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We consider pattern avoidance in a subset of words on {1, 1, 2, 2, . . . , n, n} called
double lists. We enumerate double lists avoiding any permutation pattern of length
at most 4 and completely determine the corresponding Wilf classes.

1. Introduction

Let Sn be the set of all permutations on {1, 2, . . . , n}. Given π ∈ Sn and ρ ∈ Sm ,
we say that π contains ρ as a pattern if there exists 1≤ i1 < i2 < · · ·< im ≤ n such
that πia ≤ πib if and only if ρa ≤ ρb. In this case we say that πi1 · · ·πim is order-
isomorphic to ρ, and that πi1 · · ·πim is an occurrence of ρ in π. If π does not con-
tain ρ, then we say that π avoids ρ. An inversion is an occurrence of the pattern 21,
and a coinversion is an occurrence of the pattern 12. Pattern-avoiding permutations
have been well-studied with applications to algebraic geometry, theoretical computer
science, and more. Of particular interest are the sets Sn(ρ)= {π ∈ Sn | π avoids ρ}.
Let sn(ρ)= |Sn(ρ)|. It is well known that sn(ρ)=

(2n
n

)
/(n+ 1) for ρ ∈ S3 [Knuth

1968]. For ρ ∈ S4, three different sequences are possible for {sn(ρ)}n≥1. Two of
these sequences are well-understood, but the computation of sn(1324) remains open
for n ≥ 37 [Conway and Guttmann 2014].

Pattern avoidance has been studied for a number of combinatorial objects other
than permutations. The definition above extends naturally for patterns in words (i.e.,
permutations of multisets) and there have been several algorithmic approaches to
determining the number of words avoiding various patterns [Brändén and Mansour
2005; Burstein 1998; Jelínek and Mansour 2009; Pudwell 2010].

In another direction, a permutation may be viewed as a bijection on [n] =
{1, . . . , n}. When we graph the points (i, πi ) in the Cartesian plane, all points lie
in the square [0, n+ 1]× [0, n+ 1], and thus we may apply various symmetries of
the square to obtain involutions on the set Sn . For π ∈ Sn , let πr

= πn · · ·π1 be the
reverse of π and let π c

= (n+ 1− π1) · · · (n+ 1− πn) be the complement of π .

MSC2010: 05A05.
Keywords: permutation pattern, double list, Wilf class, Lucas number.
This research was supported by the National Science Foundation (NSF DMS-1262852) .

379

http://msp.org
http://msp.org/involve/
https://doi.org/10.2140/involve.2017.10-3
https://doi.org/10.2140/involve.2017.10.379


380 CHARLES CRATTY, SAMUEL ERICKSON, FREHIWET NEGASSI AND LARA PUDWELL

π = 1342 π r
= 2431 π c

= 4213

Figure 1. The graphs of π = 1342, πr
= 2431, and π c

= 4213.

For example, the graphs of π = 1342, πr
= 2431, and π c

= 4213 are shown in
Figure 1. Pattern avoidance in centrosymmetric permutations, i.e., permutations π
such that πrc

= π , has been studied by Egge [2010] and by Barnabei, Bonetti and
Silimbani [Barnabei et al. 2010]. Ferrari [2011] generalized this idea to pattern
avoidance in centrosymmetric words. In all of these cases, knowing the first half of
the word or permutation uniquely determines the second half.

A final variation involves circular permutations. In a circular permutation π1 · · ·πn ,
we consider the last digit in the permutation to be adjacent to the first and two
permutations are considered the same if they differ by only a rotation. For example,
1234, 2341, 3412, and 4123 are all the same circular permutation. A circular permu-
tation π is said to contain ρ as a pattern if there exists a rotation of π that contains ρ.
Circular permutations avoiding permutation patterns were studied by Callan [2002]
and Vella [2002/03], who obtained a number of interesting enumeration sequences.

In this paper we consider a specific type of word that borrows ideas from cen-
trosymmetric and circular permutations. In particular, we define the set of double
lists on n letters to be

Dn = {ππ | π ∈ Sn}.

In other words, a double list is a permutation of {1, . . . , n} concatenated with itself.
We see immediately that |Dn| = n!. As with centrosymmetric objects, knowing the
first half of a double list determines the second half. As with circular permutations,
we have taken a permutation and appended the end to the beginning. Yet, double
lists are a new combinatorial object of interest in their own right. Consider

Dn(ρ)= {σ ∈ Dn | σ avoids ρ},

and let dn(ρ)= |Dn(ρ)|. We obtain a number of interesting enumeration sequences
for {dn(ρ)}n≥1 with connections to other combinatorial objects. The goal of this
paper is to completely determine dn(ρ) for ρ ∈ S1 ∪S2 ∪S3 ∪S4.

2. Avoiding patterns of length 1, 2, or 3

The main focus of this paper is avoidance of length-4 patterns, but for completeness
we first consider shorter patterns. First, notice that the graph of a double list σ ∈Dn
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is a set of points on the rectangle [0, 2n+ 1] × [0, n+ 1]. Using the reverse and
complement involutions described in Section 1, we see that

σ ∈Dn(ρ) ⇐⇒ σ r
∈Dn(ρ

r ) ⇐⇒ σ c
∈Dn(ρ

c).

We will partition the set of permutation patterns of length m into equivalence classes,
where ρ ∼ τ means that dn(ρ)= dn(τ ) for n ≥ 1. In this case ρ and τ are said to
be Wilf equivalent. When this equivalence holds because of one of the symmetries
of the rectangle, we say that ρ and τ are trivially Wilf equivalent. Using trivial Wilf
equivalence, we have 12∼ 21, 123∼ 321 and 132∼ 213∼ 231∼ 312, so we need
only consider four patterns in this section: 1, 12, 123, and 132.

Avoiding a pattern of length 1 or length 2 is trivial. It is straightforward to check
that for n ≥ 1, we have dn(1)= 0, and similarly

dn(12)= dn(21)=
{

1 if n = 1,
0 if n ≥ 2.

With pattern-avoiding permutations, avoiding a pattern of length 3 is the first
nontrivial enumeration, and for any pattern ρ of length 3, we have that sn(ρ) is
the n-th Catalan number. Double lists are more restrictive, so we obtain simpler
sequences for dn(ρ). More strikingly, although sn(123) = sn(132) for n ≥ 1, we
obtain two distinct sequences in this new context.

