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We say a permutation π = π1π2 · · ·πn in the symmetric group Sn has a peak at
index i if πi−1<πi >πi+1 and we let P(π)={i ∈ {1, 2, . . . , n} | i is a peak of π}.
Given a set S of positive integers, we let P(S; n) denote the subset of Sn consisting
of all permutations π where P(π)= S. In 2013, Billey, Burdzy, and Sagan proved
|P(S; n)| = p(n)2n−|S|−1, where p(n) is a polynomial of degree max(S)−1. In
2014, Castro-Velez et al. considered the Coxeter group of type Bn as the group
of signed permutations on n letters and showed that |PB(S; n)| = p(n)22n−|S|−1,
where p(n) is the same polynomial of degree max(S)−1. In this paper we partition
the sets P(S; n) ⊂ Sn studied by Billey, Burdzy, and Sagan into subsets of
permutations that end with an ascent to a fixed integer k (or a descent to a fixed
integer k) and provide polynomial formulas for the cardinalities of these subsets.
After embedding the Coxeter groups of Lie types Cn and Dn into S2n , we partition
these groups into bundles of permutations π1π2 · · ·πn |πn+1 · · ·π2n such that
π1π2 · · ·πn has the same relative order as some permutation σ1σ2 · · · σn ∈ Sn .
This allows us to count the number of permutations in types Cn and Dn with a
given peak set S by reducing the enumeration to calculations in the symmetric
group and sums across the rows of Pascal’s triangle.

1. Introduction

We say a permutation π = π1π2 · · ·πn in the symmetric group Sn has a peak at
index i if πi−1 < πi > πi+1. We let [n] := {1, 2, . . . , n} and define the peak set of
a permutation π to be the set of peaks in π :

P(π)= {i ∈ [n] | i is a peak of π}.

Given a subset S ⊂ [n], we denote the set of all permutations with peak set S by

P(S; n)= {π ∈Sn | P(π)= S}.
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We say a set S ⊂ [n] is n-admissible (or simply admissible when n is understood)
provided P(S; n) 6=∅.

While the combinatorics of Coxeter groups has fascinated mathematicians for
generations [Björner and Brenti 2005], the combinatorics of peaks has only recently
caught the eye of the mathematical community. Stembridge [1997] was one of the
first to study the combinatorics of peaks; he defined a peak analog of Stanley’s
theory of poset partitions. Nyman [2003] showed that taking formal sums of
permutations according to their peak sets gives a nonunital subalgebra of the group
algebra of the symmetric group. This motivated several papers studying peak (and
descent) algebras of classical Coxeter groups [Aguiar et al. 2004; 2006b, Bergeron
and Hohlweg 2006; Petersen 2007]. Peaks have also been linked to the Schubert
calculus of isotropic flag manifolds [Bergeron et al. 2002; Bergeron and Sottile
2002; Billey and Haiman 1995] and the generalized Dehn–Sommerville equations
[Aguiar et al. 2006a; Bergeron et al. 2000; Billera et al. 2003].

Billey, Burdzy, and Sagan [Billey et al. 2013, Theorem 1.1] counted the number
of elements in the sets P(S; n). For any n-admissible set S, they found these
cardinalities satisfy

|P(S; n)| = p(n)2n−|S|−1, (1)

where |S| denotes the cardinality of the set S, and where the peak polynomial p(n)
is a polynomial of degree max(S)−1 that takes integral values when evaluated
at integers. Their study was motivated by a problem in probability theory which
explored the mass distribution on graphs as it relates to random permutations with
specific peak sets; this research was presented in [Billey et al. 2015]. Billey, Burdzy,
and Sagan also computed closed formulas for the peak polynomials p(n) for various
special cases of P(S; n) using the method of finite differences, and Billey, Fahrbach,
and Talmage [Billey et al. 2016] then studied the coefficients and zeros of peak
polynomials.

Shortly after Billey, Burdzy, and Sagan’s article appeared on the arXiv, Kasraoui
[2012] proved one of their open conjectures and identified the most probable peak
set for a random permutation. Then Castro-Velez et al. [2013] generalized the work
of Billey, Burdzy, and Sagan to study peak sets of type-B signed permutations. They
studied two sets PB(S; n) and P̂B(S; n) of signed permutations with peak set S,
whose formal definition we introduce in Section 3B. Their main result regarding
the set PB(S; n) [Castro-Velez et al. 2013, Theorem 2.4] used induction to prove

|PB(S; n)| = |P(S; n)|2n
= p(n)22n−|S|−1. (2)

Note that p(n) is the same polynomial as that of (1).
Motivated by extending the above-mentioned results to other classical Coxeter

groups, our work begins by partitioning the sets P(S; n) studied by Billey, Burdzy,
and Sagan into subsets P(S; n)↗k and P(S; n)↘k of permutations ending with an
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ascent or a descent to a fixed k, respectively. With these partitions on hand, we
show in Theorems 11 and 12 that the cardinalities of these sets are governed by
polynomial formulas similar to those discovered by Billey, Burdzy, and Sagan.
These results are presented in Section 2.

We then embed the Coxeter groups of types Cn and Dn into S2n and call
these embedded subgroups Cn,Dn ⊂S2n the mirrored permutations of types Cn

and Dn , respectively (Section 3). For each π ∈Sn , we define the pattern bundle
of π in types Cn and Dn in Definitions 14 and 17. Each pattern bundle consists
of permutations τ1τ2 · · · τn | τn+1 · · · τ2n such that τ1τ2 · · · τn flattens to π1π2 · · ·πn ,
meaning τ1τ2 · · · τn has the same relative order as π1π2 · · ·πn . These pattern bundles
have the following properties: (1) they partition the groups Cn and Dn; (2) they
are indexed by the elements of Sn , and; (3) they have size 2n in Cn and 2n−1

in Dn . This process allows us to give concise proofs of the following two identities
(Theorem 24(I) and (II), respectively):

|PC(S; n)| = p(n)22n−|S|−1 and |PD(S; n)| = p(n)22n−|S|−2.

We note that the polynomial appearing above is the same as that of (1). Moreover,
the proof of Theorem 24(I) is much shorter than the one given by [Castro-Velez et al.
2013, Theorem 2.4], and Theorem 24(II) has not appeared before in the literature.

Finally in Section 4 we prove our main result, Theorem 26. We use the formulas
for |P(S; n)↗k

| and |P(S; n)↘k | from Section 2 and sums of binomial coefficients
to enumerate the set of permutations with peak set S ⊂ [n] in Cn and Dn .

We end this introduction with a remark on the history of this collaboration.
The last three authors of this article began their study of peak sets in classical
Coxeter groups before Castro-Velez et al. had published their results from type Bn ,
and focused their study on the Coxeter (Weyl) groups of types Cn and Dn using
presentations of these groups described in [Billey and Lakshmibai 2000, pp. 29, 34].
While Perez-Lavin was presenting the preliminary results of this paper at the
USTARS 2014 conference held at UC Berkeley, we met Alexander Diaz-Lopez,
who told us of his recently completed work with Castro-Velez et al. [2013]. Knowing
that the Coxeter groups of types B and C are isomorphic, we were immediately
intrigued to see what connections could be found between the two works. We were
delighted to find that we used vastly different techniques to count the elements of
PB(S; n) and PC(S; n), and discovered an isomorphism between the two groups
which preserves peak sets (up to a reordering of the peaks). We highlight these
connections and compare and contrast the two works in Section 3B.

2. Partitioning the set P(S; n)

To make our approach precise, we begin by setting notation and giving some
definitions.
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Definition 1. For a given peak set S ⊂ [n− 1], we define

P(S;n)↗k
:=
{
π ∈ P(S;n) |πn−1<πn and πn = k

}
, P(S;n) :=

n⊔
k=1

P(S;n)↗k,

P(S;n)↘k :=
{
π ∈ P(S;n) |πn−1>πn and πn = k

}
, P(S;n) :=

n⊔
k=1

P(S;n)↘k .

We remark that P(S; n)↗1
=∅ because a permutation cannot end with an ascent

to 1. Similarly P(S; n)↘n =∅ since a permutation cannot end with a descent to n.
Therefore the sets P(S; n) and P(S; n) are the disjoint unions of sets

P(S; n)=
n⊔

k=2

P(S; n)↗k and P(S; n)=
n−1⊔
k=1

P(S; n)↘k .

Since every π ∈ P(S; n) either ends with an ascent or a descent, we see

P(S; n)= P(S; n)t P(S; n).

Our next lemma counts the permutations without peaks that end with an ascent to k.

Lemma 2. If 2≤ k ≤ n, then |P(∅; n)↗k
| = 2k−2.

