0

 involve

 involve} a journal of mathematics

Combinatorial curve neighborhoods
for the affine flag manifold of type A_{1}^{1}
Leonardo C. Mihalcea and Trevor Norton

Combinatorial curve neighborhoods for the affine flag manifold of type A_{1}^{1}

Leonardo C. Mihalcea and Trevor Norton
(Communicated by Jim Haglund)

Abstract

Let X be the affine flag manifold of Lie type A_{1}^{1}. Its moment graph encodes the torus fixed points (which are elements of the infinite dihedral group D_{∞}) and the torus stable curves in X. Given a fixed point $u \in D_{\infty}$ and a degree $\boldsymbol{d}=\left(d_{0}, d_{1}\right) \in \mathbb{Z}_{\geq 0}^{2}$, the combinatorial curve neighborhood is the set of maximal elements in the moment graph of X which can be reached from u using a chain of curves of total degree $\leq \boldsymbol{d}$. In this paper we give a formula for these elements, using combinatorics of the affine root system of type A_{1}^{1}.

1. Introduction

Let X be an arbitrary algebraic variety and $\Omega \subset X$ be a subvariety. Fix a degree \boldsymbol{d}, i.e., an effective homology class in $H_{2}(X)$. The (geometric) curve neighborhood $\Gamma_{d}(\Omega)$ is the locus of points $x \in X$ which can be reached from Ω by a rational curve of some effective degree $\leq \boldsymbol{d}$. For example, if $X=\mathbb{P}^{2}$ is the projective plane, and $\Omega=\mathrm{pt}$, then any other point in X can be reached from the given point, using a projective line. This implies $\Gamma_{1}(\mathrm{pt})=\mathbb{P}^{2}$.

Curve neighborhoods have been recently defined by A. Buch and the first author in [Buch and Mihalcea 2015] in relation to the study of quantum cohomology and quantum K theory rings of generalized flag manifolds $X=G / B$, where G is a complex semisimple Lie group and B is a Borel subgroup. The curve neighborhoods which are relevant in that context are those when Ω is a Schubert variety in G / B. It turns out that in this situation the calculation of the curve neighborhoods is encoded in the moment graph of X. This is a graph encoding the T-fixed points and the T-stable curves in X, where T is a maximal torus of G. Similar considerations, but in the case when X is an affine flag manifold, led L. Mare and the first author to a definition of an affine version of the quantum cohomology ring; see [Mare

[^0]and Mihalcea 2014]. The curve neighborhoods which were relevant for quantum cohomology calculations were those for certain "small" degrees. Those for "large" degrees, which seem to encode more refined information about the geometry and the combinatorics of affine flag manifolds, are still unknown.

In the current paper we give an explicit combinatorial formula for the curve neighborhoods of the simplest affine flag manifold, that of affine Lie type A_{1}^{1}. See, e.g., [Kumar 2002] for details on affine flag manifolds. Instead of introducing the geometry related to this flag manifold, we consider the more elementary - but equivalent - problem of calculating the combinatorial curve neighborhoods. These are encoded in the combinatorics of the moment graph of the affine flag manifold.

To state our main result, we briefly introduce some notation and recall a few definitions. Full details are given in Section 2 below. Let D_{∞} be the infinite dihedral group, generated by reflections s_{0} and s_{1}. (This is the affine Weyl group of Lie type A_{1}^{1}.) Each element of D_{∞} has a unique reduced expression which involves $a s_{0}$'s and $b s_{1}$'s, where $|a-b| \leq 1$. There is a natural length function $\ell: D_{\infty} \rightarrow \mathbb{Z}_{\geq 0}$, and a (Bruhat) partial order on D_{∞}, denoted $<$. A degree \boldsymbol{d} is a pair of nonnegative integers $\left(d_{0}, d_{1}\right)$. The moment graph has vertices given by the elements of D_{∞}; there is an edge between $u, v \in D_{\infty}$ whenever there exists an (affine root) reflection $s_{(a, b)}$ such that $v=u s_{(a, b)}$. This edge has degree $d=(a, b)$ such that $|a-b|=1$; see Section 2B below. A chain in the moment graph is a succession of adjacent edges, and its degree is equal to the sum of the degrees of each of its edges.

