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The asymptotic estimation of the vibration spectrum for a system of two identical
Euler–Bernoulli beams coupled via each of the four standard types of linear
dissipative joint has been solved for the case when one beam is clamped and the
other beam is free at the outer ends. Here, we generalize those results and solve the
problem for all 40 combinations of energy-conserving end conditions. We provide
both asymptotic and numerical results, and we compare the various systems with
an eye toward determining which configurations lead to asymptotically equivalent
vibration spectra.

1. Introduction

The design of large or complex structures — bridges, airplanes, robots, buildings,
machinery, etc. — entails the joining or coupling of smaller, simpler components,
which often can be modeled as beams, plates, or shells. These couplings may include
active or passive damping mechanisms for the damping of unwanted vibrations.
Successful design requires a knowledge of the system’s vibration spectrum, i.e., the
set of its natural frequencies of vibration.

There are four standard linear models for describing the vibration of beams —
the Euler–Bernoulli, Rayleigh, shear, and Timoshenko beams. Of these, the Euler–
Bernoulli is the simplest, with each of the others incorporating one or more physical
effects neglected by the Euler–Bernoulli model. Despite the better accuracy of
these latter models, the Euler–Bernoulli is accurate enough to be the model of
choice for a multitude of physical applications. In addition, the most commonly
utilized models for plates and shells are those based on the same assumptions
as those governing the Euler–Bernoulli beam. Indeed, given its simplicity and
applicability, the Euler-Bernoulli beam may be thought of as the most universal
element in structural dynamics.
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In this paper, we consider the vibration of a system consisting of two identical
Euler–Bernoulli beams, coupled end to end by each of four standard types of dissipa-
tive joint, and satisfying any of the standard energy-conserving boundary conditions
at each end. Our intent is to estimate and classify the vibration spectrum for all
40 possible configurations (four joint conditions and ten sets of end conditions.)

The problem of serially connected Euler–Bernoulli beams seems first to have been
treated in [Chen et al. 1987], while the specific problem here was solved in [Chen
et al. 1989] for the case involving a so-called type I joint with clamped-free end
conditions. The authors employ an asymptotic method in order to compute the spec-
trum analytically, and provide numerical results for comparison. In addition, they
provide physical models for the four joint types (three being special cases, involving
only some of the damping parameters), and present some early experimental results.
In [Chen et al. 1988], the authors provide more experimental results and, after
smoothing this data, show good agreement with the results from [Chen et al. 1989].

Krantz and Paulsen [1991] generalize to a great extent the asymptotic results in
[Chen et al. 1989]. They again treat the case with clamped-free end conditions, but
they consider all four types of joints. In addition, they allow for an arbitrary number
of beams of arbitrary length! Finally, in [Chen and Zhou 1990], an alternate solution
of the problem in [Chen et al. 1989] is provided, using the elegant asymptotic wave
propagation method (WPM) of Keller and Rubinow [1960].

In this paper, we consider the case of two identical Euler–Bernoulli beams subject
to any of the four types of joint conditions, as given in [Chen et al. 1989], and
we generalize by considering all possible combinations of energy-conserving end
conditions. We employ WPM in order to derive analytic/asymptotic results, and
the Legendre–Tau spectral method for numerical comparisons. These are the first
numerical results that we know of for Euler–Bernoulli systems with types II, III
and IV joints, and the first asymptotic results for systems without clamped-free end
conditions. The asymptotic results allow us easily to compare the vibration spectra
for all 40 configurations, permitting us to categorize them, in order to see which
configurations may be equivalent insofar as they lead to identical vibration spectra.

This paper is organized as follows: In Section 2, we present the problem and, in
Section 3, it is recast in dimensionless form; WPM is applied and the asymptotic
results are presented in Section 4, with a brief discussion of the results in Section 5.
In Section 6, the numerical results and comparisons are presented.

2. The problem

As mentioned, we consider the problem of two identical Euler–Bernoulli beams,
connected by any of the four standard dissipative joints, as presented in [Chen et al.
1989]. We have, then, an Euler–Bernoulli beam equation satisfied along each beam:
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mw1t t + E Iw1xxxx = 0, −L < x < 0, t > 0,

mw2t t + E Iw2xxxx = 0, 0 < x < L , t > 0.

Here, wj (x, t), j = 1, 2, is the transverse displacement along beam j, E is the
constant Young’s modulus, I is the constant (vertical) moment of inertia, and m is
the constant linear mass density.

