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The question of whether a closed Riemannian manifold has infinitely many
geometrically distinct closed geodesics has a long history. Though unsolved in
general, it is well understood in the case of surfaces. For surfaces of revolution
diffeomorphic to the sphere, a refinement of this problem was introduced by
Borzellino, Jordan-Squire, Petrics, and Sullivan. In this article, we quantify their
result by counting distinct geodesics of bounded length. In addition, we reframe
these results to obtain a couple of characterizations of the round two-sphere.

Introduction

All closed Riemannian manifolds contain a closed geodesic. If the manifold is not
simply connected, any length-minimizing representative of a nontrivial homotopy
class is a closed geodesic. In the simply connected case, this is already a nontrivial
result.

A more difficult question is whether there exist infinitely many closed geodesics.
To avoid over-counting, one considers two geodesics geometrically distinct if their
images are distinct. This brings us to the well-known question of whether there
exist infinitely many geometrically distinct closed geodesics. In this article, we
restrict our attention to surfaces, but we refer the reader to [Oancea 2015, Chapter 2]
for a survey and a guide to the literature on the problem.

For surfaces with genus g ≥ 1, one uses the infinitude of the fundamental group
and a length-minimization argument to construct infinitely many geometrically
distinct closed geodesics. For the torus, it follows that the number of such geodesics
of length at most ` grows quadratically in ` (see [Berger 2010, Chapter XII.5.A]).
For g ≥ 2, Katok proved that this number actually grows exponentially in ` (see
Remark 0.3 below).

In the remaining case, when the surface is the sphere, this question was answered
affirmatively by Bangert [1993] and Franks [1992] (cf. [Berger 2010; Hingston
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1993a]). Hingston [1993b] then proved a quantified version of this result: given
any metric on S2, the number of geometrically distinct closed geodesics of length
at most ` is asymptotically at least c`/ log ` for some constant c > 0.

In this article, we consider refinements of these results. As motivation, consider
a surface of revolution. Each profile curve connecting the poles extends to a closed
geodesic. In particular, the results of Bangert, Franks and Hingston are trivial in this
setting. On the other hand, all of these geodesics are in some sense the same. This
motivates the following definition: for a closed Riemannian manifold M, we say
that two geodesics on M are strongly geometrically distinct if there is no isometry
taking the image of one to the image of the other.

For metrics with finite isometry group, one has immediate analogues of the results
above. For metrics with infinite symmetry, it is unclear whether there exist infinitely
many strongly geometrically distinct geodesics. For example, the constant curvature
metric on S2 has only one closed geodesic in this sense. Borzellino et al. [2007]
proved that all surfaces of revolution diffeomorphic to S2, except for the round
spheres, have infinitely many strongly geometrically distinct geodesics. Our main
result is a quantification of this result, as well as a straightforward observation that
it extends to all closed, orientable surfaces with continuous (equivalently infinite)
symmetry.

Main Theorem. Let M be an orientable, compact surface with infinite isome-
try group. Let N (`) denote the number of strongly geometrically distinct closed
geodesics on M of length less than or equal to `. One of the following occurs:

(1) M is isometric to a round sphere, and N (`)= 1 for all sufficiently large ` > 0.

(2) There is a constant c > 0 such that N (`)≥ c`2 for all sufficiently large ` > 0.

We make a few remarks.

Remark 0.1. In the nonorientable case, one applies the theorem to the orientable
double cover to obtain an analogous characterization of the real projective plane
with constant curvature.

Remark 0.2. It is well known that a closed, orientable surface M can have infinite
isometry group only if M is diffeomorphic to S2 or the torus T 2 (see Lemma 1.1). In
the latter case, a simple extension of a standard argument shows the Main Theorem
holds. However the argument we provide for S2 carries over with little effort to the
case of T 2, so we include it in Section 3 for completeness.