Finally, fix a degree $\boldsymbol{d}=\left(d_{0}, d_{1}\right)$ and $u \in D_{\infty}$. The (combinatorial) curve neighborhood $\Gamma_{\boldsymbol{d}}(u)$ is the set of elements in D_{∞} such that (1) they can be joined to u (in the moment graph) by a chain of degree $\leq \boldsymbol{d}$, and (2) they are maximal among all elements satisfying (1). To each $u \in D_{\infty}$, one associates the degree $d(u):=(a, b)$, where u has a reduced expression with $a s_{0}$'s and $b s_{1}$'s.

Consider the set

$$
\mathcal{A}_{\boldsymbol{d}}(u):=\left\{v \in D_{\infty}: \ell(u v)=\ell(u)+\ell(v), d(v) \leq \boldsymbol{d}\right\}
$$

and denote by $\max \mathcal{A}_{\boldsymbol{d}}(u)$ the subset of its maximal elements. Our main result is:
Theorem 1.1. Let $u \in D_{\infty}$ and $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$ be a degree. Then the following hold:
(a) The curve neighborhood $\Gamma_{\boldsymbol{d}}(u)$ is given by

$$
\Gamma_{\boldsymbol{d}}(u)=\left\{u w: w \in \max \mathcal{A}_{\boldsymbol{d}}(u)\right\}
$$

(b) Formulas (3) and (4) below give explicit combinatorial formulas for the elements in $\max \mathcal{A}_{\boldsymbol{d}}(u)$. In particular, the curve neighborhood $\Gamma_{\boldsymbol{d}}(u)$ has exactly two elements if $u=1$ and $\boldsymbol{d}=(a, a)$, and one element otherwise.

It is interesting to remark that the curve neighborhoods distinguish the degrees corresponding to "imaginary roots" (a, a) in this case. (See [Kac 1985] for more
about this affine root system.) We plan to study further this phenomenon elsewhere. The theorem implies the "geometric" curve neighborhood for the Schubert variety indexed by u is either a single Schubert variety, or the union of two Schubert varieties, indexed by the elements in $\Gamma_{\boldsymbol{d}}(u)$. We refer to [Mare and Mihalcea 2014] for a discussion of geometric curve neighborhoods.

This paper is the outcome of an undergraduate research project of Norton conducted under the direction of Mihalcea.

2. Preliminaries

2A. The infinite dihedral group. The infinite dihedral group D_{∞} is the group with generators s_{0}, s_{1} and relations $s_{0}^{2}=s_{1}^{2}=1$. Each element $w \in D_{\infty}$ can be written uniquely as a product of s_{0} 's and s_{1} 's in such a way that no s_{0} 's and no s_{1} 's are consecutive. We call such an expression reduced. We define the length $\ell(w)$ of w to be the total number of s_{0} 's and s_{1} 's in the expression of w. For example, $\ell\left(s_{0}\right)=1$ and $\ell\left(s_{1} s_{0} s_{1} s_{0}\right)=4$.

A (positive) root corresponding to D_{∞} is a pair of nonnegative integers $\alpha=$ $(a, b) \in \mathbb{Z}_{\geq 0}^{2}$ such that $|a-b|=1$. For example, $\alpha_{0}:=(1,0)$ and $\alpha_{1}:=(0,1)$ are roots, and so is $\alpha=2 \alpha_{0}+3 \alpha_{1}=(2,3)$. Fix a root $\alpha=\left(a_{0}, a_{1}\right)$. A root reflection s_{α} is the unique element of D_{∞} which can be written as a product of $a_{0} s_{0}$'s and $a_{1} s_{1}$'s, and which has length $a+b$. For example,

$$
s_{(2,3)}=s_{1} s_{0} s_{1} s_{0} s_{1}, \quad s_{(1,0)}=s_{0}
$$

The terminology follows from the fact that these are the positive roots of the affine Lie algebra of type A_{1}^{1}; see, e.g., [Kac 1985].