Proof. Let 2≤ k ≤ n and suppose π = π1π2 · · ·πn ∈ P(∅; n)↗k. Hence P(π)=∅
and πn−1<πn= k. Let us further assume that π = τA 1τB k, where τA and τB are the
portions of π to the left and right of 1, respectively. Since P(π)=∅, we know τA

must decrease, while τB must increase. However, the values of τB must come from
the set {2, 3, . . . , k− 1} because πn−1 < πn = k, and there is one π ∈ P(∅; n)↗k

for each subset of {2, 3, . . . , k− 1} as such a π is completely determined by which
elements from that set appear in τB . Hence we see |P(∅; n)↗k

| = 2k−2. �

We will next prove a recursive formula for the number of permutations with
specified peak set S that end in an ascent to a fixed integer k.

Lemma 3. Let S ⊂ [n− 1] be a nonempty admissible set. Let m =max S and fix
an integer k, where 1≤ k ≤ n. If S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)↗k
| =

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m− 1)|2k−i−2

− |P(S1; n)↗k
| − |P(S2; n)↗k

|.

Proof. Observe that if k = 1, then the result holds trivially as all terms in the
statement are identically zero. Let 2 ≤ k ≤ n and let 5↗k denote the set of
permutations ending with an ascent to k that have peak set S1 in the first m−1 spots
and no peaks in the last m− n+ 1, i.e.,

5↗k
=
{
π ∈Sn | P(π1π2 · · ·πm−1)= S1, P(πm · · ·πn)=∅, and πn−1<πn=k

}
.
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We compute the cardinality of the set 5↗k by counting the number of ways to
construct a permutation in 5↗k.

First we select a subset P1={π1, π2, . . . , πm−1}⊂ [n]\{k} (as we fix πn to be k).
When selecting P1, we can choose i numbers from {1, 2, . . . , k−1} to include in P1

for each 0≤ i ≤ k−1 and then choose the remaining m− i−1 numbers from the set
{k+1, k+2, . . . , n} to fill the remainder of P1. Thus there are

(k−1
i

)
·
( n−k

m−i−1

)
ways

to select the elements of P1. By definition, there are |P(S1,m − 1)| ways to
arrange the m − 1 elements of P1 into a permutation π1π2 · · ·πm−1 satisfying
P(π1π2 · · ·πm−1)= S1.

Let P2= {πm, πm+1, . . . , πn} = [n]\ P1, where πn = k. There are n− (m−1)=
n − m + 1 numbers in P2, and there are precisely k − i − 1 elements from the
set {1, 2, . . . , k − 1} that were not chosen to be part of P1. That means k is the
(k−i)-th largest integer in the set P2. By flattening the numbers in P2, we can see
there are |P(∅; n −m + 1)↗k−i

| ways to arrange the elements of P2 to create a
subpermutation πmπm+1 · · ·πn that satisfies

P(πm · · ·πn)=∅ and πn−1 < πn = k.

By Lemma 2 we know that |P(∅; n −m + 1)↗k−i
| = 2k−i−2 when k − i ≥ 2

and it is 0 otherwise. Of course k− i ≥ 2 when i ≤ k− 2. Putting this all together,
we see that the number of ways to create a permutation in 5↗k is

|5↗k
| =

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m− 1)|2k−i−2. (3)

Next we consider a different way to count the elements of 5↗k. Note that we
have not specified whether πm−1>πm or πm−1<πm . So, in particular, based on the
definition of 5↗k and its restrictions on P(π1π2 · · ·πm−1) and P(πmπm+1 · · ·πn),
all of the following are possible:

P(π)= S, P(π)= S1, or P(π)= S2 for π ∈5↗k.

Hence
5↗k
= P(S; n)↗k

t P(S1; n)↗k
t P(S2; n)↗k.

Thus
|5↗k

| = |P(S; n)↗k
| + |P(S1; n)↗k

| + |P(S2; n)↗k
|. (4)

The result follows from setting (3) and (4) equal to each other and solving for the
quantity |P(S; n)↗k

|. �

The following lemma will be used in the proofs of Lemmas 5 and 9.

Lemma 4. If n ≥ 2 then

• |P(∅; n)| = 1, and

• |P(∅; n)| = 2n−1
− 1.
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Proof. The only permutation π ∈ P(∅; n) that ends in a descent is n = π1 >

π2 > · · · > πn = 1; therefore |P(∅; n)| = 1. On the other hand, it is easy to see
that P(∅; n)= 2n−1, as in [Billey et al. 2013, Proposition 2.1]. Since P(∅; n)=
P(∅; n)t P(∅; n), we compute

|P(∅; n)| = |P(∅; n)| − |P(∅; n)| = 2n−1
− 1. �

The following result allows us to recursively enumerate the set of permutations
with specified peak set S that end with an ascent.

Lemma 5. Let S ⊂ [n− 1] be a nonempty n-admissible set, and let m =max S. If
we let S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)| =
( n

m−1

)
(2n−m

− 1)|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|.

Proof. Let S ⊂ [n − 1] be an admissible set with m = max S. Define the sets
S1 = S \ {m}, S2 = S1 ∪ {m− 1} and

5↗ =
{
π ∈Sn | P(π1π2 · · ·πm−1)= S1, P(πm · · ·πn)=∅, and πn−1 < πn

}
.

Next we compute the cardinality of 5↗. We observe that there are
( n

m−1

)
choices

for the values of π1, . . . , πm−1, and by definition, there are |P(S1;m− 1)| ways to
arrange the values of π1, . . . , πm−1 so that P(π1π2 · · ·πm−1)= S1. Once we have
chosen the values of π1, π2, . . . , πm−1, the values of

πm, πm+1, πm+2, . . . , πn

are determined. We note that there are |P(∅; n−m+ 1)| ways to arrange the
values of πm, . . . , πn , so that P(πm · · ·πn)=∅ and πn−1 < πn .

Yet Lemma 4 proved that |P(∅; n−m+ 1)| = 2n−m
− 1. Hence we see that

|5↗| =
( n

m−1

)
(2n−m

− 1)|P(S1;m− 1)|. (5)

On the other hand5↗= P(S; n)tP(S1; n)tP(S2; n) by the defining conditions
of 5↗. Hence

|5↗| = |P(S; n)| + |P(S1; n)| + |P(S2; n)|. (6)

When we set the right-hand sides of (5) and (6) equal to each other and solve for
|P(S; n)|, we see that

|P(S; n)| =
( n

m−1

)
(2n−m

− 1)|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|. �

The following examples illustrate the recursion used to prove Lemmas 3 and 5.
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Example 6. We make use of Lemma 3 to compute |P({3}; 5)↗3
|. Let S be the set

S = {3} ⊂ [5]. Note that m =max S = 3. Then we compute

|P({3}; 5)↗3
| =

[(2
0

)(2
2

)
21
+

(2
1

)(2
1

)
20
]
|P(∅; 2)|
− |P(∅; 5)↗3

| − |P({2}; 5)↗3
|. (7)

Some small computations show that

P(∅; 2)= {12, 21}, P(∅; 5)↗3
= {54213, 54123},

P({2}; 5)↗3
= {45213, 25413, 45123, 15423}.

Accordingly, we can see that (7) gives

|P({3}; 5)↗3
| = (2+ 4)(2)− 2− 4= 6.

Example 7. In this example we make use of Lemma 5 to compute |P({3}; 5)|. If
we let S = {3} ⊂ [5] then m =max S = 3. We then have

|P({3}; 5)| =
(5

2

)
(25−3

− 1)|P(∅; 2)| − |P(∅; 5)| − |P({2}; 5)|. (8)

Some small computations show

P(∅; 2)= {12, 21},

P(∅; 5)=
{

54321, 54213, 54123, 53214, 53124, 52134, 51234, 43215,
43125, 42135, 32145, 41235, 31245, 21345, 12345

}
.

Direct computations yield

P({2}; 5)

=

{
45312, 35412, 45213, 25413, 45123, 15423, 35214, 25314, 35124, 25134,
15324, 15234, 34215, 24315, 34125, 24135, 23145, 14325, 14235, 13245

}
.

Equation (8) gives

|P({3}; 5)| =
(5

2

)
(25−3

− 1)(2)− 15− 20= 25.

Next we consider permutations that end in a descent to a specific value k.

Lemma 8. Let S ⊂ [n− 1] be a nonempty admissible set, let m = max S, and fix
an integer k, where 1≤ k ≤ n. If S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)↘k | =

( n−k
n−m

)
|P(S1;m− 1)| − |P(S1; n)↘k | − |P(S2; n)↘k |.

