kleinman 2013]. This appears to be the case for many values of b. For example, we conjecture what the function $d(a, b)$ is for all $b \geq 6$; see Conjecture 6.3.

Our proofs rely on the following remarkable theorem of Frenkel and Müller [2012]. Let $N(a, b)$ be the sequence (indexed starting at 0) of all nonnegative integer linear combinations of a and b, arranged with repetitions in nondecreasing order, and let $M(a, b)$ be the sequence whose k-th term is

$$
\min \{m a+n b:(m+1)(n+1) \geq k+1\},
$$

where $k, m, n \in \mathbb{Z}_{\geq 0}$. Write $N(a, b) \leq M(c, d)$ if each term in the sequence $N(a, b)$ is less than or equal to the corresponding term in $M(c, d)$. Frenkel and Müller
showed that embeddings of an ellipsoid into a polydisc are completely determined by the sequences M and N :
Theorem 1.3 [Frenkel and Müller 2012]. There is a symplectic embedding

$$
E(a, b) \stackrel{s}{\hookrightarrow} P(c, d)
$$

if and only if $N(a, b) \leq M(c, d)$.
To motivate the sequences M and N, note that N is the sequence of ECH capacities of the symplectic ellipsoid $E(a, b)$, while M is the sequence of ECH capacities of the symplectic polydisc $P(c, d)$. The ECH capacities are a sequence of nonnegative (possibly infinite) real numbers, defined for any symplectic four-manifold, that obstruct symplectic embeddings. We will not discuss ECH capacities here; see [Hutchings 2014] for a survey. Theorem 1.3 is equivalent to the statement that the ECH capacities give sharp obstructions to embeddings of an ellipsoid into a polydisc.

2. Proof of Theorem 1.1

Weight sequences and the \#-operation. We begin by describing the machinery that will be used to prove Theorem 1.1.

Let a^{2} be a rational number. McDuff [2011] showed that there is a finite sequence

$$
W\left(1, a^{2}\right)=\left(a_{1}, \ldots, a_{n}\right),
$$

called the (normalized) weight sequence for a^{2}, such that $E\left(1, a^{2}\right)$ embeds into a symplectic ellipsoid if and only if the disjoint union $\bigsqcup B(W):=\bigsqcup B\left(a_{i}\right)$ embeds into that ellipsoid.

To describe the weight sequence, let

$$
\begin{equation*}
W\left(a^{2}, 1\right)=\left(X_{0}^{\times \ell_{0}}, X_{1}^{\times \ell_{1}}, \ldots, X_{k}^{\times \ell_{k}}\right), \tag{2-1}
\end{equation*}
$$

where $X_{0}>X_{1}>\cdots>X_{k}$ and $\ell_{k} \geq 2$. The ℓ_{i} are the multiplicities of the entries X_{i} and come from the continued fraction expansion

$$
a^{2}=\ell_{0}+\frac{1}{\ell_{1}+\frac{1}{\ell_{2}+\cdots+\frac{1}{\ell_{k}}}}:=\left[\ell_{0} ; \ell_{1}, \ldots, \ell_{k}\right] .
$$

The entries of (2-1) are defined as

$$
X_{-1}:=a^{2}, \quad X_{0}=1, \quad X_{i+1}=X_{i-1}-\ell_{i} X_{i} \quad \text { for } i \geq 0 .
$$

Important properties of the weight sequence include

$$
\begin{gather*}
\sum_{i} a_{i}^{2}=a^{2}, \tag{2-2}\\
\sum_{i} a_{i}=a^{2}+1-\frac{1}{q}, \tag{2-3}
\end{gather*}
$$

where for all i, we have $a_{i} \leq 1$ and $a=p / q$.

We will also make use of a helpful operation, \#, as in [McDuff 2011]. Suppose s_{1} and s_{2} are sequences indexed with $k \in \mathbb{Z}$, starting at 0 . Then,

$$
\left(s_{1} \# s_{2}\right)_{k}=\sup _{i+j=k}\left(s_{1}\right)_{i}+\left(s_{2}\right)_{j}
$$

A useful application of \# is the following lemma:
Lemma 2.1 [McDuff 2011]. For all $a, b>0$, we have

$$
N(a, a) \# N(a, b)=N(a, a+b) .
$$

More generally, for all $\ell \geq 1$, we have

$$
\left(\#^{\ell} N(a, a)\right) \# N(a, b)=N(a, b+\ell a) .
$$

This lemma together with the weight sequence and scaling implies that

$$
\begin{equation*}
N\left(1, a^{2}\right)=N\left(a_{1}, a_{1}\right) \# \cdots \# N\left(a_{n}, a_{n}\right) . \tag{2-4}
\end{equation*}
$$

Similar to [McDuff 2011], this machinery allows us to reduce Theorem 1.1 to a ball-packing problem.

Proof of Theorem 1.1. We begin by noting that the ECH capacities for $B(a)$ are

$$
N(a, a)=(0, a, a, 2 a, 2 a, 2 a, 3 a, 3 a, 3 a, 3 a, \ldots),
$$

where the terms $N_{k}(a, a)$ of this sequence are of the form $d a$ and for each d there are $d+l$ entries occurring at

$$
\begin{equation*}
\frac{1}{2}\left(d^{2}+d\right) \leq k \leq \frac{1}{2}\left(d^{2}+3 d\right) . \tag{2-5}
\end{equation*}
$$

Similarly, for the sequence $(a / \sqrt{2 b}) M(1, b)$, each term $(a / \sqrt{2 b}) M_{k}(1, b)$ is of the form $d(a / \sqrt{2 b})$, where

$$
\begin{equation*}
k \leq \frac{d^{2}}{4 b}+\frac{(1+b) d}{2 b}+\frac{b^{2}-2 b+1}{4 b} \tag{2-6}
\end{equation*}
$$

By continuity, it suffices to study $d\left(a^{2}, b\right)$ with a^{2} rational. So, we can prove that the volume obstruction is the only obstruction when $a \geq 3(b+1) / \sqrt{2 b}$ by showing that

$$
\begin{equation*}
N\left(1, a^{2}\right) \leq \frac{a}{\sqrt{2 b}} M(1, b) \tag{2-7}
\end{equation*}
$$

for said a-values.
By (2-5) and (2-6), it is therefore sufficient to show that

$$
\begin{equation*}
\sum_{i} d_{i} a_{i} \leq \frac{a}{\sqrt{2 b}} d \tag{2-8}
\end{equation*}
$$

whenever d_{1}, \ldots, d_{m}, d are nonnegative integers such that

$$
\begin{equation*}
\sum_{i}\left(d_{i}^{2}+d_{i}\right) \leq 2\left(\frac{d^{2}}{4 b}+\frac{(1+b) d}{2 b}+\frac{b^{2}-2 b+1}{4 b}\right) . \tag{2-9}
\end{equation*}
$$

We do so by considering the following cases:
Case 1: $\sum_{i} d_{i}^{2} \leq d^{2} /(2 b)$. In this case, the Cauchy-Schwarz inequality along with (2-2) implies (2-8).
Case 2: $\sum_{i} d_{i}^{2}>d^{2} /(2 b)$. This case, along with (2-9), implies

$$
\sum_{i} d_{i} a_{i} \leq \sum_{i} d_{i} \leq \frac{(1+b) d}{b}+\frac{b^{2}-2 b+1}{2 b} .
$$

So, we need

$$
\frac{(1+b) d}{b}+\frac{b^{2}-2 b+1}{2 b} \leq \frac{a}{\sqrt{2 b}} d .
$$

It follows that

$$
\begin{equation*}
a \geq \frac{b+1}{\sqrt{2 b}}\left(2+\frac{b+1}{d}\right) . \tag{2-10}
\end{equation*}
$$

Now let $d=b+1$. We see that (2-6) is equivalent to

$$
k \leq b+1+\frac{1}{4 b} .
$$

It is easy to see that $N_{k}\left(1, a^{2}\right) \leq(a / \sqrt{2 b}) M_{k}(1, b)$ for all such k values. As such, we can apply $d=b+1$ to (2-10) to get

$$
\begin{equation*}
a \geq \frac{3(b+1)}{\sqrt{2 b}}, \tag{2-11}
\end{equation*}
$$

and hence the desired result.
Remark 2.2. We allow $d=b+1$ in the statement of Theorem 1.1. However, if we show $N_{k}\left(1, a^{2}\right) \leq(a / \sqrt{2 b}) M_{k}(1, b)$ for all

$$
k \leq \frac{d^{2}}{4 b}+\frac{(1+b) d}{2 b}+\frac{b^{2}-2 b+1}{4 b},
$$

then we can use this d in (2-10) to achieve a sharper bound for a.