Proposition. dn(123)= dn(321)=
{

n! if n ≤ 2,
1 if n ≥ 3.

Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3. However,
for n ≥ 3, the unique double list avoiding 123 is n · · · 1n · · · 1. We verify this
directly for the six members of D3, with a copy of 123 underlined in each of the
other five double lists: 123123, 132132, 213213, 231231, 312312. Now, assume
Dn(123)={n · · · 1n · · · 1} and consider Dn+1(123). Given σ ∈Dn+1(123), let σ ′ be
the double list obtained by deleting both copies of n+1 in σ. Since σ ∈Dn+1(123),
we know σ ′ ∈ Dn(123). By assumption, σ ′ = n · · · 1n · · · 1. To construct σ, we
must only reinsert the two copies of n+ 1 so that σ avoids 123. If n+ 1 is inserted
after the initial n, then we have 1n(n+ 1) as a copy of 123 in σ , where the 1 is in
the first half of σ, and n(n+ 1) is in the second half of σ. Therefore, n+ 1 must be
inserted before the initial n, and Dn+1(123)= {(n+ 1)n · · · 1(n+ 1)n · · · 1}. �

Finally, we consider double lists avoiding 132.

Proposition. dn(132)= dn(213)= dn(231)= dn(312)=


n! if n ≤ 2,
1 if n = 3,
0 if n = 4.

Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3. However,
for n = 3, the unique double list avoiding 132 is 231231. Indeed for the other
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five double lists in D3, we have 123123, 132132, 213213, 312312, 321321. Now,
consider the four ways to insert 4 into 231231: 42314231, 24312431, 23412341,
23142314. We see (via the underlined occurrences) that each of these double lists
contains a 132 pattern. If there are no 132-avoiding double lists of length n, then
there are no 132-avoiding double lists of length n+1, since deleting both occurrences
of n+ 1 in such a list should produce another 132-avoiding double list. �

At this point, we have completely characterized double lists avoiding a single
pattern of length 1, 2, or 3. Although we obtained only trivial sequences, the fact that
we obtained two distinct Wilf classes for avoiding patterns of length 3 is a noteworthy
difference between avoidance in double lists and avoidance in permutations.

3. Avoiding patterns of length 4

The remainder of this paper is concerned with double lists avoiding a single pattern
of length 4. Using the symmetries of the rectangle, we can partition the 24 patterns
of length 4 into eight trivial Wilf classes, as shown in Table 1. Notably, the
trivial Wilf equivalences are the only Wilf equivalences for patterns of length 4.
This is in contrast to the case for pattern-avoiding permutations. In that context,
we have an additional trivial Wilf equivalence since sn(ρ) = sn(ρ

−1) for n ≥ 1,
so sn(1342) = sn(1423). As it turns out, there are a number of nontrivial Wilf
equivalences for pattern-avoiding permutations so that every length-4 pattern is
equivalent to one of 1342, 1234, or 1324. For large n, we have

sn(1342•) < sn(1234†) < sn(1324◦).

In Table 1 each pattern is marked according to its Wilf equivalence class for
permutations; patterns equivalent to 1342 are marked with •, those equivalent to
1234 are marked with †, and those equivalent to 1324 are marked with ◦. A closer
look at the table reveals a couple more subtleties of the pattern-avoiding double

pattern ρ {dn(ρ)}
10
n=1

1342• ∼ 2431• ∼ 3124• ∼ 4213• 1, 2, 6, 12, 15, 15, 15, 15, 15, 15
2143†

∼ 3412† 1, 2, 6, 12, 13, 14, 16, 18, 20, 22
1423• ∼ 2314• ∼ 3241• ∼ 4132• 1, 2, 6, 12, 17, 23, 27, 30, 33, 36
1432†

∼ 2341†
∼ 3214†

∼ 4123† 1, 2, 6, 12, 17, 23, 31, 40, 50, 61
1243†

∼ 2134†
∼ 3421†

∼ 4312† 1, 2, 6, 12, 19, 25, 34, 44, 55, 67
2413• ∼ 3142• 1, 2, 6, 12, 18, 29, 47, 76, 123, 199
1324◦ ∼ 4231◦ 1, 2, 6, 12, 21, 38, 69, 126, 232, 427
1234†

∼ 4321† 1, 2, 6, 12, 27, 58, 121, 248, 503, 1014

Table 1. Enumeration of double lists avoiding a pattern of length 4.
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lists problem. For permutations, the monotone pattern 1234 is neither the hardest
nor the easiest pattern to avoid; for double lists, it is the easiest pattern to avoid.
Similarly, one might expect that all patterns equivalent to 1324 may produce smaller
sequences than those avoiding 1234, which produce smaller sequences than those
avoiding 1324, but this is also not the case. Other than the trivial equivalences of
reverse and complement, Wilf equivalence in the context of double lists appears to
be a very different phenomenon than equivalence in the context of permutations.
We now consider each of these patterns in turn.

3.1. The pattern 1342. The pattern 1342 is the hardest permutation of length 4 to
avoid, and, from initial data, is the easiest pattern for which to conjecture a general
enumeration formula.

Theorem 1. dn(1342)=


n! if n ≤ 3,
12 if n = 4,
15 if n ≥ 5.

Proof. For n≤3, all double lists avoid 1342, and for n=4, a check of the 24 members
of Dn yields exactly 12 that avoid 1342. They are 12431243, 21342134, 23142314,
23412341, 24132413, 24312431, 31243124, 32143214, 32413241, 42314231,
43124312, 43214321.

We now consider Dn(1342) for n ≥ 5 and make three key structural observations.
Let σ =ππ ∈Dn(1342) and let σ ′=π ′π ′ ∈Dn−2(1342) be the double list obtained
by deleting both copies of n and both copies of n− 1 from σ. Then:

(1) π ′ avoids 123.

(2) π ′ contains at most one coinversion.

(3) If π ′ contains a coinversion, then the coinversion is composed of the digits 1
and 2 or the digits 2 and 3.

