\bullet
 involve a journal of mathematics

A necessary and sufficient condition for coincidence with the weak topology

Joseph Clanin and Kristopher Lee

A necessary and sufficient condition for coincidence with the weak topology

Joseph Clanin and Kristopher Lee
(Communicated by Joel Foisy)

Abstract

For a topological space X, it is a natural undertaking to compare its topology with the weak topology generated by a family of real-valued continuous functions on X. We present a necessary and sufficient condition for the coincidence of these topologies for an arbitrary family $\mathcal{A} \subset C(X)$. As a corollary, we give a new proof of the fact that families of functions which separate points on a compact space induce topologies that coincide with the original topology.

1. Introduction

Given a topological space (X, τ), let $C(X)$ denote the collection of all continuous functions from X to \mathbb{R}, where \mathbb{R} is equipped with its usual topology. The weak topology induced by a family $\mathcal{A} \subset C(X)$, which we denote by $\tau_{\mathcal{A}}$, is the topology on X such that the collection of sets of the form

$$
V(f, y, \epsilon)=\{x \in X:|f(x)-f(y)|<\epsilon\}
$$

where $y \in X, f \in \mathcal{A}$, and $\epsilon>0$, is a subbase. It is also characterized as the coarsest topology making all the functions in \mathcal{A} continuous, and thus $\tau_{\mathcal{A}} \subset \tau$. This naturally leads one to ask when equality holds.

Gillman and Jerison [1976, Theorem 3.7] demonstrated that if $\tau=\tau_{\mathcal{A}}$, then the space X is completely regular; however, the converse does not hold in general. For example, if we take (X, τ) to be the real line with the discrete topology and the family \mathcal{A} to consist of only the identity function, then $\tau_{\mathcal{A}}$ is the usual topology on \mathbb{R} and so $\tau_{\mathcal{A}} \neq \tau$.

Conditions for the coincidence of τ and $\tau_{\mathcal{A}}$ are also given. A family $\mathcal{A} \subset C(X)$ is said to be completely regular if given a closed set $F \subset X$ and a point $x_{0} \in X \backslash F$, there exists an $f \in \mathcal{A}$ with $f\left(x_{0}\right) \notin \mathrm{cl} f[F]$. It is known (see [Gillman and Jerison 1976, Problem 3H]) that if \mathcal{A} is completely regular, then $\tau=\tau_{\mathcal{A}}$. The converse also fails to hold, as we will demonstrate with Example 1.

[^0]At present, a condition that is both necessary and sufficient appears to be absent from the literature. To remedy this lapse, we propose the following improvement to the definition of completely regular family:

Definition. A family $\mathcal{A} \subset C(X)$ is said to be finitely completely regular if given a closed set $F \subset X$ and a point $x_{0} \in X \backslash F$, there exist $f_{1}, \ldots, f_{n} \in \mathcal{A}$ such that $0 \notin \operatorname{cl} g[F]$, where the map $g: X \rightarrow \mathbb{R}$ is defined by

$$
g(x)=\max _{1 \leq k \leq n}\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right| .
$$

We will show that the condition of finite complete regularity is both necessary and sufficient for $\tau_{\mathcal{A}}$ and τ to coincide, discuss the implications of our result for families \mathcal{A} on compact spaces, and present examples.

2. Main theorem

Theorem. Let (X, τ) be a topological space and let $\mathcal{A} \subset C(X)$ be a family of realvalued continuous functions on X. The weak topology generated by \mathcal{A} coincides with τ if and only if \mathcal{A} is a finitely completely regular family.

Proof. Suppose $\tau=\tau_{\mathcal{A}}$, let F be closed, and let $x_{0} \notin F$. As the collection $V(f, y, \epsilon)$ forms a subbase for $\tau_{\mathcal{A}}$, there exist $f_{1}, \ldots, f_{n} \in \mathcal{A}$ and an $\epsilon>0$ such that

$$
x_{0} \in \bigcap_{k=1}^{n} V\left(f_{k}, x_{0}, \epsilon\right) \subset X \backslash F,
$$

and taking the complement yields

$$
F \subseteq \bigcup_{k=1}^{n} X \backslash V\left(f_{k}, x_{0}, \epsilon\right)
$$