3. Proof of Theorem 1.2, Part I

We begin by computing $d\left(a, \frac{13}{2}\right)$ on the regions where it is linear.
Nondifferentiable points and Ehrhart polynomials. We first compute d at certain values. These will eventually be the points a where $d\left(a, \frac{13}{2}\right)$ is not differentiable.

Proposition 3.1. We have

$$
\begin{array}{rlrl}
d\left(1, \frac{13}{2}\right) & =1, & d\left(\frac{25}{2}, \frac{13}{2}\right)=1, & d\left(13, \frac{13}{2}\right)=\frac{26}{25} \\
d\left(\frac{351}{25}, \frac{13}{2}\right) & =\frac{26}{25}, & d\left(15, \frac{13}{2}\right)=\frac{10}{9}, & \\
d\left(\frac{1300}{81}, \frac{13}{2}\right)=\frac{10}{9}, \\
d\left(\frac{841}{52}, \frac{13}{2}\right) & =\frac{29}{26}, & d\left(17, \frac{13}{2}\right)=\frac{34}{29}, & d\left(\frac{15028}{841}, \frac{13}{2}\right)=\frac{34}{29}, \\
d\left(\frac{961}{52}, \frac{13}{2}\right) & =\frac{31}{26}, & d\left(19, \frac{13}{2}\right)=\frac{38}{31}, & d\left(\frac{18772}{961}, \frac{13}{2}\right)=\frac{38}{31}, \\
d\left(\frac{1089}{52}, \frac{13}{2}\right) & =\frac{33}{26}, & d\left(21, \frac{13}{2}\right)=\frac{42}{33}, & d\left(\frac{2548}{121}, \frac{13}{2}\right)=\frac{42}{33} .
\end{array}
$$

To prove the proposition, the main difficulty comes from the fact that applying Theorem 1.3 in principle requires checking infinitely many ECH capacities. Our strategy for overcoming this difficulty is to study the growth rate of the terms in the sequences M and N. We will find that in every case needed to prove Proposition 3.1, one can bound these growth rates to conclude that only finitely many terms in the sequences need to be checked. This is then easily done by computer. The details are as follows:

Proof. Step 1: For the sequence $N(a, b)$, let $k(a, b, t)$ be the largest k such that $N_{k}(a, b) \leq t$. Similarly, for the sequence $M(c, d)$, let $l(c, d, t)$ be the largest l such that $M_{l}(c, d) \leq t$. To show that $E(a, b) \stackrel{s}{\hookrightarrow} P(c, d)$, by Theorem 1.3 , we just have to show that for all t, we have $k(a, b, t) \geq l(c, d, t)$.

Step 2: We can estimate $k(a, b, t)$ by applying the following proposition:
Proposition 3.2. If a, b, r, and t are all positive integers, then

$$
\begin{gather*}
k\left(\frac{a}{r}, \frac{b}{r}, t\right)=\frac{1}{2 a b}(\operatorname{tr})^{2}+\frac{1}{2}(\operatorname{tr})\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a b}\right)+\frac{1}{4}\left(1+\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{12}\left(\frac{a}{b}+\frac{b}{a}+\frac{1}{a b}\right) \\
+ \tag{3-1}\\
+\frac{1}{a} \sum_{j=1}^{a-1} \frac{\xi_{a}^{j(-t r)}}{\left(1-\xi_{a}^{j b}\right)\left(1-\xi_{a}^{j}\right)}+\frac{1}{b} \sum_{l=1}^{b-1} \frac{\xi_{b}^{l(-t r)}}{\left(1-\xi_{b}^{l a}\right)\left(1-\xi_{b}^{l}\right)}
\end{gather*}
$$

where $\xi_{d}=e^{2 \pi i / d}$.
Proof. The number of terms in $N(a / r, b / r)$ that are less than t is the same as the number of lattice points (m, n) in the triangle bounded by the positive x - and y-axes and the line $x(a / r)+y(b / r) \leq t$. For integral t, this number can be computed by applying the theory of "Ehrhart polynomials". Proposition 3.2 follows by applying [Beck and Robins 2007, Theorem 2.10].

We will be most interested in this proposition in the case where $a=r$. Note that by the last two terms of the formula in Proposition 3.2, we have $k(a / r, b / r, t)$ is a periodic polynomial with period $a b$.

We also need an argument to account for the fact that Proposition 3.2 is only for integral t, whereas the argument in Step 1 involves real t. To account for this,
we use an asymptotic argument. Specifically, for $E(1, a / r)$, with $a, r \in \mathbb{Z}_{\geq 1}$, we bound the right-hand side of (3-1) from below by taking the floor function of t. It is convenient for our argument to further bound this expression from below by

$$
\begin{equation*}
\frac{c_{1}}{r^{2}}(r t-1)^{2}+\frac{c_{2}}{r}(r t-1)+c_{3}, \tag{3-2}
\end{equation*}
$$

where the c_{i} are the coefficients of the right-hand side of (3-1) that do not involve t or r.

This is the lower bound that we will use for $k(1, a / r, t)$.
Step 3: To get an upper bound $l(c, d, t)$ for $M(c, d)$, recall that

$$
M_{l}(c, d)=\min \{c m+d n:(m+1)(n+1) \geq l+1\} .
$$

For $c m+d n=t$, we solve for m in terms of n and find

$$
\left(\frac{t-d n}{c}+1\right)(n+1)-1 \geq l .
$$

Considering $m, n \in \mathbb{R}$, we can take the derivative of the left side of the inequality with respect to n and then set the expression equal to 0 to maximize it. We do the same with m to obtain

$$
\left(\frac{t}{2 d}+\frac{c}{2 d}+\frac{1}{2}\right)\left(\frac{t}{2 c}+\frac{d}{2 c}+\frac{1}{2}\right)-1 \geq l .
$$

By simplifying, we get that an upper bound for l is

$$
\begin{equation*}
l(c, d, t)=\frac{t^{2}}{4 c d}+\frac{(c+d) t}{2 c d}+\frac{(c-d)^{2}}{4 c d} \tag{3-3}
\end{equation*}
$$

Our strategy now is to check that for each point in Proposition 3.1, we have $k(a, b, t) \geq l(c, d, t)$ asymptotically in t for the corresponding (a, b, c, d). From there, we can check that for a sufficient number of terms, $N(1, a) \leq M(\lambda, \lambda b)$.

Step 4: Since the rest of the proof amounts to computation, it is best summarized by Table 1 . In the table, $k_{t^{2}}$ and $l_{t^{2}}$ denote the coefficients of the quadratic terms in the upper and lower bounds from Steps 2 and 3, while k_{t} and l_{t} denote the corresponding coefficients of the linear terms.

The t-column gives a sufficient number to check up to before the asymptotic bounds from the previous three steps are enough. Note that if $k_{t^{2}}$ and $l_{t^{2}}$ in any row are equal, then linear coefficients, k_{t} and l_{t}, are used to make an asymptotic argument; this explains the appearance of the "N/A"s in the table. It is simple to check by computer that the relevant N and M sequences in each row satisfy $N \leq M$ once one knows that the problem only has to be checked up to the t in the t-column.

The rightmost column of Table 1 gives an ECH capacity that shows that one cannot shrink λ further, i.e., the claimed embeddings are actually sharp.

