Fox coloring and the minimum number of colors
Mohamed Elhamdadi and Jeremy Kerr

# Fox coloring and the minimum number of colors 

Mohamed Elhamdadi and Jeremy Kerr<br>(Communicated by Kenneth S. Berenhaut)


#### Abstract

We study Fox colorings of knots that are 13 -colorable. We prove that any 13-colorable knot has a diagram that uses exactly five of the thirteen colors that are assigned to the arcs of the diagram. Due to an existing lower bound, this gives that the minimum number of colors of any 13-colorable knot is 5 .


## 1. Introduction

Fox [1962] introduced a diagrammatic definition of colorability of a knot $K$ by $\mathbb{Z}_{m}$ (the integers modulo $m$ ). This notion of colorability is clearly one of the simplest invariants of knots. For a natural number $m$ greater than 1 , a diagram $D$ of a knot $K$ is $m$-colorable if at every crossing, the sum of the colors of the under-arcs is twice the color of the over-arc (modulo $m$ ), as in Figure 1.

It is well known [Fox 1962] that for a prime $p$, a knot $K$ is $p$-colorable if and only if $p$ divides the determinant of $K$. The problem of finding the minimum number of colors for $p$-colorable knots with $p$ prime and less than or equal to 11 was studied in [Satoh 2009; Oshiro 2010; Lopes and Matias 2012; Hayashi et al. 2012]. For example, Satoh [2009] proved that any 5-colorable knot admits a nontrivially 5-colored diagram where the coloring assignment uses only four of the five available colors. For a prime $p$, let $K$ be a $p$-colorable knot and let $C_{p}(K)$ denote the minimum number of colors among all diagrams of the knot $K$. In [Nakamura et al. 2013], it was proved that $C_{p}(K) \geq\left\lfloor\log _{2} p\right\rfloor+2$. This implies that in our case, $p=13$, the minimum number of colors of 13 -colorable knots is greater than or equal to 5 . In fact, the goal of this article is to prove equality, that is, $C_{13}(K)=5$.

## 2. Fox coloring and the minimum number of colors of 13 -colorable knots

Notation. We use $\{a|b| c\}$ to denote a crossing, as in Figure 1, where $a$ and $c$ are the colors of the under-arcs, $b$ is the color of the over-arc and $a+c \equiv 2 b \bmod 13$. When the crossing is of the type $\{c|c| c\}$ (trivial coloring), we will omit over- and under-crossings and draw the arcs crossing each other.

[^0]

Figure 1

Theorem 2.1. Any 13-colorable knot has a 13-colored diagram with exactly five colors. Thus, $C_{13}(K)=5$ for any 13-colorable knot $K$.

Proof. We prove this theorem using eight lemmas. In each of the following lemmas we decrease the coloring scheme of the diagram by one color $c$. To accomplish this we first transform any crossings of the form $\{c|c| c\}$. That is, when $c$ is both an over-arc and an under-arc, we remove $c$ as an over-arc by transforming any crossings of the form $\{a|c| 2 c-a\}$, where $a \in \mathbb{Z}_{13} \backslash\{c\}$. Finally, we complete each lemma by removing $c$ as an under-arc in a case-by-case method. In these under-arc cases we must consider when $c$ connects two crossings of the same color and when $c$ connects two crossings of different colors.

## Eliminating the color 12.

Lemma 2.2. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by 12 .

Proof. Let $c=12$. We first transform any crossing of the form $\{12|12| 12\}$. If there is any such crossing, there is an adjacent crossing of the form $\{12|a| 2 a+1\}$ or $\{a|12| 11-a\}$, where $a \in \mathbb{Z}_{13} \backslash\{12\}$. In either case, since $11-a \neq 12$ and $2 a+1 \neq 12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{12\}$, we transform the diagram as in Figures 2 and 3.

Next, we remove 12 as an over-arc by transforming any crossings of the form $\{a|12| 11-a\}$. Since $2 a+1 \neq 12$ and $3 a+2 \neq 12$ for any $a \in \mathbb{Z}_{13} \backslash\{12\}$, we transform the diagram as in Figure 4.


Figure 2


Figure 3


Figure 4

We complete the proof of the lemma by removing 12 as an under-arc in a case-by-case method. We first consider the case where 12 is an under-arc connecting two crossings of the form $\{12|a| 2 a+1\}$. Since $2 a+1 \neq 12,3 a+2 \neq 12$, and $4 a+3 \neq 12$ for any $a \in \mathbb{Z}_{13} \backslash\{12\}$, we transform the diagram as in Figure 5.