The proof of Lemma 8 follows similarly to that of Lemma 3; hence we omit the
argument, but point the interested reader to the preprint version of this paper for a
detailed proof [Diaz-Lopez et al. 2015].
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The following result allows us to recursively enumerate the set of permutations
with specified peak set S that end with a descent.

Lemma 9. Let S ⊂ [n− 1] be a nonempty admissible set, and let m = max S. If
S1 = S \ {m} and S2 = S1 ∪ {m− 1}, then

|P(S; n)| =
( n

m−1

)
|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|.

Proof. By Definition 1,

|P(S; n)| =
n−1∑
k=1

|P(S; n)↘k |.

Using this equation and Lemma 8 we get

|P(S; n)| =
n−1∑
k=1

[( n−k
n−m

)
|P(S1;m− 1)| − |P(S1; n)↘k | − |P(S2; n)↘k |

]
=

( n
m−1

)
|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|,

where the last equality comes from the identity
∑n

k=0
(k

c

)
=
(n+1

c+1

)
. �

As before, we provide an example that illustrates the use of the previous results.

Example 10. Consider the set S = {3} ⊂ [5]; hence m =max S = 3. We want to
compute |P({3}; 5)↘2|. By Lemma 8 we have

|P({3}; 5)↘2| =

(3
2

)
|P(∅; 2)| − |P(∅; 5)↘2| − |P({2}; 5)↘2|.

Some simple computations show that

P(∅; 2)= {12, 21}, P(∅; 5)↘2 =∅, and P({2}; 5)↘2 = {15432}.

Therefore
|P({3}; 5)↘2| = 3(2)− 0− 1= 5.

In fact, P({3}; 5)↘2 = {51432, 41532, 31542, 14532, 13542}.
We want to compute |P({3}; 5)|. By Lemma 9 we have

|P({3}; 5)| =
(5

2

)
|P(∅; 2)| − |P(∅; 5)| − |P({2}; 5)|.

Again we can compute that

P(∅; 2)= {12, 21}, P(∅; 5)= {54321},

P({2}; 5)= {45321, 35421, 25431, 15432}.
Thus

|P({3}; 5)| = 10(2)− 1− 4= 15.
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In fact,

P({3}; 5)=
{

53421, 43521, 34521, 52431, 42531, 32541, 24531,
23541, 51432, 41532, 31542, 21543, 14532, 13542, 12543

}
.

The following two theorems allow us to easily calculate closed formulas for
|P(S; n)| and |P(S; n)↗k

| using the method of finite differences [Stanley 2012,
Proposition 1.9.2]. We start by applying Lemma 9 in an induction argument to
show |P(S; n)| is given by a polynomial pδ(n).

Theorem 11. Let S⊂ [n−1] be an admissible set. If S=∅, take m = 1; otherwise
let m =max S. Then the cardinality of the set P(S; n) is given by

|P(S; n)| = pδ(n),

where pδ(n) is a polynomial in the variable n of degree m− 1 that returns integer
values for all integers n.

Proof. We induct on the sum i =
∑

i∈S i . When i = 0, the set S is empty. By
Lemma 4 we get |P(∅; n)| = 1, and so pδ(n)= 1 is a polynomial of degree 0.

Let S ⊂ [n−1] be nonempty, with m =max S and
∑

i∈S i = i. Let S1 = S \ {m}
and S2 = S1 ∪ {m− 1}, and note, in particular, that the sums

∑
i∈S1

i and
∑

i∈S2
i

are both strictly less than i. By induction, we know |P(S1; n)| = pδ1(n) and
|P(S2; n)| = pδ2(n), where pδ1 and pδ2 are polynomials of degrees less than m− 1
that have integral values when evaluated at integers.

By (1) we have |P(S1;m − 1)| = p(m − 1)2(m−1)−|S1|−1 and this expression
returns an integer value when evaluated at any integer m − 1 [Billey et al. 2013,
Theorem 2.2]. Since the expression p(m − 1)2(m−1)−|S1|−1 is an integer-valued
constant with respect to n, we see that p(m−1)2(m−1)−|S1|−1

( n
m−1

)
is a polynomial

in the variable n of degree m− 1. These facts, together with Lemma 9, imply

|P(S; n)| =
( n

m−1

)
|P(S1;m− 1)| − |P(S1; n)| − |P(S2; n)|

=

( n
m−1

)
p(m− 1)2(m−1)−|S1|−1

− pδ1 − pδ2

= pδ,

where pδ is a polynomial in the variable n of degree m− 1 that has integer values
when evaluated at integers. �

Using Lemma 3, we show |P(S; n)↗k
| is given by a polynomial.

Theorem 12. Let S ⊂ [n−1] be an admissible set. If S =∅ take m = 1; otherwise
let m =max S. Fix an integer k satisfying 2≤ k ≤ n; then the cardinality of the set
P(S; n)↗k is given by

|P(S; n)↗k
| = pα(k)(n),
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where pα(k)(n) is a polynomial of degree m− 1 that returns integer values for all
integers n.

Proof. We proceed by induction on the sum i =
∑

i∈S i . When i = 0 the set S is
empty. By Lemma 2 we get |P(∅; n)↗k

| = 2k−2, which is a polynomial of degree 0
in the indeterminate n.

Consider a nonempty subset S ⊂ [n− 1] with m =max S and
∑

i∈S i = i. Let
S1 = S \ {m} and S2 = S1 ∪ {m− 1}, and note, in particular, that the sums

∑
i∈S1

i
and

∑
i∈S2

i are both strictly less than i. By induction, we know

|P(S1; n)↗k
| = pα1(k)(n) and |P(S2; n)↗k

| = pα2(k)(n),

where pα1(k)(n) and pα2(k)(n) are each polynomials of degrees less than m− 1 that
have integer values when evaluated at integers.

By (1) we know |P(S1;m − 1)| = p(m − 1)2(m−1)−|S1|−1 is an integer-valued
function when evaluated at any integer m − 1, and it is a constant function with
respect to n. Hence the expression

(k−1
i

)
|P(S1;m − 1)|2k−i−2 is a polynomial

expression in n that has degree m− 1 when i = 0 and degree less than or equal to
m− 1 for 1≤ i ≤ k− 2. These facts, together with Lemma 3, imply

|P(S;n)↗k
| =

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m−1)|2k−i−2

−|P(S1;n)↗k
|−|P(S2;n)↗k

|

=

k−2∑
i=0

(k−1
i

)( n−k
m−i−1

)
|P(S1;m−1)|2k−i−2

−pα1(k)(n)−pα2(k)(n)

= pα(k)(n)

is a polynomial in the variable n of degree m− 1 that returns integer values when
evaluated at integers. �

Below we show an example of how to find the polynomial pα(k)(n).

Example 13. It is well known that any sequence given by a polynomial of degree d
can be completely determined by any consecutive d + 1 values by the method of
finite differences [Stanley 2012, Proposition 1.9.2]. Theorems 11 and 12 give us a
way of finding explicit formulas pα(k)(n) and pδ(n) for an admissible set S.

For instance if S={2, 4} and k= 6, Theorem 12 tells us pα(k)(n) is a polynomial
of degree 3. Hence we require four consecutive terms to compute pα(k)(n). One
can compute that the first few values of pα(6)(n)= |P(S; n)↗6

| are

pα(6)(6)= 16, pα(6)(7) = 80, pα(6)(8) = 224,

pα(6)(9)= 480, pα(6)(10)= 880, pα(6)(11)= 1456, . . . .
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We then take four successive differences until we get a row of zeros in the following
array:

16 80 224 480 880 1456 . . .

64 144 256 400 576 . . .

80 112 144 176 . . .

32 32 32 . . .

0 0 . . .

Since the first value we considered in the first row of the array above is the value of
pα(6)(n) at n = 6, we can write the polynomial pα(6)(n) in the basis

(n−6
j

)
as

pα(6)(n)= 16
(n−6

6

)
+ 64

(n−6
7

)
+ 80

(n−6
8

)
+ 32

(n−6
9

)
.

The sequence given by 1
16 pα(6)(n) in this example is sequence A000330 in Sloane’s

On-line encyclopedia of integer sequences [OEIS 1996] with the index n shifted by 6.

3. Pattern bundles of Coxeter groups of types C and D

In this section, we describe embeddings of the Coxeter groups of types Cn and Dn

into the symmetric group S2n . We then partition these groups into subsets, which
we call pattern bundles and denote by Cn(π) and Dn(π), that correspond to permu-
tations π of Sn . Each of the type-Cn pattern bundles Cn(π) contains 2n elements,
and the type-Dn pattern bundles Dn(π) contain 2n−1 elements. These sets allow us
to give a concise proof of Theorem 24, and they play an instrumental role in our
proof of Theorem 26.

