Loxodromes on hypersurfaces of revolution Jacob Blackwood, Adam Dukehart and Mohammad Javaheri

Loxodromes on hypersurfaces of revolution

Jacob Blackwood, Adam Dukehart and Mohammad Javaheri
(Communicated by Gaven Martin)

Abstract

A loxodrome is a curve that makes a constant angle with the meridians. We use conformal maps and the notion of parallel transport in differential geometry to investigate loxodromes on hypersurfaces of revolution and their spiral behavior near a pole.

1. Introduction

Loxodromes appear historically as mathematical tools in navigation, since they provide efficient navigation routes from one point to another by making a constant course angle with the meridians. Even modern technology relies on the ability to calculate loxodromes [Alexander 2004]. Loxodromes are best understood via conformal maps, maps that preserve angles locally. For example, the Mercator projection map is a conformal map under which the meridians and curves of constant latitude (parallels) are mapped to vertical and horizontal lines. A curve making a constant angle with vertical lines as it crosses them is itself a straight line; therefore, the Mercator projection map represents loxodromes as straight lines. As another example of a conformal map, consider the stereographic projection which maps the meridians and parallels to lines through the origin (radial lines) and circles centered at the origin. The curves that make a constant angle with the radial lines are the well-known logarithmic spirals. In other words, the stereographic projection maps loxodromes to logarithmic spirals.

The construction of loxodromes on the sphere and oblate-spheroidal surfaces, which approximate the shape of the earth, has been investigated previously [Bennett 1996; Carlton-Wippern 1992; Smart 1946; Williams 1950]. Spheres and spheroids are examples of surfaces of revolution that we now define. Let $\eta(t)=(u(t), v(t))$, where $t \in(a, b)$, be a curve in the half-plane $H=\left\{(x, y, 0) \in \mathbb{R}^{3}: y>0\right\}$. By rotating the profile curve $\eta(t)$ around the x-axis in \mathbb{R}^{3}, one obtains a surface of revolution parametrized as

[^0]The meridians of the surface are the curves of constant θ, while the parallels of the surface are the curves of constant t. A curve on S is called a loxodrome of S if it makes a constant angle with the meridians of S as it crosses them.

In Section 2, we derive the parametric equations of loxodromes on a surface of revolution. We also define a stereographic projection on a given surface of revolution that maps loxodromes to logarithmic spirals in the plane. Finally, we study the distances along loxodromes as well as the spiral behavior of loxodromes near a pole.

In Section 3, we consider the case where the profile curve is a Jordan curve (and so the resulting surface of revolution is a torus). In particular, we study closed loxodromes and their density in the set of all loxodromes. We also show that loxodromes are geodesics in a suitable metric on the surface.

Hypersurfaces of revolution are important and interesting geometric objects, and they have been studied extensively by geometers [Coll and Harrison 2013; do Carmo and Dajczer 1983; Zhang 2012]. In Section 4, we give a definition of loxodromes on hypersurfaces of revolution. As an example, we also find parametric equations of loxodromes on higher-dimensional spheres.

2. The loxodrome equation

Suppose that the profile curve of a surface of revolution S is given by $y=f(x)$, where $f(x)$ is a differentiable function on the interval $(a, b) \subseteq \mathbb{R}$ such that $f(x)>0$ for all $x \in(a, b)$. Then S is parametrized by the cylindrical map

$$
r(x, \theta)=\langle x, f(x) \cos \theta, f(x) \sin \theta\rangle
$$

Let

$$
\gamma(x)=\langle x, f(x) \cos \theta(x), f(x) \sin \theta(x)\rangle
$$

be a loxodrome that makes a constant angle ψ_{0} with the meridians. The tangent vector to the meridian $r(x, \theta)$, where θ is constant, is given by

$$
\boldsymbol{a}=\frac{\partial}{\partial x} r(x, \theta)=\left\langle 1, f^{\prime}(x) \cos \theta, f^{\prime}(x) \sin \theta\right\rangle
$$

while the tangent vector to γ at $x \in(a, b)$ is given by

$$
\boldsymbol{b}=\frac{d}{d x} \gamma(x)=\left\langle 1, f^{\prime}(x) \cos \theta-f(x) \theta^{\prime}(x) \sin \theta, f^{\prime}(x) \sin \theta+f(x) \theta^{\prime}(x) \cos \theta\right\rangle
$$