For the first observation, suppose to the contrary that π ′ contains 123 and the
occurrence of 123 is formed by the digits π ′a < π

′

b < π
′
c. If n (resp. n− 1) appears

before π ′b or after π ′c in π, then π ′aπ
′
cnπ ′b (resp. π ′aπ

′
c(n−1)π ′b) is a copy of 1342 in

σ = ππ. Therefore, n and n− 1 must both appear between π ′b and π ′c in π. If they
are in increasing order, then π ′a(n− 1)nπ ′c is a copy of 1342 in π , and thus in σ. If
they are in decreasing order, then π ′a(n− 1)nπ ′c is a copy of 1342 in σ. Since we
have exhausted all possible options, it must be the case that π ′ avoids 123.

For the second observation, we know π ′ avoids 123, so if π ′ contains two
coinversions, either (a) π ′ contains the pattern 132, (b) π ′ contains the pattern 213,
or (c) π ′ contains the pattern 3412. It can be shown that cases (a) and (b) are
impossible by an analysis similar to the previous paragraph, conditioning on various
possible positions of n and n− 1. Case (c) is even more readily discounted, since
34123412 already contains a copy of 1342.
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Finally, if π ′ contains a coinversion, we show that it must use two consecutive
digits and they must include the digit 2. Suppose on the contrary that we have the
coinversion π ′i < π

′

j , where |π ′j −π
′

i |> 1. Then no matter the location of π ′i + 1, it
forms a coinversion with either π ′i or π ′j . This contradicts our previous observation
that π ′ contains at most one coinversion. Therefore, the coinversion must use
consecutive digits. Now suppose the coinversion uses digits π ′i and π ′i + 1, where
π ′i ≥ 3. To avoid other coinversions, it must be the case that

π ′ = (n− 2)(n− 3)(n− 4) · · · (π ′i + 3)(π ′i + 2)π ′i (π
′

i + 1)(π ′i − 1)(π ′i − 2) · · · 21.

However, in this case, 1π ′i (π
′

i+1)2 is a copy of 1342 in σ. Therefore, any coinversion
must either use the digits 1 and 2 or the digits 2 and 3.

Using these three observations, we see that there are only three possible forms
for π ′. They are (n− 2) · · · 1 (the decreasing permutation), (n− 2) · · · 4231, and
(n− 2) · · · 312. Now, we consider ways to reinsert n and n− 1 into π ′ to form π

so that σ = ππ is a member of Dn(1342). There are six ways to insert them into
the decreasing permutation; namely,

n · · · 1, (n− 1) · · · 1n, (n− 1) · · · 2n1,

(n− 2) · · · 1n(n− 1), (n− 2) · · · 2n1(n− 1), (n− 2) · · · 2n(n− 1)1.

There are also six ways to insert them into (n− 2) · · · 4231; namely,

n · · · 4231, (n− 1) · · · 4231n,

(n− 1) · · · 423n1, (n− 2) · · · 4231n(n− 1),

(n− 2) · · · 423n1(n− 1), (n− 2) · · · 423n(n− 1)1.

Finally, there are only three ways to insert them into (n− 2) · · · 312; namely,

n · · · 312, (n− 1) · · · 312n, (n− 2) · · · 312n(n− 1).

These 15 permutations π uniquely describe all possible members σ = ππ ∈

Dn(1342) for n ≥ 5. �

To illustrate, the 15 members of D6(1342) are shown in Figure 2. While an even-
tually constant sequence is expected for smaller patterns, the constant sequence 15
is perhaps a bit more surprising in this context. Nonetheless the structural argument
in this proof sets the stage for several of the proofs in the following subsections.

3.2. The patterns 2143 and 1423. Two of our patterns yield avoidance sequences
that grow linearly.

Theorem 2. dn(2143)=


n! if n ≤ 3,
12 if n = 4,
13 if n = 5,
2(n+ 1) if n ≥ 6.
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Figure 2. The members of D6(1342).

Proof. The cases for n≤ 5 are easily verified by brute force methods, so we focus on
the case where n ≥ 6. Intuitively there are an even number of double lists avoiding
2143 for a geometric reason. We have 2143rc

= 2143, so ρ avoids 2143 if and only
if ρrc avoids 2143. For n ≥ 6, there are exactly two members σ = ππ of Dn(2143)
that are reverse-complement invariant. If n is even, they are

π = 12 · · · n and π =
n+2

2
· · · n1 · · · n

2
.

If n is odd, they are

π = 12 · · · n and π =
n+3

2
· · · n n+1

2
1 · · · n−1

2
.

All other 2143-avoiders come in pairs ρ and ρrc. However, it turns out that it is
easier to characterize the members of Dn(2143) using other distinguishing features.

Notice that there are no inversions among elements after 1 and larger than 2
in π. Suppose to the contrary that i < j < k, where πi = 1 and πj > πk > 2. Then
21πjπk forms an occurrence of 2143 in σ. Similarly, all elements before n and
other than n− 1 must appear in increasing order. Therefore, there are only three
possible double lists σ = ππ where 1 precedes n: π = 12 · · · n, π = 13 · · · n2, and
π = (n− 1)12 · · · (n− 2)n. So far, we have described three members of Dn(2143),
as shown in Figure 3. It remains to consider when n precedes 1 in π.
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Figure 3. 2143-avoiding lists where 1 precedes n.

Figure 4. 2143-avoiders where n is two positions before 1.

Figure 5. 2143-avoiders where n immediately precedes 1.

If n precedes 1, then there is at most one element between n and 1. Suppose to
the contrary that there are two elements πa > πb that appear between n and 1 in π.
Then πb1nπa forms a 2143 pattern in σ, taking πb1 from the first copy of π and
nπa from the second copy. We have two subcases: either πj−1 = n and πj+1 = 1 or
πj−1 = n and πj = 1.

In the case where πj−1 = n and πj+1 = 1, let i = πj . Consider elements πa

and πb, such that a < j − 1 and b > j + 1. It must be the case that πa > πj > πb;
otherwise, a case analysis shows that σ contains a 2143 pattern. Next, an inversion
πa > πb after πj+1 creates the 2143 occurrence πaπbni in σ, while an inversion
πa > πb before πj−1 creates the 2143 occurrence i1πaπb in σ. Therefore, the only
2143-avoiders in this case are the n− 2 lists where π = (i + 1) · · · ni1 · · · (i − 1)
(2≤ i ≤ n− 1), as shown in Figure 4.