3A. Pattern bundle algorithms for Cn and Dn. We define the group of type-Cn

mirrored permutations to be the subgroup Cn ⊂S2n consisting of all permutations
π1π2 · · ·πn |πn+1πn+2 · · ·π2n∈S2n , where πi = k if and only if π2n−i+1=2n−k+1.
In other words, if we place a “mirror” between πn and πn+1, then the numbers i and
2n− i + 1 must be the same distance from the mirror for each 1≤ i ≤ n. A simple
transposition si with 1≤ i ≤ n− 1 acts on a mirrored permutation π ∈ Cn ⊂S2n

(on the right) by simultaneously transposing πi with πi+1 and π2n−i with π2n−i+1.
The simple transposition sn acts on a mirrored permutation π ∈ Cn ⊂ S2n by
transposing πn with πn+1.

Similarly, we define the group of type-Dn mirrored permutations as the subgroup
Dn ⊂S2n consisting of all permutations π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈S2n , where
πi = k if and only if π2n−i+1 = 2n − k + 1 and the set {π1, π2, . . . , πn} always
contains an even number of elements from the set {n+ 1, n+ 2, . . . , 2n}. A simple
transposition si with 1≤ i ≤ n−1 acts on a mirrored permutation π ∈Dn ⊂S2n (on
the right) by simultaneously transposing πi with πi+1 and π2n−i with π2n−i+1. The
simple transposition sn acts on a mirrored permutation π ∈Dn ⊂ S2n by transposing
πn−1πn with πn+1πn+2.

http://oeis.org/A000330
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Definition 14. Let π = π1π2 · · ·πn ∈ Sn . We define the pattern bundle of π in
type Cn (denoted Cn(π)) to be the set of all mirrored permutations

τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn

such that τ1τ2 · · · τn has the same relative order as π1π2 · · ·πn .

We could equivalently describe Cn(π) as the set of mirrored permutations which
contain the permutation pattern π in the first n entries. We will show that these
sets partition Cn into subsets of size 2n. For every π ∈Sn , we will describe how to
construct the pattern bundle Cn(π)⊂ Cn of π using the following process:

Algorithm 15 (pattern bundle algorithm for Cn(π)).

(1) Let π = π1π2 · · ·πn ∈Sn and write it as a mirrored permutation

π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈S2n.

(2) Let In = {π1, π2, . . . , πn}. Fix 0≤ j ≤ n and select j elements from the set In .
Then let 5 be the set consisting of the j selected elements.

(3) The set In \5 consists of n− j elements. Denote this subset of In by 5c.

(4) Let 5c denote the set containing π2n−ik+1 = 2n− πik + 1 for each πik ∈5
c.

Note that |5c| = n− j .

(5) List the n elements of the set

5c t5

so that they are in the same relative order as π and call them τ1τ2 · · · τn . (Note
that the set 5c consists of the integers that were switched in Step (4), and the
set 5 consists of the ones that were fixed in Step (2).)

(6) The order of the remaining entries τn+1τn+2 · · · τ2n is determined by that of
τ1τ2 · · · τn since we must have τ2n−i+1 = 2n− τi + 1 for 1≤ i ≤ n.

(7) Output the mirrored permutation τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn ⊂S2n and
stop.

Step (5) ensures all of the constructed elements will have the same relative order
as π . It follows that the set Cn(π) described in Definition 14 denotes all elements
of Cn created from π by Algorithm 15. Notice in Step (2), we must choose j values
to fix. When we let j range from 0 to n, we see that the total number of elements
in Cn(π) is given by(n

0

)
+

(n
1

)
+ · · ·+

( n
n−1

)
+

(n
n

)
= 2n.

We conclude that |Cn(π)| = 2n for all π ∈Sn .
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Note that if τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn , then τ1 · · · τn has the same
relative order as exactly one element π ∈Sn . It follows that if σ and π are distinct
permutations of Sn , then Cn(σ )∩ Cn(π) = ∅. Therefore, this process creates all
2nn! elements of Cn .

Example 16. Using Algorithm 15, we have partitioned the elements of C3 into the
pattern bundles Cn(π):

C3 =



123|456,
124|356,
135|246,
145|236,
236|145,
246|135,
356|124,
456|123,

132|546,
142|536,
153|426,
154|326,
263|415,
264|315,
365|214,
465|213,

213|465,
214|365,
315|264,
326|154,
415|326,
426|153,
536|142,
546|132,

231|645,
241|635,
351|624,
362|514,
451|623,
462|513,
563|412,
564|312,

312|564,
412|563,
513|462,
514|362,
623|451,
624|351,
635|241,
645|231,

321|654,
421|653,
531|642,
541|632,
632|541,
642|531,
653|421,
654|321


.

One can see that the elements of π ∈S3 correspond to the elements in the top row
(in bold font). Each column consists of the pattern bundle C(π) corresponding to
each π ∈S3.

Definition 17. Let π = π1π2 · · ·πn ∈Sn . We define the pattern bundle Dn(π) to
be the set of all mirrored permutations τ = τ1τ2 · · · τn | τn+1 · · · τ2n ∈ Dn such that
τ1τ2 · · · τn has the same relative order as π1π2 · · ·πn .

For every π ∈ Sn , we construct the subsets Dn(π) ⊂ Dn using the following
process:

Algorithm 18 (pattern bundle algorithm for Dn(π)).

(1) Let π = π1π2 · · ·πn ∈Sn and write it as a mirrored permutation

π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈S2n.

(2) If n is even, then pick an even number 2 j , with 0≤ j ≤ 1
2 n. Select a subset of

2 j elements from the set {π1, π2, . . . , πn} to keep fixed. Then let 5 be the set
consisting of the 2 j selected elements.
If n is odd, then pick an odd number 2 j + 1 with 1≤ j ≤ 1

2(n− 1). Select a
subset of 2 j + 1 elements from the set {π1, π2, . . . , πn} to keep fixed. Then
let 5 be the set consisting of the 2 j + 1 selected elements.

(3) If n is even, let the set of remaining n− 2 j elements be denoted as 5c. (Note
that n− 2 j is an even integer.)
If n is odd, let the set of remaining n − 2 j − 1 elements be denoted as 5c.
(Note that n− 2 j − 1 is an even integer.)
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(4) Let the set 5c denote the set of mirror images from the elements of 5c. In
other words, for each πik ∈5

c, the mirror image π2n−ik+1 is in 5c.

(5) List elements of the set 5t5c so they are in the same relative order as π and
call the resulting permutation τ1τ2 · · · τn .

(6) Then the entries of τn+1τn+2 · · · τ2n are determined by the relation τ2n−ik+1 =

2n− τik + 1.

(7) Output the mirrored permutation τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈Dn ⊂S2n and
stop.

By Definition 17 the set Dn(π) is the subset of all elements of Dn which are
created from π by Algorithm 18. This is because Step (5) ensures that all of the
constructed elements will have the same relative order as π .

In Step (2) we choose an even/odd number of entries to fix, so that we always
exchange an even number of entries with their mirror image. This ensures each τ
constructed via Algorithm 18 is a type-Dn mirrored permutation. When n is even, we
can see from Step (2) that the total number of permutations created by Algorithm 18
is given by

∑n/2
j=0

( n
2 j

)
. When n is odd, we can use the identity

bn/2c∑
j=0

( n
2 j+1

)
=

bn/2c∑
k=0

( n
2k

)
, where 2k = n− (2 j + 1),

to see that the total number of elements created by Algorithm 18 is also given by
the formula

bn/2c∑
j=0

( n
2 j

)
.

Pascal’s identity for computing binomial coefficients states that for all integers n
and k with 1≤ k ≤ n− 1, (n

k

)
=

(n−1
k−1

)
+

(n−1
k

)
.

Using this identity we can see that

bn/2c∑
j=0

( n
2 j

)
=

n−1∑
j=0

(n−1
j

)
= 2n−1.

So for every element π ∈Sn , we create 2n−1 elements of Dn . Hence |Dn(π)|=2n−1.
Also notice that for each choice of π , the 2n−1 elements of Dn(π) will be distinct
due to the choice of which elements get sent to their mirror image. Namely, if σ
and π are distinct permutations of Sn , then Dn(σ )∩Dn(π)=∅. Therefore, this
process creates all 2n−1n! distinct elements of Dn .
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Example 19. Using Algorithm 18, we have partitioned the set D3 into the pattern
bundles Dn(π):

D3 =


123|456,
145|236,
246|135,
356|124,

132|546,
154|326,
264|315,
365|214,

213|465,
214|365,
426|153,
536|142,

231|645,
241|635,
462|513,
563|412,

312|564,
412|563,
624|351,
635|241,

321|654,
421|653,
642|531,
653|421

 .
Note that the elements in the top row (in bold font) are the elements of S3, while
the elements in each column are the elements of the pattern bundle D3(π) for each
respective π ∈S3.