In addition, we have the joint conditions:

Type I:
M2(0, t)= M1(0, t),

V2(0, t)= V1(0, t),

w2t(0, t)−w1t(0, t)= k2
1 V1(0, t)+ c1 M1(0, t),

w2xt(0, t)−w1xt(0, t)= c2V1(0, t)− k2
2 M1(0, t);

Type II:
w2(0, t)= w1(0, t),

M2(0, t)= M1(0, t),

V2(0, t)− V1(0, t)= k2
1w1x(0, t)+ c1 M1(0, t),

w2xt(0, t)−w1xt(0, t)= c2w1t(0, t)− k2
2 M1(0, t);

Type III:
w2(0, t)= w1(0, t),

w2x(0, t)= w1x(0, t),

V2(0, t)− V1(0, t)= k2
1w1t(0, t)+ c1w1xt(0, t),

M2(0, t)−M1(0, t)= c2w1t(0, t)− k2
2w1xt(0, t);

Type IV:
w2x(0, t)= w1x(0, t),

V2(0, t)= V1(0, t),

w2t(0, t)−w1t(0, t)= k2
1 V1(0, t)+ c1w1xt(0, t),

M2(0, t)−M1(0, t)= c2V1(0, t)− k2
2w1xt(0, t);

where Mj (x, t) is the bending moment, and Vj (x, t) the shear force, along beam j.
The damping constants k2

1 , k2
2 , c1 and c2 ensure dissipation of energy so long as

k2
1 + k2

2 > 0 and k2
1α

2+ k2
2β

2+ (c1− c2)αβ > 0 ∀α, β ∈ R

[Chen and Zhou 1990]. For the sake of convenience, we assume throughout the
paper that k1 6= 0 (corresponding to “type a” joints in [Krantz and Paulsen 1991])
and that k2

1k2
2 + c1c2 > 0. (It is easy to show that k2

1k2
2 + c1c2 ≥ 0, with equality if

and only if c1 =−c2 =±k1k2.)
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Finally, at the left end of the first beam, we have one of the energy-conserving
boundary conditions

clamped (C): w1(−L , t)= w1x(−L , t)= 0,

simply supported (S): w1(−L , t)= w1xx(−L , t)= 0,

roller supported (R): w1x(−L , t)= w1xxx(−L , t)= 0,

free (F): w1xx(−L , t)= w1xxx(−L , t)= 0,

and similarly at the right end of the second beam. Thus, we have the following ten
combinations of boundary conditions to consider:

C-C, C-S, C-R, C-F, S-S, S-R, S-F, R-R, R-F, F-F.

We note here that, in order for a joint to exist, at least one of the variables w (or wt ),
wx (or wxt ), M or V must be discontinuous. In addition, at most one of each pair of
conjugate variables (w and V, wx and M) can be discontinuous. Thus, types I–IV
do, indeed, represent the most general situation for linear joints [Pilkey 1969].

3. Dimensionless form

We first separate variables,

wj (x, t)= e−iξ2tvj (x), j = 1, 2,

and introduce the new variables

y = x
L
, u j (y)= vj (x)

L
, j = 1, 2.

Also, in order to apply WPM, we let y→−y along the second beam, as it is
convenient to have both beams on the same y-interval. The resulting dimensionless
ODEs are

u(4)j (y)− k4u j (y)= 0, −1< y < 0, j = 1, 2, (1)

where

k2 =
√

m
E I

L2ξ 2.

The new joint conditions are:

Type I:
u′′2(0)− u′′1(0)= 0,

u′′′2 (0)+ u′′′1 (0)= 0,

ik2[u2(0)− u1(0)] − p11u′′′1 (0)− q11u′′1(0)= 0,

ik2[u′2(0)+ u′2(0)] − p12u′′1(0)+ q12u′′′1 (0)= 0;
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Type II:
u2(0)− u1(0)= 0,

u′′2(0)− u′′1(0)= 0,

u′′′2 (0)+ u′′′1 (0)+ ik2 p21u1(0)+ q21u′′1(0)= 0,

ik2[u′2(0)+ u′1(0)] − p22u′′1(0)+ ik2q22u1(0)= 0;

Type III:
u2(0)− u1(0)= 0,

u′2(0)+ u′1(0)= 0,

u′′2(0)− u′′1(0)+ ik2 p31u′1(0)− ik2q31u1(0)= 0,

u′′′2 (0)+ u′′′1 (0)+ ik2 p32u1(0)+ ik2q32u′1(0)= 0;

Type IV:
u′2(0)+ u′1(0)= 0,

u′′′2 (0)+ u′′′1 (0)= 0,

ik2[u2(0)− u1(0)] − p41u′′′1 (0)− ik2q41u′1(0)= 0,

u′′2(0)− u′′1(0)+ ik2 p42u′1(0)− q42u1(0)= 0.

Here, the constants pi j and qi j , where i = 1, 2, 3, 4, j = 1, 2, are given by:

Type I:

p11 = k2
1

√
m E I
L

, p12 = k2
2 L
√

m E I , q11 = c1
√

m E I , q12 = c2
√

m E I ;

Type II:

p21 = k2
1 L√

m E I
, p22 = k2

2 L
√

m E I , q21 = c1L , q22 = c2L;

Type III:

p31 = k2
1

L
√

m E I
, p32 = k2

2 L√
m E I

, q31 = c1√
m E I

, q32 = c2√
m E I
;

Type IV:

p41 = k2
1

√
m E I
L

, p42 = k2
2

L
√

m E I
, q41 = c1

L
, q42 = c2

L
.