We record for later use the following properties:
Lemma 2.1. Let $u, v \in D_{\infty}$. Then:
(a) $\ell(u)=\ell\left(u^{-1}\right)$.
(b) u is a root reflection if and only if $\ell(u)$ is odd.
(c) $\ell(u v) \leq \ell(u)+\ell(v)$.
(d) If $\ell(u) \leq \ell(v)$, then

$$
\ell(u v)=\ell(u)+\ell(v) \quad \text { or } \quad \ell(u v)=\ell(v)-\ell(u) .
$$

In particular, $\ell(u v) \equiv \ell(u)+\ell(v) \bmod 2$.
Proof. This is an easy verification.
2B. The moment graph and curve neighborhoods. The moment graph G associated to D_{∞} is the graph given by the following data:

- The set V of vertices is the group D_{∞}.

Figure 1. The moment graph G associated to D_{∞}.

- Let $u, v \in V$ be vertices. Then there is an edge from u to v if and only if there exists a root $\alpha=\left(a_{0}, a_{1}\right)$ such that $v=u s_{\alpha}$. We denote this situation by

$$
u \xrightarrow{\alpha} v,
$$

and we say that the degree of this edge is α.
In Figure 1 we show the moment graph up to elements of length 4 . We labeled a few of the edges by their corresponding degrees.

Remark 2.2. As mentioned in the Introduction, the vertices of this graph correspond to the T-fixed points, and its edges to the T-stable curves in the affine flag manifold of type A_{1}^{1}, where T is a maximal torus in an affine Kac-Moody group of type A_{1}^{1}. See, e.g., [Kumar 2002, Chapter 12], especially §12.2.E, for details.

A chain between u and v in the moment graph is a succession of adjacent edges starting with u and ending with v :

$$
\pi: u=u_{0} \xrightarrow{\beta_{0}} u_{1} \xrightarrow{\beta_{1}} \cdots \xrightarrow{\beta_{n-2}} u_{n-1} \xrightarrow{\beta_{n-1}} u_{n}=v .
$$

The chain is called increasing if at each step the lengths increase, i.e., $\ell\left(u_{i}\right)>\ell\left(u_{i-1}\right)$ for $1 \leq i \leq n$. The degree of the chain π is $\operatorname{deg}(\pi)=\beta_{0}+\cdots+\beta_{n-1}$. Define a partial ordering on the elements of D_{∞} by $u<v$ if and only if there exists an increasing chain starting with u and ending with v.

The next result gives an equivalent way to describe the partial ordering on D_{∞} :
Lemma 2.3. Let $u, v \in D_{\infty}$. Then $u<v$ if and only if $\ell(u)<\ell(v)$.

Proof. Clearly if $u<v$ then $\ell(u)<\ell(v)$ from the definition of an increasing chain. To prove the converse, we first notice that if $\ell(v)-\ell(u)=1$, then $u^{-1} v$ is a root reflection s_{α} (possibly of length >1); thus there exists an edge $u \xrightarrow{\alpha} v$. The general statement follows by induction on $\ell(v)-\ell(u) \geq 1$.

A degree is a pair of nonnegative integers $\boldsymbol{d}=\left(d_{0}, d_{1}\right)$. There is a natural partial order on degrees. If $\boldsymbol{d}=\left(d_{0}, d_{1}\right)$ and $\boldsymbol{d}^{\prime}=\left(d_{0}^{\prime}, d_{1}^{\prime}\right)$ then $\boldsymbol{d} \geq \boldsymbol{d}^{\prime}$ if and only if $d_{i} \geq d_{i}^{\prime}$ for $i \in\{0,1\}$.
Definition 2.4. Fix a degree \boldsymbol{d} and $u \in D_{\infty}$. The (combinatorial) curve neighborhood is the set $\Gamma_{d}(u)$ consisting of elements $v \in D_{\infty}$ such that
(1) there exists a chain of some degree $\boldsymbol{d}^{\prime} \leq \boldsymbol{d}$ from u to v in the moment graph G;
(2) the elements v are maximal among all of those satisfying the condition in (1).

