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We study Fox colorings of knots that are 13-colorable. We prove that any
13-colorable knot has a diagram that uses exactly five of the thirteen colors that
are assigned to the arcs of the diagram. Due to an existing lower bound, this
gives that the minimum number of colors of any 13-colorable knot is 5.

1. Introduction

Fox [1962] introduced a diagrammatic definition of colorability of a knot K by Zm

(the integers modulo m). This notion of colorability is clearly one of the simplest
invariants of knots. For a natural number m greater than 1, a diagram D of a knot K
is m-colorable if at every crossing, the sum of the colors of the under-arcs is twice
the color of the over-arc (modulo m), as in Figure 1.

It is well known [Fox 1962] that for a prime p, a knot K is p-colorable if and only
if p divides the determinant of K. The problem of finding the minimum number
of colors for p-colorable knots with p prime and less than or equal to 11 was
studied in [Satoh 2009; Oshiro 2010; Lopes and Matias 2012; Hayashi et al. 2012].
For example, Satoh [2009] proved that any 5-colorable knot admits a nontrivially
5-colored diagram where the coloring assignment uses only four of the five available
colors. For a prime p, let K be a p-colorable knot and let C p(K ) denote the
minimum number of colors among all diagrams of the knot K. In [Nakamura et al.
2013], it was proved that C p(K ) ≥ blog2 pc + 2. This implies that in our case,
p = 13, the minimum number of colors of 13-colorable knots is greater than or
equal to 5. In fact, the goal of this article is to prove equality, that is, C13(K )= 5.

2. Fox coloring and the minimum number of colors of 13-colorable knots

Notation. We use {a |b |c} to denote a crossing, as in Figure 1, where a and c are
the colors of the under-arcs, b is the color of the over-arc and a+ c ≡ 2b mod 13.
When the crossing is of the type {c |c |c} (trivial coloring), we will omit over- and
under-crossings and draw the arcs crossing each other.

MSC2010: 57M25.
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a b

c ≡ 2b − a

Figure 1

Theorem 2.1. Any 13-colorable knot has a 13-colored diagram with exactly five
colors. Thus, C13(K )= 5 for any 13-colorable knot K.

Proof. We prove this theorem using eight lemmas. In each of the following lemmas
we decrease the coloring scheme of the diagram by one color c. To accomplish
this we first transform any crossings of the form {c |c |c}. That is, when c is both
an over-arc and an under-arc, we remove c as an over-arc by transforming any
crossings of the form {a |c |2c−a}, where a ∈ Z13 \ {c}. Finally, we complete each
lemma by removing c as an under-arc in a case-by-case method. In these under-arc
cases we must consider when c connects two crossings of the same color and when c
connects two crossings of different colors. �

Eliminating the color 12.

Lemma 2.2. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 12.

Proof. Let c = 12. We first transform any crossing of the form {12|12|12}. If
there is any such crossing, there is an adjacent crossing of the form {12|a |2a+1}
or {a |12|11−a}, where a ∈ Z13 \ {12}. In either case, since 11 − a 6= 12 and
2a+1 6= 12 for any a in Z13 \ {12}, we transform the diagram as in Figures 2 and 3.

Next, we remove 12 as an over-arc by transforming any crossings of the form
{a |12|11−a}. Since 2a + 1 6= 12 and 3a + 2 6= 12 for any a ∈ Z13 \ {12}, we
transform the diagram as in Figure 4.

a c

2a − c

a c

c

c c2a − c

2a − c

Figure 2
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a c

c  

2c � a 2c � a

a c

c

cc

2a � c

Figure 3

a

c

2c − a

a

c

c

2c − a

2a − c

3a − 2c

Figure 4

We complete the proof of the lemma by removing 12 as an under-arc in a case-
by-case method. We first consider the case where 12 is an under-arc connecting
two crossings of the form {12|a |2a+1}. Since 2a + 1 6= 12, 3a + 2 6= 12, and
4a+ 3 6= 12 for any a ∈ Z13 \ {12}, we transform the diagram as in Figure 5.