$E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, \lambda b)$	$k_{t^{2}}$	$l_{t^{2}}$	k_{t}	l_{t}	t	ECH obstruction
$E\left(1, \frac{25}{2}\right) \stackrel{s}{\hookrightarrow} P\left(1, \frac{13}{2}\right)$	$\frac{1}{25}$	$\frac{1}{26}$	$\mathrm{~N} / \mathrm{A}$	N / A	51	1
$E(1,13) \stackrel{s}{\hookrightarrow} P\left(\frac{26}{25}, \frac{169}{25}\right)$	$\frac{1}{26}$	$\frac{625}{17576}$	$\mathrm{~N} / \mathrm{A}$	N / A	33	13
$E\left(1, \frac{351}{25}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{26}{25}, \frac{169}{25}\right)$	$\frac{25}{702}$	$\frac{625}{17576}$	$\mathrm{~N} / \mathrm{A}$	N / A	522	13
$E(1,15) \stackrel{s}{\hookrightarrow} P\left(\frac{10}{9}, \frac{65}{9}\right)$	$\frac{1}{30}$	$\frac{81}{2600}$	$\mathrm{~N} / \mathrm{A}$	N / A	29	15
$E\left(1, \frac{1300}{81}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{10}{9}, \frac{65}{9}\right)$	$\frac{81}{2600}$	$\frac{81}{2600}$	$\frac{691}{1300}$	$\frac{27}{52}$	272	15
$E\left(1, \frac{841}{52}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{29}{26}, \frac{29}{4}\right)$	$\frac{26}{841}$	$\frac{26}{841}$	$\frac{447}{841}$	$\frac{15}{29}$	122	17
$E(1,17) \stackrel{s}{\hookrightarrow} P\left(\frac{34}{29}, \frac{221}{29}\right)$	$\frac{1}{34}$	$\frac{841}{30056}$	$\mathrm{~N} / \mathrm{A}$	N / A	27	17
$E\left(1, \frac{15028}{841}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{34}{29}, \frac{221}{29}\right)$	$\frac{841}{30056}$	$\frac{841}{30056}$	$\frac{7935}{15028}$	$\frac{435}{884}$	32	17
$E\left(1, \frac{961}{52}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{31}{26}, \frac{31}{4}\right)$	$\frac{26}{961}$	$\frac{26}{961}$	$\frac{507}{961}$	$\frac{15}{31}$	23	19
$E(1,19) \stackrel{s}{\hookrightarrow} P\left(\frac{38}{31}, \frac{247}{31}\right)$	$\frac{1}{38}$	$\frac{961}{37544}$	$\mathrm{~N} / \mathrm{A}$	N / A	7	19
$E\left(1, \frac{18772}{961}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{38}{31}, \frac{247}{31}\right)$	$\frac{961}{37544}$	$\frac{961}{37544}$	$\frac{759}{1444}$	$\frac{465}{988}$	28	19
$E\left(1, \frac{1089}{52}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{33}{26}, \frac{33}{4}\right)$	$\frac{26}{1089}$	$\frac{26}{1089}$	$\frac{571}{1089}$	$\frac{15}{33}$	14	21
$E(1,21)$	$\stackrel{4}{\hookrightarrow} P\left(\frac{42}{33}, \frac{273}{33}\right)$	$\frac{1}{42}$	$\frac{121}{5096}$	$\mathrm{~N} / \mathrm{A}$	N / A	26
$E\left(1, \frac{2548}{121}\right) \stackrel{s}{\hookrightarrow} P\left(\frac{42}{33}, \frac{273}{33}\right)$	$\frac{121}{5096}$	$\frac{121}{5096}$	$\frac{1335}{2548}$	$\frac{165}{364}$	41	21

Table 1. The computations from Step 4 of the proof of Proposition 3.1.

The linear steps. Given the computations from the previous section, the computation of $d\left(a, \frac{13}{2}\right)$ for all the "linear steps", i.e., those portions of the graph of d for which d is linear, is straightforward. Indeed, we have the following two lemmas:

Lemma 3.3. For fixed b, the function $d(a, b)$ is monotonically nondecreasing.
Proof. This follows from the fact that $E(1, a) \stackrel{s}{\hookrightarrow} E\left(1, a^{\prime}\right)$ if $a \leq a^{\prime}$.
Lemma 3.4 (subscaling). $\quad d(\lambda a, b) \leq \lambda d(a, b)$.
Proof. This follows from the fact that $E(1, \lambda a) \stackrel{s}{\hookrightarrow} E(\lambda, \lambda a)$ for $\lambda \geq 1$.
By monotonicity, we know that $d\left(a, \frac{13}{2}\right)$ is constant on the intervals
$\left[1, \frac{25}{2}\right], \quad\left[13, \frac{351}{25}\right], \quad\left[15, \frac{1300}{81}\right], \quad\left[17, \frac{15028}{841}\right], \quad\left[19, \frac{18772}{961}\right], \quad\left[21, \frac{2548}{121}\right]$.
We now explain why for $k \in \mathbb{Z}$, with $0 \leq k \leq 4$, we have

$$
d\left(a, \frac{13}{2}\right)=\frac{2 a}{25+2 k} \quad \text { for } a \in\left[\alpha_{k}, 13+2 k\right],
$$

where $\alpha_{0}=\frac{25}{2}, \alpha_{1}=\frac{351}{25}, \alpha_{2}=\frac{841}{52}, \alpha_{3}=\frac{961}{52}$, and $\alpha_{4}=\frac{1089}{52}$.

Given the critical points we have determined, along with the subscaling lemma, we have $2 a /(25+2 k)$ as an upper bound for $d\left(a, \frac{13}{2}\right)$ on the above intervals.

Intervals on which $\boldsymbol{d}\left(\boldsymbol{a}, \frac{13}{2}\right)$ is linear. We also know that

$$
d\left(a, \frac{13}{2}\right)=\sup \left\{\frac{N_{x}(1, a)}{M_{x}\left(1, \frac{13}{2}\right)}: x \in \mathbb{N}\right\} \geq \frac{N_{l}(1, a)}{M_{l}\left(1, \frac{13}{2}\right)} \quad \text { for any } l .
$$

Here is a representative example of our method:
Example 3.5. To illustrate how this can give us a suitable lower bound, consider the case where $x=13$:

$$
\sup \left\{\frac{N_{x}(1, a)}{M_{x}\left(1, \frac{13}{2}\right)}: x \in \mathbb{N}\right\} \geq \frac{N_{13}(1, a)}{M_{13}\left(1, \frac{13}{2}\right)}=\frac{2 a}{25} \quad \text { for } a \in\left[\frac{25}{2}, 13\right] .
$$

This lower bound equals the upper bound given by Lemma 3.4, so we have proven Theorem 1.2 for $a \in\left[\frac{25}{2}, 13\right]$.

The general method is similar: given $a \in\left[\alpha_{k}, 13+2 k\right]$, we can find an l such that

$$
\frac{N_{l}(1, a)}{M_{l}\left(1, \frac{13}{2}\right)}=\frac{2 a}{25+2 k} .
$$

Such obstructing values of l are given in the following table:

k	$\frac{2}{25+2 k}$	l
0	$\frac{2}{25}$	13
1	$\frac{2}{27}$	15
2	$\frac{2}{29}$	17
3	$\frac{2}{31}$	19
4	$\frac{2}{33}$	21

Given $a \in\left[\alpha_{k}, 13+2 k\right]$ for each integer $k \in[0,4]$, we have found that the upper and lower bounds of $d\left(a, \frac{13}{2}\right)$ equal $2 a /(25+2 k)$. Thus, we have proven our claim for these intervals.

4. Proof of Theorem 1.2, Part II

To complete the proof of Theorem 1.2, we need to show that aside from the linear steps described in the previous section, the graph of $d\left(a, \frac{13}{2}\right)$ is equal to the graph of the volume obstruction. To do this, we adapt some of the ideas from [McDuff and Schlenk 2012] in a purely combinatorial way. This will be needed to complete
the proof of Theorem 1.2. Our combinatorial perspective on the techniques from [McDuff and Schlenk 2012] borrows many ideas from [McDuff 2011].

Preliminaries. This section collects the main combinatorial machinery that will be used to complete the proof. The basic idea behind our proof will be to reduce to a ball-packing problem, as in the proof of Theorem 1.1. The machinery we develop here will be useful for approaching this ball-packing problem.

We begin with two definitions:
Definition 4.1. Let $\operatorname{Cr}\left(d, d_{i}\right)=\left(d^{\prime}, d_{i}^{\prime}\right)$, where $d^{\prime}=2 d-d_{1}-d_{2}-d_{3}, d_{i}^{\prime}=d-d_{j}-d_{k}$ for $i, j, k=1,2,3$ and $d_{i}^{\prime}=d_{i}$ for all $i \geq 4$. We call Cr the Cremona transform.
Definition 4.2. We say $\left(d, d_{i}\right) \in \mathbb{R}^{1+n}$ is
(i) positive if $d, d_{i} \geq 0$ for all i,
(ii) ordered if $d_{i}, d_{i+1} \neq 0$ implies $d_{i} \geq d_{i+1}$ and $d_{i} \neq 0, d_{j}=0$ implies $i<j$,
(iii) reduced if positive, ordered, and $d \geq d_{1}+d_{2}+d_{3}$.

Remark 4.3. It will be important to note that $\operatorname{Cr}\left(\operatorname{Cr}\left(d, d_{i}\right)\right)=\left(d, d_{i}\right)$.
We now define a product analogous to the intersection product in [McDuff and Schlenk 2012]:

Definition 4.4.

$$
\left(x, x_{i}\right) \cdot\left(y, y_{i}\right)=x y-\sum_{i} x_{i} y_{i} .
$$

We also define a vector $-K \in \mathbb{R}^{1+n}$ that is motivated by the standard anticanonical divisor in the M-fold blow up of $\mathbb{C} P^{2}$.