For example,

$$
\Gamma_{(1,0)}(\mathrm{id})=\Gamma_{(2,0)}(\mathrm{id})=\left\{s_{0}\right\}, \quad \Gamma_{(1,1)}(\mathrm{id})=\left\{s_{1} s_{0}, s_{0} s_{1}\right\} .
$$

Our main goal is to find a formula to determine $\Gamma_{d}(u)$.
For $w \in D_{\infty}$, define the degree associated to w to be $d(w)=\left(d_{0}, d_{1}\right)$, where $d_{i}:=$ number of reflections s_{i} in the reduced word of w. The following holds.
Lemma 2.5. Let $u, v \in D_{\infty}$ and assume there is a chain from u to v of degree \boldsymbol{d}. Then $\boldsymbol{d}=d\left(u^{-1} v\right)+2(r, s)$, where $r, s \in \mathbb{Z}_{\geq 0}$. In particular, $\boldsymbol{d} \geq d\left(u^{-1} v\right)$.
Proof. Let $\beta_{0}:=\left(a_{0}, b_{0}\right), \beta_{1}:=\left(a_{1}, b_{1}\right), \ldots, \beta_{n-1}:=\left(a_{n-1}, b_{n-1}\right)$ be the labels of the edges of the chain π. Then $v=u s_{\beta_{0}} \cdots s_{\beta_{n-1}}$ and $\boldsymbol{d}=\beta_{0}+\cdots+\beta_{n-1}=$ $\left(a_{0}+\cdots+a_{n-1}, b_{0}+\cdots+b_{n-1}\right)$. Now $d\left(u^{-1} v\right)=d\left(s_{\beta_{0}} \cdots s_{\beta_{n-1}}\right)$. If $s_{\beta_{0}} \cdots s_{\beta_{n-1}}$ is nonreduced, one needs to perform some cancellations of the form $s_{0}^{2}=1$ or $s_{1}^{2}=1$. Each of these result in a decrease by 2 of the number of s_{0} 's, respectively s_{1} 's, in an expression for $s_{\beta_{0}} \cdots s_{\beta_{n-1}}$. Thus $d\left(u^{-1} v\right)=\boldsymbol{d}-2(r, s)$ as claimed.

3. Calculation of the curve neighborhoods

Let $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$ be a degree such that $d_{1} \neq d_{2}$. We denote by $\alpha(\boldsymbol{d})$ the maximal root α such that $\alpha \leq \boldsymbol{d}$. Clearly there is exactly one such root, and it is easy to find the following explicit formula for it:

$$
\alpha(\boldsymbol{d})= \begin{cases}\left(d_{1}, d_{1}+1\right) & \text { if } d_{1}<d_{2} \tag{1}\\ \left(d_{2}+1, d_{2}\right) & \text { if } d_{1}>d_{2}\end{cases}
$$

In order to find the curve neighborhoods of an element $u \in D_{\infty}$, we need the following key result.

Lemma 3.1. Let $u \in D_{\infty}$ and $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$ be a degree. Consider the set

$$
\begin{equation*}
\mathcal{A}_{\boldsymbol{d}}(u):=\left\{v \in D_{\infty}: \ell(u v)=\ell(u)+\ell(v), d(v) \leq \boldsymbol{d}\right\} . \tag{2}
\end{equation*}
$$

Then the following hold:

- $\mathcal{A}_{\boldsymbol{d}}(u)$ has a unique maximal element if $u \neq 1$ or if $u=1$ and $\boldsymbol{d} \neq(a, a)$ for some nonnegative integer a.
- If $\boldsymbol{d}=(a, a)$ and $u=1$ then the maximal elements of $\mathcal{A}_{\boldsymbol{d}}(u)$ are $\left(s_{0} s_{1}\right)^{a}$ and $\left(s_{1} s_{0}\right)^{a}$.
Proof. Clearly, $1 \in \mathcal{A}_{\boldsymbol{d}}(u)$ so $\mathcal{A}_{\boldsymbol{d}}(u) \neq \varnothing$. For any $v \in \mathcal{A}_{\boldsymbol{d}}(u)$, we have $d(v) \leq \boldsymbol{d}$. Hence the set $\mathcal{A}_{\boldsymbol{d}}(u)$ is finite, and so it must contain a maximal element. Lemma 2.3 implies there can be at most two maximal elements v_{1} and v_{2} and they must have the same length. We consider each of the situations in the statement:
Case 1: $u \neq 1$. Assume there are two maximal elements v_{1}, v_{2}. Since $u \neq 1$, either $u v_{1}$ or $u v_{2}$ is not reduced, say $u v_{1}$. Then $\ell\left(u v_{1}\right)<\ell(u)+\ell\left(v_{1}\right)$, and this contradicts that $v_{1} \in \mathcal{A}_{\boldsymbol{d}}(u)$.
Case 2: $u=1$. In this case, the set $\mathcal{A}_{\boldsymbol{d}}(u)$ coincides with the set of all $v \in D_{\infty}$ such that $d(v) \leq \boldsymbol{d}$. From the description of D_{∞}, it follows that $d(v)=(a, a)$ or $d(v)=(a, a+1)$ or $d(v)=(a+1, a)$ for some nonnegative integer a. Further, the reduced decomposition of v is known in each case: there are two possibilities for v if $d(v)=(a, a)$, and there is exactly one (in fact, $\left.v=s_{\alpha(d)}\right)$ in the other two cases. The claim follows from this.

In what follows, we will denote by max $\mathcal{A}_{\boldsymbol{d}}(u)$ the set of maximal elements in the (finite) partially ordered set $\mathcal{A}_{\boldsymbol{d}}(u)$. Our main result is:

Theorem 3.2. Let $u \in D_{\infty}$ and $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$ be a degree. Then

$$
\Gamma_{\boldsymbol{d}}(u)=\left\{u w: w \in \max \mathcal{A}_{\boldsymbol{d}}(u)\right\}
$$

We will prove this theorem in the next two sections, which correspond to the cases $u=1$ and $u \neq 1$. For now, notice that the proof of Lemma 3.1, and some easy arguments based on reduced decompositions in D_{∞}, imply that if $u=1$ then the set of maximal elements of $\mathcal{A}_{\boldsymbol{d}}(1)$ is

$$
\max \mathcal{A}_{\boldsymbol{d}}(1)= \begin{cases}\left\{s_{\alpha(\boldsymbol{d})}\right\} & \text { if } \boldsymbol{d}=\left(d_{1}, d_{2}\right) \text { and } d_{1} \neq d_{2} \tag{3}\\ \left\{\left(s_{0} s_{1}\right)^{a},\left(s_{1} s_{0}\right)^{a}\right\} & \text { if } \boldsymbol{d}=(a, a)\end{cases}
$$

If $u \neq 1$, we assume for simplicity that last simple reflection in the reduced word for u is s_{0}, i.e., $u=\cdots s_{0}$. (The other situation will be symmetric). Then

$$
\max \mathcal{A}_{\boldsymbol{d}}(u)= \begin{cases}\left\{s_{1} s_{\alpha(\boldsymbol{d}-(0,1))}\right\} & \text { if } d_{0}=d_{1} \tag{4}\\ \left\{s_{\alpha(\boldsymbol{d})}\right\} & \text { if } d_{1}>d_{0} \\ \left\{s_{0} s_{\alpha(\boldsymbol{d})}\right\} & \text { if } d_{1}<d_{0}\end{cases}
$$

The two formulas give explicit combinatorial rules to determine the curve neighborhood $\Gamma_{d}(u)$. See Section 3C below for several examples.

3A. Curve neighborhoods for $u=1$.

Theorem 3.3. Let $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$ be a degree. Then the curve neighborhood of the identity can be calculated in the following way:

$$
\Gamma_{\boldsymbol{d}}(1)=\max \mathcal{A}_{\boldsymbol{d}}(1)= \begin{cases}\left\{s_{\alpha(\boldsymbol{d})}\right\} & \text { if } d_{1} \neq d_{2}, \\ \left\{\left(s_{0} s_{1}\right)^{a},\left(s_{1} s_{0}\right)^{a}\right\} & \text { if } \boldsymbol{d}=(a, a) .\end{cases}
$$