Now we consider the case where 12 is an under-arc connecting two crossings of
the forms {2a+1|a |12} and {12|2a+1|4a+3}. Since 2a+1 6= 12 and 3a+2 6= 12
for any a ∈ Z13 \ {12}, we transform the diagram as in Figure 6.

Lastly we consider the case where 12 is an under-arc connecting two crossings of
the forms {2a+1|a |12} and {12|b |2b+1}, where a 6= b and b 6= 2a+ 1 for any a
and b in Z13\{12}. Since 2a−2b−1 6=12 and 2a−b 6=12 for any a and b in Z13\{12}
(from a 6=b and b 6=2a+1 respectively), we transform the diagram as in Figure 7. �

a a

2a − c 2a − c

2a − c

a a

a a

c

3a − 2c 3a − 2c

4a − 3c 2a − c 2a − c

Figure 5
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a 2a +1

3a +2

2a +1

2a +1

2a +1 2a +14a +3 4a +3

a

a

12
2a +1

Figure 6

a b b 

b 

2a −b

2a +1 2a +1

2a −2b−1

2b +1
2b +1

a

a

12

Figure 7

Eliminating the color 11.

Lemma 2.3. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 11 or 12.

Proof. Let c = 11. By the previous lemma we assume that no arc in D is colored
by 12. We first transform any crossing of the form {11|11|11}. If there is any such
crossing, there is an adjacent crossing of the form {11|a |2a+2} or {a |11|9−a},
where a is in Z13 \ {11, 12}. If a 6= 5, 10, then 9− a 6= 11, 12 and 2a+ 2 6= 11, 12
for any a in Z13 \{5, 10, 11, 12}, so we transform the diagram as in Figures 2 and 3.

If a = 5 as an under-arc, we transform the diagram as in Figure 8. Now, a cannot
equal 5 as an over-arc, otherwise 2a+2= 12, contradicting our assumption that no
arc is colored by 12.

a c

2c − a 2c − a

a c

c

cc 3c − 2a

Figure 8
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a

c

2c − a a

c

c

2c − a

3c − 2a

4c − 3a

Figure 9

If a = 10 as an over-arc, we transform the diagram as in Figure 2. Similarly a
cannot equal 10 as an under-arc, otherwise 9− a = 12, which is a contradiction.

Next, we remove 11 as an over-arc by transforming any crossings of the form
{a |11|9−a}. Since 9− a 6= 11, 12, we have a 6= 10. Therefore if a 6= 5, 7 then
2a+ 2 6= 11, 12 and 3a+ 4 6= 11, 12 for any a in Z13 \ {5, 7, 10, 11, 12}, and we
transform the diagram as in Figure 4. If a = 5 or a = 7, we transform the diagram
as in Figure 9.

We complete the proof of the lemma by removing 11 as an under-arc in a case-
by-case method. We first consider the case where 11 is an under-arc connecting
two crossings of the form {11|a |2a+2}. Since 2a+ 2 6= 11, 12, we have a 6= 5. If
a 6= 7, 8, then 3a+4 6= 11, 12 and 4a+6 6= 11, 12 for any a in Z13\{5, 7, 8, 11, 12},
and we transform the diagram as in Figure 5. If a = 7, we transform the diagram
as in Figure 10. If a = 8, we transform the diagram as in Figure 11.

Now we consider the case where 11 is an under-arc connecting two crossings
of the forms {2a+2|a |11} and {11|b |2b+2}, where a 6= b for any a and b in
Z13 \ {5, 11, 12}. (Note a, b 6= 5, otherwise 2a+ 2= 12 or 2b+ 2= 12.)