3B. Peak sets in types B and C. Castro-Velez et al. [2013] studied the sets of
type-Bn signed permutations (defined below) with a given peak set R ⊂ [n − 1].
It is well known that the group of signed permutations of type Bn is isomorphic
to the Coxeter groups of types Bn and Cn . In this section, we describe one such
isomorphism between the group of signed permutations Bn and the mirrored per-
mutations Cn and show how the peak sets in mirrored permutations studied in this
paper correspond with the ones studied by Castro-Velez et al. [2013]. It is important
to know that even though we compute the cardinalities of similar sets, our methods
are completely different and yield different equations. In particular, Castro-Velez
et al. use induction arguments similar to those used by Billey, Burdzy, and Sagan
in the realm of signed permutations to derive their formulas, whereas we use the
pattern bundles of type Cn to reduce the problem to calculations in the symmetric
group.

Let Bn denote the group of signed permutations on n letters

Bn :=
{
β1β2 · · ·βn | βi ∈ {−n,−n+ 1, . . . ,−1, 1, . . . , n}

and {|β1|, |β2|, . . . , |βn|} = [n]
}
.

We say that a signed permutation β ∈ Bn has a peak at i if βi−1 < βi > βi+1.

Definition 20. Let R⊆[n−1]. Then the sets PB(R; n) and P̂B(R; n) are defined as

PB(R; n) := {β ∈ Bn | P(β1 · · ·βn)= R},

P̂B(R; n) := {β ∈ Bn | P(β0β1 · · ·βn)= R, where β0 = 0}.

In this paper we study the sets of mirrored permutations of types Cn and Dn that
have a given peak set S.

Definition 21. Let Cn and Dn be the mirrored permutations of types C and D,
respectively. For S ⊆ [n− 1], we define the sets PC(S; n) and PD(S; n) as

PC(S; n) := {π ∈ Cn | P(π1π2 · · ·πn)= S}, (9)

PD(S; n) := {π ∈ Dn | P(π1π2 · · ·πn)= S}. (10)
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Let S ⊆ [n] we define the sets P̂C(S; n) and P̂D(S; n) as

P̂C(S; n) := {π ∈ Cn | P(π1π2 · · ·πn |πn+1)= S}, (11)

P̂D(S; n) := {π ∈ Dn | P(π1π2 · · ·πn |πn+1)= S}. (12)

Note that P̂C(S; n) and P̂D(S; n) differ from PC(S; n) and PD(S; n) in that they
allow for a peak in the n-th position when πn−1 < πn > πn+1. The following
proposition provides a bijection between the peak sets P̂B(R; n) considered by
Castro-Velez et al. [2013] and P̂C(S; n) considered in this paper.

Proposition 22. Let S = {i1, i2, . . . , ik} ⊂ {2, 3, . . . , n} and

R = {n− i1+1, n− i2+1, . . . , n− ik+1} ⊂ [n−1].

Then there is a bijection between Cn and Bn that maps P̂C(S; n) to P̂B(R; n).

The above result states that the peaks of π1π2 · · ·πn |πn+1 correspond bijectively
with the peaks of a signed permutation β0β1β2 · · ·βn , where β0 = 0, and the peaks
of π1π2 · · ·πn correspond with those of β1β2 · · ·βn . Before proceeding to the proof
of Proposition 22, we set some preliminaries.

Billey and Lakshmibai [2000, Definition 8.3.2] note that a mirrored permutation

π1π2 · · ·πn |πn+1πn+2 · · ·π2n ∈ Cn

can be represented by either side of the mirror, π1π2 · · ·πn or πn+1πn+2 · · ·π2n ,
and we use the latter πn+1πn+2 · · ·π2n to define a map F from Cn to Bn as

F : Cn→ Bn,

π1π2 · · ·πn |πn+1πn+2 · · ·π2n 7→ β1β2 · · ·βn,

where

βi =

{
πn+i − n if πn+i > n,
πn+i − n− 1 if πn+i ≤ n.

We consider a signed permutation β = β1β2 · · ·βn in Bn as β0β1 · · ·βn , where
β0 = 0, thus allowing for a peak at position 1. We note that the map F respects
the relative order of the sequence πnπn+1πn+2 · · ·π2n; i.e., for 0 ≤ i ≤ n − 1, if
πn+i < πn+i+1 then βi < βi+1, and similarly if πn+i > πn+i+1 then βi > βi+1.

We also define an automorphism G : Bn → Bn which switches the sign of
each βi in β0β1β2 · · ·βn (keeping β0 = 0 fixed). To avoid cumbersome notation,
for each βi , we set βi = −βi . The following table illustrates how the maps F
and G map the group of mirrored permutations C2 bijectively to the group of signed
permutations B2:
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π ∈ C2 F(π) ∈ B2 G(F(π)) ∈ B2

12|34 012 012
21|43 021 021
13|24 012 012
24|13 021 021
31|42 021 021
42|31 012 012
34|12 021 021
43|21 012 012

With the above notation at hand we now proceed to the proof.

Proof of Proposition 22. Let π = π1π2 · · ·πn |πn+1 · · ·π2n be a mirrored permuta-
tion and F(π)= β0β1β2 · · ·βn . Then we see G(F(π))= β0β1β2 · · ·βn . Suppose
πi < πi+1 for some i ∈ {1, 2, . . . , n}. Looking at the mirror images of πi and πi+1,
we get 2n−πi + 1> 2n−πi+1+ 1; thus π2n−i+1 > π2n−(i+1)+1. Since the map F
respects the relative order of πnπn+1 · · ·π2n , we have βn−i+1>βn−(i+1)+1, and thus
βn−i+1<βn−(i+1)+1. Using the same argument but replacing “<” with “>” and vice
versa, we get that if πi >πi+1 then βn−i+1>βn−(i+1)+1. Therefore if π ∈ P̂C(S; n)
then G(F(π)) ∈ P̂B(R; n), and if π 6∈ P̂C(S; n) then G(F(π)) 6∈ P̂B(R; n). Since
both G and F are bijections, we conclude that G(F(P̂C(S; n)))= P̂B(R; n). �

We can also consider signed permutations β ∈ Bn without the convention that
β0 = 0. In that case we obtain the following result.

Corollary 23. Let S = {i1, i2, . . . , ik} ⊂ {2, 3, . . . , n− 1} and

R = {n− i1+1, n− i2+1, . . . , n− ik+1} ⊂ {2, . . . , n−1}.

Then the bijection G ◦ F : Cn→ Bn maps PC(S; n) to PB(R; n).

Proof. The proof of this corollary proceeds exactly as the proof of Proposition 22. �

3C. The sets PC(S; n) and PD(S; n). In this subsection, we use the fact that
Cn(π) and Dn(π) partition Cn and Dn to give concise proofs that |PC(S; n)| =
p(n)22n−|S|−1 and |PD(S; n)| = p(n)22n−|S|−2, where p(n) is the polynomial given
in [Billey et al. 2013, Theorem 2.2].

Theorem 24. Let S ⊆ [n− 1]. Then

(I) |PC(S; n)| = p(n)22n−|S|−1,

(II) |PD(S; n)| = p(n)22n−|S|−2.

Proof. To prove part (I), note that Billey et al. [2013, Theorem 2.2] showed that
|P(S; n)| = p(n)2n−|S|−1, where p(n) is a polynomial with degree max(S)−1.
Algorithm 15 showed that each π ∈ P(S; n) corresponds to a subset Cn(π) ⊂ Cn
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which contains 2n elements. By construction these elements have the exact same
peak set as π . In other words, for every τ ∈ Cn(π), the peak sets P(τ )= P(π)= S
agree. We compute that |PC(S; n)| = p(n)2n−|S|−12n

= p(n)22n−|S|−1.
Part (II) follows similarly, replacing Cn with Dn , Algorithm 15 with Algorithm 18,

and 2n with 2n−1. �

4. Peak sets of the Coxeter groups of types C and D

In this section we use specific sums of binomial coefficients and the partitions

P(S; n)= P(S; n)t P(S; n) and P(S; n)=
n⊔

k=2

P(S; n)↗k

to describe the cardinality of the sets P̂C(S; n), P̂C(S ∪ {n}; n), P̂D(S; n), and
P̂D(S ∪ {n}; n). We begin by setting the following notation:

Definition 25. Let 8(n, k) denote the sum of the last n− j + 1 terms of the n-th
row in Pascal’s triangle,

8(n, k)=
n∑

i=k

(n
i

)
=

(n
k

)
+

( n
k+1

)
+ · · ·+

(n
n

)
,

and let
9(n, k)= 2n

−8(n, k).