The constant-angle constraint gives $(\boldsymbol{a} \cdot \boldsymbol{b})^{2}=\|\boldsymbol{a}\|^{2}\|\boldsymbol{b}\|^{2} \cos ^{2}\left(\psi_{0}\right)$, which yields

$$
1+\left(f^{\prime}(x)\right)^{2}=\left(1+\left(f^{\prime}(x)\right)^{2}+\left(f(x) \theta^{\prime}(x)\right)^{2}\right) \cos ^{2}\left(\psi_{0}\right)
$$

After solving for $\theta^{\prime}(x)$ and integrating, one has

$$
\begin{equation*}
\theta(x)=\tan \left(\psi_{0}\right) A(x) \tag{2-1}
\end{equation*}
$$

where

$$
\begin{equation*}
A(x)=\int_{c}^{x} \frac{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}{f(x)} d x+C \tag{2-2}
\end{equation*}
$$

with constants $c \in(a, b)$ and $C \in \mathbb{R}$.
2.1. The conformal stereographic projection. The stereographic projection on the sphere has the property that it is conformal and it maps meridians and parallels to lines through the origin and circles centered at the origin respectively. We now describe a map with the same properties on the surface of revolution S with the profile curve $y=f(x)$. Let

$$
L(r, s)=\left\langle\ln \left(r^{2}+s^{2}\right), \arctan (s / r)\right\rangle
$$

and

$$
F(x, \theta)=\left\langle A^{-1}(x), f\left(A^{-1}(x)\right) \cos \theta, f\left(A^{-1}(x)\right) \sin \theta\right\rangle
$$

where $A(x)$ is given by (2-2).
We claim that the composition $T=F \circ L$ is a conformal map from an open subset of \mathbb{R}^{2} to S. The map L is the logarithmic conformal mapping such that L^{-1} maps the horizontal and vertical lines in the (x, θ)-plane to lines through the origin and circles centered at the origin respectively. The map F is also a conformal map that maps the horizontal and vertical lines in the (x, θ)-plane to meridians and parallels on the surface S. To see this, we note that with $g(x)=A^{-1}(x)$, one has

$$
\begin{align*}
& F_{x}=\left\langle g^{\prime}(x), f^{\prime} \circ g(x) g^{\prime}(x) \cos \theta, f^{\prime} \circ g(x) g^{\prime}(x) \sin \theta\right\rangle, \tag{2-3}\\
& F_{\theta}=\langle 0,-f \circ g(x) \sin \theta, f \circ g(x) \cos \theta\rangle . \tag{2-4}
\end{align*}
$$

Therefore,

$$
\left[\begin{array}{ll}
F_{x} \cdot F_{x} & F_{x} \cdot F_{\theta} \tag{2-5}\\
F_{\theta} \cdot F_{x} & F_{\theta} \cdot F_{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\left(g^{\prime}(x)\right)^{2}\left(1+\left(f^{\prime} \circ g(x)\right)^{2}\right) & 0 \\
0 & (f \circ g(x))^{2}
\end{array}\right] .
$$

For F to be a conformal map from the (x, θ)-plane to the surface of revolution S, the matrix in (2-5) must be a multiple of the identity matrix. By (2-2), one has

$$
g^{\prime}(x)=\left(A^{-1}\right)^{\prime}(x)=\frac{1}{A^{\prime}(g(x))}=\frac{f(g(x))}{\sqrt{1+f^{\prime}(g(x))^{2}}}
$$

which implies that the matrix (2-5) is a multiple of identity; hence F is a conformal map. It follows that T, being a composition of conformal maps, is a conformal map. Moreover, T^{-1} maps the meridians and parallels of S to lines through the origin and circles centered at the origin respectively. Therefore, every loxodrome on S is mapped under T^{-1} to a logarithmic spiral in the (r, s)-plane.

A feature of the logarithmic spiral is its infinite spiraling around the origin. We now study this spiral behavior of loxodromes in more detail.