On the other hand, if πj−1 = n and πj = 1, if there is an inversion in π1 · · ·πj−2

or in πj+1 · · ·πn , there is a 2143 pattern with two exceptions. The double lists
where π = 4 · · · n132 or π = (n− 1)(n− 2)n1 · · · (n− 3) are 2143-avoiding. In
addition, we obtain n− 1 lists where π = i · · · n1 · · · i − 1 (2≤ i ≤ n). There are
2+ (n − 1) = n + 1 members of Dn(2143) where n immediately precedes 1, as
shown in Figure 5.

We have now accounted for (n−2)+(n+1)= 2n−1 additional permutations π
such that ππ ∈Dn(2143). Together with the original three lists we have 2n−1+3=
2(n+ 1) double lists avoiding 2143. �

The number of 1423-avoiding double lists also grows linearly but for a different
reason.
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Theorem 3. dn(1423)=



n! if n ≤ 3,
12 if n = 4,
17 if n = 5,
23 if n = 6,
3(n+ 2) if n ≥ 7.

Proof. Again, the cases for n ≤ 6 are easily verified by brute force methods, so we
focus on the case where n ≥ 7. Now, we condition on which of the letters 1 and n
comes first in σ = ππ ∈ Dn(1423).

If 1 precedes n, then all other digits must appear in decreasing order in π ;
otherwise, 1n in the first copy of π and any increasing pair in the second copy
of π form a 1423 pattern in σ = ππ. Further, n must be the last element of π.
Since all other digits appear in decreasing order, if n is not the last digit of π , then
πn = 2, and 1n23 is a 1423 pattern in σ. Since n is last, then either πn−1 = 1,
πn−2 = 1, or πn−3 = 1. Otherwise, πn−3 > πn−2 > πn−1 and 1πn−3πn−1πn−2

is a copy of 1423 in σ, taking the first three digits from the first copy of π and
the remaining digit from the second copy. There are exactly three double lists in
Dn(1423) where 1 precedes n; namely, π = (n−1) · · · 4132n, π = (n−1) · · · 312n
and π = (n− 1) · · · 1n.

Now, suppose n precedes 1. We quickly see that the digits after 1 in π must
appear in decreasing order; otherwise, 1 from the first copy of π and n and the
increasing pair from the second copy form a 1423 pattern. This implies there are at
most two digits after 1 in π ; otherwise, we can form a 1423 pattern using 1πn−2πn

from the first copy of π and πn−1 from the second copy of π. Similarly, all digits
after n and larger than 1 in π must appear in decreasing order.

What can be said about the digits that appear before n? Two things: (a) either the
only digit before n is n− 2, or all digits before n are larger than all digits after n,
and (b) if there are at least four digits before n, then they appear in decreasing order.
For observation (a), if π1 = i and π2 = n, where i < n− 2, then in(n− 2)(n− 1)
forms a 1423 pattern in σ, where the first three digits come from the first copy of π.
Further, if there is more than one digit before n in π , let the first two digits of π be
a and b, where a < b. By assumption there exists a digit c that appears after n in π ,
where a < c. We have either anbc or ancb is a 1423 pattern in σ , where in the first
case, an comes from the first copy of π and in the second case, anc comes from
the first copy of π. Therefore, observation (a) holds. A similar analysis supports
observation (b). If there are two digits before n in π , they may appear in either
order, and if there are three digits before n they may form either a 132 pattern or a
321 pattern as all other patterns lead to a 1423 pattern in σ.

Here, then, is the final enumeration. We have seen three double lists where
πn = n. We have also seen that if n precedes 1, we may choose the position of n, the
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arrangement of the digits before n, and the position of 1 (one of the last three digits),
and then the rest of the double list is decreasing. Therefore, there are three double
lists beginning with n, three beginning with (n−1)n, three beginning with (n−2)n,
three beginning with (n− 2)(n− 1)n, three beginning with (n− 1)(n− 2)n, three
beginning with (n−3)(n−1)(n−2)n, three beginning with (n−1)(n−2)(n−3)n,
and three where πi = n for 5≤ i ≤ n−3. Finally there are two lists where πn−2= n
(since there are only two positions to place 1 following n), and one list where
πn−1 = n. Adding these together, we have 3 · 8+ 3 · (n− 7)+ 3= 3(n+ 2) double
lists avoiding 1423. �

3.3. The patterns 1432 and 1243. The avoidance sequences for two patterns grow
quadratically.

Theorem 4. dn(1432)=


n! if n ≤ 3,
12 if n = 4,
17 if n = 5,
1
2 n2
+

3
2 n− 4 if n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so we
focus on the case where n ≥ 7.

First, consider σ ′ = π ′π ′ ∈ Dn−1(1432). Notice that all digits after n− 1 in π ′

and larger than 1 must appear in increasing order; otherwise, the 1 from the first
copy of π ′ followed by n − 1 and a decreasing pair from the second copy of π ′

form a 1432 pattern.
Now, we claim that if σ ′=π ′π ′ ∈Dn−1(1432), then inserting n immediately after

n−1 produces a member σ = ππ of Dn(1432). Suppose to the contrary that insert-
ing n immediately after n−1 creates a 1432 pattern. Then n must play the role of “4”
in this new occurrence. If n−1 does not play the role of “3”, then using n−1 instead
of n would be a 1432 pattern in σ ′. Therefore, the new forbidden pattern must involve
the n from the first copy of π and the n−1 from the second copy of π with two num-
bers a and b playing the roles of “1” and “2” respectively. Next, if b<n−2, we know
that one copy of n−2 must occur somewhere between the two copies of n−1 in σ ′,
so a(n−1)(n−2)b would be a forbidden pattern in σ ′. Thus, b= n−2. If a< n−3,
then one copy of n−3 must appear somewhere between the two copies of n−2 in σ ′,
so a(n−1)(n−2)(n−3)would be a forbidden pattern in σ ′. Thus, a=n−3. We now
know that in π ′, the largest four digits appear in the order (n− 3)(n− 1)n(n− 2).
We also assume n ≥ 7, so there are at least three smaller digits in π ′. If any of these
smaller digits d appears before n− 1 in π ′, then d(n− 1)(n− 2)(n− 3) would be
a forbidden pattern in σ ′, so it must be the case that all digits smaller than n− 3
appear after n − 1 in π ′. From the previous paragraph, we know that the digits
2, 3, . . . , n− 4 must appear in increasing order before n− 2. Now, 1(n− 2) from
the first copy of π ′, followed by (n− 3)(n− 4) from the second copy of π ′ form
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a forbidden pattern in σ ′. In every case, we have shown that if σ ′ avoids 1432, then
the insertion of n immediately after n− 1 results in σ avoiding 1432 as well.