Proof. If $v \in \Gamma_{\boldsymbol{d}}(1)$ then there exists a chain of degree $\leq \boldsymbol{d}$ joining 1 to v. Then by Lemma $2.5, \boldsymbol{d} \geq d(v)$. In particular, $v \in \mathcal{A}_{\boldsymbol{d}}(1)$; thus $\Gamma_{\boldsymbol{d}}(1) \subset \mathcal{A}_{\boldsymbol{d}}(1)$, and the inclusion is compatible with the partial order $<$. Conversely, if v is any element in $\mathcal{A}_{\boldsymbol{d}}(1)$ then there exists a chain of degree $d(v) \leq \boldsymbol{d}$ joining 1 to v. If v is maximal in $\mathcal{A}_{\boldsymbol{d}}(1)$, and because $\Gamma_{\boldsymbol{d}}(1) \subset \mathcal{A}_{\boldsymbol{d}}(1)$, it follows that $v \in \Gamma_{\boldsymbol{d}}(1)$.

3B. General curve neighborhoods. The goal of this section is to find a formula for the curve neighborhoods $\Gamma_{d}(u)$ for $u \neq 1$ and $\boldsymbol{d} \neq(0,0)$. First we need some preparatory lemmas.
Lemma 3.4. Let $u \in D_{\infty}, z \in \mathcal{A}_{\boldsymbol{d}}(1)$ and $v \in \Gamma_{\boldsymbol{d}}(u)$. Then:
(a) $\ell(u z) \leq \ell(v)$ and $d\left(u^{-1} v\right) \leq \boldsymbol{d}$.
(b) If $z \in \Gamma_{\boldsymbol{d}}(1)$ (i.e., z is maximal in $\left.\mathcal{A}_{\boldsymbol{d}}(1)\right)$, then $\ell\left(u^{-1} v\right) \leq \ell(z)$.

Proof. Since $z \in \mathcal{A}_{\boldsymbol{d}}(1)$, there exists a chain of degree $d(z) \leq \boldsymbol{d}$ joining 1 to z. Multiplying this chain by u on the left gives a chain between u and $u z$ of the same degree. The first statement in (a) follows by the maximality of v. To prove the second statement in (a), notice that since $v \in \Gamma_{\boldsymbol{d}}(u)$, there exists a chain from u to v of degree $\leq \boldsymbol{d}$. If we multiply each element of this chain on the left by u^{-1}, we obtain a chain from 1 to $u^{-1} v$ of the same degree. The fact that $d\left(u^{-1} v\right) \leq \boldsymbol{d}$ follows from Lemma 2.5. Finally, (b) follows from the maximality of z, using also that maximal elements in $\mathcal{A}_{\boldsymbol{d}}(1)$ have the same length, by (3).

The following lemma gives a strong constraint on the possible elements in $\Gamma_{\boldsymbol{d}}(u)$.
Lemma 3.5. Let $v \in \Gamma_{\boldsymbol{d}}(u)$. Then $u^{-1} v \in \mathcal{A}_{\boldsymbol{d}}(u)$.
Proof. We have seen in Lemma 3.4 that $d\left(u^{-1} v\right) \leq \boldsymbol{d}$. It remains to show that $\ell(v)=$ $\ell(u)+\ell\left(u^{-1} v\right)$. This clearly holds for $u=1$ and from now on we assume $u \neq 1$. From Lemma 2.1(c) it follows that $\ell(v)=\ell\left(u u^{-1} v\right) \leq \ell(u)+\ell\left(u^{-1} v\right)$. If the inequality is strict then $\ell\left(u^{-1} v\right)>\ell(v)-\ell(u)=\ell(v)-\ell\left(u^{-1}\right)$. But $\ell(u) \leq \ell(v)$, thus by Lemma 2.1(d) it follows that

$$
\ell\left(u^{-1} v\right)=\ell(u)+\ell(v)
$$

Consider now an element $z \in \Gamma_{\boldsymbol{d}}(1)=\max \mathcal{A}_{\boldsymbol{d}}(1)$ (by Theorem 3.3). We invoke Lemma 3.4 to obtain

$$
\ell(u z) \leq \ell(v)<\ell(u)+\ell\left(u^{-1} v\right) \leq \ell(u)+\ell(z)
$$