7 7

3 311

7

7

7

7

9 9

9 9

4 4

3 30

0

0

0

3

8

Figure 10
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a a

2a − c 2a − cc

a

a

a

a

a

6c − 5a2a − c

2a − c

2a − c

3a − 2c

3c − 2a

5c − 4a

7c − 6a

6c − 5a

7c − 6a

7c − 6a 7c − 6a

Figure 11

If (a, b) 6= (0, 6), (6, 0), (3, 7), (7, 3) then either

2a− 2b− 2 6= 11, 12 and 2a− b 6= 11, 12
or

2b− 2a− 2 6= 11, 12 and 2b− a 6= 11, 12

for any a and b in Z13 \ {5, 11, 12}, and we transform the diagram as in Figure 12.
If (a, b)= (0, 6), we transform the diagram as in Figure 13. A similar transfor-

mation works for the case (a, b)= (6, 0).
If (a, b)= (3, 7), we transform the diagram as in Figure 14. A similar transfor-

mation works for the case (a, b)= (7, 3). �

a a

2a − c 2a − c

2a − b

2b − c

a b

a b

c
2a − 2b + c

2b − c

2b − a

2b − c

a b

a b

2b − 2a + c

OR
2a − c

Figure 12
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0 6

2 1

0

2 9

6

1

0 6

11 402

Figure 13

3 7

8 3

3

0 9

7

8

3 7

11 5 0 3

Figure 14

Eliminating the color 7.

Lemma 2.4. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 7, 11, or 12.

Proof. Let c= 7. By the previous lemmas we assume that no arc in D is colored by
11 or 12. We first transform any crossing of the form {7|7|7}. If there is any such
crossing, there is an adjacent crossing of the form {7|a |2a+6} or {a |7|1−a}, where
a is in Z13\{7, 11, 12}. If a 6=2, 3, 9 then 1−a 6=7, 11, 12 and 2a+6 6=7, 11, 12 for
any a in Z13 \{2, 3, 7, 9, 11, 12}, so we transform the diagram as in Figures 2 and 3.

If a = 2 as an over-arc, we transform the diagram as in Figure 2. Note a cannot
equal 2 as an under-arc, otherwise 1− a = 12, contradicting our assumption that
no arc is colored by 12.

Now a cannot be 3 as an over-arc or an under-arc, otherwise 1− a = 11 and
2a+ 6 = 12, contradicting our assumption that no arc is colored by 11 or 12. If
a = 9 as an under-arc, we transform the diagram as in Figure 8. Note a cannot
equal 9 as an over-arc, otherwise 2a+ 6= 11, contradicting our assumption that
no arc is colored by 11. Therefore any crossings of the form {7|7|7} are removed.

Next, we remove 7 as an over-arc by transforming any crossings of the form
{a |7|1−a}. Since 1−a 6= 7, 11, 12, we have a 6= 2, 3. Therefore if a 6= 0, 4, 9 then
2a+6 6= 7, 11, 12 and 3a+12 6= 7, 11, 12 for any a in Z13\{0, 2, 3, 4, 7, 9, 11, 12},
and we transform the diagram as in Figure 4. If a = 0, 4, 9, we transform the
diagram as in Figure 9.
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0 0

6 67

0 0

2

9

9

3 3

9 9 48

8

8

8

0 0

5 5

9

9

4

4

4 4

42

6 64

4

6

5

10

3 3
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Figure 15

We complete the proof of the lemma by removing 7 as an under-arc in a case-
by-case method. We first consider the case where 7 is an under-arc connecting two
crossings of the form {7|a |2a+6}. Since 2a + 6 6= 7, 11, 12, we have a 6= 3, 9.
If a 6= 0, 4, 5, 8 then 3a + 12 6= 7, 11, 12 and 4a + 5 6= 7, 11, 12 for any a in
Z13 \ {0, 3, 4, 5, 7, 8, 9, 11, 12}, and we transform the diagram as in Figure 5. If
a= 0, we transform the diagram as in Figure 15. If a= 4, we transform the diagram
as in Figure 16. If a = 5, we transform the diagram as in Figure 17. If a = 8, we
transform the diagram as in Figure 11.