Note that k2
1α

2+ k2
2β

2+ (c1− c2)αβ ≥ 0 if and only if

p j1α
2+ p j2β

2+ (q j1− q j2)αβ ≥ 0, j = 1, 2, 3, 4.
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For j = 1, 2, the new boundary conditions are

C: u j (−1) = u′j (−1)= 0,

S: u j (−1) = u′′j (−1)= 0,

R: u′j (−1)= u′′′j (−1)= 0,

F: u′′j (−1)= u′′′j (−1)= 0.

4. Asymptotic estimation of vibration frequencies by WPM

Applying WPM to the problem is identical to writing the general solutions of the
ODEs (1) as

u(x)=
[

u1(x)
u2(x)

]
=
[

A1

A2

]
eikx+

[
B1

B2

]
e−ikx+

[
C1

C2

]
ekx+

[
D1

D2

]
e−k(x+1)

=
[

A3

A4

]
eik(x+1)+

[
B3

B4

]
e−ik(x+1)+

[
C1

C2

]
ekx+

[
D1

D2

]
e−k(x+1), (2)

applying the joint conditions to the first expression in (2) and the boundary conditions
to the second expression in (2). Here, we follow Chen and Zhou [1990] and stipulate
that Re(k)≥ 0 (else, we just replace k by −k). Applying the boundary conditions,
neglecting the terms of O(e−k), and eliminating D1 and D2 leads to[

A3

A4

]
=
[

a 0
0 b

] [
B3

B4

]
= R2

[
B3

B4

]
. (3)

Here, a and b depend on the boundary conditions, as follows:

a = b = i : C-C, C-F, F-F,

a = b = 1 : R-R, a = b =−1 : S-S, a =−1, b = 1 : S-R,

a= i, b=1 : C-R, a= i, b=−1 : C-S, a=1, b= i : R-F, a=−1, b= i : S-F,

where, e.g., C-F signifies that the first beam is clamped at the left end and the
second beam is free at the right end.

Next, we apply the joint conditions, again neglecting terms of O(e−k), and
eliminate C1 and C2. The result is a relationship of the form

M1(k)
[

B1

B2

]
= M2(k)

[
A1

A2

]
, (4)

where each matrix Mj is 2× 2. Solving for
[ B1

B2

]
, we have[

B1

B2

]
= M−1

1 (k)M2(k)
[

A1

A2

]
= R1(k)

[
A1

A2

]
, (5)
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for which we find it more convenient to write[
B1

B2

]
= 1

det M1(k)
R′1(k)

[
A1

A2

]
. (6)

For the sake of completeness, we provide R′1 and det M1 for each of the four
joints:

Type I:
det M1 = 2(1+ i)p11k2+ i(p11 p12+ q11q12+ 8)k+ 2(−1+ i)p12 = t11,

R′1 =
[

u+ v w+ z
w− z u− v

]
= T11,

where

u = 2i p11k2− (p11 p12+ q11q12)k− 2i p12, v = 2(q11− q12)k,

w = 2p11k2+ 8ik− 2p12, z = 2(q11+ q12)k.

Type II:
det M1 = 8ik2+ 2(−1+ i)(p21+ p22+ q21+ q22)k− 2(p21 p22+ q21q22),

R′1 =
[−v 2u

2u −v
]
,

where
u = 4ik2+ [−(p21+ p22)+ i(q21+ q22)]k,
v = 2[i(p21+ p22)− (q21+ q22)]k− 2(p21 p22+ q21q22).

Type III:
det M1 = 2(1+ i)p31k2+ i(p31 p32+ q31q32)k+ 2(−1+ i)p32 = t31,

R′1 =
[

u+ v w− z
w+ z u− v

]
= T31,

where

u = 2i p31k2− (p31 p32+ q31q32)k− 2i p32, v =−2(q31− q32)k,

w = 2p31k2+ 8ik− p32, z = 2(q31+ q32)k.

Type IV:
det M1 =−2i(p41 p42+ q41q42)k2+ 2(1− i)(p41+ p42+ q41+ q42)k+ 8,

R′1 =
[ −u −2v
−2v −u

]
,

where

u = 2i(p41 p42+ q41q42)k2+ 2[−(p41+ p42)+ i(q41+ q42)]k,
v = [i(p41+ p42)− (q41+ q42)]k− 4.
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Now, we also see from the general solution (2) that[
A1

A2

]
=
[

A3

A4

]
eik,

[
B1

B2

]
=
[

B3

B4

]
e−ik. (7)

Combining (3), (5), and (7) then gives us[
B1

B2

]
= R1(k)

[
A1

A2

]
= R1(k)eik

[
A3

A4

]
= R1(k)eik R2

[
B3

B4

]
= R1(k)eik R2eik

[
B1

B2

]
. (8)

Thus, we are to find those values of k for which

det [e2ik R1(k)R2− I ] = 0

or

det
[
R′1 R2− e−2ik(det M1(k))I

]= det [R′1 R2− λI ] = 0.