Further, there is at most one digit after n− 1 in π ′. Suppose to the contrary that
both digits b and c (with b< c) appear after n−1 in π ′. Then a(n−1)cb is a 1432
pattern in σ ′, where the first three digits come from the first copy of π ′. Also, since
we assumed n ≥ 7, there are at least two digits that appear before n− 1 in π ′. Pick
one such digit d , where d 6= a. If d < a, then d(n− 1)ba is a forbidden pattern. If
d > a, then a(n− 1)bd or a(n− 1)db is a forbidden pattern. In any case, we have
shown that σ contains a forbidden pattern not including n, so σ ′ /∈ Dn−1(1432),
which is a contradiction.

Now, we must account for members σ =ππ of Dn(1432)where n does not imme-
diately follow n−1 in π. We consider two cases: n follows n−1 and n precedes n−1.

If n follows n− 1, but not immediately, there can be at most one digit between
them; otherwise, if a < b are two digits between them in π, then an(n− 1)b forms
a 1432 pattern in σ. Further, that one digit between n and n− 1 must be smaller
than all digits before n− 1 and larger than all digits after n. Otherwise, suppose
a< b or b< c, where a is before n−1, b is between n−1 and n, and c is after n. If
a < b, then an(n−1)b forms a forbidden pattern. If b< c, then bn(n−1)c forms a
forbidden pattern. Next, all digits before n−1 in π must appear in increasing order;
otherwise, bn from the first copy of π followed by the descent is a forbidden pattern.
Finally, the only digit that can appear after n is 1. We already have seen that all digits
after n−1 and smaller than n−1 and larger than 1 must appear in increasing order.
A digit cannot be smaller than b and in increasing order with b at the same time.
The only two lists of this form are when π = 2 · · · (n−1)1n or π = 3 · · · (n−1)2n1.

If n precedes n− 1, we have a different situation. We know everything after n
and larger than 1 appears in increasing order; otherwise, 1 from the first copy of π
followed by n and the decreasing pair form a 1432 pattern. Finally we show that
in this case, n must be the first digit of π. Suppose n is preceded by two digits
a < b. Then an(n− 1)b is a forbidden pattern in σ, where an(n− 1) comes from
the first copy of π and b comes from the second copy. Therefore, n must be the
first or second digit in π. Suppose n is preceded by a digit a. If a < n − 2 then
an(n− 1)(n− 2) is a forbidden pattern in σ. If a = n− 2, recall all digits after n
other than 1 must be in increasing order and n ≥ 6 so (n− 4)(n− 1)(n− 2)(n− 3)
is a forbidden pattern. Thus if n precedes n− 1, then n is the first digit of π , and
after choosing the position of 1, the rest of π is uniquely determined. There are
n− 1 choices for the position of 1, so we get n− 1 double lists in this case.

In summary, we have shown that

dn(1432)= dn−1(1432)+ 2+ (n− 1)= dn−1(1432)+ n+ 1,

and combining this with d6(1432)= 23 yields the quadratic formula above. �
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Theorem 5. dn(1243)=


n! if n ≤ 3,
12 if n = 4,
19 if n = 5,
1
2 n2
+

5
2 n− 8 if n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so we
focus on the case where n ≥ 7.

We claim that if σ ′ = π ′π ′ ∈Dn−1(1243), then appending 1 to the end of π ′ and
increasing all other digits by 1 produces a member σ = ππ of Dn(1243). Suppose
to the contrary that σ contains a 1243 pattern but σ ′ does not. Then the 1 at the end
of the first copy of π must play the role of “1” and π ′ contains a 132 pattern. Further,
the digit 2 in the second copy of π must play the role of “1” in this 132 pattern;
otherwise, taking 2 from the first copy of π followed by the 132 pattern in the
second copy of π implies there is a 1243 pattern in σ ′. Therefore the 1243 pattern
in σ uses 1 from the first copy of π , 2 from the second copy of π , and digits a
and b playing the roles of “4” and “3” respectively.

Further, there are at most two digits between the 2 and the 1 in π. If the digits
between 2 and 1 contain a 132 occurrence then 2 followed by this occurrence is a
forbidden 1243 occurrence. We know that the only double list of length 3 or more
that avoids 132 is 231231. If the digits between 2 and 1 contain the pattern 231231,
then a sublist of σ is 2453124531, which contains the 1243 occurrence 1253. Now,
since n ≥ 7, there are at least three digits appearing before 2. If at least one of
them, c, is less than b, then 2cab is a forbidden pattern in σ. If at least one of
them, d , is greater than a, then 2bda is a forbidden pattern. If all three digits are
greater than b and less than a and there is a decreasing pair e > f , then 2be f is a
forbidden pattern, so we may assume the three digits before 2 appear in increasing
order with e < f < g and are all between a and b in value. However, in this case
e f ag is a forbidden pattern. In all cases we have found a copy of 1243 in σ ′, so it
must be the case that inserting a 1 at the end of π ′ and incrementing all other digits
produces another 1243-avoiding double list.

Now, we consider members σ = ππ of Dn(1243) that do not end in 1. Notice
that 1 must be one of the last three digits of π. If there were three digits after 1
with a < b < c, then in order for the digits 1, a, b, c to avoid 1243, we must have
1bca1bca. Now consider d and e as digits before 1. If d < a then 1dba is a
forbidden pattern. If d > b then 1adb is a forbidden pattern so we may assume d
and e are both between a and b in value. If d > e appear in decreasing order, then
1ade is a forbidden pattern. If d > e appear in increasing order, then edcb is a
forbidden pattern. Thus, it must be the case that there are at most two digits after 1.