Remark 0.3. For a compact surface M with genus g ≥ 2, the isometry group
is finite, so N (`) is related to the number n(`) of geometrically distinct closed
geodesics on M of length at most ` by the relation

N (`)≤ n(`)≤ C N (`),
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where C denotes the number of elements in the isometry group. Hence asymptotics
on n(`) imply asymptotics on N (`), up to multiplicative constant. For a metric on M
with constant curvature −1, Margulis showed that the function n(`) is asymptotic
to ce`/` for some constant c; that is, n(`)/(ce`/`)→ 1 as `→∞ (see [Margulis
1969]; cf. [Katok 1988, Section 1]). In particular, n(`) ≤ e` for all sufficiently
large `. On the other hand, Katok [1982] showed that, for any metric on M with
the same area as the constant curvature −1 metric,

lim inf
`→∞

log(n(`))/`≥ 1,

with equality if and only if the metric has constant curvature −1 (cf. [Berger 2010,
Chapter XII.5.B]). As a consequence, for the case of nonconstant curvature, there
exists a constant a > 1 such that n(`)≥ ea` for all sufficiently large `. Hence for
both S2 and surfaces of genus g≥ 2, there is a sense in which the constant curvature
metric is characterized by having the fewest closed geodesics. We do not know
whether the constant curvature metrics on T 2 have a similar characterization.

Consider now a metric on S2 with infinite isometry group. The metric takes the
form ds2

+ h(s)2dθ2 and one can check that the arguments in [Borzellino et al.
2007] for a surface of revolution carry over to this slightly more general case to
show that infinitely many strongly geometrically distinct closed geodesics exist, i.e.,
lim`→∞ N (`)=∞. In Section 2, we summarize their argument and supplement it
where needed to prove the claimed lower bound on the growth rate of N (`).

Before starting the proof, we point out that this theorem, combined with the
work of Hingston and Katok, immediately implies the following:

Corollary. Let M be an orientable, compact surface. Either M is isometric to
a round sphere and N (`) = 1 for all sufficiently large ` > 0, or there exists a
constant c > 0 such that N (`)≥ c`/ log ` for all sufficiently large ` > 0.

1. Preliminaries on Lie group actions

In this section, we gather some results on isometric actions by Lie groups that are
required for the proofs. We summarize the results here:

Lemma 1.1. If M is a closed, orientable Riemannian manifold of dimension two
with infinite isometry group G, then the identity component G0 ⊆ G contains a
circle S1, and one of the following occurs:

(1) M is isometric to a round S2 and dim G = 3.

(2) M is diffeomorphic to S2 but not isometric to a round S2, dim G = 1, and the
fixed-point set of S1 is a pair of isolated points.

(3) M is diffeomorphic to a torus, and the fixed-point set of S1 is empty.

In particular, M cannot have genus g ≥ 2.



246 LEE KENNARD AND JORDAN RAINONE

To prove this lemma, suppose M is a closed Riemannian manifold of dimen-
sion two with infinite isometry group G. A theorem of Myers and Steenrod states
that G is a compact Lie group (see [Kobayashi 1972, Chapter II, Section 1]). Let
G0 ⊆ G denote the identity component. By compactness, G has only finitely
many components. Since G is infinite, this implies G0 has positive dimension. In
particular, the maximal torus theorem implies G0 contains a circle S1.

This circle acts isometrically on M, and its fixed-point set

F = {p ∈ M | ei t(p)= p for all ei t
∈ S1
}

equals the zero set of the associated Killing field X on M defined by

X (p)= d
dt

∣∣∣
t=0
(ei t(p)).

Moreover, F consists of isolated points, and the number of these points equals the
Euler characteristic of M (see [Kobayashi 1972, Chapter II, Theorems 5.3 and 5.5]).
Since the Euler characteristic of M equals 2− 2g, where g is the genus, it follows
either that M is diffeomorphic to S2 and F is a pair of isolated points or that M is
diffeomorphic to T 2 and F is empty.

It suffices to show that dim G = 3 if and only if M is a round S2, and that
dim G = 2 only if M is diffeomorphic to T 2. Regarding the first of these claims,
we note that a round S2 has isometry group O(3), which is three-dimensional.
Conversely, it is a classical fact that if the isometry group of a compact two-
manifold is three-dimensional, then M is either S2 or the real projective plane RP2

equipped with a metric of constant curvature (see [Kobayashi 1972, Chapter II,
Theorem 3.1]). If, moreover, M is orientable, as in Lemma 1.1, then we conclude
that M is isometric to a round S2.