We can now state our main result.

Theorem 26. Type C : Let P̂C(S; n) denote the set of elements of Cn with peak set
S ⊂ [n− 1]. Then

|P̂C(S; n)| =
n∑

k=1

|P(S; n)↗k
| ·8(n, k)+ |P(S; n)| · 2n

and

|P̂C(S ∪ {n}; n)| =
n∑

k=1

|P(S; n)↗k
| ·9(n, k).

Type D: Let P̂D(S; n) denote the set of elements of Dn with peak set S ⊂ [n− 1].
If n is even, then

|P̂D(S; n)|=
n/2∑
k=1

(
|P(S; n)↗2k−1

|+|P(S; n)↗2k
|
)
8(n−1, 2k−1)+|P(S; n)|2n−1

and

|P̂D(S ∪ {n}; n)| =
n/2∑
k=1

(
|P(S; n)↗2k−1

| + |P(S; n)↗2k
|
)
9(n− 1, 2k− 1).
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If n is odd, then

|P̂D(S; n)| =
(n−1)/2∑

k=1

(
|P(S; n)↗2k+1

|+|P(S; n)↗2k
|
)
8(n−1, 2k)+|P(S; n)|2n−1

and

|P̂D(S ∪ {n}; n)| =
(n−1)/2∑

k=1

(
|P(S; n)↗2k+1

| + |P(S; n)↗2k
|
)
9(n− 1, 2k).

Since the proofs of the type-C and type-D results in Theorem 26 require some
specific identities involving the functions 8 and 9, we present these results and
proofs in Sections 4A and 4B, respectively.

Note that Proposition 22 shows that |P̂B(R; n)| = |P̂C(S; n)|. Castro-Velez et al.
[2013, Theorem 3.2] gave a recursive formula for computing the cardinality of the set
P̂B(R; n). Theorem 26 provides an alternate formula for |P̂C(S; n)| = |P̂B(R; n)|
using the sums of binomial coefficients 8(n, k) and 9(n, k), and the cardinalities
of sets P(S; n) and P(S; n)↗k.

4A. Peak sets of the Coxeter groups of type C. The following lemma uses the
functions 8(n, k) and 9(n, k) to count the number of elements in Cn(π) having
an ascent in the n-th position. This lemma is the key step in the type-C proof of
Theorem 26.

Lemma 27. If π ∈ P(S; n)↗k then there are 8(n, k) elements τ ∈ Cn(π) with
τn ≤ n and 9(n, k) elements τ ∈ Cn(π) with τn > n.

Proof. Suppose that π = π1π2 · · ·πn ∈ P(S; n)↗k, so πn−1 < πn = k. If τ =
τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn(π), then τn is the k-th largest integer in the set
{τ1, τ2, . . . , τn} because τ has the same relative order as π and πn = k. Therefore if
at least k elements of the set {τ1, τ2, . . . , τn} have τi ≤ n then we conclude τn ≤ n.

We will show there are
(n

j

)
elements τ ∈ Cn(π), where exactly j elements

of the set {τ1, τ2, . . . , τn} satisfy τn ≤ n. To construct such a τ , we start with
π = π1π2 · · ·πn , and then we choose j elements of the set {π1, π2, . . . , πn} to
remain fixed. We replace the remaining n− j elements of {π1, π2, . . . , πn} with
their mirror images, which are all greater than n. Finally, we list the elements
of the resulting set so that they have the same relative order as π and call them
τ1τ2 · · · τn . The subpermutation τn+1τn+2 · · · τ2n is then completely determined
by the subpermutation τ1τ2 · · · τn . Thus there are

(n
j

)
mirrored permutations τ

of the form τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn(π), where j of the elements in
{τ1, τ2, . . . , τn} satisfy τi ≤ n.

Considering all integers j with k ≤ j ≤ n, we see that the number of elements

τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Cn(π)
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with at least k of the elements in {τ1, τ2, . . . , τn} satisfying τi ≤ n is exactly

8(n, k)=
n∑

j=k

(n
j

)
.

Thus there are 8(n, k) elements τ ∈ Cn(π) with τn ≤ n. The other 2n
−8(n, k)=

9(n, k) elements of Cn(π) must have τn > n. �

With the above result at hand, we now give the following proof.

Proof of Theorem 26, type C. Let π = π1π2 · · ·πn ∈ P(S; n), and recall that Cn(π)

is the set of elements of Cn whose first n entries have the same relative order as π ,
and |Cn(π)|= 2n for any π ∈ Sn . Let τ = τ1τ2 · · · τn | τn+1 · · · τ2n ∈ Cn denote a
mirrored permutation of type Cn . Then there are two possibilities:

• Either τ has the same peak set as π so that τ ∈ P̂C(S; n), or

• τ has an additional peak at n, in which case τ ∈ P̂C(S ∪ {n}; n).

There are two cases in which τ ∈ P̂C(S; n):

Case 1: If π ends with a descent, i.e., πn−1 > πn , then every τ ∈ Cn(π) also has
τn−1 > τn , and thus τ is in P̂C(S; n) because it cannot possibly have a peak at n
if it ends with a descent. We conclude that if π ∈ P(S; n) then all 2n elements
τ ∈ Cn(π) are in P̂C(S; n).

Case 2: If π ends with an ascent, i.e., πn−1 < πn , then τn−1 < τn for all τ ∈ Cn(π)

as well. (Recall that for any σ ∈ Cn , our map into S2n identifies σi with its mirror
σn−i+1 by σn−i+1 = 2n− σi + 1.) Hence, if τn ≤ n, then τn+1 = 2n− τn + 1> τn .
In this case τn−1 < τn < τn+1, and τ does not have a peak at n. So τ ∈ P̂C(S; n).
Therefore we conclude that if π ∈ P(S; n) and if τ ∈ Cn(π) satisfies τn ≤ n then τ
is an element of P̂C(S; n). By Lemma 27 we conclude that if π ∈ P(S; n)↗k then
8(n, k) of the elements in Cn(π) are in P̂C(S; n).

Case 3: There is only one case in which τ ∈ P̂C(S ∪ {n}; n). If π ∈ P(S; n)
and τ ∈ Cn(π) is such that τn > n, then τ must satisfy τn−1 < τn > τn+1 because
τn+1 = 2n− τn + 1 < n. Therefore τ is an element of P̂C(S ∪ {n}; n). Applying
Lemma 27 we conclude that if π ∈ P(S; n)↗k then 9(n, k) of the elements in
Cn(π) are in P̂C(S ∪ {n}; n).

From Cases 1 and 2, we conclude that the cardinality of P̂C(S; n) is given by

|P̂C(S; n)| =
n∑

k=1

|P(S; n)↗k
| ·8(n, k)+ |P(S; n)| · 2n.

From Case 3, we get

|P̂C(S ∪ {n}; n)| =
n∑

k=1

|P(S; n)↗k
| ·9(n, k). �
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The following example illustrates the type-C formulas proven in Theorem 26.

Example 28. Using the results of this section, we compute the sets P̂C(S; 3), where
S ⊂ [3]. First, the group S3 can be partitioned as S3 = P(∅; 3)t P({2}; 3), where

P(∅; 3)= {123, 321, 213, 312} and P({2}; 3)= {132, 231}.

To calculate the peak sets in type C3, we will further partition the sets P(∅; 3) and
P({2}; 3) using Definition 1. Hence we compute

P(∅; 3)= P(∅; 3)t P(∅; 3)↗2
t P(∅; 3)↗3,

where P(∅; 3)= {321}, P(∅; 3)↗2
= {312}, and P(∅; 3)↗3

= {123, 213}.
We also compute the set

P({2}; 3)= P({2}; 3)= {231, 132}.

Of the 48 elements of the Coxeter group C3, only 23
|P(∅; 3)| = 23

·4= 32 elements
are in P̂C(∅; 3)t P̂C({3}; 3). Of these 32 permutations, we observe that 18 lie in
P̂C({3}; 3) and 14 lie in P̂C(∅; 3). We calculate |P̂C(∅; 3)| using Theorem 26:

|P̂C(∅; 3)| =(|P(∅; 3)|·23)+(|P(∅; 3)↗2
|·8(3, 2))+(|P(∅; 3)↗3

|·8(3, 3))

=(1·8)+(1·4)+(2·1)= 14.

Hence |P̂C({3}; 3)| = 23
· 4− 14= 18. Since P({2}; 3)= P({2}; 3), we have

|P̂C({2}; 3)| = |P({2}; 3)| · 23
= |P({2}; 3)| · 23

= 16.