Definition 4.5.

$$
-K=(3,1,1, \ldots, 1) .
$$

The following is a combinatorial analogue of "positivity of intersections" that will be useful:

Lemma 4.6. If $\left(x, x_{i}\right)$ is reduced, $\left(d, d_{i}\right)$ is positive, $-K \cdot\left(d, d_{i}\right) \geq 0$, and $d \geq$ $\max \left(d_{i}\right)$, then $\left(x, x_{i}\right) \cdot\left(d, d_{i}\right) \geq 0$.
Proof. Let $\left(d^{\prime}, d_{i}^{\prime}\right)$ be the vector obtained from ordering d_{i}. As

$$
\left(x, x_{i}\right) \cdot\left(d, d_{i}\right) \geq\left(x, x_{i}\right) \cdot\left(d^{\prime}, d_{i}^{\prime}\right)
$$

we can assume without loss of generality that $\left(d, d_{i}\right)$ is ordered. If $x_{3}=0$ then $x_{i}=0$ for $i \geq 3$ and

$$
\left(x, x_{i}\right) \cdot\left(d, d_{i}\right)=x d-x_{1} d_{1}-x_{2} d_{2} .
$$

As $d \geq \max \left(d_{i}\right)$, we know that this expression is greater than or equal to

$$
\left(x-x_{1}-x_{2}\right) d .
$$

As $\left(x, x_{i}\right)$ is reduced, this is greater than or equal to 0.

We now assume without loss of generality that $x_{3}=1$. Hence, $x_{i} \leq 1$ for $i \geq 3$. Let $e_{1}=x_{1}-1$ and $e_{2}=x_{2}-1$. Then

$$
x d \geq\left(3+e_{1}+e_{2}\right) d
$$

as $\left(x, x_{i}\right)$ is reduced. This expression is equal to

$$
3 d+d e_{1}+d e_{2} .
$$

As $d \geq d_{1}, d_{2}$, we now have the following chain of inequalities:

$$
\begin{aligned}
3 d+d e_{1}+d e_{2} & \geq 3 d+d_{1} e_{1}+d_{2} e_{2} \geq \sum_{i} d_{i}+d_{1} e_{1}+d_{2} e_{2} \\
& =d_{1} x+d_{2} x+\sum_{i \geq 3} d_{i} \geq d_{1} x_{1}+d_{2} x_{2}+\sum_{i \geq 3} x_{i} d_{i}=\sum_{i} d_{i} x_{i}
\end{aligned}
$$

In [McDuff and Schlenk 2012], Cremona transformations preserve the intersection product. Here we prove an analogous result.

$$
\text { Lemma 4.7. } \quad \operatorname{Cr}\left(x, x_{i}\right) \cdot \operatorname{Cr}\left(y, y_{i}\right)=\left(x, x_{i}\right) \cdot\left(y, y_{i}\right) \text {. }
$$

Proof.

$$
\begin{aligned}
\operatorname{Cr}\left(x, x_{i}\right) \cdot \operatorname{Cr}\left(y, y_{i}\right)= & x^{\prime} y^{\prime}-\sum_{i} x_{i}^{\prime} y_{i}^{\prime} \\
= & \left(2 x-x_{1}-x_{2}-x_{3}\right)\left(2 y-y_{1}-y_{2}-y_{3}\right)-\left(x-x_{2}-x_{3}\right)\left(y-y_{2}-y_{3}\right) \\
& -\left(x-x_{1}-x_{3}\right)\left(y-y_{1}-y_{3}\right)-\left(x-x_{2}-x_{3}\right)\left(y-y_{2}-y_{3}\right)-\sum_{i>3} x_{i} y_{i} \\
= & x y-x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-\sum_{i>3} x_{i} y_{i} \\
= & x y-\sum_{i} x_{i} y_{i} \\
= & \left(x, x_{i}\right) \cdot\left(y, y_{i}\right) .
\end{aligned}
$$

The following sets will also be useful:
Definition 4.8. $F=\left\{\left(d, d_{i}\right):\left(d, d_{i}\right) \cdot\left(-K+\left(d, d_{i}\right)\right) \geq 0, d, d_{i} \in \mathbb{Z}\right\}$.
Definition 4.9. $F^{+}=\left\{\left(d, d_{i}\right):\left(d, d_{i}\right) \in F, d, d_{i} \geq 0\right\}$.
Definition 4.10. $E=\left\{\left(d, d_{i}\right):\left(d, d_{i}\right) \cdot\left(d, d_{i}\right) \geq-1,-K \cdot\left(d, d_{i}\right)=1, d, d_{i} \in \mathbb{Z}\right\}$.
Remark 4.11. Observe $\operatorname{Cr}(F) \subset F$ and $\operatorname{Cr}(E) \subset E$. Additionally, F, F^{+}, and E are invariant under permutations of d_{i}.
Remark 4.12. Note that $(0,-1,0, \ldots, 0) \in E$.
Definition 4.13. Let C be the set of $\left(x, x_{i}\right)$ such that $x, x_{i} \in \mathbb{Z}$ and
(a) $\left(x, x_{i}\right) \cdot\left(x, x_{i}\right) \geq 0$,
(b) $\left(x, x_{i}\right) \cdot\left(d, d_{i}\right) \geq 0$ for all $\left(d, d_{i}\right) \in E$.

Both Li and Li [2002] and McDuff and Schlenk [2012] have found that compositions of Cremona transformations and permutations can reduce certain classes. Here we prove a combinatorial version of those lemmas.

Lemma 4.14. If $\left(x, x_{i}\right) \in C$ then by a sequence of Cremona transforms and permutations of x_{i}, we can transform $\left(x, x_{i}\right)$ to $\left(x^{\prime}, x_{i}^{\prime}\right)$, where $\left(x^{\prime}, x_{i}^{\prime}\right)$ is reduced.

Proof. We begin with some helpful results:
Sublemma 4.15. $\operatorname{Cr}(C) \subset C$.
Proof. The fact that Cr preserves (a) follows from the fact that Cr preserves the intersection product. To complete the sublemma, note that if $\left(d, d_{i}\right) \in E$, then

$$
\operatorname{Cr}\left(x, x_{i}\right) \cdot\left(d, d_{i}\right)=\operatorname{Cr}^{2}\left(x, x_{i}\right) \cdot\left(d^{\prime}, d_{i}^{\prime}\right)=\left(x, x_{i}\right) \cdot\left(d^{\prime}, d_{i}^{\prime}\right) \geq 0 \quad \text { as }\left(d^{\prime}, d_{i}^{\prime}\right) \in E
$$

Sublemma 4.16. If P is some permutation, $P(C) \subset C$.
Proof. If $\left(d, d_{i}\right) \in E$, then

$$
P\left(x, x_{i}\right) \cdot\left(d, d_{i}\right)=\left(x, x_{i}\right) \cdot P^{-1}\left(d, d_{i}\right) \quad \text { as } P^{-1}(E) \subset E .
$$

Sublemma 4.17. If $\left(x, x_{i}\right) \in C$, then $x, x_{i} \geq 0$.
Proof. If $d_{i}=\left(-\delta_{i j}\right)$ and $\left(0, d_{i}\right) \in E$ then we have $j \leq$ length $\left(d_{i}\right)$ for all j. So, $\left(x, x_{i}\right) \cdot\left(0, d_{i}\right)=x_{j} \geq 0$. We also have $\left(x, x_{i}\right) \cdot(1,1,1,0,0, \ldots, 0)=x-x_{1}-x_{2} \geq 0$. As $x_{1}, x_{2} \geq 0$, this implies that $x \geq 0$.

Let oCr denote the transformation Cr followed by ordering the d_{i}. Fix $\left(x, x_{i}\right) \in C$. Let $\left(x^{k}, x_{i}^{k}\right)=\operatorname{oCr}^{k}\left(x, x_{i}\right)$. Let $\alpha(k)=x^{k}-x_{1}^{k}-x_{2}^{k}-x_{3}^{k}$. It suffices to show $\alpha(k) \geq 0$ for some k. Assume not. Then $\alpha(k) \leq-1$ for all k. By Sublemmas 4.15 and 4.16, $o \operatorname{Cr}(C) \subset C$. For $k \geq 1$,

$$
x^{k}=x^{k-1}+\alpha(k-1) \leq x^{k-1}-1
$$

Thus, there exists k such that $x^{k}<0$. This contradicts Sublemma 4.17, completing the proof that we may reduce $\left(x, x_{i}\right)$.

We now prove Lemma 4.18, a result analogous to [McDuff and Schlenk 2012, Proposition 1.2.12(i)].