This implies the expression $u z$ is not reduced. But since $u \neq 1$, we can eliminate the first simple reflection from the reduced expression for z to define $z^{\prime}<z$ such that $\ell\left(z^{\prime}\right)=\ell(z)-1$ and $\ell\left(u z^{\prime}\right)=\ell(u)+\ell\left(z^{\prime}\right)$. Notice that $d\left(z^{\prime}\right)<d(z) \leq \boldsymbol{d}$; thus $z^{\prime} \in \mathcal{A}_{\boldsymbol{d}}(1)$. Then we have the inequalities

$$
\ell(v) \geq \ell\left(u z^{\prime}\right)=\ell(u)+\ell(z)-1 \geq \ell(u)+\ell\left(u^{-1} v\right)-1=\ell(u)+\ell(u)+\ell(v)-1
$$

where the first inequality follows from Lemma 3.4(a) and the last inequality follows from Lemma 3.4(b). Taking the extreme sides and subtracting $\ell(v)$, we obtain $0 \geq 2 \ell(u)-1$, which is impossible since $\ell(u) \geq 1$. Thus $\ell(v)=\ell(u)+\ell\left(u^{-1} v\right)$ and this finishes the proof.

We are ready to prove our main result.
Theorem 3.6. Let $\boldsymbol{d}=\left(d_{1}, d_{2}\right)$ be a nonzero degree and $u \in D_{\infty}$. Then

$$
\Gamma_{\boldsymbol{d}}(u)=\left\{u w: w \in \max \mathcal{A}_{\boldsymbol{d}}(u)\right\} .
$$

Proof. Let $v \in \Gamma_{\boldsymbol{d}}(u)$. Then Lemma 3.5 implies $u^{-1} v \in \mathcal{A}_{\boldsymbol{d}}(u)$. From Lemma 3.1 (or (4)), there exists a unique maximal element of $\mathcal{A}_{\boldsymbol{d}}(u)$, call it w. Then $u^{-1} v \leq w$ and clearly w is also in $\mathcal{A}_{\boldsymbol{d}}(1)$. By Lemma 3.4(a), we deduce $\ell(u w) \leq \ell(v)$. Then

$$
\ell(u)+\ell\left(u^{-1} v\right)=\ell(v) \geq \ell(u w)=\ell(u)+\ell(w)
$$

This implies $\ell\left(u^{-1} v\right) \geq \ell(w)$. Together with $u^{-1} v \leq w$, this forces $u^{-1} v=w$; i.e., $v=u w$ as claimed.

3C. Examples. We provide several examples determining $\Gamma_{\boldsymbol{d}}(u)$.

- Let $u=1$ and $\boldsymbol{d}=(9,4)$. From (1) we obtain $\alpha(\boldsymbol{d})=(5,4)$; thus

$$
\Gamma_{(9,4)}(1)=\left\{s_{(5,4)}\right\}=\left\{s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0}\right\} .
$$

- Let $u=1$ and $\boldsymbol{d}=(4,4)$. By (3) the two maximal elements in $\mathcal{A}_{(4,4)}(1)$ are $s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1}$ and $s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0}$. Then

$$
\Gamma_{(4,4)}(\mathrm{id})=\left\{s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1}, s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0}\right\}
$$

- Let $u=s_{0} s_{1} s_{0}$ and $\boldsymbol{d}=(3,3)$. From (4),

$$
\max \mathcal{A}_{(3,3)}(u)=\left\{s_{1} s_{\alpha((3,3)-(0,1))}\right\}=\left\{s_{1} s_{0} s_{1} s_{0} s_{1} s_{0}\right\}
$$

Thus $\Gamma_{(3,3)}\left(s_{0} s_{1} s_{0}\right)=\left\{\left(s_{0} s_{1} s_{0}\right)\left(s_{1} s_{0} s_{1} s_{0} s_{1} s_{0}\right)\right\}$.