4 4

1 17

0 0

5 5

9 9

0

9 9

0

8 8

2

1 122

2

2

1

8

8 8

4 4

4 4

Figure 16
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5 5

3 37

1

9

9

9

6 66633

6

6

6
6

99

9

8

8

4 4

8

8

610

10

109 6 6 2 2 2 6 6 9 3

10

10

1

5

5

5

5 5

10

Figure 17

Now we consider the case where 7 is an under-arc connecting two crossings
of the forms {2a+6|a |7} and {7|b |2b+6}, where a 6= b for any a and b in
Z13 \ {3, 7, 9, 11, 12}. (Note a, b 6= 3, 9, otherwise 2a + 6 = 11, 12 or 2b+ 6 =
11, 12.) If

(a, b) 6= (0, 2), (2, 0), (0, 6), (6, 0), (1, 4), (4, 1), (4, 8), (8, 4)

then either

2a− 2b− 6 6= 7, 11, 12 and 2a− b 6= 7, 11, 12

or
2b− 2a− 6 6= 7, 11, 12 and 2b− a 6= 7, 11, 12

for any a and b in Z13 \ {3, 7, 9, 11, 12}, and we transform the diagram as in
Figure 12.

If (a, b)= (0, 2), we transform the diagram as in Figure 18. The case (a, b)=

(2, 0) is similar.

0 0

4

2 2

0 2

6 10 26

6

107

Figure 18
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0 6

6 5

0

10 4

6

5

0 6

7 346

Figure 19

1 4

1

1

112

4

1 4

8 1 8

8

87

2

2

0

0

9

9

5

Figure 20

4 48 8

4 8

1 9 1 4 9

9
0

7

Figure 21

If (a, b)= (0, 6), we transform the diagram as in Figure 19. The case (a, b)=

(6, 0) is similar.
If (a, b)= (1, 4), we transform the diagram as in Figure 20. The case (a, b)=

(4, 1) is similar.
If (a, b)= (4, 8), we transform the diagram as in following Figure 21. The case

(a, b)= (8, 4) is similar. �

Eliminating the color 8.

Lemma 2.5. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 7, 8, 11, or 12.
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Proof. Let c = 8. By the previous lemmas we assume that no arc in D is colored
by 7, 11, or 12. We first transform any crossing of the form {8|8|8}. If there is any
such crossing, there is an adjacent crossing of the form {8|a |2a+5} or {a |8|3−a},
where a is in Z13 \ {7, 8, 11, 12}. If a 6= 1, 3, 4, 5, 9, 10 then 3− a 6= 7, 8, 11, 12
and 2a+ 5 6= 7, 8, 11, 12 for any a in Z13 \ {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so we
transform the diagram as in Figures 2 and 3.

If a = 4, 5, 9 as an over-arc, we transform the diagram as in Figure 2. Note
a cannot be 4, 5, or 9 as an under-arc, otherwise 3− a = 7, 11, 12, contradicting
our assumption that no arc is colored by 7, 11, or 12. If a = 1 as an under-arc we
transform the diagram as in Figure 8. Note a cannot be 1 as an over-arc, otherwise
2a+ 5= 7, contradicting our assumption that no arc is colored by 7. If a = 3 as
an under-arc, we transform the diagram as in Figure 8. Note a cannot be 3 as an
over-arc, otherwise 2a+5= 11, contradicting our assumption that no arc is colored
by 11. If a = 10 as an under-arc, we transform the diagram as in Figure 8. Note a
cannot be 10 as an over-arc, otherwise 2a+ 5= 12, contradicting our assumption
that no arc is colored by 12. Therefore any crossings of the form {8|8|8} are
removed.