Each set $X \backslash V\left(f_{k}, x_{0}, \epsilon\right)$ consists of all points $x \in X$ such that $\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right| \geq \epsilon$, and so if $g: X \rightarrow \mathbb{R}$ is defined by $g(x)=\max \left\{\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|: 1 \leq k \leq n\right\}$, then $0 \notin \mathrm{cl} g\left(X \backslash V\left(f_{k}, x_{0}, \epsilon\right)\right)$ for each k. Therefore, as

$$
\operatorname{cl} g(F) \subseteq \bigcup_{k=1}^{n} \operatorname{cl} g\left(X \backslash V\left(f_{k}, x_{0}, \epsilon\right)\right)
$$

we have $0 \notin \operatorname{cl} g(F)$ and thus the family \mathcal{A} is finitely completely regular.
Now, let \mathcal{A} be a finitely completely regular family. Given $U \in \tau$ and $x_{0} \in U$, there exist $f_{1}, \ldots, f_{n} \in \mathcal{A}$ such that $0 \notin \operatorname{cl} g(X \backslash U)$, where $g(x)=\max \left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|$. Consequently, there exists an $\epsilon>0$ such that $g(x) \geq \epsilon$ for all $x \in X \backslash U$, and we have

$$
X \backslash U \subseteq \bigcup_{i=1}^{n}\left\{x \in X:\left|f_{i}(x)-f_{i}\left(x_{0}\right)\right| \geq \epsilon\right\}
$$

which we complement to obtain

$$
x_{0} \in \bigcap_{i=1}^{n}\left\{x \in X:\left|f_{i}(x)-f_{i}\left(x_{0}\right)\right|<\epsilon\right\} \subseteq U
$$

Therefore $\tau \subset \tau_{A}$, and so $\tau=\tau_{\mathcal{A}}$.
A family $\mathcal{A} \subset C(X)$ is said to separate points if for all distinct $x, y \in X$ there exists a function $f \in \mathcal{A}$ such that $f(x) \neq f(y)$. It is well known that if a family separates points on a compact space, then $\tau_{\mathcal{A}}=\tau$ (see [Kaniuth 2009, Proposition 2.2.14], among others). The main theorem yields a new proof of this fact:

Corollary. Let (X, τ) be a compact space. If $\mathcal{A} \subset C(X)$ is a family of functions that separates points then $\tau=\tau_{\mathcal{A}}$.

Proof. We proceed by contraposition. Indeed, suppose $\tau \neq \tau_{\mathcal{A}}$. Then \mathcal{A} fails to be finitely completely regular. Consequently, there exists a closed F and a point $x_{0} \in X \backslash F$ such that $0 \in \operatorname{cl} g[F]$, where $g(x)=\max \left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|$ for any finite collection $f_{1}, \ldots, f_{n} \in \mathcal{A}$. Since X is compact, g is a closed mapping and this implies that $\mathrm{cl} g[F]=g[F]$, which yields $0 \in g[F]$ and so there exists an $x \in F$ with $f_{k}(x)=f_{k}\left(x_{0}\right)$ for each $1 \leq k \leq n$.

Define the closed sets

$$
F_{f}=\left\{x \in F: f(x)=f\left(x_{0}\right)\right\} \quad \text { and } \quad K=\bigcap_{f \in \mathcal{A}} F_{f}
$$

As any finite collection of functions $f_{1}, \ldots, f_{n} \in \mathcal{A}$ satisfies

$$
\bigcap_{k=1}^{n} F_{f_{k}} \neq \varnothing
$$

the collection of closed sets $\left\{F_{f}: f \in \mathcal{A}\right\}$ has the finite intersection property and so there exists a $y \in K$. By construction, $f(y)=f\left(x_{0}\right)$ for all $f \in \mathcal{A}$ and since $y \in F$, it must be that $y \neq x_{0}$. Therefore, \mathcal{A} does not separate points.

3. Examples

We now give illustrative examples of families of continuous functions; one is finitely completely regular and the other fails to satisfy the definition.

Example 1. Consider the two functions $f, g \in C([0,1])$ shown in Figure 1. The family $\mathcal{A}=\{f, g\}$ separates points, and thus the topology it induces on $[0,1]$ is the usual topology. This implies that \mathcal{A} is finitely completely regular; however, it is worth noting that \mathcal{A} fails to be completely regular. Indeed, let $F=\left[0, \frac{1}{9}\right] \cup\left[\frac{5}{9}, \frac{2}{3}\right]$ and $x_{0}=\frac{1}{3}$; then $x_{0} \notin F$ but $f\left(x_{0}\right) \in \operatorname{cl} f[F]$ and $g\left(x_{0}\right) \in \operatorname{cl} g[F]$.