Suppose then that 1 is followed by two digits in π. Let a < b be those two
digits. If b < n, then 1anb forms a forbidden pattern, so b = n. Further, we know
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that all digits larger than a must appear in increasing order in π , lest we create
a 1243 pattern using 1 and a as “1” and “2”. Thus, the last three digits of π are
1ab= 1an. If there are at least four digits c< d < e< f larger than a, then cd f e is
a 1243 pattern in σ. So, it must be the case that a ≥ n−3. If a = n−3 or a = n−2,
then 1an(n− 1) is a forbidden pattern, so the only option is to end in 1(n− 1)n.
The digits before 1 must appear in decreasing order; otherwise, the increasing pair
followed by n(n− 1) is a forbidden pattern. In this case, we get one double list
where π = (n− 2) · · · 1(n− 1)n.

Suppose 1 is followed by exactly one digit in π. If π ends in 1i , where
i ≤ n − 4, then all numbers larger than i must be in increasing order in π and
(n− 3)(n− 2)n(n− 1) is a forbidden pattern in σ. If 1 is followed by n, then we
have n− 2 choices for the location of n− 1 and the rest of the digits must appear
in decreasing order, lest we have a 1243 pattern. If 1 is followed by i , where
n − 2 ≤ i ≤ n − 1, then n appears in position n− i and the rest of the digits are
decreasing. If 1 is followed by n−3, we have π = (n−2)(n−1)n(n−4) · · · 1(n−3).
There are 1+ (n− 2)+ 3= n+ 2 possible double lists that do not end in 1.

In summary, dn(1243)= dn−1(1243)+ n+ 2, and putting this together with the
base cases above, we achieve the desired enumeration. �

3.4. The patterns 1234, 2413, and 1324. The results of the previous sections make
a stark contrast with pattern-avoiding permutations, where most avoidance sequences
grow exponentially. However, pattern avoidance in double lists is more restrictive,
so it should not be surprising that we achieve such a variety of behaviors. We
conclude by examining the three final patterns of length 4, each of whose avoidance
sequences exhibits exponential growth.

We begin with the monotone pattern. In the context of permutations, 1234 is
neither the hardest nor the easiest pattern to avoid, but for double lists it turns out
that it is the easiest to avoid.

Theorem 6. dn(1234)=


n! if n ≤ 3,
12 if n = 4,
2n
− n if n ≥ 5.

Proof. If σ = ππ ∈ Dn(1234), where n ≥ 5, the digits of π may be partitioned
into two subsequences: for some i , where 0≤ i ≤ n, the largest i digits appear in
decreasing order in π , the smallest n − i digits appear in decreasing order in π ,
and these two subsequences may be interleaved in any way. In either case, the
permutation π may be encoded by a list of `’s and s’s for whether a digit belongs
to the decreasing subsequence of larger digits or the decreasing subsequence of
smaller digits. There are 2n such encodings of a sequence of n `’s and s’s; however,
n+ 1 of them (those of the form `i sn−i ) encode the decreasing permutation, so we
have overcounted by n. There are 2n

− n double lists avoiding the pattern 1234. �
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The remaining two patterns also produce nice sequences that are characterized
by linear recurrences with constant coefficients. Double lists avoiding 2413 are
counted by the Lucas numbers Ln , where L0 = 2, L1 = 1, and Ln = Ln−1+ Ln−2

for n ≥ 2.

Theorem 7. dn(2413)=


n! if n ≤ 3,
12 if n = 4,
Ln+1 if n ≥ 5.

Proof. As usual, it is straightforward to confirm the theorem via brute force
techniques for specific small n. We show that dn(2413)= dn−1(2413)+dn−2(2413)
for n ≥ 7.

We actually prove a more specific result. Let

Di
n = {σ ∈ Dn(2413) | σ1 = i}

and di
n(2413)= |Di

n(2413)|. It turns out that di
n(2413)= 0 if i /∈ {1, n−2, n−1, n},

and for n ≥ 7,
d1

n (2413)= d1
n−1(2413)+ d1

n−2(2413),

dn−2
n (2413)= dn−2

n−1(2413)+ dn−2
n−2(2413),

dn−1
n (2413)= dn−1

n−1(2413)+ dn−1
n−2(2413),

dn
n (2413)= dn

n−1(2413)+ dn
n−2(2413).

First, consider σ =ππ ∈Di
n(2413) for i /∈ {1, n−2, n−1, n}. If n−2 precedes n

in π then (n−2)ni(n−1) forms a forbidden pattern in σ , where the first two digits
come from the first copy of π and the last two digits come from the second copy.
Therefore, n− 2 comes after n. Now, in1(n− 2) forms a forbidden pattern, where
in comes from the first copy of π , 1 comes from somewhere between the two copies
of n, and n− 2 comes from the second copy of π. In every event, it is impossible
to avoid 2413, so di

n(2413)= 0 for i /∈ {1, n− 2, n− 1, n}.
Next, consider σ = ππ ∈ D1

n(2413). Any coinversion in π that does not include
the digit 1 must consist of a pair of consecutive digits and therefore must appear in
consecutive positions. Suppose to the contrary there is a coinversion with a< b such
that b 6= a+1. Then ab1(a+1) forms a forbidden pattern, where the first two digits
come from the first copy of π. If a(a+1) is a coinversion in nonconsecutive positions,
we have the subsequence ab(a+1) in π. If b<a then b(a+1) is another coinversion
with nonconsecutive digits, which is not allowed. If b > a+ 1 then ab is another
coinversion with nonconsecutive digits, which is still not allowed. We may only
preserve these properties of coinversions by inserting (n−1)n after 1 in any member
of D1

n−2(2413) or inserting n after 1 in any member of D1
n−1(2413) to obtain σ.