Thus, we need only compute the eigenvalues of R′1(k)R2.
It is easy to see that, if we identify p11→ p31, p12→ p32, q11→q31, q12→q32,

we have t31 = t11 and T31 = (T11)
T. Thus, R′11 R2 and R′13 R2 will have the same

eigenvalues, and the spectra for the types I and III joints are identical for each R2;
i.e., given any set of end/boundary conditions, the types I and III joints have identical
spectra, asymptotically. This generalizes the result in [Krantz and Paulsen 1991]
where they show that these spectra are identical in the case of C-F end conditions.

Continuing the analysis, in each case the matrix R′1(k)R2 will have two eigen-
values, λ1(k) and λ2(k). It is easy to show, as in [Chen and Zhou 1990], that these
eigenvalues are distinct. It follows that, in each case, there will be two streams or
branches of frequencies, satisfying

λj (k)= e−2ik det M1(k) or e−2ik = λj (k)
det M1(k)

, j = 1, 2, (9)

where each λj (k) and det M1(k) are quadratic polynomials in k. Thus, as (9) is
unwieldy, we follow [Chen and Zhou 1990] and we use the first-degree Taylor
approximation

a1k2+ b1k+ c1

a2k2+ b2k+ c2
= a1

a2
+ a2b1− a1b2

a2
2

1
k
+O

(
1
k2

)
. (10)

Applying (10) to (9) yields an equation of the form

e−2ik = d1

(
1− d2

1
k

)
+O

( 1
k2

)
, |d1| = 1, (11)
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and, taking the (complex) log of (11) and using the Taylor approximation

ln
(

1− d2
1
k
+O

( 1
k2

))
=−d2

1
k
+O

( 1
k2

)
,

we have

−2ik =−d2
1
k
+ i(arg d1− 2nπ)+O

( 1
k2

)
, n = 0, 1, 2, . . . . (12)

We note here that the choice of −2nπ is based on our earlier assumption that
Re(k) ≥ 0. We rewrite (12) as a quadratic equation, realizing that multiplying
by k will add an extraneous root of O(1/k), and after also employing the Taylor
approximation

√
1+ ε = 1+ 1

2ε+O(ε2),

we arrive at

−ik2 =−d2−
( 1

2 arg d1− nπ
)2i +O

(1
k

)
.

Here, we provide the expressions for −ik2 for all 40 cases:

Type I:

a = b (C-C, C-F, F-F, S-S, R-R, F-F):

−ik2 =− p11 p12+ q11q12

2p11
− ( 1

2 arg a− nπ
)2i,

−ik2 =− 4
p11
− ( 1

2 arg(−a)− nπ
)2i;

a =−b =−1 (S-R):

−ik2 =−(4p11)
−1[p11 p12+ q11q12+ 8− 2

√
2(q11− q12)i] −

(1
8π − nπ

)2i,

−ik2 =−(4p11)
−1[p11 p12+ q11q12+ 8+ 2

√
2(q11− q12)i] −

(5
8π − nπ

)2i;

a = 1, b = i (R-F):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3−1)]

−( 1
12π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3+1)]

−( 5
12π−nπ

)2i;
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a =−1, b = i (S-F):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3−1)]

−( 1
3π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3+1)]

−( 2
3π−nπ

)2i;
a = i , b = 1 (C-R):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3−1)]

−( 1
12π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3+1)]

−( 5
12π−nπ

)2i;
a = i , b =−1 (C-S):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3−1)]

−( 1
3π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3+1)]

−( 2
3π−nπ

)2i.

Type III: This is the same as type I, with p1 j → p3 j , q1 j → q3 j , j = 1, 2.

Type II:

a = b (C-C, C-F, S-S, R-R, F-F):

−ik2 =− 1
2 [p21+ p22+ i(q21+ q22)] −

( 1
2 arg a− nπ

)2i,

−ik2 =−( 1
2 arg(−a)− nπ

)2i;
a =−b =−1 (S-R):

−ik2 =− 1
4 [p21+ p22+ i(q21+ q22)] −

( 1
4π − nπ

)2i,

−ik2 =− 1
4 [p21+ p22+ i(q21+ q22)] −

( 3
4π − nπ

)2i;
a = i , b = 1 (C-R); a = 1, b = i (R-F):

−ik2 =− 1
8(2+

√
2)[p21+ p22+ i(q21+ q22)] −

( 1
8π − nπ

)2i,

−ik2 =− 1
8(2−

√
2)[p21+ p22+ i(q21+ q22)] −

( 5
8π − nπ

)2i;
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a = i , b =−1 (C-S); a =−1, b = i (S-F):

−ik2 =− 1
8(2+

√
2)[p21+ p22+ i(q21+ q22)] −

( 3
8π − nπ

)2i,

−ik2 =− 1
8(2−

√
2)[p21+ p22+ i(q21+ q22)] −

( 7
8π − nπ

)2i.