Now we consider the case where 12 is an under-arc connecting two crossings of the forms $\{2 a+1|a| 12\}$ and $\{12|2 a+1| 4 a+3\}$. Since $2 a+1 \neq 12$ and $3 a+2 \neq 12$ for any $a \in \mathbb{Z}_{13} \backslash\{12\}$, we transform the diagram as in Figure 6.

Lastly we consider the case where 12 is an under-arc connecting two crossings of the forms $\{2 a+1|a| 12\}$ and $\{12|b| 2 b+1\}$, where $a \neq b$ and $b \neq 2 a+1$ for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{12\}$. Since $2 a-2 b-1 \neq 12$ and $2 a-b \neq 12$ for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{12\}$ (from $a \neq b$ and $b \neq 2 a+1$ respectively), we transform the diagram as in Figure 7.


Figure 5


Figure 6


Figure 7

## Eliminating the color 11.

Lemma 2.3. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by 11 or 12 .

Proof. Let $c=11$. By the previous lemma we assume that no arc in $D$ is colored by 12. We first transform any crossing of the form $\{11|11| 11\}$. If there is any such crossing, there is an adjacent crossing of the form $\{11|a| 2 a+2\}$ or $\{a|11| 9-a\}$, where $a$ is in $\mathbb{Z}_{13} \backslash\{11,12\}$. If $a \neq 5,10$, then $9-a \neq 11,12$ and $2 a+2 \neq 11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{5,10,11,12\}$, so we transform the diagram as in Figures 2 and 3.

If $a=5$ as an under-arc, we transform the diagram as in Figure 8. Now, $a$ cannot equal 5 as an over-arc, otherwise $2 a+2=12$, contradicting our assumption that no arc is colored by 12 .


Figure 8


Figure 9
If $a=10$ as an over-arc, we transform the diagram as in Figure 2. Similarly $a$ cannot equal 10 as an under-arc, otherwise $9-a=12$, which is a contradiction.

Next, we remove 11 as an over-arc by transforming any crossings of the form $\{a|11| 9-a\}$. Since $9-a \neq 11,12$, we have $a \neq 10$. Therefore if $a \neq 5,7$ then $2 a+2 \neq 11,12$ and $3 a+4 \neq 11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{5,7,10,11,12\}$, and we transform the diagram as in Figure 4. If $a=5$ or $a=7$, we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 11 as an under-arc in a case-by-case method. We first consider the case where 11 is an under-arc connecting two crossings of the form $\{11|a| 2 a+2\}$. Since $2 a+2 \neq 11$, 12 , we have $a \neq 5$. If $a \neq 7,8$, then $3 a+4 \neq 11,12$ and $4 a+6 \neq 11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{5,7,8,11,12\}$, and we transform the diagram as in Figure 5. If $a=7$, we transform the diagram as in Figure 10. If $a=8$, we transform the diagram as in Figure 11.

Now we consider the case where 11 is an under-arc connecting two crossings of the forms $\{2 a+2|a| 11\}$ and $\{11|b| 2 b+2\}$, where $a \neq b$ for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{5,11,12\}$. (Note $a, b \neq 5$, otherwise $2 a+2=12$ or $2 b+2=12$.)


Figure 10


Figure 11

If $(a, b) \neq(0,6),(6,0),(3,7),(7,3)$ then either

$$
2 a-2 b-2 \neq 11,12 \quad \text { and } \quad 2 a-b \neq 11,12
$$

or

$$
2 b-2 a-2 \neq 11,12 \quad \text { and } \quad 2 b-a \neq 11,12
$$

for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{5,11,12\}$, and we transform the diagram as in Figure 12.
If $(a, b)=(0,6)$, we transform the diagram as in Figure 13. A similar transformation works for the case $(a, b)=(6,0)$.

If $(a, b)=(3,7)$, we transform the diagram as in Figure 14. A similar transformation works for the case $(a, b)=(7,3)$.


Figure 12


Figure 13


Figure 14

## Eliminating the color 7.

Lemma 2.4. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by 7, 11, or 12.

Proof. Let $c=7$. By the previous lemmas we assume that no arc in $D$ is colored by 11 or 12 . We first transform any crossing of the form $\{7|7| 7\}$. If there is any such crossing, there is an adjacent crossing of the form $\{7|a| 2 a+6\}$ or $\{a|7| 1-a\}$, where $a$ is in $\mathbb{Z}_{13} \backslash\{7,11,12\}$. If $a \neq 2,3,9$ then $1-a \neq 7,11,12$ and $2 a+6 \neq 7,11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{2,3,7,9,11,12\}$, so we transform the diagram as in Figures 2 and 3.