Figure 1. Left: spiral at a point. Right: spiral at infinity.
Theorem 1. Let $y=f(x)$ be differentiable on the interval $(a, b) \subseteq \mathbb{R}$ and suppose that $\lim _{x \rightarrow b^{-}} f(x)=0$ or ∞. Let $\gamma(x)=(x, f(x) \cos \theta(x), f(x) \sin \theta(x))$ be a loxodrome, where $\theta(x)$ is given by (2-2) with $\tan \left(\psi_{0}\right) \neq 0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow b^{-}} \theta(x)= \pm \infty \tag{2-6}
\end{equation*}
$$

where the plus or minus sign is determined by $\operatorname{sign}\left(\tan \left(\psi_{0}\right)\right)$.
Proof. Let $c \in(a, b)$. Then

$$
\begin{aligned}
|\theta(x)-\theta(c)| & =\left|\tan \left(\psi_{0}\right) \int_{c}^{x} \frac{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}}{f(x)} d x\right| \geq\left|\tan \left(\psi_{0}\right)\right| \int_{c}^{x}\left|\frac{f^{\prime}(x)}{f(x)}\right| d x \\
& \geq\left|\tan \left(\psi_{0}\right)\right||\ln f(c)-\ln f(x)| \rightarrow \infty
\end{aligned}
$$

as $x \rightarrow b^{-}$, since $\lim _{x \rightarrow b^{-}} f(x)=0$ or ∞, and in either case $|\ln f(x)| \rightarrow \infty$.
In the next theorem, we compute distances along loxodromes. We denote the length of a curve γ by $\ell(\gamma)$ and the length of the graph of a function f by $\ell(f)$.
Theorem 2. Let $y=f(x)$ be a differentiable positive function on the interval $(a, b) \subseteq \mathbb{R}$, and let $\gamma(x)=\langle x, f(x) \cos \theta(x), f(x) \sin \theta(x)\rangle$ be a loxodrome, where $\theta(x)$ is given by (2-2). Then

$$
\begin{equation*}
\ell(\gamma)=\left|\sec \left(\psi_{0}\right)\right| \ell(f)=\left|\sec \left(\psi_{0}\right)\right| \int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \tag{2-7}
\end{equation*}
$$

Proof. By (2-1), we have

$$
\begin{aligned}
\left\|\gamma^{\prime}(x)\right\|^{2} & =1+\left(f^{\prime}(x) \cos \theta-f(x) \theta^{\prime}(x) \sin \theta\right)^{2}+\left(f^{\prime}(x) \sin \theta+f(x) \theta^{\prime}(x) \cos \theta\right)^{2} \\
& =1+\left(f^{\prime}(x)\right)^{2}+\left(f(x) \theta^{\prime}(x)\right)^{2} \\
& =1+\left(f^{\prime}(x)\right)^{2}+\tan ^{2}\left(\psi_{0}\right)\left(1+\left(f^{\prime}(x)\right)^{2}\right) \\
& =\sec ^{2}\left(\psi_{0}\right)\left(1+\left(f^{\prime}(x)\right)^{2}\right)
\end{aligned}
$$

which implies (2-7).

Figure 2. A toric loxodrome.

3. Loxodromes on the torus

Let C be a simple plane curve parametrized by arc length, $C(t)=(x(t), y(t))$, where $x(t)$ and $y(t)$ are differentiable functions of $t \in(a, b)$ and $y(t)>0$ for all $t \in(a, b)$. Rotating C around the x-axis yields a surface of revolution with the parametrization

$$
\begin{equation*}
u(t, \theta)=\langle x(t), y(t) \cos \theta, y(t) \sin \theta\rangle \tag{3-1}
\end{equation*}
$$

Suppose that

$$
\eta(t)=\langle x(t), y(t) \cos \theta(t), y(t) \sin \theta(t)\rangle
$$

is a loxodrome. A similar calculation to that the previous section implies

$$
\begin{equation*}
\theta(t)=\tan \left(\psi_{0}\right) B(t) \tag{3-2}
\end{equation*}
$$

where

$$
\begin{equation*}
B(t)=\int \frac{d t}{y(t)} \tag{3-3}
\end{equation*}
$$

In the next theorem, we discuss closed loxodromes on surfaces of revolution with periodic profile curves.

Theorem 3. Let $C(t)=\langle x(t), y(t)\rangle, y(t)>0$, be a simple closed differentiable curve parametrized by the arc length and with period $T>0$, i.e., $C(t+T)=C(t)$ for all $t \in \mathbb{R}$. Let S be the surface of revolution with profile curve $C(t)$. Let $\eta(t)$ be a loxodrome on S, making a constant angle ψ_{0} with the meridians of S. Then $\eta(t)$ is a closed curve if and only if

$$
\begin{equation*}
\tan \left(\psi_{0}\right) \cdot \frac{1}{2 \pi} \int_{0}^{T} \frac{d t}{y(t)} \in \mathbb{Q} \tag{3-4}
\end{equation*}
$$

In particular, closed loxodromes on S are dense in the set of all loxodromes. In addition, if a loxodrome is not closed, then the loxodrome is dense in S.