Type IV:

a = b (C-C, C-F, S-S, R-R, F-F):

−ik2 =−2
p41+ p42+ i(q41+ q42)

p41 p42+ q41q42
− ( 1

2 arg a− nπ
)2i,

−ik2 =−( 1
2 arg a− nπ

)2i;
a 6= b (C-S, C-R, S-R, S-F, R-F):

−ik2 =− p41+ p42+ i(q41+ q42)

p41 p42+ q41q42
− ( 1

2 arg a− nπ
)2i,

−ik2 =− p41+ p42+ i(q41+ q42)

p41 p42+ q41q42
− ( 1

2 arg b− nπ
)2i.

5. Discussion of asymptotic results

Again, we begin by noting that, for each set of end conditions, the type I and type III
joints are asymptotically equivalent. This agrees with what is found in [Krantz and
Paulsen 1991] for C-F end conditions.

We see also that, for many choices of the end conditions, the damping rates for
the type II and type IV joints are asymptotically equivalent. Specifically, for those
cases satisfying a = b, there is an asymptotically undamped branch, while, for the
other branch, we need only choose our damping constants so that

p21 = 4p41

p41 p42+ q41q42
, etc.

We have a similar equivalence for the case a =−b =−1 (S-R).
It is of particular interest that, in so many cases, for each type of joint, a term

of the form q j1− q j2 or q j1+ q j2 appears in Im(−ik2). Thus, there are examples
where the q j1 and q j2 affect the “frequency part” of the eigenfrequencies. Indeed,
a term of this form appears in all cases except for those where there is a type I or
type III joint and end conditions satisfying a = b. Thus, this behavior would not
have been encountered in [Chen and Zhou 1990]. These terms are encountered in
[Krantz and Paulsen 1991]; however, they seem to be discarded.

More specifically, in computing the damping rates, [Krantz and Paulsen 1991]
arrives at a correct term similar to

p j1+ p j2+ i(q j1+ q j2),
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and then arrives at the, again correct, damping rate of

−Re[p j1+ p j2+ i(q j1+ q j2)].
However, the i(q j1 + q j2) part is then dropped from consideration; although, as
we shall see below, these efforts do show up in the numerical results. This does,
however, seem to be an easy fix for Krantz and Paulsen [1991, p. 399].

6. Numerical results and comparisons

We have applied the Legendre–Tau spectral method to the problem. The problem is
recast so that each beam has domain −1≤ x ≤ 1, after which we approximate u1

and u2 by

u1(x)=
N∑

n=0

an Pn(x), u2(x)=
N∑

n=0

bn Pn(x), (13)

where Pn is the Legendre polynomial of degree n [Gottlieb and Orszag 1977].
Computations were performed within MATLAB, and also using Fortran 90 on a
laptop. Computations at N = 40 and N = 42 show that all results in the table below
converge to at least five decimal places.

In each table, we present the first 20 eigenfrequencies. We note here that,
although we have only negative imaginary parts in our asymptotic results, in fact
the conjugate of each eigenfrequency also is an eigenfrequency. In the following
example, we list only those with positive imaginary parts.

In our first example, we compare numerical results for a type I and a type III joint,
with C-F end conditions, for q j1 = q j2 = 0, and for various values of p11 = p31

and p12 = p32. The results appear in Tables 1–3.
The purpose here is threefold — to compare the numerical results for type I

and type III joints (remembering that we have shown them to be asymptotically
equivalent), to compare the numerical and asymptotic results, of course, and to see
what happens when we vary the “dominant” damping parameters, pi j .

For Table 1, we have taken p11 = p31 = p12 = p32 = 1. The first thing we must
point out is the very close match between the type I and type III numerical results.
We shall see similar behavior in the remaining results examining types I and III
(Tables 2–4).

We also are surprised to see such a good match between the numerical and
asymptotic results at this low end of the spectrum. Indeed, from the second eigenfre-
quency on, it is clear that the numerical spectrum already has split into the expected
two branches or streams.

For Table 2, we have let p11 = p31 = 2 and p12 = p32 = 0.5. Again, we have a
very close match between types I and III, and a close match between the numerical
and asymptotic results.
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−0.49507 0.77898 −0.49507 0.77898
−0.53772 5.5070 −0.53772 5.5070 −0.5 5.5517
−3.6704 20.562 −3.6704 20.562 −4.0 22.207
−0.49979 30.205 −0.49979 30.205 −0.5 30.226
−3.8734 60.711 −3.8734 60.711 −4.0 61.685
−0.49981 74.625 −0.49981 74.625 −0.5 74.639
−3.9307 120.20 −3.9307 120.20 −4.0 120.90
−0.49989 138.78 −0.49989 138.78 −0.5 138.79
−3.9561 199.31 −3.9561 199.31 −4.0 199.86
−0.49992 222.67 −0.49992 222.67 −0.5 222.68
−3.9697 298.10 −3.9697 298.10 −4.0 298.56
−0.49995 326.31 −0.49995 326.31 −0.5 326.31
−3.9778 416.61 −3.9777 416.61 −4.0 416.99
−0.49996 449.68 −0.49997 449.68 −0.5 449.68
−3.9830 554.83 −3.9829 554.83 −4.0 555.17
−0.49997 592.79 −0.49999 592.79 −0.5 592.79
−3.9866 712.79 −3.9866 712.79 −4.0 713.08
−0.49997 755.64 −0.49987 755.64 −0.5 755.64
−3.9889 890.47 −3.9901 890.47 −4.0 890.73
−0.50000 938.22 −4.9987 938.22 −0.5 938.23

Table 1. Types I and III joints, C-F end conditions, with p11 =
p12 = 1, q11 = q12 = 0.