Suppose now that dim G= 2. The only compact, connected, two-dimensional Lie
group is the two-torus, so G0 = T 2 (see [Bröcker and tom Dieck 1985, page 169]).
Since G0 acts effectively on M and has the same dimension as M, it follows that
G0 acts transitively on M and hence that the Gauss curvature is constant. By the
Gauss–Bonnet theorem and the fact that the genus g ≤ 1, either M is a round S2

or a flat T 2. In the first of these cases, we have dim G = 3, a contradiction to the
assumption that dim G = 2. Hence M is isometric to a torus with constant zero
curvature.

2. Proof of the Main Theorem for the sphere

Assume that M is a Riemannian manifold diffeomorphic to S2 with infinite isometry
group. Let {p, q} ⊆ M denote the fixed point set of this circle action according to
Lemma 1.1. Choose a minimal geodesic c from p to q. By rescaling the metric
if necessary, assume that c is defined on [0, π] and that c(0) = p and c(π) = q.
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There exists a smooth function h : (0, π)→ (0,∞) and an isometric covering map

σ :
(
(0, π)×R, ds2

+ h(s)2dθ2)
→ M \ {p, q},

(s, θ) 7→ eiθ
· c(s),

where the dot denotes the action of the circle element eiθ on c(s). Since M
is smooth at p = c(0) and q = c(π), we conclude that the extended function
h : [0, π]→R satisfies h(0)=h(π)=0 and h′(0)=−h′(π)=1 (see [Petersen 2016,
Section 1.4.4]). The strategy now is to follow the proof in [Borzellino et al. 2007],
which covers the case of a surface of revolution. Note that, for a surface of revolution,
h(s) represents one coordinate of a unit-speed curve in the plane and hence satisfies
the condition that |h′(s)| ≤ 1 (see [Petersen 2016, Section 1.4.4]). Although we
are considering a more general class of surfaces, the arguments of [Borzellino et al.
2007] extend to our situation. We summarize the proof here since our strategy is
simply to supplement it, as needed, in order to prove the Main Theorem.

In the coordinates induced by σ , the geodesic equations are

s ′′(t)= h(s(t))h′(s(t))θ ′(t)2,

θ ′′(t)=−2
h′(s(t))
h(s(t))

s ′(t)θ ′(t).

The meridians, γ (t) = σ(t, θ0), satisfy these equations and extend to closed
geodesics passing through both poles, p and q. Since θ0 is arbitrary, we have
by uniqueness that meridians are the only geodesics that pass through the poles. In
the rest of this section, we consider those geodesics that do not pass through the
poles. Since σ defines an isometric covering map onto M \ {p, q}, we can write a
geodesic γ (t) as σ(s(t), θ(t)) for smooth functions s : R→ (0, π) and θ : R→ R.
For example, the parallels given by γ (t) = σ(s0, t/h(s0)) are closed geodesics
provided that h′(s0)= 0. Another example of a geodesic is provided in Figure 1.

Figure 1. A geodesic asymptotic to a parallel. The surface is S2

equipped with a rotationally symmetric metric.
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An important consequence of the geodesic equations is Clairaut’s relation. This
states that, for each nonmeridian geodesic γ , there exists a constant cγ > 0 such that

h(s(t)) cosα(t)= cγ ,

where α(t) is the angle between γ ′(t) and the coordinate vector field σθ at γ (t).
Since the cosine function is bounded, h(s(t)) cannot go to zero; hence any non-
meridian curve has its s-coordinate bounded by some interval

[s0(γ ), s1(γ )] = [inf s(t), sup s(t)] ⊆ (0, π).

Further analysis shows the following.

Lemma 2.1 (Clairaut). For a ∈ (0, π), let γa be a unit-speed geodesic starting with
s-coordinate a and initial direction γ ′(0) in the θ-direction. One of the following
occurs:

(1) parallel: h′(a)= 0, and s(t)= a for all t .

(2) asymptotic: h′(a) > 0 (resp. < 0) and there exists b = b(a) > a (resp. < a)
such that h′(b)= 0 and s(t)→ b as t→∞.

(3) oscillating: h′(a) > 0 (resp. < 0) and there exists b = b(a) > a (resp. < a)
such that h′(b) < 0 (resp. > 0) and s(t) oscillates between a and b, achieving
these extremal values at integral multiples of some time, denoted T (a).