Indeed one may confirm that P̂C({2}; 3) is the union of the sets

C3(231)=


231|645, 241|635,
351|624, 362|514,
451|623, 462|513,
356|124, 564|312

 and C3(132)=


132|645, 142|536,
153|426, 263|415,
154|326, 264|315,
365|214, 465|213

 .
4B. Peak sets of the Coxeter group of type D. In this section, we use the functions
8(n, k) and 9(n, k) to describe the cardinalities of P̂D(S; n) and P̂D(S ∪ {n}; n).
The results depend on the parity of n. We begin by providing the following lemmas
(similar to Lemma 27), which are used in the type-D proof of Theorem 26.

Lemma 29. Let n be even, and let 1≤ k ≤ 1
2 n. If π ∈ P(S; n)↗2k

t P(S; n)↗2k−1,
then there are8(n−1, 2k−1) elements τ ∈Dn(π) with τn≤n, and9(n−1, 2k−1)
elements τ ∈ Dn(π) with τn > n.

Proof. Suppose π = π1π2 · · ·πn ∈ P(S; n)↗2k , so πn = 2k and πn−1 = i for some
integer i < 2k. If τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Dn(π), then τn is the 2k-th
largest integer in the set {τ1, τ2, . . . , τn} because τ has the same relative order
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as π and πn = 2k. Therefore if at least 2k elements of the set {τ1, τ2, . . . , τn}

satisfy τi ≤ n then we can conclude that τn ≤ n. Moreover, τn ≤ n if and only if
τn<τn+1=2n−τn+1. Thus we wish to count the number of τ ∈Dn(π)with τn≤n.

In the construction of Dn(π), the total number of τ with at least 2k of the elements
from {τ1, τ2, . . . , τn} fixed (and less than or equal to n) is given by the sum( n

2k

)
+

( n
2k+2

)
+ · · ·+

( n
n−2

)
+

(n
n

)
(13)

when n is even. Using the identity
( n

2k

)
=
( n−1

2k−1

)
+
(n−1

2k

)
, we can see that the quantity

in (13) equals[( n−1
2k−1

)
+

(n−1
2k

)]
+

[( n−1
2k+1

)
+

( n−1
2k+2

)]
+· · ·+

(n−1
n−1

)
=8(n−1, 2k−1)

when n is even.
Suppose π = π1π2 · · ·πn ∈ P(S; n)↗2k−1, so πn = 2k − 1 and πn−1 = i for

some integer i < 2k − 1. If τ = τ1τ2 · · · τn | τn+1τn+2 · · · τ2n ∈ Dn(π), then τn is
the (2k−1)-th largest integer in the set {τ1, τ2, . . . , τn} because τ has the same
relative order as π and πn = 2k− 1. Therefore if at least 2k− 1 elements of the set
{τ1, τ2, . . . , τn} satisfy τi ≤ n then we can conclude that τn ≤ n. Moreover, τn ≤ n
if and only if τn < τn+1 = 2n − τn + 1. So again, the number of elements with
τn ≤ n is 8(n− 1, 2k− 1).

We conclude that when π ∈ P(S; n)↗2k
tP(S; n)↗2k−1, there are8(n−1, 2k−1)

mirrored permutations τ ∈Dn(π) with τn < τn+1. Since there are 2n−1 elements in
Dn(π), we see that there are9(n−1, 2k−1) elements τ ∈Dn(π)with τn>τn+1. �

Lemma 30. Let n be odd and let 1 ≤ k ≤ 1
2(n − 1). If π ∈ P(S; n)2k or π ∈

P(S; n)2k+1 then there are 8(n − 1, 2k) elements τ ∈ Dn(π) with τn ≤ n and
9(n− 1, 2k) elements τ ∈ Dn(π) with τn > n.

The proof of Lemma 30 follows similarly to that of Lemma 29; hence we omit
the argument, but point the interested reader to the arXiv preprint of this paper for
a detailed proof [Diaz-Lopez et al. 2015]. We are now ready to enumerate the sets
P̂D(S; n) and P̂D(S ∪ {n}; n).

Proof of Theorem 26, type D. Let π∈P(S;n), τ = τ1τ2 · · ·τn |τn+1τn+2 · · ·τ2n ∈Dn ,
and recall that Dn(π) consists of the elements of Dn which have the same relative
order as π . There are 2n−1 such elements. Since τ ∈ Dn(π), its first n entries
τ1τ2 · · · τn have the same relative order as π1π2 · · ·πn , and just as in the type-Cn

case, there are two possibilities:

• Either τ has the same peak set as π so that τ ∈ P̂D(S; n), or

• τ has an additional peak at n, in which case τ ∈ P̂D(S ∪ {n}; n).

There are two cases in which τ ∈ P̂D(S; n):
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Case 1: If π ends with a descent, i.e., πn−1 > πn , then every τ ∈ Dn(π) also has
τn−1 > τn , and thus τ is in P̂D(S; n) because it cannot possibly have a peak at n if
it has a descent at n− 1. We conclude that if π ∈ P(S; n) then all 2n−1 elements
of Dn(π) are in P̂D(S; n).

Case 2: If π ends with an ascent, πn−1 < πn , then τn−1 < τn for all τ ∈ Dn(π)

as well. (Recall that for any σ ∈ Dn , our map into S2n identifies σi with σn−i+1

by σn−i+1 = 2n − σi + 1.) Hence, if τn ≤ n, then τn+1 = 2n − τn + 1 > τn . In
this case τn−1 < τn < τn+1, and τ does not have a peak at n. So τ ∈ P̂D(S; n).
Therefore we conclude that if π ∈ P(S; n) and if τ ∈Dn(π) satisfies τn ≤ n then τ
is an element of P̂D(S; n). By Lemma 29 we conclude that if π ∈ P(S; n)↗k then
8(n− 1, 2k− 1) of the elements in Dn(π) are in P̂D(S; n).

Case 3: There is only one case in which τ ∈ P̂D(S ∪ {n}; n). If π ∈ P(S; n) and
τ ∈ Dn(π) is such that τn > n, then τ must satisfy τn−1 < τn > τn+1 because
τn+1 = 2n− τn + 1< n. Therefore τ is an element of P̂D(S ∪ {n}; n).

We have shown if π is in P(S; n), then all 2n−1 elements Dn(π) are in P̂C(S; n).
Lemma 29 showed when n is even and π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k−1, then
8(n, 2k− 1) of the elements of Dn(π) are in P̂D(S; n). Thus we conclude when n
is even, the cardinality of P̂D(S; n) is given by the formula

|P̂D(S; n)| =
n∑

k=1

(
|P(S; n)k−1

| + |P(S; n)2k
|
)
·8(n, 2k− 1)+ |P(S; n)| · 2n−1.

Lemma 29 also showed if π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k−1 then9(n−1, 2k−1)
elements from Dn(π) are in the set P̂D(S ∪ {n}; n), and thus

|P̂D(S ∪ {n}; n)| =
n/2∑
k=1

(
|P(S; n)↗2k−1

| + |P(S; n)↗2k
|
)
·9(n− 1, 2k− 1)

when n is even.
Lemma 30 showed when n is odd and π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k−1,

then 8(n− 1, 2k) of the elements of Dn(π) are in P̂D(S; n). Thus we conclude
that when n is odd, the cardinality of P̂D(S; n) is given by the formula

|P̂D(S;n)| =
(n−1)/2∑

k=1

(
|P(S;n)↗2k+1

|+|P(S;n)↗2k
|
)
·8(n−1,2k)+|P(S;n)|·2n−1.

Lemma 30 also showed if π ∈ P(S; n)↗2k or π ∈ P(S; n)↗2k+1 then 9(n−1, 2k)
elements from Dn(π) are in the set P̂D(S ∪ {n}; n), and thus

|P̂D(S ∪ {n}; n)| =
(n−1)/2∑

k=1

(
|P(S; n)↗2k+1

| + |P(S; n)↗2k
|
)
·9(n− 1, 2k)

when n is odd. This proves the formula for the cardinality of P̂D(S ∪ {n}; n). �
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4C. Special case: empty peak set in types C and D. In this section we consider
the special case of S =∅ in types Cn and Dn .

Proposition 31. Let n ≥ 2 and m ≥ 4, then

(I) |P̂C(∅; n)| = 1
2(3

n
+ 1),

(II) |P̂D(∅;m)| = 1
4 3m
+

1
4(−1)m + 1

2 .

Proposition 31(I) was originally proved by Castro-Velez et al. [2013, Theo-
rem 2.4] in type Bn . However, the proof given here is a combinatorial argument
involving ternary sequences (in the letters A, B and C) with an even number
of B’s that restricts naturally to a proof of a similar result involving the mirrored
permutations with no peaks in type Dn as well.