For Table 3, we have p11 = p31 = 0.5 and p12 = p32 = 2. Here, once more,
the match for types I and III is very close. Meanwhile, the convergence of the
numerical to the asymptotic results is somewhat slower than in the previous two
tables, especially for the branch with real part equaling −8. Indeed, this slower but
smooth convergence is seen quite clearly in Figure 1, where we have plotted the
data from Table 3.

For Table 4, we continue to consider types I and III joints and C-F end conditions,
with p11 = p31 = p12 = p32 = 1 but with q11 = q31 = 0.5 and q12 = q32 = 0.7.
Once again, the types I and III results are an excellent match. In addition, the
smooth convergence of the numerical to the asymptotic results is similar to that in
the previous example, and can be seen clearly in Figure 2.

Given the excellent agreement between the type I and type III numerical results,
we are curious as to “how equivalent” they actually are. We have tried to compare
the determinant equations for the exact solutions, but so far we have had no luck.
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−1.7301 1.1041 −1.7300 1.1041
−0.28489 5.5602 −0.28489 5.5602 −0.25 5.5517
−1.9703 21.818 −1.9702 21.818 −2.0 22.207
−0.25005 30.221 −0.25005 30.220 −0.25 30.226
−1.9856 61.556 −1.9856 61.445 −2.0 61.685
−0.24998 75.635 −0.24998 74.635 −0.25 74.639
−1.9917 120.73 −1.9917 120.72 −2.0 120.90
−0.24999 138.79 −0.24999 138.79 −0.25 138.79
−1.9946 199.72 −1.9946 199.72 −2.0 199.86
−0.24999 222.68 −0.24999 222.68 −0.25 222.68
−1.9963 298.44 −1.9963 298.44 −2.0 298.56
−0.24999 326.31 −0.24999 326.31 −0.25 326.13
−1.9973 416.90 −1.9973 416.90 −2.0 418.99
−0.25000 449.68 −0.25000 449.68 −0.25 449.68
−1.9979 555.08 −1.9979 555.08 −2.0 555.17
−0.25000 592.79 −0.24999 592.79 −0.25 592.79
−1.9983 713.00 −1.9983 713.00 −2.0 713.08
−0.25000 755.64 −0.25004 755.64 −0.25 755.64
−1.9989 890.67 −1.9984 890.67 −2.0 890.73
−0.25000 938.23 −0.25003 938.23 −0.25 938.23

Table 2. Types I and III joints, C-F end conditions, with p11 = 2,
p12 = 0.5, q11 = q12 = 0.

For Table 5, we consider a type II joint with C-F end conditions. The purpose
here is to investigate the behavior of the “undamped” branch, the contribution of
q21 and q22 to the imaginary parts of the eigenfrequencies, and, of course, again to
compare the numerical and asymptotic results.

Here, we let p21= p22= 1. The first two columns give the numerical results, and
the next two columns the asymptotic results for the case where q21 = q22 = 0. We
see here that the numerical real parts for the “undamped” branch are very small and,
in most cases, are negative, as expected. For those that are not negative (the fifth,
seventh and thirteenth eigenfrequencies), we assume that it is due to the numerical
approximation. In addition, the match between the numerical and asymptotic results
is again quite good, even as early as the second eigenfrequency. This can also be
seen clearly in Figure 3, where we have plotted these results.

The last four columns are arranged as are the first four, but here we have let
q21 = 0.5 and q22 = 0.7. We note that the effect of these values on the imaginary
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−0.41842 0.79717 −0.41842 0.79717
−1.0353 5.3641 −1.0353 5.3641 −1.0 5.5517
−3.8189 17.042 −3.8189 17.042 −8.0 22.207
−0.99732 30.143 −0.99732 30.143 −1.0 30.226
−6.6452 57.777 −6.6452 57.777 −8.0 61.685
−0.99849 74.584 −0.99849 74.584 −1.0 74.639
−7.3547 118.07 −7.3547 118.07 −8.0 120.90
−0.99909 138.75 −0.99909 138.75 −1.0 138.79
−7.6154 197.65 −7.6154 197.65 −8.0 199.86
−0.99940 222.65 −0.99940 222.65 −1.0 222.68
−7.7423 296.75 −7.7423 296.75 −8.0 298.56
−0.99957 326.29 −0.99957 326.29 −1.0 326.13
−7.8144 415.45 −7.8144 415.46 −8.0 418.99
−0.99968 449.66 −0.99969 449.66 −1.0 449.68
−7.8598 553.83 −7.8595 553.83 −8.0 555.17
−0.99977 592.77 −0.99980 592.77 −1.0 592.79
−7.8901 711.90 −7.8905 711.91 −8.0 713.08
−0.99976 755.62 −0.99947 755.62 −1.0 755.64
−7.9105 889.67 −7.9140 889.68 −8.0 890.73
−0.99981 938.20 −0.99924 938.22 −1.0 938.23