If $a=2$ as an over-arc, we transform the diagram as in Figure 2. Note $a$ cannot equal 2 as an under-arc, otherwise $1-a=12$, contradicting our assumption that no arc is colored by 12 .

Now $a$ cannot be 3 as an over-arc or an under-arc, otherwise $1-a=11$ and $2 a+6=12$, contradicting our assumption that no arc is colored by 11 or 12. If $a=9$ as an under-arc, we transform the diagram as in Figure 8. Note $a$ cannot equal 9 as an over-arc, otherwise $2 a+6=11$, contradicting our assumption that no arc is colored by 11 . Therefore any crossings of the form $\{7|7| 7\}$ are removed.

Next, we remove 7 as an over-arc by transforming any crossings of the form $\{a|7| 1-a\}$. Since $1-a \neq 7,11,12$, we have $a \neq 2,3$. Therefore if $a \neq 0,4,9$ then $2 a+6 \neq 7,11,12$ and $3 a+12 \neq 7,11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{0,2,3,4,7,9,11,12\}$, and we transform the diagram as in Figure 4. If $a=0,4$, 9 , we transform the diagram as in Figure 9.


Figure 15
We complete the proof of the lemma by removing 7 as an under-arc in a case-by-case method. We first consider the case where 7 is an under-arc connecting two crossings of the form $\{7|a| 2 a+6\}$. Since $2 a+6 \neq 7,11,12$, we have $a \neq 3,9$. If $a \neq 0,4,5,8$ then $3 a+12 \neq 7,11,12$ and $4 a+5 \neq 7,11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{0,3,4,5,7,8,9,11,12\}$, and we transform the diagram as in Figure 5. If $a=0$, we transform the diagram as in Figure 15. If $a=4$, we transform the diagram as in Figure 16. If $a=5$, we transform the diagram as in Figure 17. If $a=8$, we transform the diagram as in Figure 11.


Figure 16


Figure 17

Now we consider the case where 7 is an under-arc connecting two crossings of the forms $\{2 a+6|a| 7\}$ and $\{7|b| 2 b+6\}$, where $a \neq b$ for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{3,7,9,11,12\}$. (Note $a, b \neq 3,9$, otherwise $2 a+6=11,12$ or $2 b+6=$ $11,12$.$) If$

$$
(a, b) \neq(0,2),(2,0),(0,6),(6,0),(1,4),(4,1),(4,8),(8,4)
$$

then either

$$
2 a-2 b-6 \neq 7,11,12 \quad \text { and } \quad 2 a-b \neq 7,11,12
$$

or

$$
2 b-2 a-6 \neq 7,11,12 \quad \text { and } \quad 2 b-a \neq 7,11,12
$$

for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{3,7,9,11,12\}$, and we transform the diagram as in Figure 12.

If $(a, b)=(0,2)$, we transform the diagram as in Figure 18. The case $(a, b)=$ $(2,0)$ is similar.


Figure 18


Figure 19


Figure 20


Figure 21
If $(a, b)=(0,6)$, we transform the diagram as in Figure 19. The case $(a, b)=$ $(6,0)$ is similar.

If $(a, b)=(1,4)$, we transform the diagram as in Figure 20. The case $(a, b)=$ $(4,1)$ is similar.

If $(a, b)=(4,8)$, we transform the diagram as in following Figure 21. The case $(a, b)=(8,4)$ is similar.

## Eliminating the color 8.

Lemma 2.5. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by 7, 8, 11, or 12 .

Proof. Let $c=8$. By the previous lemmas we assume that no arc in $D$ is colored by 7,11 , or 12 . We first transform any crossing of the form $\{8|8| 8\}$. If there is any such crossing, there is an adjacent crossing of the form $\{8|a| 2 a+5\}$ or $\{a|8| 3-a\}$, where $a$ is in $\mathbb{Z}_{13} \backslash\{7,8,11,12\}$. If $a \neq 1,3,4,5,9,10$ then $3-a \neq 7,8,11,12$ and $2 a+5 \neq 7,8,11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{1,3,4,5,7,8,9,10,11,12\}$, so we transform the diagram as in Figures 2 and 3.