- Let $u=s_{1} s_{0} s_{1}$ and $\boldsymbol{d}=(3,3)$. From the symmetric version of (4),

$$
\max \mathcal{A}_{(3,3)}(u)=\left\{s_{0} s_{\alpha((3,3)-(1,0))}\right\}=\left\{s_{0} s_{1} s_{0} s_{1} s_{0} s_{1}\right\}
$$

Thus $\Gamma_{(3,3)}\left(s_{1} s_{0} s_{1}\right)=\left\{\left(s_{1} s_{0} s_{1}\right)\left(s_{0} s_{1} s_{0} s_{1} s_{0} s_{1}\right)\right\}$.

- Let $u=s_{0} s_{1} s_{0}$ and $\boldsymbol{d}=(9,4)$. Then $\alpha((9,4))=(5,4)$ and using (4) again, $\max \mathcal{A}_{\boldsymbol{d}}(u)=\left\{s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0}\right\}$. Then

$$
\Gamma_{(9,4)}\left(s_{0} s_{1} s_{0}\right)=\left\{\left(s_{0} s_{1} s_{0}\right)\left(s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0}\right)\right\}
$$

- Let $u=s_{0} s_{1} s_{0}$ and $d=(4,9)$. Then $\alpha((4,9))=(4,5)$ and $\max \mathcal{A}_{\boldsymbol{d}}(u)=$ $\left\{s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1}\right\}$. From this we obtain

$$
\Gamma_{(9,4)}\left(s_{0} s_{1} s_{0}\right)=\left\{\left(s_{0} s_{1} s_{0}\right)\left(s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1} s_{0} s_{1}\right)\right\} .
$$

References

[Buch and Mihalcea 2015] A. S. Buch and L. C. Mihalcea, "Curve neighborhoods of Schubert varieties", J. Differential Geom. 99:2 (2015), 255-283. MR Zbl
[Kac 1985] V. G. Kac, Infinite-dimensional Lie algebras, 2nd ed., Cambridge University Press, 1985. MR Zbl
[Kumar 2002] S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics 204, Birkhäuser, Boston, 2002. MR Zbl
[Mare and Mihalcea 2014] L. Mare and L. C. Mihalcea, "An affine quantum cohomology ring for flag manifolds and the periodic Toda lattice", preprint, 2014. arXiv

Received: 2015-12-13
Imihalce@math.vt.edu
norton15@vt.edu

Accepted: 2016-04-01
Department of Mathematics, Virginia Tech University, Blacksburg, VA 24061, United States

Department of Mathematics, Virginia Tech University, Blacksburg, VA 24061, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US \$175/year for the electronic version, and $\$ 235 /$ year $(+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers
Stability analysis for numerical methods applied to an inner ear model 181Kimberley Lindenberg, Kees Vuik and Pieter W. J.van Hengel
Three approaches to a bracket polynomial for singular links 197
Carmen Caprau, Alex Chichester and Patrick Chu
Symplectic embeddings of four-dimensional ellipsoids into polydiscs 219 Madeleine Burkhart, Priera Panescu and Max Timmons
Characterizations of the round two-dimensional sphere in terms of 243closed geodesicsLee Kennard and Jordan Rainone
A necessary and sufficient condition for coincidence with the weak 257 topologyJoseph Clanin and Kristopher Lee
Peak sets of classical Coxeter groups 263
Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko and Darleen Perez-Lavin
Fox coloring and the minimum number of colors 291Mohamed Elhamdadi and Jeremy Kerr
Combinatorial curve neighborhoods for the affine flag manifold of type A_{1}^{1} 317Leonardo C. Mihalcea and Trevor Norton
Total variation based denoising methods for speckle noise images 327
Arundhati Bagchi Misra, Ethan Lockhart and Hyeona Lim
A new look at Apollonian circle packings 345
Isabel Corona, Carolynn Johnson, Lon Mitchell and DYlan O'Connell

[^0]: MSC2010: primary 05E15; secondary 17B67, 14M15.
 Keywords: affine flag manifolds, moment graph, curve neighborhood.
 L. C. Mihalcea was supported in part by NSA Young Investigator Awards H98230-13-1-0208 and H98230-16-1-0013 and a Simons Collaboration Grant.