The integer sequence given by Proposition 31(I) is sequence A007051 in [OEIS
1996] after the first three iterations. Let Tn denote the set of ternary sequences (in
the letters A, B and C) of length n with an even number of B’s. It is noted on
Sloane’s OEIS that 1

2(3
n
+ 1) counts all such sequences.

Proof of Proposition 31(I). To prove that |P̂C(∅; n)| = |Tn| =
1
2(3

n
+ 1), we prove

there is a bijection between the sets Tn and P̂C(∅; n).
Every permutation π ∈ P̂C(∅; n) has the form π=πAπBπC |πCπBπA, where πA

is a sequence of numbers in descending order and each πi ∈ πA is greater than n,
πB is a sequence of numbers in descending order and each πi ∈ πB is less than or
equal to n, and πC is a sequence of numbers in ascending order and each πi ∈ πC

is less than or equal to n. Note that the mirror image πCπBπA is determined
uniquely by πAπBπC , so to condense notation in this proof we will refrain from
writing it. It is possible for at most two of the parts πA, πB , or πC to be empty.
Moreover, there is always a choice of whether to include the minimum element of
the subpermutation πBπC as the last element in πB or the first element in πC . We
always choose to make the length of πB even by including/excluding this minimum
element depending on the parity of πB .

More precisely, let π = πAπBπC ∈ P̂C(∅; n), where

πA=[π1> · · ·>πk], πB=[πk+1> · · ·>πk+ j ], and πC=[πk+ j+1< · · ·<πn].

Define a set map 1 : P̂C(∅; n)→ Tn by assigning a ternary sequence 1(π)= x
in Tn to each element π ∈ P̂C(∅; n) by setting

1(π)i = xi =


A if i ∈ {2n−π1+ 1, . . . , 2n−πk + 1},
B if i ∈ {πk+1, . . . , πk+ j },

C if i ∈ {πk+ j+1, . . . , πn}.

Note that there is an even number of B ′s by the way we defined πB . Hence
1(π)= x ∈ Tn .

http://oeis.org/A007051
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We can also define a set map 2 : Tn→ P̂C(∅; n) by reversing this process. That
is to say, given a ternary sequence x = x1x2 · · · xn in Tn , define A,B, and C as

A={1≤ i ≤n : xi = A}, B={1≤ i ≤n : xi = B}, and C={1≤ i ≤n : xi =C}.

List the elements of A and C in ascending order and B in descending order:

A= [a1 < a2 < · · ·< ak], B = [bk+1 > bk+2 > · · ·> bk+ j ],

C = [ck+ j+1 < ck+ j+2 < · · ·< cn].

Then define 2(x)= π , where

πi =


2n− ai + 1 if 1≤ i ≤ k,
bi if k+ 1≤ i ≤ k+ j,
ci if k+ j + 1≤ i ≤ n.

Notice that after πi is determined for 1≤ i ≤ n, the rest of π is determined.
To show 2 ◦1= Id, let π = πAπBπC ∈ P̂C(∅; n), where

πA=[π1> · · ·>πk], πB=[πk+1> · · ·>πk+ j ], and πC=[πk+ j+1< · · ·<πn],

and set σ =2(1(π))= σ1 · · · σn . Then

1(π)i = xi = A for i ∈ {2n−π1+ 1, . . . , 2n−πk + 1},

so A = [2n − π1 + 1 < · · · < 2n − πk + 1]. By the definition of 2, we get
σi = 2n− (2n−πi + 1)+ 1 for 1≤ i ≤ k; thus σi = πi for 1≤ i ≤ k.

Similarly,1(π)i = xi = B for i ∈{πk+1, . . . , πk+ j }; thus B=[πk+1> · · ·>πk+ j ].
By the definition of2, we get σi =πi for k+1≤ i ≤ k+ j . Finally,1(π)i = xi =C
for i ∈ {πk+ j+1, . . . , πn}; thus C = [πk+ j+1 < · · ·<πn]. By the definition of 2, we
see that σi =πi for k+ j+1≤ i ≤ n. Therefore σi =πi for 1≤ i ≤ n, which implies
2(1(π))= σ = π for all π ∈ P̂C(∅; n). A similar argument shows 1(2(x))= x
for all x ∈ Tn . �

The integer sequence given by Proposition 31(II) is sequence A122983 in [OEIS
1996] after the first three iterations. To prove this result, we let Tn denote the set of
ternary sequences (in the letters A, B and C) of length n with an even number of
A’s and B’s. It is noted on Sloane’s OEIS that 1

4 3n
+

1
4(−1)n + 1

2 counts all such
sequences. In the following proof we construct a bijection from Tn to P̂D(∅; n) by
using the maps 1 and 2, similar to the proof of Proposition 31(I).

Proof of Proposition 31(II). The proof follows as the proof of Proposition 31(I),
with the additional condition that the length of πA is even since every element π in
P̂D(∅; n) has an even number of entries in π1π2 · · ·πn that are greater than n. We
point the interested reader to the arXiv preprint version of this paper for a detailed
proof [Diaz-Lopez et al. 2015]. �

http://oeis.org/A122983
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We will illustrate the bijection between 1 and 2, described in the proof of
Proposition 31, with the following example.

Example 32. Type C : Consider the permutation π ∈ C10, where

π = 20 18 13 10 9 7 4 2 5 6 | 15 16 19 17 14 12 11 8 3 1.

Let 1(π)= x ∈ Tn . Since

πA = 20 18 13, πB = 10 9 7 4, and πC = 2 5 6,

we have xi = A for i ∈ {1, 3, 8}, xi = B for i ∈ {4, 7, 9, 10}, and xi = C for
i ∈ {2, 5, 6}. Thus 1(π)= x = ACABCCBABB.

Consider 2(1(π)) ∈ P̂C(∅; 10). Since 1(π)= x = ACABCCBABB, the lists
A,B and C are defined as

A= [1< 3< 8], B = [10> 9> 7> 4], and C = [2< 5< 6].

Using the definition of 2, we get

2(1(π))=2(x)= 20 18 13 10 9 7 4 2 5 6 | 15 16 19 17 14 12 11 8 3 1= π.

Type D: Consider the permutation π ∈ D10, where

π = 20 18 13 11 9 7 4 2 5 6 | 15 16 19 17 14 12 10 8 3 1.

Let 1(π)= x ∈ Tn . Since

πA = 20 18 13 11, πB = 9 7 4 2, and πC = 5 6,

we have xi = A for i ∈ {1, 3, 8, 10}, xi = B for i ∈ {2, 4, 7, 9}, and xi = C for
i ∈ {5, 6}. Thus

1(π)= x = ABABCCBABA.

Consider 2(1(π)) ∈ P̂D(∅; 10). Since 1(π) = x = ABABCCBABA, the lists
A,B and C are defined as

A= [1< 3< 8< 10], B = [9> 7> 4> 2], and C = [5< 6].

Using the definition of 2, we get

2(1(π))=2(x)= 20 18 13 11 9 7 4 2 5 6 | 15 16 19 17 14 12 10 8 3 1= π.

5. Questions and future work

We end this paper with a few questions of interest. We suspect that the sets we call
pattern bundles have appeared elsewhere in the literature on Coxeter groups, but
we do not know of such a reference. (Note that the pattern bundles are the fibers of
an order-preserving flattening map from Cn to Sn that differs from the usual 2n to 1
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projection of signed permutations to Sn , which forgets the negative signs.) If these
sets have not been studied before, then our first question is:

Problem 1. Can the pattern bundles of types Cn and Dn be used to study other
permutation statistics (such as descent sets for instance)?

We can also ask whether these techniques can be applied to study other groups
having suitably nice embeddings into SN , and whether the peak set of the image
encodes any information about the embedded group.

Problem 2. Can the methods used in this paper be applied to study peak sets
of groups such as the dihedral groups or Coxeter groups of exceptional type by
embedding them into SN for some N?

We provide recursive formulas for the quantities |P̂C(S; n)| and |P̂D(S; n)| in
Theorem 26 that can be used to find closed formulas for any particular choice
of peak set S. Several of the special cases we consider in this paper give closed
formulas for integer sequences appearing in [OEIS 1996]. Hence we believe the
following would be an interesting undergraduate student research project.

Problem 3 (undergraduate student research project). Can one compute closed for-
mulas for some families of peak sets and analyze which of these appear on the OEIS?

This leads us to our final question:

Problem 4. Can one discover closed combinatorial formulas for |P̂C(S; n)| and
|P̂D(S; n)| in general?
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