Next, we remove 8 as an over-arc by transforming any crossings of the form
{a |8|3−a}. Since 3 − a 6= 7, 8, 11, 12, we have a 6= 4, 5, 9. Therefore if
a 6= 1, 3, 10 then 2a + 5 6= 7, 8, 11, 12 and 3a + 10 6= 7, 8, 11, 12 for any a
in Z13 \ {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}, and we transform the diagram as in Figure 4.
If a = 1, 3 or 10, we transform the diagram as in Figure 9.

We complete the proof of the lemma by removing 8 as an under-arc in a case-
by-case method. We first consider the case where 8 is an under-arc connecting
two crossings of the form {8|a |2a+5}. Since 2a + 5 6= 7, 8, 11, 12, we have
a 6= 1, 3, 10. If a 6= 5, 9 then 3a+10 6= 7, 8, 11, 12 and 4a+2 6= 7, 8, 11, 12 for any
a in Z13 \ {1, 3, 5, 7, 8, 9, 10, 11, 12}, and we transform the diagram as in Figure 5.
If a = 5, we transform the diagram as in Figure 22. If a = 9, we transform the
diagram as in Figure 23.

Now we consider the case where 8 is an under-arc connecting two crossings
of the forms {2a+5|a |8} and {8|b |2b+5}, where a 6= b for any a and b in
Z13 \ {1, 3, 7, 8, 10, 11, 12}. (Note a, b 6= 1, 3, 10, otherwise 2a + 5 = 7, 11, 12
or 2b+ 5 = 7, 11, 12.) If (a, b) 6= (0, 2), (2, 0), (0, 6), (6, 0), (2, 5), (5, 2) then
either

2a− 2b− 5 6= 7, 8, 11, 12 and 2a− b 6= 7, 8, 11, 12

or
2b− 2a− 5 6= 7, 8, 11, 12 and 2b− a 6= 7, 8, 11, 12

for any a and b in Z13 \ {1, 3, 7, 8, 10, 11, 12}, and we transform the diagram as in
Figure 12.
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5 5

2 28

5

5

5

5

0 0

0 0

6 6

2 23

3

3

3

2

9

Figure 22

9 9

10 108

9 9

9 9

6

6

0

2

2

2

6

6

0

2

2

2

0

0

0

0 0

0

10 5 1

1 1

1 1
3 3

1 1 1 1 5 10

105 51 1

1

3

1

1

Figure 23

If (a, b)= (0, 2), we transform the diagram as in Figure 24. The case (a, b)=

(2, 0) is similar.
If (a, b)= (0, 6), we transform the diagram as in Figure 25. The case (a, b)=

(6, 0) is similar.
If (a, b)= (2, 5), we transform the diagram as in Figure 26. The case (a, b)=

(5, 2) is similar. �

Eliminating the color 6.

Lemma 2.6. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 6, 7, 8, 11, or 12.
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0 2

5 9

0

5 3

2

9

0 2

8 1005

Figure 24

0 6

5 4

0

10 4

6

5

0 6

8 2 6 4

Figure 25

2 5

9 2

2

3 0

5

9

2 5

8 10 3 2

Figure 26

Proof. Let c = 6. By the previous lemmas we assume that no arc in D is colored
by 7, 8, 11, or 12. We first transform any crossing of the form {6|6|6}. If there
is any such crossing, there is an adjacent crossing of the form {6|a |2a+7} or
{a |6|12−a}, where a is in Z13 \{6, 7, 8, 11, 12}. With the exceptions of a= 0, 2, 9
as an over-arc (when 2a+7= 7, 8, 11, 12) and a = 0, 1, 4, 5 as an under-arc (when
12− a = 7, 8, 11, 12), we transform the diagram as in Figures 2 and 3.

Now we must check when a = 0, 2, 9 as an under-arc. First and foremost a
cannot equal 0 as an under-arc, otherwise 12−a= 12, contradicting our assumption
that no arc is colored by 12. If a = 2, 9 as an under-arc, we transform the diagram
as in Figure 8. Therefore any crossings of the form {6|6|6} are removed.