Lemma 4.18. If $\left(x, x_{i}\right) \in C$ then $\left(x, x_{i}\right) \cdot\left(d, d_{i}\right) \geq 0$ for all $\left(d, d_{i}\right) \in F$.
Proof. By Lemma 4.14 there exists A, a composition of Cr and permutations, such that $A\left(x, x_{i}\right)=\left(x^{\prime}, x_{i}^{\prime}\right)$ with $\left(x^{\prime}, x_{i}^{\prime}\right)$ reduced. For $\left(d, d_{i}\right) \in F$, let $A\left(d, d_{i}\right)=$ $\left(d^{\prime}, d_{i}^{\prime}\right) \in F$. So,

$$
\left(x, x_{i}\right) \cdot\left(d, d_{i}\right)=A\left(x, x_{i}\right) \cdot A\left(d, d_{i}\right)=\left(x^{\prime}, x_{i}^{\prime}\right) \cdot\left(d^{\prime}, d_{i}^{\prime}\right)
$$

Let $e=d, e_{i}=d_{i}$ if $d_{i}>0$ and $e_{i}=0$ if $d_{i} \leq 0$. We note $\left(e, e_{i}\right) \in F$ and

$$
\left(x^{\prime}, x_{i}^{\prime}\right) \cdot\left(d^{\prime}, d_{i}^{\prime}\right) \geq\left(x^{\prime}, x_{i}^{\prime}\right) \cdot\left(e, e_{i}\right)
$$

If $\left(e, e_{i}\right) \cdot\left(e, e_{i}\right) \geq 0$ then the Cauchy-Schwarz inequality shows $\left(x^{\prime}, x_{i}^{\prime}\right) \cdot\left(e, e_{i}\right) \geq 0$. Otherwise, $\left(e, e_{i}\right) \cdot(-K) \geq 0$. Then

$$
\sum_{i} e_{i}^{2}+e_{i} \leq e^{2}+3 e
$$

implies $e \geq e_{i}$, so Lemma 4.6 shows $\left(x^{\prime}, x_{i}^{\prime}\right) \cdot\left(e, e_{i}\right) \geq 0$.
Remark 4.19. By scaling, Lemma 4.18 extends to (x, x_{i}) that satisfy (a) and (b) of Definition 4.13 with $x, x_{i} \in \mathbb{Q}$.

A key lemma. We now use the combinatorial machinery from the previous section, together with a reduction to the ball-packing problem, to prove the key lemma needed to complete the proof of Theorem 1.2; see part (iii) of Lemma 4.24 below.

To reduce to a ball-packing problem, note that [Frenkel and Müller 2012, Proposition 1.4] states that for rational a, we have that

$$
E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, c \lambda)
$$

if and only if

$$
\begin{equation*}
E(1, a) \sqcup B(\lambda) \sqcup B(c \lambda) \stackrel{s}{\hookrightarrow} B((1+c) \lambda), \tag{4-1}
\end{equation*}
$$

where \sqcup denotes disjoint union. Since, as explained in [Hutchings 2014], one can compute the ECH capacities of the disjoint union in terms of the \#-operation, we know that the embedding in (4-1) exists if and only if

$$
\begin{equation*}
N(1, a) \# N(\lambda, \lambda) \# N(c \lambda, c \lambda) \leq N((1+c) \lambda,(1+c) \lambda) . \tag{4-2}
\end{equation*}
$$

For the rest of the proof of Theorem 1.2, we are looking at intervals for a on which the graph of d is equal to the volume obstruction; we therefore want to show that (4-2) holds with $\lambda=\sqrt{a /(2 c)}$ (of course, for our proof one can specify $c=\frac{13}{2}$, but we state things here in slightly greater generality). By an argument analogous to the argument used in the proof of Theorem 1.1, it is sufficient to show

$$
\left(\sum_{i} d_{i}^{2}+d_{i}\right)+e_{1}^{2}+e_{1}+e_{2}^{2}+e_{2} \leq d^{2}+3 d
$$

implies

$$
\left(\sum_{i} a_{i} d_{i}\right)+c \lambda e_{1}+\lambda e_{2} \leq(1+c) \lambda d
$$

for all nonnegative integers d, d_{i}, e_{1}, e_{2}. Let $m_{1}=e_{1}, m_{2}=e_{2}$ and $m_{i}=d_{i-2}$ for $i \geq 3$ and let $w_{1}(a)=c \lambda, w_{2}(a)=\lambda$ and $w_{i}(a)=a_{i-2}$ for $i \geq 3$. Hence, it is enough to show

$$
\sum_{i} m_{i}^{2}+m_{i} \leq d^{2}+3 d
$$

implies

$$
\begin{equation*}
m \cdot w(a) \leq(1+c) \lambda d \tag{4-3}
\end{equation*}
$$

Let $\mu(d ; m)(a)=(m \cdot w(a)) / d$. Then (4-3) is equivalent to $\mu(d ; m)(a) \leq(1+c) \lambda$. By Lemma 4.18, it is sufficient to check the case

$$
\begin{align*}
& \sum_{i} m_{i}^{2}=d^{2}+1 \tag{4-4}\\
& \sum_{i} m_{i}=3 d-1 \tag{4-5}
\end{align*}
$$

Let E be the set of $(d ; m)$ satisfying (4-4) and (4-5) with d, m_{i} nonnegative integers. Define ε by

$$
m=\frac{d}{(1+c) \lambda} w(a)+\varepsilon .
$$

We now have a series of lemmas, culminating in the key lemma, Lemma 4.24.
Lemma 4.20. For $(d ; m) \in E$, we have:
(i) $\mu(d ; m)(a) \leq(1+c) \lambda \sqrt{1+\frac{1}{d^{2}}}$.
(ii) $\mu(d ; m)(a)>(1+c) \lambda$ if and only if $\varepsilon \cdot w>0$.
(iii) $\mu(d ; m)(a)>(1+c) \lambda$ implies $\sum_{i} \varepsilon_{i}^{2}<1$.
(iv) Let $y(a)=a+1-2(1+c) \lambda$. Then

$$
-\sum_{i} \varepsilon_{i}=1+\frac{d}{(1+c) \lambda}\left(y(a)-\frac{1}{q}\right),
$$

where $a=p / q$.
Proof. Part (i) follows from $\sum_{i} w_{i}^{2}=c^{2} \lambda^{2}+\lambda^{2}+\sum_{i} a_{i}^{2}=(1+c)^{2} \lambda^{2}$ and the Cauchy-Schwarz inequality. To prove (ii), note

$$
\begin{aligned}
\varepsilon \cdot w & =m \cdot w-\frac{d}{(1+c) \lambda} w \cdot w \\
& =d\left(\frac{m \cdot w}{d}-(1+c) \lambda\right) \\
& =d(\mu(d ; m)(a)-(1+c) \lambda) .
\end{aligned}
$$

To prove (iii), note

$$
\begin{aligned}
\sum_{i} \varepsilon_{i}^{2} & =\varepsilon \cdot \varepsilon=m \cdot m+\frac{d^{2}}{(1+c)^{2} \lambda^{2}} w \cdot w-\frac{2 d}{(1+c) \lambda} m \cdot w \\
& =1+d^{2}\left(2-\frac{2}{(1+c) \lambda} \frac{m \cdot w}{d}\right) \\
& <1 \quad \text { if } \mu(d ; m)(a)>(1+c) \lambda .
\end{aligned}
$$

To prove (iv), note

$$
\begin{aligned}
-\sum_{i} \varepsilon_{i} & =\frac{d}{(1+c) \lambda} \sum_{i} w_{i}-\sum_{i} m_{i} \\
& =\frac{d}{(1+c) \lambda}\left(a+1-\frac{1}{q}+c \lambda+\lambda\right)-3 d-1 \\
& =1+\frac{d}{(1+c) \lambda}\left(a+1-\frac{1}{q}-2(1+c) \lambda\right) .
\end{aligned}
$$

Lemma 4.21. Let $(d ; m) \in E$ and suppose that I is the maximal nonempty open interval such that $\mu(d ; m)(a)>(1+c) \lambda$ for all $a \in I$. Then there exists a unique $a_{0} \in I$ such that $l\left(a_{0}\right)=l(m)$, where $l\left(a_{0}\right)$ is the length of $w_{i}(a)$ and $l(m)$ is the number of nonzero terms in m. Furthermore, $l(a) \geq l(m)$ for all $a \in I$.

Proof. We adapt the proof of Lemma 2.1.3 in [McDuff and Schlenk 2012]. For $i \geq 3$, $w_{i}(a)$ is piecewise linear and is linear on open intervals that do not contain an element a^{\prime} with length $l\left(a^{\prime}\right) \leq i$. Therefore, if $l(a)>l(m)$ for all $a \in I$,

$$
\mu(d ; m)(a)-\frac{c \lambda m_{1}+\lambda m_{2}}{d}
$$

is linear on I. This is impossible as $c \lambda\left(1-m_{1} / d\right)+\lambda\left(1-m_{2} / d\right)$ is concave and I is bounded. Thus there exists $a_{0} \in I$ with $l\left(a_{0}\right) \leq l(m)$. If $l(a)<l(m)$ then $\sum_{i \leq l(a)} m_{i}^{2}<d^{2}+1$, which implies

$$
m \cdot w \leq\|w\| \sqrt{\sum_{i \leq l(a)} m_{i}^{2}} \leq d\|w\|=(1+c) \lambda d
$$

which is impossible for $a \in I$. The proof of uniqueness is the same as in [McDuff and Schlenk 2012, Lemma. 2.1.3].