Table 3. Types I and III joints, C-F end conditions, with p11= 0.5,
p12 = 2, q11 = q12 = 0.
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Figure 1. Plot of the vibration frequencies from Table 3.
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−0.45378 0.76895 −0.45378 0.76895
−0.95917 5.2515 −0.95917 5.2515 −1.35 5.5517
−3.6112 17.067 −3.6112 17.067 −8.0 22.207
−1.0664 29.951 −1.0664 29.951 −1.35 30.226
−6.5928 57.645 −6.5928 57.645 −8.0 61.685
−1.1599 74.377 −1.1599 74.377 −1.35 74.639
−7.3698 117.99 −7.3698 117.99 −8.0 120.90
−1.2226 138.56 −1.2226 138.56 −1.35 138.79
−7.6396 197.61 −7.6396 197.61 −8.0 199.86
−1.2611 222.48 −1.2611 222.48 −1.35 222.68
−7.7645 296.72 −7.7645 296.72 −8.0 298.56
−1.2853 326.14 −1.2853 325.14 −1.35 326.13
−7.8331 415.44 −7.8331 415.44 −8.0 418.99
−1.3012 449.53 −1.3012 449.53 −1.35 449.68
−7.8751 553.82 −7.8751 553.82 −8.0 555.17
−1.3119 592.65 −1.3120 592.65 −1.35 592.79
−7.9026 711.89 −7.9028 711.89 −8.0 713.08
−1.3197 755.51 −1.3196 755.52 −1.35 755.64
−7.9225 889.67 −7.9222 889.67 −8.0 890.73
−1.3253 938.12 −1.3251 938.11 −1.35 938.23

Table 4. Types I and III joints, C-F end conditions, with p11 =
p12 = 1, q11 = 0.5, q12 = 0.7.
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Figure 2. Plot of the vibration frequencies from Table 4.
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type II joint

q11 = q12 = 0 q11 = 0.5, q12 = 0.7

numerical WPM numerical WPM
Re Im Re Im Re Im Re Im

−0.21945 0.82672 0.0 0.61685 −0.16897 0.72184 0.0 0.61685
−1.0236 5.5617 −1.0 5.5517 −0.95445 6.1571 −1.0 6.1577
−7.6 ·10−4 15.424 0.0 15.421 −6.6 ·10−4 15.424 0.0 15.421
−1.0025 30.234 −1.0 30.226 −0.98966 30.834 −1.0 30.826

1.4 ·10−6 49.964 0.0 49.965 −1.3 ·10−6 49.965 0.0 49.965
−1.0011 74.642 −1.0 74.639 −0.99584 75.242 −1.0 75.239

3.4 ·10−10 104.25 0.0 104.25 1.1 ·10−9 104.25 0.0 104.25
−1.0006 138.70 −1.0 138.79 −0.99777 139.39 −1.0 139.39
−1.3 ·10−8 178.27 0.0 178.27 −1.1 ·10−8 178.27 0.0 178.27
−1.0004 222.68 −1.0 222.68 −0.99861 223.28 −1.0 223.28
−9.5 ·10−8 272.03 0.0 272.03 −7.5 ·10−8 272.03 0.0 272.03
−1.0003 326.31 −1.0 326.31 −0.99905 326.91 −1.0 326.91

2.2 ·10−8 385.53 0.0 385.53 3.8 ·10−7 385.53 0.0 385.53
−1.0002 449.68 −1.0 449.68 −0.99930 450.28 −1.0 450.28
−5.3 ·10−8 518.77 0.0 518.77 −5.4 ·10−7 518.77 0.0 518.77
−1.0001 592.79 −1.0 592.79 −0.99947 593.39 −1.0 593.39
−8.1 ·10−6 671.75 0.0 671.75 −7.6 ·10−6 671.75 0.0 671.75
−1.0002 755.64 −1.0 755.64 −0.99970 756.24 −1.0 756.24
−8.5 ·10−6 844.47 0.0 844.47 −2.2 ·10−5 844.48 0.0 844.47
−1.0002 938.23 −1.0 938.23 −0.99972 938.84 −1.0 938.83

Table 5. Type II joint, C-F end conditions, with p11 = p12 = 1,
q11 = q12 = 0, and p11 = p12 = 1, q11 = 0.5, q12 = 0.7.

parts of the eigenfrequencies of the “damped” branch should be

q21+ q22

2
= 0.6 (14)

and, indeed, this is what we see in the numerical results. Here, again, and in
Figure 4, we see a strong match between the numerical and asymptotic results.