Next, we remove 6 as an over-arc by transforming any crossings of the form
{a |6|12−a}. Since 12 − a 6= 6, 7, 8, 11, 12, we have a 6= 0, 1, 4, 5. With the
exceptions of a = 2, 9 (when 2a+ 7= 6, 7, 8, 11, 12 and 3a+ 1= 6, 7, 8, 11, 12),
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5 2 3 4 4 3 5

3 5 3
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Figure 27

we transform the diagram as in Figure 4. If a = 2 or a = 9, we transform the
diagram as in Figure 9.

We complete the proof of the lemma by removing 6 as an under-arc in a case-
by-case method. We first consider the case where 6 is an under-arc connecting
two crossings of the form {6|a |2a+7}. Since 2a + 7 6= 6, 7, 8, 11, 12, we have
a 6= 0, 2, 9. If a 6= 1, 3, 4 then 3a+ 1 6= 6, 7, 8, 11, 12 and 4a+ 8 6= 6, 7, 8, 11, 12,
so we transform the diagram as in Figure 5. If a = 1, we transform the diagram as
in Figure 11. If a = 3, we transform the diagram as in Figures 27 and 28. If a = 4,
we transform the diagram as in Figure 11.

Now we consider the case where 6 is an under-arc connecting two crossings
of the forms {2a+7|a |6} and {6|b |2b+7}, where a 6= b for any a and b in
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1 4
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2

10

10 10

4

Figure 29

Z13 \ {0, 2, 6, 7, 8, 9, 11, 12}. (Note a, b 6= 0, 2, 9, otherwise 2a+ 7= 7, 8, 11, 12
or 2b+ 7= 7, 8, 11, 12.)

If (a, b) 6= (1, 4), (4, 1) then either

2a− 2b− 7 6= 6, 7, 8, 11, 12 and 2a− b 6= 6, 7, 8, 11, 12
or

2b− 2a− 7 6= 6, 7, 8, 11, 12 and 2b− a 6= 6, 7, 8, 11, 12

for any a and b in Z13 \ {0, 2, 6, 7, 8, 9, 11, 12}, and we transform the diagram as
in Figure 12.

If (a, b)= (1, 4), we transform the diagram as in Figure 29. The case (a, b)=

(4, 1) is similar. �

Eliminating the color 1.

Lemma 2.7. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 1, 6, 7, 8, 11, or 12.
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Figure 30

Proof. Let c= 1. By the previous lemmas we assume that no arc in D is colored by
6, 7, 8, 11, or 12. We first transform any crossing of the form {1|1|1}. If there is any
such crossing, there is an adjacent crossing of the form {1|a |2a+12} or {a |1|2−a},
where a is in Z13 \ {1, 6, 7, 8, 11, 12}. With the exceptions of a = 0, 4, 10 as an
over-arc (when 2a + 12 = 6, 7, 8, 11, 12) and a = 3, 4, 9 as an under-arc (when
2− a = 6, 7, 8, 11, 12), we transform the diagram as in Figures 2 and 3.

Now we must check when a = 0, 4, 10 as an under-arc. We know a cannot be 4
as an under-arc, otherwise 2− a = 11, contradicting our assumption that no arc is
colored by 11. If a = 0 or a = 10 as an under-arc, we transform the diagram as in
Figure 8. Therefore any crossings of the form {1|1|1} are removed.

Next, we remove 1 as an over-arc by transforming any crossings of the form
{a |1|2−a}. Since 2−a 6=1, 6, 7, 8, 11, 12, we have a 6=3, 4, 9. With the exceptions
of a = 0, 10 (when 2a+12= 1, 6, 7, 8, 11, 12 and 3a+11= 1, 6, 7, 8, 11, 12), we
transform the diagram as in Figure 4. If a = 0 or a = 10, we transform the diagram
as in Figure 9.