According to this result, we refer to the parameter a ∈ (0, π) as parallel, as-
ymptotic, or oscillating. Following [Borzellino et al. 2007, Proposition 3.1], we
let U ⊆ (0, π) denote the subset consisting of oscillating a ∈ (0, π) for which
h′(a) > 0 and h′(b(a)) < 0, where b(a)= inf{b> a | h(b)= h(a)}. Geometrically,
the s-coordinate of γa oscillates between a and b(a). It follows that U ⊆ (0, π) is
an open set and that the function a 7→ b(a) on U is smooth. Indeed, this function
is given by h composed with a local inverse of h, and so it is smooth by the inverse
function theorem. Figure 2 indicates the region U for a function h(s) corresponding
to the dumbbell shape from Figure 1.

For each a ∈U, let γa(t)= σ(s(t), θ(t)) be as in Lemma 2.1 and define

R(a)= 2
∫ T (a)

0
θ ′(t) dt and L(a)= 2T (a)= 2

∫ T (a)

0
1 dt,

where T (a) is the time referred to in the third conclusion of Lemma 2.1. This
defines two functions R :U → R and L :U → R. The geometric interpretation of
these functions is as follows. The quantity 2T (a) denotes the time required for a
geodesic starting at s = a and parallel to σθ to have its s-coordinate go to b(a) and
back to a. We call this a “full trip”. It then follows by symmetry that R(a) and L(a)
denote the total rotation and length of the geodesic on a full trip. In [Borzellino
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0 s0 s1 s2 s3 π

s

h(
s)

U

Figure 2. Example of function h(s) corresponding to a surface of
revolution with the shape of a dumbbell, as in Figure 1. Here, s
is the arclength coordinate. The value a = s0 corresponds to an
asymptotic geodesic as in Lemma 2.1, and the values a∈{s1, s2, s3}

correspond to parallel geodesics. The blue region is U, the set of
oscillating values of a for which h′(a) > 0.

et al. 2007], the authors prove that R(a) is a continuous function of a. For our
purposes, we also need that L(a) is continuous.

Lemma 2.2. The functions L , R :U → R are continuous.

Proof. The proofs for R and L are similar, so we only prove it for L . Fix a ∈ U.
Choose a nontrivial interval [a1, a2] ⊆U containing a on which h′ ≥ c1 > 0. We
prove now that L is continuous on [a1, a2].

To do this, we rewrite expression for L(a). First, the unit-speed condition implies
1=|γ ′a(t)|

2
= s ′(t)2+h(s(t))2θ ′(t)2. Since s(t) is increasing from t = 0 to t = T (a),

this implies
s ′(t)=

√
1− h(s(t))2θ ′(t)2.

Next, the second geodesic equation implies d
dt (h(s(t))

2θ ′(t)) = 0. As a result,
h(s(t))2θ ′(t) equals a constant C . At t = 0, the unit-speed condition implies
θ ′(0)= 1/h(s(0))= 1/h(a), so we have C = h(a). Putting this together, we obtain

s ′(t)=
√

1− h(a)2/h(s(t))2.

Finally, we use this expression in order to apply the change of variables s = s(t)
to the integral L = 2

∫ T (a)
0 dt . This gives us the expression

L = 2
∫ b(a)

a

ds√
1− h(a)2/h(s)2

.
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Regarding the right side as a function of a, we may write L(a)= 2
∫ b(a)

a l(a, s) ds,
where l(a, s) is given by h(s)/

√
h(s)2− h(a)2. This integral is improper at both

endpoints, so we proceed by proving the following two claims:

(1) For all sufficiently small δ > 0, the integral Lδ(a) = 2
∫ b(a)−δ

a+δ l(a, s) ds is
smooth.

(2) The functions Lδ converge uniformly to L on [a1, a2].

The first claim follows from the Leibniz integral rule since l(a, s) is a smooth
function on the set {(a, s)|a ∈ [a1, a2], a+ δ ≤ s ≤ b(a)− δ}. To prove the second
claim, it suffices to prove that

∫ a+δ
a l(a, s) ds → 0 and

∫ b(a)
b(a)−δ l(a, s) ds → 0

uniformly in a ∈ [a1, a2] as δ goes to 0. These claims are proven similarly, so we
only prove the first. The second only requires the additional fact that b(a) depends
smoothly on a.

Observe that l(a, s) is nonnegative and bounded above as

l(a, s)=
h(s)√

h(s)2− h(a)2
≤

1
2c1

2h(s)h′(s)√
h(s)2− h(a)2

.