If $a=4,5,9$ as an over-arc, we transform the diagram as in Figure 2. Note $a$ cannot be 4 , 5 , or 9 as an under-arc, otherwise $3-a=7,11,12$, contradicting our assumption that no arc is colored by 7,11 , or 12 . If $a=1$ as an under-arc we transform the diagram as in Figure 8. Note $a$ cannot be 1 as an over-arc, otherwise $2 a+5=7$, contradicting our assumption that no arc is colored by 7 . If $a=3$ as an under-arc, we transform the diagram as in Figure 8. Note $a$ cannot be 3 as an over-arc, otherwise $2 a+5=11$, contradicting our assumption that no arc is colored by 11. If $a=10$ as an under-arc, we transform the diagram as in Figure 8. Note $a$ cannot be 10 as an over-arc, otherwise $2 a+5=12$, contradicting our assumption that no arc is colored by 12 . Therefore any crossings of the form $\{8|8| 8\}$ are removed.

Next, we remove 8 as an over-arc by transforming any crossings of the form $\{a|8| 3-a\}$. Since $3-a \neq 7,8,11,12$, we have $a \neq 4,5,9$. Therefore if $a \neq 1,3,10$ then $2 a+5 \neq 7,8,11,12$ and $3 a+10 \neq 7,8,11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{1,3,4,5,7,8,9,10,11,12\}$, and we transform the diagram as in Figure 4. If $a=1,3$ or 10 , we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 8 as an under-arc in a case-by-case method. We first consider the case where 8 is an under-arc connecting two crossings of the form $\{8|a| 2 a+5\}$. Since $2 a+5 \neq 7,8,11,12$, we have $a \neq 1,3,10$. If $a \neq 5,9$ then $3 a+10 \neq 7,8,11,12$ and $4 a+2 \neq 7,8,11,12$ for any $a$ in $\mathbb{Z}_{13} \backslash\{1,3,5,7,8,9,10,11,12\}$, and we transform the diagram as in Figure 5. If $a=5$, we transform the diagram as in Figure 22. If $a=9$, we transform the diagram as in Figure 23.

Now we consider the case where 8 is an under-arc connecting two crossings of the forms $\{2 a+5|a| 8\}$ and $\{8|b| 2 b+5\}$, where $a \neq b$ for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{1,3,7,8,10,11,12\}$. (Note $a, b \neq 1,3,10$, otherwise $2 a+5=7,11,12$ or $2 b+5=7,11,12$.) If $(a, b) \neq(0,2),(2,0),(0,6),(6,0),(2,5),(5,2)$ then either

$$
2 a-2 b-5 \neq 7,8,11,12 \quad \text { and } \quad 2 a-b \neq 7,8,11,12
$$

or

$$
2 b-2 a-5 \neq 7,8,11,12 \quad \text { and } \quad 2 b-a \neq 7,8,11,12
$$

for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{1,3,7,8,10,11,12\}$, and we transform the diagram as in Figure 12.


Figure 22


Figure 23

If $(a, b)=(0,2)$, we transform the diagram as in Figure 24. The case $(a, b)=$ $(2,0)$ is similar.

If $(a, b)=(0,6)$, we transform the diagram as in Figure 25. The case $(a, b)=$ $(6,0)$ is similar.

If $(a, b)=(2,5)$, we transform the diagram as in Figure 26. The case $(a, b)=$ $(5,2)$ is similar.

## Eliminating the color 6.

Lemma 2.6. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by 6, 7, 8, 11, or 12.


Figure 24


Figure 25


Figure 26

Proof. Let $c=6$. By the previous lemmas we assume that no arc in $D$ is colored by $7,8,11$, or 12 . We first transform any crossing of the form $\{6|6| 6\}$. If there is any such crossing, there is an adjacent crossing of the form $\{6|a| 2 a+7\}$ or $\{a|6| 12-a\}$, where $a$ is in $\mathbb{Z}_{13} \backslash\{6,7,8,11,12\}$. With the exceptions of $a=0,2,9$ as an over-arc (when $2 a+7=7,8,11,12$ ) and $a=0,1,4,5$ as an under-arc (when $12-a=7,8,11,12$ ), we transform the diagram as in Figures 2 and 3.

Now we must check when $a=0,2,9$ as an under-arc. First and foremost $a$ cannot equal 0 as an under-arc, otherwise $12-a=12$, contradicting our assumption that no arc is colored by 12 . If $a=2,9$ as an under-arc, we transform the diagram as in Figure 8. Therefore any crossings of the form $\{6|6| 6\}$ are removed.