We complete the proof by removing 1 as an under-arc in a case-by-case method.
We first consider the case where 1 is an under-arc connecting two crossings of the
form {1|a |2a+12}. Since 2a + 12 6= 1, 6, 7, 8, 11, 12, we have a 6= 0, 4, 10. If
a 6= 3, 9 then 3a+ 11 6= 1, 6, 7, 8, 11, 12 and 4a+ 10 6= 1, 6, 7, 8, 11, 12, so we
transform the diagram as in Figure 5. If a = 3, we transform the diagram as in
Figure 30. If a = 9, we transform the diagram as in Figure 31.

Now we consider the case where 1 is an under-arc connecting two crossings
of the forms {2a+12|a |1} and {1|b |2b+12}, where a 6= b for any a and b in
Z13\{0, 1, 4, 6, 7, 8, 10, 11, 12}. (Note a, b 6= 0, 4, 10, otherwise 2a+12= 1, 6, 7,

8, 11, 12 or 2b+12= 1, 6, 7, 8, 11, 12.) If (a, b) 6= (2, 5), (5, 2), (3, 5), (5, 3) then
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either

2a− 2b− 12 6= 1, 6, 7, 8, 11, 12 and 2a− b 6= 1, 6, 7, 8, 11, 12

or
2b− 2a− 12 6= 1, 6, 7, 8, 11, 12 and 2b− a 6= 1, 6, 7, 8, 11, 12

for any a and b in Z13 \ {0, 1, 4, 6, 7, 8, 10, 11, 12}, and we transform the diagram
as in Figure 12.

2 5

3 9

2

3 0

5

9

2 5

1 423

Figure 32

3 5

5 9

3

2 0

5

9

3 5

1 405

Figure 33
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If (a, b)= (2, 5), we transform the diagram as in Figure 32. The case (a, b)=

(5, 2) is similar.
If (a, b)= (3, 5), we transform the diagram as in Figure 33. The case (a, b)=

(5, 3) is similar. �

Eliminating the color 10.

Lemma 2.8. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 1, 6, 7, 8, 10, 11, or 12.

Proof. Let c = 10. By the previous lemmas we assume that no arc in D is colored
by 1, 6, 7, 8, 11, or 12. We first transform any crossing of the form {10|10|10}. If
there is any such crossing, there is an adjacent crossing of the form {10|a |2a+3}
or {a |10|7−a}, where a is in Z13 \ {1, 6, 7, 8, 10, 11, 12}. With the exceptions of
a= 2, 4, 9 as an over-arc (when 2a+3= 1, 6, 7, 8, 11, 12) and a= 0, 9 as an under-
arc (when 7−a= 1, 6, 7, 8, 11, 12), we transform the diagram as in Figures 2 and 3.

Now we must check when a = 2, 4, 9 as an under-arc. We know a cannot be 9
as an under-arc, otherwise 7− a = 11, contradicting our assumption that no arc is
colored by 11. If a = 2 or a = 4 as an under-arc, we transform the diagram as in
Figure 8. Therefore any crossings of the form {10|10|10} are removed.
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Next, we remove 10 as an over-arc by transforming any crossings of the form
{a |10|7−a}. Since 7 − a 6= 1, 6, 7, 8, 10, 11, 12, we have a 6= 0, 9. With the
exceptions of a = 2, 4, 5 (when 2a + 3 = 1, 6, 7, 8, 10, 11, 12 and 3a + 6 =
1, 6, 7, 8, 10, 11, 12), we transform the diagram as in Figure 4. If a=2, we transform
the diagram as in Figure 34. If a = 4, we transform the diagram as in Figure 9. If
a = 5, since 7−a = 2, we transform the diagram similarly to Figure 34, i.e., a = 2.