Integrating this expression and applying the change of variables y = h(s)2− h(a)2,
we conclude that∫ a+δ

a
l(a, s) ds ≤

1
2c1

∫ h(a+δ)2−h(a)2

0

dy
√

y
=

√
h(a+ δ)2− h(a)2

c1
.

Since h is smooth and hence uniformly continuous on [0, π], this last quantity
converges to 0 uniformly in a as δ→ 0. �

We proceed to the proof of the Main Theorem, that the number N (`) of strongly
geometrically distinct closed geodesics grows quadratically in `. The idea is to
show, for all large ` > 0, that a large number of values of a exist such that a ∈U,
R(a)= 2π(p/q) for some rational p/q, and L(a)≤ `/q. These three conditions
imply that any choice of γa as in Lemma 2.1 is oscillating, closes up after q full
trips, and is a closed geodesic with length at most `.

First, we dispose of the case where the isometry group G satisfies dim G 6= 1.
By Lemma 1.1, we have dim G = 3 and that M is a round sphere. In this case, the
isometry group is O(3) or SO(3), and every unit-speed geodesic can be carried to
any other by an isometry, so N (`)= 1 for all ` larger than 2πr , where 1/r2 is the
Gauss curvature of M. This completes the proof of the Main Theorem in this case.

We assume from now on that dim G = 1. As a result, the identity component
G0 ⊆ G equals the circle group. By compactness, G has only finitely many
components. In particular, for each oscillating value of a as above, at most finitely
many other such values result in geodesics that are not strongly geometrically
distinct from γa . This issue results in a multiplicative factor (equal to the number
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of components in the isometry group) in our estimates. Since the Main Theorem
involves an unknown multiplicative constant anyway, we simply assume, without
loss of generality, that the isometry group equals the circle.

The proof is carried out in three cases, which are based roughly on the setup in
[Borzellino et al. 2007]. One key step is to prove that there exists an asymptotic
geodesic if h has more than one critical point. This actually need not be the case.
Indeed, a capped cylinder provides a counterexample, since every critical point is
a local maximum and hence not a limiting value of an asymptotic geodesic. This
problem is easy to fix, however, by breaking the proof into cases as follows.

Lemma 2.3. If h has infinitely many critical points, then N (`) =∞ for all suffi-
ciently large ` > 0.

Proof. If h′(a)= 0, then γa(t)=σ(a, t/h(a)) is a closed geodesic of length 2πh(a).
Moreover, the image of γa maps to itself under any isometry, so distinct values of a
yield strongly geometrically distinct closed geodesics. The result follows since h is
bounded on [0, π]. �

Lemma 2.4. If h has finitely many critical points, and R is locally constant, then
N (`)=∞ for all sufficiently large ` > 0.

Proof. In this case, the argument in [Borzellino et al. 2007, Corollaries 4.4 and 4.5]
is valid since the critical points are isolated. Indeed, first suppose that h has more
than one critical point (as in Figure 2). The arguments there show that M has an
asymptotic geodesic and hence that R is unbounded on U. However, Lemma 2.1
and the assumptions of this lemma imply that R takes on only finitely many
values, so this is a contradiction. Assume instead that h has a unique critical
point, s0 (as in Figure 3 below). It follows as in [Borzellino et al. 2007, Corol-
lary 5.4] that U = (0, s0) and that R(a) = lima′→0 R(a′) = 2π for all a ∈ (0, s0).
But L is continuous on (0, s0) and hence on [s0/3, s0/2], so there exist infinitely
many strongly geometrically distinct closed geodesics of length at most L0, where
L0 =max

{
L(s) | s ∈ [s0/3, s0/2]

}
<∞. �

Lemma 2.5. If h has finitely many critical points and R is not locally constant, then
there exists a constant c > 0 such that N (`)≥ c`2 for all sufficiently large ` > 0.