Next, we remove 6 as an over-arc by transforming any crossings of the form $\{a|6| 12-a\}$. Since $12-a \neq 6,7,8,11,12$, we have $a \neq 0,1,4,5$. With the exceptions of $a=2$, 9 (when $2 a+7=6,7,8,11,12$ and $3 a+1=6,7,8,11,12$ ),


Figure 27
we transform the diagram as in Figure 4. If $a=2$ or $a=9$, we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 6 as an under-arc in a case-by-case method. We first consider the case where 6 is an under-arc connecting two crossings of the form $\{6|a| 2 a+7\}$. Since $2 a+7 \neq 6,7,8,11,12$, we have $a \neq 0,2,9$. If $a \neq 1,3,4$ then $3 a+1 \neq 6,7,8,11,12$ and $4 a+8 \neq 6,7,8,11,12$, so we transform the diagram as in Figure 5. If $a=1$, we transform the diagram as in Figure 11. If $a=3$, we transform the diagram as in Figures 27 and 28. If $a=4$, we transform the diagram as in Figure 11.

Now we consider the case where 6 is an under-arc connecting two crossings of the forms $\{2 a+7|a| 6\}$ and $\{6|b| 2 b+7\}$, where $a \neq b$ for any $a$ and $b$ in


Figure 28


Figure 29
$\mathbb{Z}_{13} \backslash\{0,2,6,7,8,9,11,12\}$. (Note $a, b \neq 0,2,9$, otherwise $2 a+7=7,8,11,12$ or $2 b+7=7,8,11,12$.)

If $(a, b) \neq(1,4),(4,1)$ then either

$$
2 a-2 b-7 \neq 6,7,8,11,12 \quad \text { and } \quad 2 a-b \neq 6,7,8,11,12
$$

or

$$
2 b-2 a-7 \neq 6,7,8,11,12 \quad \text { and } \quad 2 b-a \neq 6,7,8,11,12
$$

for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{0,2,6,7,8,9,11,12\}$, and we transform the diagram as in Figure 12.

If $(a, b)=(1,4)$, we transform the diagram as in Figure 29. The case $(a, b)=$ $(4,1)$ is similar.

## Eliminating the color 1.

Lemma 2.7. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by 1, 6, 7, 8, 11, or 12 .


Figure 30

Proof. Let $c=1$. By the previous lemmas we assume that no $\operatorname{arc}$ in $D$ is colored by $6,7,8,11$, or 12 . We first transform any crossing of the form $\{1|1| 1\}$. If there is any such crossing, there is an adjacent crossing of the form $\{1|a| 2 a+12\}$ or $\{a|1| 2-a\}$, where $a$ is in $\mathbb{Z}_{13} \backslash\{1,6,7,8,11,12\}$. With the exceptions of $a=0,4,10$ as an over-arc (when $2 a+12=6,7,8,11,12$ ) and $a=3,4,9$ as an under-arc (when $2-a=6,7,8,11,12$ ), we transform the diagram as in Figures 2 and 3.

Now we must check when $a=0,4,10$ as an under-arc. We know $a$ cannot be 4 as an under-arc, otherwise $2-a=11$, contradicting our assumption that no arc is colored by 11. If $a=0$ or $a=10$ as an under-arc, we transform the diagram as in Figure 8 . Therefore any crossings of the form $\{1|1| 1\}$ are removed.

Next, we remove 1 as an over-arc by transforming any crossings of the form $\{a|1| 2-a\}$. Since $2-a \neq 1,6,7,8,11,12$, we have $a \neq 3,4,9$. With the exceptions of $a=0,10$ (when $2 a+12=1,6,7,8,11,12$ and $3 a+11=1,6,7,8,11,12$ ), we transform the diagram as in Figure 4. If $a=0$ or $a=10$, we transform the diagram as in Figure 9.

We complete the proof by removing 1 as an under-arc in a case-by-case method. We first consider the case where 1 is an under-arc connecting two crossings of the form $\{1|a| 2 a+12\}$. Since $2 a+12 \neq 1,6,7,8,11,12$, we have $a \neq 0,4,10$. If $a \neq 3,9$ then $3 a+11 \neq 1,6,7,8,11,12$ and $4 a+10 \neq 1,6,7,8,11,12$, so we transform the diagram as in Figure 5. If $a=3$, we transform the diagram as in Figure 30. If $a=9$, we transform the diagram as in Figure 31.