Next, consider σ =ππ ∈Dn−2
n (2413). If π1=n−2, we claim that π2=n−1 and

πn = n. Suppose to the contrary that n precedes n− 1. Then (n− 2)n1(n− 1) is a
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forbidden pattern in σ. Now suppose π2= i<n−2. Then (n−2)ni(n−1) is a forbid-
den pattern, so π2= n−1. Finally, suppose πn = i < n−2. Then (n−2)ni(n−1) is
a forbidden pattern, so we know π1= n−2, π2= n−1, and πn = n. Now, the digits
n−2, n−1, and n can only play the role of “4” in a 2413 pattern so any coinversions
amongst the digits 1, . . . , n − 3 in π must appear between consecutive digits in
consecutive positions as in the previous case. Given a member of Dn−4

n−2(2413), we
may increment n−4, n−3, and n−2 by 2 and insert (n−4)(n−3) in the third and
fourth positions to obtain a member of Dn−2

n (2413). For example, 34215∈D3
5(2413)

produces 5634217∈D5
7(2413). Given a member of Dn−3

n−1(2413), we may increment
n−3, n−2, and n−1 by 1 and insert n−3 in the third position to obtain a member
of Dn−2

n (2413). For example, 452316 ∈ D4
6(2413) produces 5642317 ∈ D5

7(2413).
Next, consider σ = ππ ∈ Dn−1

n (2413). Then either π2 = n or πn = n. Suppose
to the contrary that πi = n, where 3≤ i ≤ n−1. First, all digits between n−1 and n
in π must be smaller than all digits after n in π ; otherwise, we have a 2413 pattern
in σ. Since we assume n ≥ 7, either there are at least two digits between n−1 and n
in π or there are at least two digits after n in π. In the first case, suppose the digits
between n−1 and n include a< b and c is a digit after n in π. Then bnac is a 2413
pattern in σ. If the digits after n in π include a < b and c is a digit between n− 1
and n then a(n−1)cb is a forbidden pattern in σ. Therefore n is either the second or
the last digit in π. In the first case, given σ = ππ ∈Dn−3

n−2(2413), where π2 = n−2,
we may prepend (n− 1)n to the front of π to obtain a 2413-avoiding member of
Dn−1

n (2413). If σ =ππ ∈Dn−2
n−1(2413), where π2= n−1, then increment π1 and π2

and insert n− 2 into the third position. For example, 563412 ∈ D5
6(2413) becomes

6753412 ∈ D6
7(2413). Now, if πn = n, we approach the situation differently. If

σ ′ = π ′π ′ ∈ Dn−3
n−2(2413) with π ′n−2 = n− 2, then remove π ′1 and π ′n−2 to obtain a

permutation on {1, . . . , n− 4} then create the new permutation

π = (n− 1)(n− 3)(n− 2)π ′2 · · ·π
′

n−3n.

By inspection, ππ ∈ Dn−1
n (2413). If σ ′ = π ′π ′ ∈ Dn−2

n−1(2413) with π ′n−1 = n− 1,
then remove π ′1 and π ′n−1 to obtain a permutation on {1, . . . , n−3}; then create the
new permutation

π = (n− 1)(n− 2)π ′2 · · ·π
′

n−2n,

where again, by inspection, ππ ∈ Dn−1
n (2413).

Finally, consider σ =ππ ∈Dn
n(2413). Given σ ′=π ′π ′ ∈Dn−2

n−2(2413), delete π ′1
and create

n(n− 2)(n− 1)π ′2 · · ·π
′

n−2n(n− 2)(n− 1)π ′2 · · ·π
′

n−2 ∈ D
n
n(2413).

If σ ′ = π ′π ′ ∈ Dn−1
n−1(2413), prepend n to the front of π ′ to obtain a member σ of

Dn
n(2413). �
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The final sequence is perhaps the most surprising result. The task of enumerating
1324-avoiders in other contexts has proven especially challenging. For double lists,
however, structure is evident beginning with the n = 7 term. It turns out these
double lists satisfy a tribonacci recurrence.

Theorem 8. dn(1324)=



n! if n ≤ 3,
12 if n = 4,
21 if n = 5,
38 if n = 6,
69 if n = 7,
126 if n = 8,
232 if n = 9,
dn−1(1324)+ dn−2(1324)+ dn−3(1324) if n ≥ 10.

Proof. As before, we focus on the n ≥ 10 case, and leave the n ≤ 9 cases to brute
force verification.

First, given σ = ππ ∈ Dn(1324), it is impossible for 1 to precede n if n ≥ 7.
Suppose to the contrary that 1 precedes n. All digits in {2, . . . , n − 1} appear
between the first 1 and the last n and must appear in increasing order to avoid 1324.
Suppose two digits a < b appear between 1 and n in π. Then 1ban is a 1324
pattern in σ. Suppose there is just one digit i between 1 and n in π . If i > 2,
the 1i2n is a forbidden pattern, and if i = 2, then 132n is a forbidden pattern.
Therefore if 1 appears before n, it must be immediately before n and the digits
2, . . . , n− 1 appear in increasing order between the first occurrence of 1n and the
second occurrence of 1n in σ. Since n ≥ 7, there are either three digits a < b < c
before the first 1 (in which case acbn is a forbidden pattern) or there are three digits
a < b< c in π after the first n (in which case 1bac is a forbidden pattern). In every
event we have forced the occurrence of a 1324 pattern, so it is impossible for 1 to
precede n if n ≥ 7.

Now, if n precedes 1, then n must appear as one of the first three digits of π.
Suppose n appears in position i ≥ 4. Then π1 · · ·πi−1π1 · · ·πi−1 must avoid 132.
We have seen that this is impossible for i − 1 ≥ 4, and the only way to do this if
i − 1 = 3 is for π1π2π3 to form a 231 pattern. However, π3 < π1 < π2 implies
π1π2π3n1π1π2π3n1 contains the 1324 pattern 1π2π3n. Therefore n must appear
in one of the first three positions.

Let
Di

n(1324)= {σ ∈ Dn(1324) | σi = n}

and let di
n(1324)=|Di

n(1324)|. We claim that d1
n(1324)= d2

n(1324) and d3
n(1324)=

d1
n−2(1324) for n ≥ 6.

First we show d1
n(1324)= d2

n(1324) for n ≥ 6. We claim that if ππ ∈D2
n(1324),

then π1 and π2 = n can be transposed to produce a member of D1
n(1324). Suppose
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to the contrary that ππ ∈ D2
n(1324) but π2π1π3 · · ·πnπ2π1π3 · · ·πn /∈ D1

n(1324).
In this case, we know π1 < n− 1 since if π1π2 = (n− 1)n, both (n− 1) and n can
only play the role of “4” in a 1324 pattern and transposing them does not change
their involvement. If π1 < n− 1 and it plays the role of a “1” in a pattern where n
plays the role of “4”, we must have used the first copy of π1 and the second copy
of n, so transposing them within each copy of π does not affect the existence of the
1324 patterns. The only other way for both to be involved in the same copy of 1324
that could possibly be destroyed by transposing π1 and π2 is for π1 to play the role
of “2” and n to play the role of “4” in a 1324 pattern in ππ. In this case, suppose
the double list beginning with π1n contains 1324 but the list beginning with nπ1

avoids 1324. Since nπ1π3 · · ·πnnπ1π3 · · ·πn avoids 1324, all digits larger than π1

must appear in increasing order immediately after π1 and π1 ≥ n− 3. Now, a case
analysis shows that any σ beginning with (n−3)n(n−2)(n−1) or (n−2)n(n−1)
cannot have σ1 play the role of “2” in a 1324 pattern, so it is the case that transposing
π1 and π2 provides a bijection between D1

n(1324) and D2
n(1324).