Lemma 4.22. Let $(d ; m)$ be in E with $\mu(d ; m)(a)>(1+c) \lambda$ for some a. Let $J=k, \ldots, k+s-1$ be a block of $s \geq 2$ consecutive integers such that $w_{i}(a)$ is constant for $i \in J$. Then:
(i) One of the following holds:

- $m_{k}=\cdots=m_{k+s-1}$.
- $m_{k}=\cdots=m_{k+s-2}=m_{k+s-1}+1$.
- $m_{k}-1=m_{k+1}=\cdots=m_{k+s-1}$.
(ii) There is at most one block of length $s \geq 2$ on which the m_{i} are not all equal.
(iii) If there is a block J of length $s \geq 2$ on which the m_{i} are not all equal then

$$
\sum_{i \in J} \varepsilon_{i}^{2} \geq \frac{s-1}{s}
$$

Proof. See the proof of [McDuff and Schlenk 2012, Lemma. 2.1.7]. McDuff and Schlenk consider the case of embedding an ellipsoid into a ball, but their proof generalizes without change to our situation.

Lemma 4.23. Let $(d ; m) \in E$ be such that $\mu(d ; m)>(1+c) \lambda$ for some a with $l(a)=l(m)=M$. Let w_{k+1}, \ldots, w_{k+s} be a block, but not the first block, of $w(a)$ (the first two terms of $w(a)$ are not considered to be part of any block).
(i) If this block is not the last block, then

$$
\left|m_{k}-\left(m_{k+1}+\cdots+m_{k+s}+m_{k+s+1}\right)\right|<\sqrt{s+2} .
$$

If this block is the last block, then

$$
\left|m_{k}-\left(m_{k+1}+\cdots+m_{k+s}\right)\right|<\sqrt{s+1} .
$$

(ii) It is always true that

$$
m_{k}-\sum_{i=k+1}^{M} m_{i}<\sqrt{M-k+1}
$$

Proof. This is similar to the proof of Lemma 4.22; see the proof of [McDuff and Schlenk 2012, Lemma 2.1.8], which generalizes without change to our situation.

Lemma 4.24. Assume that $(d ; m) \in E$ and $\mu(d ; m)(a)>(1+c) \lambda$ for some a with $l(a)=l(m)$. Assume further that $y(a)>1 / q$. Let

$$
v_{M}=\frac{d}{q(1+c)} \lambda
$$

and let $L=l(m)$. Then:
(i) $\left|\sum_{i} \varepsilon_{i}\right| \leq \sqrt{L}$.
(ii) $v_{M}>\frac{1}{3}$.
(iii) Let $\delta=y(a)-1 / q>0$. Then

$$
\begin{aligned}
& \quad d \leq \frac{(1+c) \lambda}{\delta}(\sqrt{L}-1) \leq \frac{(1+c) \lambda}{\delta}(\sqrt{q+\lfloor a\rfloor+2}-1) \\
& \text { and } \sqrt{q+\lfloor a\rfloor+2} \geq 1+\delta v_{M} q \text {. }
\end{aligned}
$$

Proof. Part (i) follows from $\sum_{i} \varepsilon_{i}^{2}<1$. Part (ii) follows from the same argument as [McDuff and Schlenk 2012, Lemma 5.1.2]. From [McDuff and Schlenk 2012, Sublemma 5.1.1], we have $q+\lfloor a\rfloor+2 \geq L$, so Lemma 4.20 implies

$$
\sqrt{q+\lfloor a\rfloor+2} \geq \sqrt{L} \geq 1+\frac{d}{(1+c) \lambda}\left(y(a)-\frac{1}{q}\right)=1+\frac{d}{(1+c) \lambda} \delta=1+q v_{M} \delta .
$$

This also shows

$$
d \leq \frac{(1+c) \lambda}{\delta}(\sqrt{q+\lfloor a\rfloor+2}-1) .
$$

5. Proof of Theorem 1.2, Part III

With the Lemma 4.24 now shown, we can complete the proof of Theorem 1.2. We explain the computation on various intervals separately.
$\left[\frac{1300}{\mathbf{8 1}}, \frac{841}{52}\right]$. We now wish to prove that $d\left(a, \frac{13}{2}\right)=\sqrt{a / 13}$ for $a \in\left[\frac{1300}{81}, \frac{841}{52}\right]$. Previously, we proved

$$
\left(\frac{1300}{81}, \frac{13}{2}\right)=\frac{10}{9} \quad \text { and } \quad d\left(\frac{841}{52}, \frac{13}{2}\right)=\frac{29}{26} .
$$

If $d\left(a, \frac{13}{2}\right)$ is not equal to $\sqrt{a / 13}$ on the interval $\left[\frac{1300}{81}, \frac{841}{52}\right]$, there exists $(d ; m) \in E$ such that

$$
\mu(d ; m)(a)>7.5 \lambda \quad \text { for some } a \in\left[\frac{1300}{81}, \frac{841}{52}\right] .
$$

So, Lemma 4.24 shows that there exists a_{0} in $\left[\frac{1300}{81}, \frac{841}{52}\right]$ with $\mu(d ; m)\left(a_{0}\right)>7.5 \lambda$ and $l\left(a_{0}\right)=l(m)$. Let $a_{0}=p / q=16+p^{\prime} / q$. As $16<a_{0}<16+\frac{1}{5}$, we know $q \geq 5$. For $a_{0} \in\left[\frac{1300}{81}, \frac{841}{52}\right]$ and $q \geq 5$, we know

$$
\delta \geq \frac{1300}{81}+1-15 \sqrt{\frac{1300}{81 \cdot 13}}-\frac{1}{q} \geq \frac{31}{81}-\frac{1}{q} .
$$

Thus, Lemma 4.24 shows

$$
\sqrt{q+18} \geq 1+\left(\frac{31}{81}-\frac{1}{q}\right) \frac{q}{3} .
$$

Hence, $q \leq 67$.
We also note that for $\frac{1300}{81}<a_{0}<\frac{841}{52}$ and $q \geq 5$, we have

$$
\lambda \leq \sqrt{\frac{841}{52 \cdot 13}}=\frac{29}{26} \quad \text { and } \quad \delta \geq \frac{31}{81}-\frac{1}{q} \geq \frac{74}{405} .
$$

Thus, Lemma 4.24 shows

$$
d \leq \frac{7.5 \cdot \frac{29}{26}}{\frac{74}{405}}(\sqrt{85}-1)<377
$$

Using Mathematica we can reduce the possibilities for $(d ; m)$ to 38 candidates. We can then use Lemma 4.23 to reduce these 38 cases to 11 possible candidates, which can easily verified to not be obstructive by simple calculations.
$\left[\frac{15028}{841}, \frac{961}{52}\right]$. We now will show $d\left(a, \frac{13}{2}\right)=\sqrt{a / 13}$ for $a \in\left[\frac{15028}{841}, \frac{961}{52}\right]$. Previously, we proved

$$
d\left(\frac{15028}{841}, \frac{13}{2}\right)=\frac{34}{29} \quad \text { and } \quad d\left(\frac{961}{52}, \frac{13}{2}\right)=\frac{31}{26} .
$$

If $d\left(a, \frac{13}{2}\right)$ is not equal to $\sqrt{a / 13}$ on the interval $\left[\frac{15028}{841}, \frac{961}{52}\right]$, then there exists $(d ; m) \in E$ such that

$$
\mu(d ; m)(a)>7.5 \lambda \quad \text { for some } a \in\left[\frac{15028}{841}, \frac{961}{52}\right] .
$$

Then Lemma 4.24 shows that there exists $a_{0} \in\left[\frac{15028}{841}, \frac{961}{52}\right]$ with $\mu(d, m)\left(a_{0}\right)>7.5 \lambda$ and $l\left(a_{0}\right)=l(m)$. Let $a_{0}=p / q$ with $\operatorname{gcd}(p, q)=1$. For $a_{0} \in\left[\frac{15028}{841}, \frac{961}{52}\right]$, we know

$$
\delta \geq \frac{15028}{841}+1-15 \sqrt{\frac{15028}{841 \cdot 13}}-\frac{1}{q}=\frac{1079}{841}-\frac{1}{q}
$$

Thus, Lemma 4.24 shows

$$
\sqrt{q+19} \geq 1+\left(\frac{1079}{841}-\frac{1}{q}\right) \frac{q}{3}
$$

Hence, $q \leq 11$. We can then verify these cases directly using Mathematica, which by simple calculations can be verified not to be obstructive.
$\left[\frac{\mathbf{1 8 7 7 2}}{\mathbf{9 6 1}}, \frac{\mathbf{1 0 8 9}}{\mathbf{5 2}}\right]$. We will now show $d\left(a, \frac{13}{2}\right)=\sqrt{a / 13}$ for $a \in\left[\frac{18772}{961}, \frac{1089}{52}\right]$. Previously, we proved

$$
d\left(\frac{18772}{961}, \frac{13}{2}\right)=\frac{38}{31} \quad \text { and } \quad d\left(\frac{1089}{52}, \frac{13}{2}\right)=\frac{33}{26}
$$