Table 6 is arranged exactly as Table 5, but here we consider, instead, a type IV
joint, with p41 = p42 = 1. As before, q41 = q42 = 0 for the first four columns, while
q41 = 0.5 and q42 = 0.7 for the last four. Once more, we provide the first twenty
eigenfrequencies. For the q41= q42= 0 results, the asymptotic results occur in pairs
with equal imaginary parts, and we can see from the table and from Figure 5, where
these data are plotted, that the numerical results are approaching the same behavior
asymptotically. For the case q41= 0.5, q42= 0.7, we again see the effect of nonzero
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Figure 3. Plot of the vibration frequencies from Table 5 for the
case q11 = q12 = 0.
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Figure 4. Plot of the vibration frequencies from Table 5 for the
case q11 = 0.5, q12 = 0.7.

q-values on the imaginary part of the “damped” branch. Here, the effect is

q41+ q42

p41 p42+ q41q42
= 1.7778. (15)

We plot these results in Figure 6, where, although it is difficult to see the effects of
the nonzero q-values, we can see, again, a very good match between the asymptotic
and numerical results.

We realize that the damping parameters we have used may not be physically
realistic. Indeed, in other work, we have seen that, for realistic data, the convergence
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type IV joint

q41 = q42 = 0 q41 = 0.5, q42 = 0.7

numerical WPM numerical WPM
Re Im Re Im Re Im Re Im

3.3 ·10−16 0.0000 7.8 ·10−16 0.0000
−0.46155 0.53410 −0.26096 0.45158
−4.2 ·10−2 5.5592 0.0 5.5517 −2.3 ·10−2 5.5606 0.0 5.5517
−4.0964 6.6697 −4.0 5.5517 −2.3443 7.6742 −2.96 7.3295
−1.2 ·10−4 30.226 0.0 30.226 −7.0 ·10−5 30.226 0.0 30.226
−4.1652 30.395 −4.0 30.226 −2.8528 32.136 −2.96 32.004
−1.2 ·10−4 74.639 0.0 74.639 −1.5 ·10−7 74.639 0.0 74.639
−4.0704 74.698 −4.0 74.639 −2.9217 76.474 −2.96 76.417
−2.1 ·10−10 138.79 0.0 138.79 2.3 ·10−9 138.79 0.0 138.79
−4.0382 138.82 −4.0 138.79 −2.9415 140.60 −2.96 140.57
−1.4 ·10−8 222.68 0.0 222.68 −2.4 ·10−10 222.68 0.0 222.68
−4.0239 222.70 −4.0 222.68 −2.9498 224.48 −2.96 224.46
−3.5 ·10−8 326.31 0.0 326.31 −5.0 ·10−8 326.31 0.0 326.31
−4.0163 326.33 −4.0 326.31 −2.9540 328.10 −2.96 328.09
−8.7 ·10−8 449.68 0.0 449.68 −2.7 ·10−7 449.68 0.0 449.68
−4.0118 449.69 −4.0 449.68 −2.9565 451.47 −2.96 451.46
−3.2 ·10−7 592.79 0.0 592.79 1.2 ·10−7 592.79 0.0 592.79
−4.0090 592.80 −4.0 592.79 −2.9581 594.58 −2.96 594.57

1.8 ·10−6 755.64 0.0 755.64 3.6 ·10−6 755.64 0.0 755.64
−4.0071 755.65 −4.0 755.64 −2.9592 757.42 −2.96 757.42

Table 6. Type IV joint, C-F end conditions, with p11 = p12 = 1,
q11 = q12 = 0, and p11 = p12 = 1, q11 = 0.5, q12 = 0.7.

of the numerical to the asymptotic results sometimes takes much longer. However,
we have not been able to find realistic parameters in the literature. In particular, in
the two papers which give experimental results [Chen et al. 1988; 1989], the physical
parameters have not been determined, and the comparison with the asymptotic
results is based instead on a very clever use of the patterns that result from looking
at various differences between the eigenfrequencies.

Finally, we should mention that, in order to utilize the wave propagation method
in its current form, it is necessary that the possible wave speeds are the same along
each beam, thus the assumption here and in the references that each of the physical
parameters m, E , and I is the same for each beam. We can generalize a bit, given
that the wave speeds actually depend only on the ratio EI/m, so we need only
have the ratio be the same for each beam. Once this condition is not met, however,
the problem becomes far more difficult — indeed, we have found nothing in the
literature regarding an asymptotic analysis of this problem.
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Figure 5. Plot of the vibration frequencies from Table 6 for the
case q41 = q42 = 0.

−3 −2.5 −2 −1.5 −1 −0.5 0
0

200

400

600

Re

Im

numerical
WPM

Figure 6. Plot of the vibration frequencies from Table 6 for the
case q41 = 0.5, q42 = 0.7.
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