Proof. Choose a closed interval I ′ ⊆ U that is mapped by R to some nontrivial
interval I ⊆ R. Let 2π(p/q) ∈ I . Each a ∈ U that is mapped by R to 2π(p/q)
corresponds to a closed geodesic of length q L(a). Since L is continuous on I ′, this
length is at most q L0, where L0 is the maximum value of L on I ′. This length is at
most ` if and only if q ≤ b`/L0c. To estimate N (`) from below, it suffices to count
the number of rationals p/q ∈ 1/(2π)I with q ≤ b`/L0c. By Lemma 2.6 below,
there is a constant c′ such that the number of such rationals is at least c′(b`/L0c)

2
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s0

s

h(
s)

U

Figure 3. An example of a profile curve h(s) with a unique critical
point. As in Figure 2, s is the arclength parameter and U is the set
of oscillating s-values a for which h′(a) > 0.

for all sufficiently large `. Taking c = 1
2 c′/L2

0, we conclude that N (`)≥ c`2 for all
sufficiently large ` > 0. �

As indicated in the previous proof, it suffices to prove the following counting
lemma.

Lemma 2.6. Inside any connected, nontrivial interval I ⊆ R, there exist constants
c > 0 and n0 ∈ N such that for all n ≥ n0, there are at least cn2 rational numbers
in I with denominator at most n.

Proof. The proof uses Farey fractions. Let Fn denote the set of rationals a/b written
in reduced form such that 0 ≤ a ≤ b ≤ n. It is easy to see that the number of
elements in Fn satisfies

|Fn| = 1+
n∑

k=1

φ(k),

where φ(k) is the Euler totient function, given by the number of integers 1≤ i ≤ k
coprime to k. According to Walfisz [1963],

n∑
k=1

φ(k)= 3
π2 n2

+O
(
n(log n)2/3(log log n)4/3

)
.

In particular, it follows that constants c1 > 0 and n0 > 0 exist such that |Fn|> c1n2

for all n ≥ n0.
The idea now is to inject Fn into I in a controlled way. First, it is clear that the

conclusion of the lemma holds for I if and only if it holds for {1+ i | i ∈ I }. Hence,
we assume without loss of generality that I 6⊆ (−∞, 0]. Choose positive integers a
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and b such that I contains the interval [a/b, (a + 1)/b]. Set c = 1
2(c1/b2), and

choose n0 ≥ n1 such that bn/bc ≥ n1 and c1(n/b− 1)2 > cn2 for all n ≥ n0. We
claim that n ≥ n0 implies the number of rationals x ∈ I with denominator at most n
is at least cn2.

To do this, consider the injection Fbn/bc→ I given by x 7→ (a+ x)/b. Note that
the rationals in the image of this map have denominator at most n. Hence the total
number of rationals in I with denominator at most n is at least the order of Fbn/bc.
For all n ≥ n0, this order is at least c1(bn/bc)2, which in turn is greater than cn2. �

This completes the proof of the Main Theorem in the case where M is a sphere.

3. Proof of the Main Theorem for the torus

Assume now that M is diffeomorphic to the torus and has infinite isometry group.
In this case, there exists an isometric covering map from

σ : (R×R, ds2
+ h(s)2dθ2)→ M,

where h : R → R is some smooth, positive, and periodic function on R, as in
Figure 4. To fix notation, we perform a global scaling so that the period is π .

As with the case where M is diffeomorphic to S2, we obtain the same geodesic
equations and Clairaut relation. However, Lemma 2.1 does not hold since it is
possible for geodesics to have the property |s(t)| →∞ as t→∞. Indeed, this is
the case for meridians. As a substitute, we make the following easy observation.

s0 s1 s0+π

s

h(
s)

U

Figure 4. Example of function h(s) corresponding to a torus of
revolution. Here, s is the arclength coordinate. The s-values
congruent to s0 or s1 modulo π correspond to parallel geodesics.
The blue region labeled U is, by analogy with the sphere case, the
set of oscillating s-values a such that h′(a) > 0.
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Lemma 3.1. The π -periodic function h :R→R has at least one of the two following
properties:

(1) (nonisolated case) There exist infinitely many critical points in (0, π).

(2) (asymptotic case) There exists an isolated local minimum at some s0 ∈ R.

In the first case of the lemma, it follows that N (`)=∞ for all `≥ 2π max(h).
In the second case, it follows as in the case where M is a sphere that the rotation
function R(a) is unbounded. One can imagine why this happens if h(s) is as in
Figure 4, since R(a)→∞ as a→ s0 from the right. Given that R(a) is unbounded,
it follows that R(a) is not locally constant and hence that N (`)≥ c`2 asymptotically
in ` for some constant c> 0. This concludes the proof in this case, and it concludes
the proof of both theorems in the Introduction.
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