If $d\left(a, \frac{13}{2}\right)$ is not equal to $\sqrt{a / 13}$ on the interval $\left[\frac{18772}{961}, \frac{1089}{52}\right]$, then there exists $(d ; m) \in E$ such that

$$
\mu(d ; m)(a)>7.5 \lambda \quad \text { for some } a \in\left[\frac{18772}{961}, \frac{1089}{52}\right]
$$

Then Lemma 4.24 shows that there exists $a_{0} \in\left[\frac{18772}{961}, \frac{1089}{52}\right]$ with $\mu(d, m)\left(a_{0}\right)>7.5 \lambda$ and $l\left(a_{0}\right)=l(m)$. Let $a_{0}=p / q$ with $\operatorname{gcd}(p, q)=1$. For $a_{0} \in\left[\frac{18772}{961}, \frac{1089}{52}\right]$, we know

$$
\delta \geq \frac{18772}{961}+1-15 \sqrt{\frac{18772}{961 \cdot 13}}-\frac{1}{q}=\frac{2063}{961}-\frac{1}{q}
$$

Thus, Lemma 4.24 shows

$$
\sqrt{q+21} \geq 1+\left(\frac{2063}{961}-\frac{1}{q}\right) \frac{q}{3}
$$

Hence, $q \leq 6$. We can then verify these cases directly using Mathematica to check these cases and we find no obstructions.
$\left[\frac{\mathbf{2 5 4 8}}{\mathbf{1 2 1}}, \mathbf{2 7}\right]$. For $a \in\left[\frac{2548}{121}, 27\right]$, we have

$$
\sqrt{q+29} \geq \sqrt{q+\lfloor a\rfloor+2} \quad \text { and } \quad \delta \geq 21-15 \sqrt{\frac{21}{13}}
$$

Hence, Lemma 4.24 implies

$$
\sqrt{q+29} \geq 1+\left(21-15 \sqrt{\frac{21}{13}}\right) \frac{q}{3}
$$

which implies $q<8$. We can then verify these cases directly using Mathematica to check these cases and we find no obstructions.
[27, ∞). We will apply Remark 2.2. As

$$
\sqrt{27} \geq \frac{7.5}{\sqrt{13}}\left(2+\frac{7.5}{d}\right) \quad \text { for } d \geq 18
$$

Remark 2.2 implies we only need to verify $N_{k}\left(1, a^{2}\right) \leq(a / 13) M_{k}(1,6.5)$ for all

$$
k \leq \frac{18^{2}}{26}+\frac{7.5 \cdot 18}{13}+\frac{6.5^{2}-13+1}{26}<25 .
$$

For $a^{2} \geq 27$ and $k \leq 25$, we have

$$
N_{k}\left(1, a^{2}\right)=k \leq \sqrt{\frac{27}{13}} M_{k}(1,6.5) \leq \frac{a}{\sqrt{13}} M_{k}(1,6.5)
$$

This completes the proof that $d(a, b)=\sqrt{a / 13}$ for $a \in[27, \infty)$.

6. Conjectures

We now present some conjectures concerning exactly when an ellipsoid embeds into a polydisc.

Extensions of Theorem 1.1. To consider an interesting refinement of Theorem 1.1, define

$$
V(b)=\inf \left\{A: d(a, b)=\sqrt{\frac{a}{2 b}} \quad \text { for } a \geq A\right\} .
$$

Theorem 1.1 implies $V(b) \leq \frac{9}{2}(b+2+1 / b)$.
Proposition 6.1. For $b \geq 1$,

$$
V(b) \geq 2 b\left(\frac{2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1}{b+\lfloor b\rfloor+\lceil\sqrt{2 b}+\{b\}\rceil-1}\right)^{2} .
$$

Proof.

$$
\begin{aligned}
d(2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1, b) & \geq \frac{N_{2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1}(1,2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1)}{M_{2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1}(1, b)} \\
& =\frac{2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1}{b+\lfloor b\rfloor+\lceil\sqrt{2 b}+\{b\}\rceil-1} \\
& >\sqrt{\frac{2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1}{2 b}} .
\end{aligned}
$$

This implies

$$
V(b) \geq 2 b\left(\frac{2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1}{b+\lfloor b\rfloor+\lceil\sqrt{2 b}+\{b\}\rceil-1}\right)^{2} .
$$

Experimental evidence seems to suggest that for $b>1$ this bound is sharp.
Conjecture 6.2. For $b>1$,

$$
V(b)=2 b\left(\frac{2\lfloor b\rfloor+2\lceil\sqrt{2 b}+\{b\}\rceil-1}{b+\lfloor b\rfloor+\lceil\sqrt{2 b}+\{b\}\rceil-1}\right)^{2} .
$$

Generalizations of Theorem 1.2. The methods used to compute the graph of $d(a, 6.5)$ should extend for the most part to any b. In light of those techniques, experimental evidence, and a conjecture regarding $d(a, b)$ for $b \in \mathbb{Z}$ by David Frenkel and Felix Schlenk relayed to us by Daniel Cristofaro-Gardiner, we offer a conjecture regarding the graph of $d(a, b)$ for $b \geq 6$; see Figure 2.
Conjecture 6.3. For $b \geq 6$, we have $d(a, b)=\sqrt{a /(2 b)}$ with the exception that

$$
d(a, b)=1 \quad \text { for } a \in[1, b+\lfloor b\rfloor] .
$$

For $k \in \mathbb{Z}$, with $0 \leq k<\sqrt{2 b}+\{b\}$, we have

$$
\begin{aligned}
& d(a, b)=\frac{a}{b+\lfloor b\rfloor+k} \quad \text { for } a \in\left[\alpha_{k}, 2(\lfloor b\rfloor+k)+1\right], \\
& d(a, b)=\frac{2(\lfloor b\rfloor+k)+1}{b+\lfloor b\rfloor+k} \quad \text { for } a \in\left[2(\lfloor b\rfloor+k)+1, \beta_{k}\right],
\end{aligned}
$$

where

$$
\begin{gathered}
\alpha_{0}=b+\lfloor b\rfloor, \quad \alpha_{1}=\beta_{0}=\frac{(b+\lfloor b\rfloor+1)(2\lfloor b\rfloor+1)}{b+\lfloor b\rfloor}, \\
\alpha_{k}=\frac{(b+\lfloor b\rfloor+k)^{2}}{2 b} \text { for } k \geq 2, \quad \beta_{k}=2 b\left(\frac{2(\lfloor b\rfloor+k)+1}{b+\lfloor b\rfloor+k}\right)^{2} \quad \text { for } k \geq 1 .
\end{gathered}
$$

For integers m, if

$$
b \in\left[m-\frac{m}{(m+1)^{2}}, m+\frac{1}{2+m}\right],
$$

let $b=m+\varepsilon$. Then

$$
\begin{array}{ll}
d(a, b)=\frac{m a+1}{2 m^{2}+(2+\varepsilon) m+\varepsilon} & \text { for } a \in\left[\alpha^{*}, 2 m+4\right], \\
d(a, b)=\frac{m(2 m+4)+1}{2 m^{2}+(2+\varepsilon) m+\varepsilon} & \text { for } a \in\left[2 m+4, \beta^{*}\right],
\end{array}
$$

where

$$
\begin{gathered}
\alpha^{*}=\frac{1}{2\left(2 m^{3}+2 m^{2} \varepsilon\right)}\left(8 m^{3}+4 m^{2}+8 m^{2} \varepsilon+4 m^{3} \varepsilon+\varepsilon^{2}+2 m \varepsilon^{2}+b^{2} \varepsilon^{2}-(1+m)(2 m+\varepsilon)\right. \\
\left.\times \sqrt{-4 m^{2}+8 m^{3}+4 m^{4}-4 m \varepsilon+8 m^{2} \varepsilon+4 m^{3} \varepsilon+\varepsilon^{2}+2 m \varepsilon^{2}+m^{2} \varepsilon^{2}}\right), \\
\beta^{*}=\frac{2\left(\varepsilon+m+8 m \varepsilon+8 m^{2}+20 m^{2} \varepsilon+16 m^{3} \varepsilon+16 m^{4}+4 m^{4} \varepsilon+4 m^{5}\right)}{(1+m)^{2}(2 m+\varepsilon)^{2}} .
\end{gathered}
$$