Now we consider the case where 1 is an under-arc connecting two crossings of the forms $\{2 a+12|a| 1\}$ and $\{1|b| 2 b+12\}$, where $a \neq b$ for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{0,1,4,6,7,8,10,11,12\}$. (Note $a, b \neq 0,4,10$, otherwise $2 a+12=1,6,7$, $8,11,12$ or $2 b+12=1,6,7,8,11,12$.) If $(a, b) \neq(2,5),(5,2),(3,5),(5,3)$ then


Figure 31
either

$$
2 a-2 b-12 \neq 1,6,7,8,11,12 \text { and } 2 a-b \neq 1,6,7,8,11,12
$$

or

$$
2 b-2 a-12 \neq 1,6,7,8,11,12 \quad \text { and } \quad 2 b-a \neq 1,6,7,8,11,12
$$

for any $a$ and $b$ in $\mathbb{Z}_{13} \backslash\{0,1,4,6,7,8,10,11,12\}$, and we transform the diagram as in Figure 12.


Figure 32


Figure 33

If $(a, b)=(2,5)$, we transform the diagram as in Figure 32. The case $(a, b)=$ $(5,2)$ is similar.

If $(a, b)=(3,5)$, we transform the diagram as in Figure 33. The case $(a, b)=$ $(5,3)$ is similar.

## Eliminating the color 10.

Lemma 2.8. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by $1,6,7,8,10,11$, or 12 .

Proof. Let $c=10$. By the previous lemmas we assume that no arc in $D$ is colored by $1,6,7,8,11$, or 12 . We first transform any crossing of the form $\{10|10| 10\}$. If there is any such crossing, there is an adjacent crossing of the form $\{10|a| 2 a+3\}$ or $\{a|10| 7-a\}$, where $a$ is in $\mathbb{Z}_{13} \backslash\{1,6,7,8,10,11,12\}$. With the exceptions of $a=2,4,9$ as an over-arc (when $2 a+3=1,6,7,8,11,12$ ) and $a=0,9$ as an under$\operatorname{arc}$ (when $7-a=1,6,7,8,11,12$ ), we transform the diagram as in Figures 2 and 3.

Now we must check when $a=2,4,9$ as an under-arc. We know $a$ cannot be 9 as an under-arc, otherwise $7-a=11$, contradicting our assumption that no arc is colored by 11. If $a=2$ or $a=4$ as ander-arc, we transform the diagram as in Figure 8. Therefore any crossings of the form $\{10|10| 10\}$ are removed.


Figure 34


Figure 35


Figure 36

Next, we remove 10 as an over-arc by transforming any crossings of the form $\{a|10| 7-a\}$. Since $7-a \neq 1,6,7,8,10,11,12$, we have $a \neq 0,9$. With the exceptions of $a=2,4,5$ (when $2 a+3=1,6,7,8,10,11,12$ and $3 a+6=$ $1,6,7,8,10,11,12$ ), we transform the diagram as in Figure 4. If $a=2$, we transform the diagram as in Figure 34. If $a=4$, we transform the diagram as in Figure 9. If $a=5$, since $7-a=2$, we transform the diagram similarly to Figure 34, i.e., $a=2$.

We complete the proof by removing 10 as an under-arc in a case-by-case method. We first consider the case where 10 is an under-arc connecting two crossings of the


Figure 37
form $\{10|a| 2 a+3\}$. Since $2 a+3 \neq 1,6,7,8,10,11,12$, we have $a \neq 2,4,9$. So, we need to check $a=0,3,5$. If $a=0$, we transform the diagram as in Figure 35, and we shall refer to this transformation throughout Lemma 2.8. As such, two variations of this transformation are given in Figure 36. If $a=3$, we transform the diagram as in Figure 37. If $a=5$, we transform the diagram as in Figure 38. Note the center of $a=5$ as well as the six dashed boxes are the same transformations we used for $a=0$ and its variations. Also, there are two arcs colored by 10, each of which are transformed by $a=3$ as in Figure 37.

Now we consider the case where 10 is an under-arc. There are six such cases: $(a, b)=(0,3),(3,0),(0,5),(5,0),(3,5),(5,3)$. If $(a, b)=(0,3)$, we transform the diagram as in Figure 39. For eliminating the 10 arc, see the variations of $a=0$ in Figure 36. The case $(a, b)=(3,0)$ is similar.

If $(a, b)=(0,5)$, we transform the diagram as in Figure 40. For eliminating the 10 arc, see $a=5$ in Figure 38; however, we will use the variations of $a=0$ in Figure 36 for the center. The case $(a, b)=(5,0)$ is similar.





Figure 38


Figure 39


Figure 40


Figure 41

If $(a, b)=(3,5)$, we transform the diagram as in Figure 41. For eliminating the 10 arcs, see the $(a, b)=(0,3)$ case in Figure 39 and the $a=5$ case in Figure 38 using the variations in Figure 36. The case $(a, b)=(5,3)$ is similar.