We complete the proof by removing 10 as an under-arc in a case-by-case method.
We first consider the case where 10 is an under-arc connecting two crossings of the
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form {10|a |2a+3}. Since 2a+ 3 6= 1, 6, 7, 8, 10, 11, 12, we have a 6= 2, 4, 9. So,
we need to check a = 0, 3, 5. If a = 0, we transform the diagram as in Figure 35,
and we shall refer to this transformation throughout Lemma 2.8. As such, two
variations of this transformation are given in Figure 36. If a = 3, we transform the
diagram as in Figure 37. If a = 5, we transform the diagram as in Figure 38. Note
the center of a = 5 as well as the six dashed boxes are the same transformations
we used for a = 0 and its variations. Also, there are two arcs colored by 10, each
of which are transformed by a = 3 as in Figure 37.

Now we consider the case where 10 is an under-arc. There are six such cases:
(a, b)= (0, 3), (3, 0), (0, 5), (5, 0), (3, 5), (5, 3). If (a, b)= (0, 3), we transform
the diagram as in Figure 39. For eliminating the 10 arc, see the variations of a = 0
in Figure 36. The case (a, b)= (3, 0) is similar.

If (a, b) = (0, 5), we transform the diagram as in Figure 40. For eliminating
the 10 arc, see a = 5 in Figure 38; however, we will use the variations of a = 0
in Figure 36 for the center. The case (a, b)= (5, 0) is similar.
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If (a, b)= (3, 5), we transform the diagram as in Figure 41. For eliminating the
10 arcs, see the (a, b)= (0, 3) case in Figure 39 and the a = 5 case in Figure 38
using the variations in Figure 36. The case (a, b)= (5, 3) is similar. �
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Eliminating the color 5.

Lemma 2.9. Any 13-colorable knot has a 13-colored diagram D with no arc
colored by 1, 5, 6, 7, 8, 10, 11, or 12.

Proof. Let c= 5. By the previous lemmas we assume that no arc in D is colored by
1, 6, 7, 8, 10, 11, or 12. We first transform any crossing of the form {5|5|5}. If there
is any such crossing, there is an adjacent crossing of the form {5|a |2a+8}, where
a is in Z13 \ {1, 5, 6, 7, 8, 10, 11, 12}. Since 10− a = 1, 6, 7, 8, 10, 11, 12 when
a = 0, 2, 3, 4, 9, we know a cannot be an under-arc. Therefore, with the exceptions
of a = 0, 2, 3 as an over-arc (when 2a+ 8= 1, 5, 6, 7, 8, 10, 11, 12), we transform
the diagram as in Figure 2. Therefore any crossings of the form {5|5|5} are removed.
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Next, we remove 5 as an over-arc by transforming any crossings of the form
{a |5|10−a}. Since 10− a 6= 1, 5, 6, 7, 8, 10, 11, 12, we have a 6= 0, 2, 3, 4, 9.
Therefore, 5 cannot be an over-arc.
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We complete the proof of Lemma 2.8 by removing 5 as an under-arc in a case-
by-case method. We first consider the case where 5 is an under-arc connecting two
crossings of the form {5|a |2a+8}. Since 2a+8 6= 1, 5, 6, 7, 8, 10, 11, 12, we have
a 6= 0, 2, 3. So, we need to check a = 4, 9. If a = 4, we transform the diagram as
in Figure 42. If a = 9, we transform the diagram as in Figure 43.

Now we consider the case where 5 is an under-arc connecting two crossings of the
forms {5|a |2a+8} and {5|b |2b+8}. Since 2a+8, 2b+8 6= 1, 5, 6, 7, 8, 10, 11, 12,
there are two cases that we need to consider: (a, b)= (4, 9), (9, 4). If (a, b)= (4, 9),
we transform the diagram as in Figure 44. The case (a, b)= (9, 4) is similar. �

At the same time we were working on this problem, Bento and Lopes [2015]
proved the same result using different techniques.
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