Figure 2. Approximate plot of the graph of $d(a, b)$.
We note that Conjecture 6.3 implies Conjecture 6.2 for $b \geq 6$. Furthermore, we prove that the conjecture is a lower bound for $d(a, b)$.
Proposition 6.4. For $b \geq 6$, we have $d(a, b) \geq \sqrt{a /(2 b)}$ and

$$
d(a, b) \geq 1 \quad \text { for } a \in[1, b+\lfloor b\rfloor] .
$$

For $k \in \mathbb{Z}$, with $0 \leq k<\sqrt{2 b}+\{b\}$, we have

$$
\begin{aligned}
& d(a, b) \geq \frac{a}{b+\lfloor b\rfloor+k} \quad \text { for } a \in\left[\alpha_{k}, 2(\lfloor b\rfloor+k)+1\right], \\
& d(a, b) \geq \frac{2(\lfloor b\rfloor+k)+1}{b+\lfloor b\rfloor+k} \quad \text { for } a \in\left[2(\lfloor b\rfloor+k)+1, \beta_{k}\right],
\end{aligned}
$$

where $\alpha_{k}, \beta_{k}, \alpha^{*}, \beta^{*}$ are as in Conjecture 6.3. For integers m, if

$$
b \in\left[m-\frac{m}{(m+1)^{2}}, m+\frac{1}{2+m}\right],
$$

let $b=m+\varepsilon$. Then

$$
\begin{array}{ll}
d(a, b) \geq \frac{m a+1}{2 m^{2}+(2+\varepsilon) m+\varepsilon} & \text { for } a \in[\alpha *, 2 m+4], \\
d(a, b) \geq \frac{m(2 m+4)+1}{2 m^{2}+(2+\varepsilon) m+\varepsilon} & \text { for } a \in[2 m+4, \beta *] .
\end{array}
$$

Proof. We know that $d(a, b) \geq \sqrt{a /(2 b)}$ because symplectic embeddings are volume preserving. We also have

$$
d(a, b) \geq \frac{N_{1}(1, a)}{M_{1}(a, b)}=\frac{1}{1}=1 .
$$

Additionally, for $k \in \mathbb{Z}$, with $\leq k<\sqrt{2 b}+\{b\}$, and $a \in[2(\lfloor b\rfloor+k), 2(\lfloor b\rfloor+k)+1]$, we have

$$
d(a, b) \geq \frac{N_{2(\lfloor b\rfloor+k)+1}(1, a)}{M_{2(\lfloor b\rfloor+k)+1}(1, b)}=\frac{a}{b+\lfloor b\rfloor+k} .
$$

Thus,

$$
\begin{aligned}
& d(a, b) \geq 1 \quad \text { for } a \in[b+\lfloor b\rfloor, 2\lfloor b\rfloor+1], k=0 \\
& d(a, b) \geq \frac{2\lfloor b\rfloor+1}{b+\lfloor b\rfloor} \quad \text { for } a \in\left[\frac{(b+\lfloor b\rfloor+1)(2\lfloor b\rfloor+1)}{b+\lfloor b\rfloor}, 2\lfloor b\rfloor+3\right], k=1, \\
& d(a, b) \geq \sqrt{\frac{a}{2 b}} \quad \text { for } a \in\left[\alpha_{k}, 2(\lfloor b\rfloor+k)+1\right], k \geq 2 .
\end{aligned}
$$

We also have, for $a \in[2(\lfloor b\rfloor+k)+1, \infty)$,

$$
d(a, b) \geq \frac{N_{2(\lfloor b\rfloor+k)+1}(1, a)}{M_{2(\lfloor b\rfloor+k)+1}(1, b)}=\frac{2(\lfloor b\rfloor+k)+1}{b+\lfloor b\rfloor+k} .
$$

Thus,

$$
d(a, b) \geq \sqrt{\frac{a}{2 b}} \quad \text { for } a \in\left[2(\lfloor b\rfloor+k)+1, \beta_{k}\right]
$$

Furthermore, if

$$
b \in\left[m-\frac{m}{(m+1)^{2}}, m+\frac{1}{2+m}\right]
$$

for some $m \in \mathbb{Z}$ and $a \in[2 m+4-1 / m, 2 m+4]$, then

$$
d(a, b) \geq \frac{N_{(m+1)^{3}}(1, a)}{M_{(m+1)^{3}}(1, b)}=\frac{m a+1}{2 m^{2}+(2+\varepsilon) m+\varepsilon},
$$

So

$$
d(a, b) \geq \sqrt{\frac{a}{2 b}} \quad \text { for } a \in\left[\alpha^{*}, 2 m+4\right]
$$

We also have, for $a \in\left[2 m+4 m \beta^{*}\right]$,

$$
d(a, b) \geq \frac{N_{(m+1)^{3}}(1, a)}{M_{(m+1)^{3}}(1, b)}=\frac{m(2 m+4)+1}{2 m^{2}+(2+\varepsilon) m+\varepsilon}
$$

Thus,

$$
d(a, b) \geq \sqrt{\frac{a}{2 b}} \quad \text { for } a \in\left[2 m+4, \beta^{*}\right]
$$

Acknowledgments

We wish to thank Daniel Cristofaro-Gardiner for his helpful explanations, reference suggestions, encouragement and patience. We also thank the NSF, Michael Hutchings and UC Berkeley for providing the opportunity to work on symplectic embedding problems this summer.

References

[Beck and Robins 2007] M. Beck and S. Robins, Computing the continuous discretely: Integer-point enumeration in polyhedra, Springer, New York, 2007. MR Zbl
[Buse and Hind 2013] O. Buse and R. Hind, "Ellipsoid embeddings and symplectic packing stability", Compos. Math. 149:5 (2013), 889-902. MR Zbl
[Cristofaro-Gardiner and Kleinman 2013] D. Cristofaro-Gardiner and A. Kleinman, "Ehrhart polynomials and symplectic embeddings of ellipsoids", preprint, 2013. arXiv
[Frenkel and Müller 2012] D. Frenkel and D. Müller, "Symplectic embeddings of 4-dimensional ellipsoids into cubes", preprint, 2012. arXiv
[Hutchings 2014] M. Hutchings, "Lecture notes on embedded contact homology", pp. 389-484 in Contact and symplectic topology, edited by F. Bourgeois et al., Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc., Budapest, 2014. MR Zbl
[Li and Li 2002] B.-H. Li and T.-J. Li, "Symplectic genus, minimal genus and diffeomorphisms", Asian J. Math. 6:1 (2002), 123-144. MR Zbl
[McDuff 2011] D. McDuff, "The Hofer conjecture on embedding symplectic ellipsoids", J. Differential Geom. 88:3 (2011), 519-532. MR Zbl
[McDuff and Schlenk 2012] D. McDuff and F. Schlenk, "The embedding capacity of 4-dimensional symplectic ellipsoids", Ann. of Math. (2) 175:3 (2012), 1191-1282. MR Zbl

Received: 2014-09-08 Revised: 2015-06-21 Accepted: 2015-07-01
$\begin{array}{ll}\text { burkhm2@uw.edu } & \text { Mathematics Department, University of Washington, } \\ & \text { Padelford Hall C-110, Seattle, WA 98195, United States }\end{array}$
University of California, Santa Cruz, CA 95064, United States
mtimmons@mit.edu Massachusetts Institute of Technology, 450 Memorial Drive, Cambridge, MA 02139, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $\$ 175 /$ year for the electronic version, and $\$ 235 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers

involve 2017 vol. 10 no. 2

Stability analysis for numerical methods applied to an inner ear model 181Kimberley Lindenberg, Kees Vuik and Pieter W. J.van Hengel
Three approaches to a bracket polynomial for singular links 197Carmen Caprau, Alex Chichester and Patrick Chu
Symplectic embeddings of four-dimensional ellipsoids into polydiscs 219
Madeleine Burkhart, Priera Panescu and Max Timmons
Characterizations of the round two-dimensional sphere in terms of 243 closed geodesicsLee Kennard and Jordan Rainone
A necessary and sufficient condition for coincidence with the weak 257topologyJoseph Clanin and Kristopher Lee
Peak sets of classical Coxeter groups 263Alexander Diaz-Lopez, Pamela E. Harris, Erik Inskoand Darleen Perez-Lavin
Fox coloring and the minimum number of colors 291Mohamed Elhamdadi and Jeremy Kerr
Combinatorial curve neighborhoods for the affine flag manifold of type $A_{1}^{1} 3$ 317Leonardo C. Mihalcea and Trevor Norton
Total variation based denoising methods for speckle noise images 327
Arundhati Bagchi Misra, Ethan Lockhart andHyeona Lim
A new look at Apollonian circle packings 345Isabel Corona, Carolynn Johnson, Lon Mitchell andDYLAN O'CONNELL

[^0]: MSC2010: 53DXX.