To see that d3
n(1324)= d1

n−2(1324) for n ≥ 6, notice that if ππ ∈D3
n(1324), then

π1 = n− 2 and π2 = n− 1. We know these two numbers must appear in increasing
order since 1 comes after n. If there exists i where π1 < i < π2, then π1π2in is a
forbidden pattern and if there exists i where π2 < i < n, then π1iπ2n is a forbidden
pattern. Since π = (n− 2)(n− 1)nπ3 · · ·πn , we may delete n− 1 and n to obtain
π ′π ′ ∈ D1

n−2(1324).
It remains to show that d1

n(1324) satisfies the tribonacci recurrence (and thus so
do d2

n(1324), d3
n(1324), and dn(1324)). For σ ′ ∈ D1

n−3(1324), replace n− 3 with
n(n−3)(n−2)(n−1) to obtain σ ∈D1

n(1324). For σ ′ ∈D1
n−2(1324), replace n−2

with n(n− 2)(n− 1) to obtain σ ∈ D1
n(1324). For σ ′ ∈ D1

n−1(1324), prepend n to
the front of each copy of π to obtain σ ∈ D1

n(1324). This map sends members of
D1

n−3(1324)∪D1
n−2(1324)∪D1

n−1(1324) to D1
n(1324).

Further, each of these operations is bijective. That is, if σ = ππ ∈ D1
n(1324),

then π either begins with n(n − 1), n(n − 2)(n − 1), or n(n − 3)(n − 2)(n − 1).
Indeed, if π2≤n−4, then n−1, n−2, and n−3 appear in increasing order in π , and
(n−4)(n−2)(n−3)(n−1) is a 1324 pattern in σ, so π2 ≥ n−3. If π2= n−2 and
π3 6= n−1, then πn = n−1. If not, then we see all digits between π2 and n−1 must
be larger than all digits after n−1 in π to avoid a 1324 pattern where n−1 plays the
role of “3” and n plays the role of “4”. However, if a < n− 2 is before n− 1 in π
and b< a is after n−1 in π , then b(n−2)a(n−1) is a copy of 1324 in σ. Therefore,
if π2 = n− 2 and π3 6= n− 1, then πn = n− 1. Now, since we assume n ≥ 6, let
a < b < c be three digits less than n− 2 in π. If πn = n− 1, then a(n− 2)c(n− 1)
is a 1324 pattern in σ, so it must be the case that π3 = n− 1 if π2 = n− 2. Finally,
if π2 = n− 3, then n− 2 appears before n− 1 in π (or (n− 3)(n− 1)(n− 2)n is a
1324 pattern in σ ). If π3 < (n− 3) then π3(n− 2)(n− 3)(n− 1) is a 1324 pattern
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in σ. Now that we know π2 = n− 3 implies π3 = n− 2, a similar analysis to the
case where π2 = n− 2 shows that π4 = n− 1 as well.

By editing appropriate prefixes, we now have a bijection between D1
n(1324)

and D1
n−3(1324)∪D1

n−2(1324)∪D1
n−1(1324), so d1

n(1324) satisfies the tribonacci
recurrence. Because D1

n(1324) is in bijection with D2
n(1324) and D3

n(1324) is
in bijection with D1

n−2(1324), we have d2
n(1324) and d3

n(1324) also satisfy the
tribonacci recurrence. Finally, since

dn(1324)= d1
n(1324)+ d2

n(1324)+ d3
n(1324),

dn(1324) satisfies the tribonacci recurrence as well, which is what we wanted to
show. �

4. Summary

We have now completely characterized dn(ρ) where ρ is a permutation pattern of
length at most 4. The corresponding results are given in Table 2. These results
provide an interesting contrast to pattern-avoiding permutations. First, the only
Wilf equivalences are the trivial ones. Second, the monotone pattern is the easiest
pattern to avoid in the context of double lists. Finally, we obtained a variety of
behaviors (constant, linear, quadratic, and exponential), as opposed to permutation
pattern sequences which only grow exponentially.

pattern ρ dn(ρ) OEIS

1342, 2431, 15 (n ≥ 5) A010854
3124, 4213

2143, 3412 2n+ 2 (n ≥ 6) A005843

1423, 2314, 3n+ 6 (n ≥ 7) A008585
3241, 4132

1432, 2341, 1
2 n2
+

3
2 n− 4 (n ≥ 6) A052905

3214, 4123

1243, 2134, 1
2 n2
+

5
2 n− 8 (n ≥ 6) A183897

3421, 4312

2413, 3142 Ln+1 (n ≥ 5) A000032

1324, 4231 |Dn−1(ρ)| + |Dn−2(ρ)| + |Dn−3(ρ)| (n ≥ 10)

1234, 4321 2n
− n (n ≥ 4) A000325

Table 2. Formulas for dn(ρ), where ρ ∈ S4 and the sequence
numbers in the far right column are from [OEIS 2015].
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The variety of sequence behaviors and the complete classification for length-4
patterns are both exciting developments, but this work raises additional possibilities
for future work. In particular:

(1) Is 1 · · · n the easiest pattern of length n to avoid for all n? Can we characterize
the hardest pattern of length n to avoid in general?

(2) All of the sequences in Table 2 have rational generating functions. Do there
exist patterns ρ where the sequence {dn(ρ)} does not have a rational generating
function?

(3) With the exception of the proof of Theorem 6, the proofs in this paper were
the result of detailed case analysis. While this is a thorough treatment that
reveals much about the structure of pattern-avoiding double lists, it is not the
most elegant approach. What are alternate proofs of these results?
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