Figure 42

## Eliminating the color 5.

Lemma 2.9. Any 13-colorable knot has a 13-colored diagram $D$ with no arc colored by 1, 5, 6, 7, 8, 10, 11, or 12 .

Proof. Let $c=5$. By the previous lemmas we assume that no $\operatorname{arc}$ in $D$ is colored by $1,6,7,8,10,11$, or 12 . We first transform any crossing of the form $\{5|5| 5\}$. If there is any such crossing, there is an adjacent crossing of the form $\{5|a| 2 a+8\}$, where $a$ is in $\mathbb{Z}_{13} \backslash\{1,5,6,7,8,10,11,12\}$. Since $10-a=1,6,7,8,10,11,12$ when $a=0,2,3,4,9$, we know $a$ cannot be an under-arc. Therefore, with the exceptions of $a=0,2,3$ as an over-arc (when $2 a+8=1,5,6,7,8,10,11,12$ ), we transform the diagram as in Figure 2. Therefore any crossings of the form $\{5|5| 5\}$ are removed.


Figure 43

Next, we remove 5 as an over-arc by transforming any crossings of the form $\{a|5| 10-a\}$. Since $10-a \neq 1,5,6,7,8,10,11,12$, we have $a \neq 0,2,3,4,9$. Therefore, 5 cannot be an over-arc.


Figure 44
We complete the proof of Lemma 2.8 by removing 5 as an under-arc in a case-by-case method. We first consider the case where 5 is an under-arc connecting two crossings of the form $\{5|a| 2 a+8\}$. Since $2 a+8 \neq 1,5,6,7,8,10,11,12$, we have $a \neq 0,2,3$. So, we need to check $a=4$, 9 . If $a=4$, we transform the diagram as in Figure 42. If $a=9$, we transform the diagram as in Figure 43.

Now we consider the case where 5 is an under-arc connecting two crossings of the forms $\{5|a| 2 a+8\}$ and $\{5|b| 2 b+8\}$. Since $2 a+8,2 b+8 \neq 1,5,6,7,8,10,11,12$, there are two cases that we need to consider: $(a, b)=(4,9),(9,4)$. If $(a, b)=(4,9)$, we transform the diagram as in Figure 44. The case $(a, b)=(9,4)$ is similar.

At the same time we were working on this problem, Bento and Lopes [2015] proved the same result using different techniques.

## References

[Bento and Lopes 2015] F. Bento and P. Lopes, "The minimum number of Fox colors modulo 13 is 5", preprint, 2015. arXiv
[Fox 1962] R. H. Fox, "A quick trip through knot theory", pp. 120-167 in Topology of 3-manifolds and related topics (Athens, GA, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962. MR Zbl
[Hayashi et al. 2012] C. Hayashi, M. Hayashi, and K. Oshiro, "On linear n-colorings for knots", J. Knot Theory Ramifications 21:14 (2012), art. ID \#1250123. MR Zbl
[Lopes and Matias 2012] P. Lopes and J. Matias, "Minimum number of Fox colors for small primes", J. Knot Theory Ramifications 21:3 (2012), art ID \#1250025. MR Zbl
[Nakamura et al. 2013] T. Nakamura, Y. Nakanishi, and S. Satoh, "The pallet graph of a Fox coloring", Yokohama Math. J. 59 (2013), 91-97. MR Zbl
[Oshiro 2010] K. Oshiro, "Any 7-colorable knot can be colored by four colors", J. Math. Soc. Japan 62:3 (2010), 963-973. MR Zbl
[Satoh 2009] S. Satoh, "5-colored knot diagram with four colors", Osaka J. Math. 46:4 (2009), 939-948. MR Zbl

Received: 2015-09-29 Revised: 2016-01-05 Accepted: 2016-01-24
emohamed@usf.edu
kerrj@mail.usf.edu