Figure 1. The family $\{f, g\}$ is finitely completely regular, but not completely regular.

It is interesting to note that the subfamily $\{f\}$ of the family in Figure 1 is not finitely completely regular because any interval of the form $\left(\frac{1}{3}+\epsilon, \frac{2}{3}-\epsilon\right)$ for $0<\epsilon<\frac{1}{6}$ is open in the usual topology of the unit interval, but not in the weak topology induced by $\{f\}$. The next example gives a family on $[0, \infty)$ that does not induce a topology that coincides with that of the original space.

Example 2. Let $\mathcal{A}=\left\{f(x)=\alpha x e^{-x}: \alpha \in \mathbb{R}^{+}\right\} \subset C([0, \infty)), F=[1, \infty)$, and $x_{0}=0$. For any finite collection $f_{1}, \ldots, f_{n} \in \mathcal{A}$, where $f_{k}(x)=\alpha_{k} x e^{-x}$, we have $0 \in \operatorname{cl} g(F)$, as $g(x)=\max \left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|=\alpha_{j} x e^{-x}$ for some $1 \leq j \leq n$. Consequently, \mathcal{A} fails to be finitely completely regular and so $\tau_{\mathcal{A}}$ is strictly coarser than the usual topology on $[0, \infty)$. See Figure 2 for an example.

Figure 2. The finite collection $\left\{f_{n}(x)=\frac{1}{5} n x e^{-x}: n=1, \ldots, 10\right\} \subset \mathcal{A}$. Note that $f_{n}(x) \rightarrow 0$ as $x \rightarrow \infty$ for each $1 \leq n \leq 10$, and this forces $0 \in \operatorname{cl} g[[1, \infty)]$, where $g(x)=\max _{1 \leq k \leq 10}\left|f_{k}(x)-f_{k}(0)\right|$.

4. Concluding remarks

In this work we have given necessary and sufficient conditions for the coincidence of a topology and a weak topology induced by a family of continuous functions. In particular, this characterization yields a new, more direct proof of the fact that a family that separates points on a compact space will induce the original topology. The definition we introduce additionally reveals that coincidence of the two topologies is possible only when the functions in the family suitably interact with the topology, and our second example illustrates that this can fail even with uncountably many functions.

References

[Gillman and Jerison 1976] L. Gillman and M. Jerison, Rings of continuous functions, Graduate Texts in Mathematics 43, Springer, New York, NY, 1976. MR Zbl
[Kaniuth 2009] E. Kaniuth, A course in commutative Banach algebras, Graduate Texts in Mathematics 246, Springer, New York, NY, 2009. MR Zbl

Received: 2015-09-10
jsc@iastate.edu
leekm@iastate.edu

Revised: 2015-12-09 Accepted: 2015-12-19
Department of Mathematics, lowa State University, Ames, IA 50014, United States

Department of Mathematics, lowa State University, Ames, IA 50014, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $\$ 175 /$ year for the electronic version, and $\$ 235 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers

involve 2017 vol. 10 no. 2

Stability analysis for numerical methods applied to an inner ear model 181Kimberley Lindenberg, Kees Vuik and Pieter W. J.van Hengel
Three approaches to a bracket polynomial for singular links 197Carmen Caprau, Alex Chichester and Patrick Chu
Symplectic embeddings of four-dimensional ellipsoids into polydiscs 219
Madeleine Burkhart, Priera Panescu and Max Timmons
Characterizations of the round two-dimensional sphere in terms of 243 closed geodesicsLee Kennard and Jordan Rainone
A necessary and sufficient condition for coincidence with the weak 257topologyJoseph Clanin and Kristopher Lee
Peak sets of classical Coxeter groups 263Alexander Diaz-Lopez, Pamela E. Harris, Erik Inskoand Darleen Perez-Lavin
Fox coloring and the minimum number of colors 291Mohamed Elhamdadi and Jeremy Kerr
Combinatorial curve neighborhoods for the affine flag manifold of type $A_{1}^{1} 3$ 317Leonardo C. Mihalcea and Trevor Norton
Total variation based denoising methods for speckle noise images 327
Arundhati Bagchi Misra, Ethan Lockhart andHyeona Lim
A new look at Apollonian circle packings 345Isabel Corona, Carolynn Johnson, Lon Mitchell andDYLAN O'CONNELL

[^0]: MSC2010: 46E25, 54A10.
 Keywords: weak topology, continuous functions.