# involve 

msp.org/involve

## INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR<br>Kenneth S. Berenhaut Wake Forest University, USA

| Colin Adams | Williams College, USA | Suzanne Lenhart | University of Tennessee, USA |
| :---: | :---: | :---: | :---: |
| John V. Baxley | Wake Forest University, NC, USA | Chi-Kwong Li | College of William and Mary, USA |
| Arthur T. Benjamin | Harvey Mudd College, USA | Robert B. Lund | Clemson University, USA |
| Martin Bohner | Missouri U of Science and Technology, | USA Gaven J. Martin | Massey University, New Zealand |
| Nigel Boston | University of Wisconsin, USA | Mary Meyer | Colorado State University, USA |
| Amarjit S. Budhiraja | U of North Carolina, Chapel Hill, USA | Emil Minchev | Ruse, Bulgaria |
| Pietro Cerone | La Trobe University, Australia | Frank Morgan | Williams College, USA |
| Scott Chapman | Sam Houston State University, USA | Mohammad Sal Moslehian | Ferdowsi University of Mashhad, Iran |
| Joshua N. Cooper | University of South Carolina, USA | Zuhair Nashed | University of Central Florida, USA |
| Jem N. Corcoran | University of Colorado, USA | Ken Ono | Emory University, USA |
| Toka Diagana | Howard University, USA | Timothy E. O'Brien | Loyola University Chicago, USA |
| Michael Dorff | Brigham Young University, USA | Joseph O'Rourke | Smith College, USA |
| Sever S. Dragomir | Victoria University, Australia | Yuval Peres | Microsoft Research, USA |
| Behrouz Emamizadeh | The Petroleum Institute, UAE | Y.-F. S. Pétermann | Université de Genève, Switzerland |
| Joel Foisy | SUNY Potsdam, USA | Robert J. Plemmons | Wake Forest University, USA |
| Errin W. Fulp | Wake Forest University, USA | Carl B. Pomerance | Dartmouth College, USA |
| Joseph Gallian | University of Minnesota Duluth, USA | Vadim Ponomarenko | San Diego State University, USA |
| Stephan R. Garcia | Pomona College, USA | Bjorn Poonen | UC Berkeley, USA |
| Anant Godbole | East Tennessee State University, USA | James Propp | U Mass Lowell, USA |
| Ron Gould | Emory University, USA | Józeph H. Przytycki | George Washington University, USA |
| Andrew Granville | Université Montréal, Canada | Richard Rebarber | University of Nebraska, USA |
| Jerrold Griggs | University of South Carolina, USA | Robert W. Robinson | University of Georgia, USA |
| Sat Gupta | U of North Carolina, Greensboro, USA | Filip Saidak | U of North Carolina, Greensboro, USA |
| Jim Haglund | University of Pennsylvania, USA | James A. Sellers | Penn State University, USA |
| Johnny Henderson | Baylor University, USA | Andrew J. Sterge | Honorary Editor |
| Jim Hoste | Pitzer College, USA | Ann Trenk | Wellesley College, USA |
| Natalia Hritonenko | Prairie View A\&M University, USA | Ravi Vakil | Stanford University, USA |
| Glenn H. Hurlbert | Arizona State University,USA | Antonia Vecchio | Consiglio Nazionale delle Ricerche, Italy |
| Charles R. Johnson | College of William and Mary, USA | Ram U. Verma | University of Toledo, USA |
| K. B. Kulasekera | Clemson University, USA | John C. Wierman | Johns Hopkins University, USA |
| Gerry Ladas | University of Rhode Island, USA | Michael E. Zieve | University of Michigan, USA |

## PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US \$175/year for the electronic version, and $\$ 235 /$ year $(+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers
Stability analysis for numerical methods applied to an inner ear model ..... 181Kimberley Lindenberg, Kees Vuik and Pieter W. J.van Hengel
Three approaches to a bracket polynomial for singular links ..... 197
Carmen Caprau, Alex Chichester and Patrick Chu
Symplectic embeddings of four-dimensional ellipsoids into polydiscs ..... 219 Madeleine Burkhart, Priera Panescu and Max Timmons
Characterizations of the round two-dimensional sphere in terms of ..... 243closed geodesicsLee Kennard and Jordan Rainone
A necessary and sufficient condition for coincidence with the weak ..... 257 topologyJoseph Clanin and Kristopher Lee
Peak sets of classical Coxeter groups ..... 263
Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko and Darleen Perez-Lavin
Fox coloring and the minimum number of colors ..... 291Mohamed Elhamdadi and Jeremy Kerr
Combinatorial curve neighborhoods for the affine flag manifold of type $A_{1}^{1}$ ..... 317Leonardo C. Mihalcea and Trevor Norton
Total variation based denoising methods for speckle noise images ..... 327
Arundhati Bagchi Misra, Ethan Lockhart and Hyeona Lim
A new look at Apollonian circle packings ..... 345
Isabel Corona, Carolynn Johnson, Lon Mitchell and DYlan O'Connell


[^0]:    MSC2010: 57M25.
    Keywords: knots, fox colorings, minimum number of colors.