Proof. Since C is parametrized by arc length, we have from (3-2) that

$$
\begin{equation*}
\theta(m T+t)-\theta(t)=\tan \left(\psi_{0}\right) \int_{t}^{m T+t} \frac{d t}{y(t)}=m \tan \left(\psi_{0}\right) \int_{0}^{T} \frac{d t}{y(t)} \tag{3-5}
\end{equation*}
$$

For $\eta(t)$ to be a closed curve, we must have $\theta(m T+t)-\theta(t)=2 n \pi$ for some integers m, n with $m \neq 0$. It follows that

$$
m \tan \left(\psi_{0}\right) \int_{0}^{T} \frac{d t}{y(t)}=2 \pi n
$$

which is equivalent to (3-4).
The set of angles ψ_{0} for which (3-4) holds is dense in \mathbb{R}, and so the set of periodic loxodromes is dense among all loxodromes on S.

Next, suppose that $\eta(t)$ is not closed, and so (3-4) fails. It follows from (3-5) that $\theta(m T+t)-\theta(t)=2 \pi m \lambda$, where λ is a fixed irrational number. By Kronecker's approximation theorem, the set $\{2 \pi m \lambda(\bmod 2 \pi): m \in \mathbb{Z}\}$ is dense in the interval $[0,2 \pi)$. Therefore, the set $\{\eta(m T+t): m \in \mathbb{Z}\}$ is dense in the parallel obtained by rotating $\eta(t)$ around the x-axis. In other words, if η intersects a parallel of S then it is dense in that parallel of S. Since η intersects every parallel of S, we conclude that η is dense in S.

The flat metric on the torus has the property that every geodesic (paths that are locally of shortest length) is either periodic or dense in the torus. This resembles the property we discussed in Theorem 3 for loxodromes of S. In fact, there exists a metric on S for which the loxodromes are exactly the geodesics. The metric is simply the pullback of the Euclidean flat metric on \mathbb{R}^{2} by the map R^{-1}, where

$$
R(s, \theta)=\left\langle x\left(B^{-1}(s)\right), y\left(B^{-1}(s)\right) \cos \theta, y\left(B^{-1}(s)\right) \sin \theta\right\rangle,
$$

where $B(t)$ is defined by (3-3).

4. Hypersurfaces of revolution

In this section, we give a definition of loxodromes on hypersurfaces of revolution. Let M be an ($n-2$)-dimensional submanifold of $\mathbb{R}^{n-1} \times\{0\} \subseteq \mathbb{R}^{n}$, and consider a local parametrization of M

$$
\begin{equation*}
\langle\boldsymbol{x}, 0\rangle=\left\langle x_{1}, \ldots, x_{n-1}, 0\right\rangle: \mathcal{U} \rightarrow \mathbb{R}^{n} \tag{4-1}
\end{equation*}
$$

where $\mathcal{U} \subseteq\left\{\left\langle x_{1}, \ldots, x_{n-1}, 0\right\rangle: x_{n-1}>0\right\}$ is open. There is a natural embedding of $M \times \mathbb{S}^{1}$ in \mathbb{R}^{n} defined by

$$
\begin{equation*}
\langle\boldsymbol{x}, 0, \theta\rangle \mapsto R(\boldsymbol{x}, \theta)=\left\langle x_{1}, \ldots, x_{n-2}, x_{n-1} \cos \theta, x_{n-1} \sin \theta\right\rangle \tag{4-2}
\end{equation*}
$$

We call this embedded ($n-1$)-dimensional submanifold S of \mathbb{R}^{n} the hypersurface of revolution and call M the profile manifold. By the meridians of S we mean the submanifolds of S given by the images of $R(\boldsymbol{x}, \theta)$ for constant θ-values. We denote the meridians of S by M_{θ}, where $\theta \in \mathbb{R}$.

Let $\gamma:(a, b) \rightarrow N$ be a smooth curve so that

$$
\gamma(t)=\left\langle x_{1}(t), \ldots, x_{n-2}(t), x_{n-1}(t) \cos \theta(t), x_{n-1}(t) \sin \theta(t)\right\rangle .
$$

To be a loxodrome on S, we require the curve γ to have the property that its relative position to the meridians stays constant. We need to be able to compare the relative position of $\gamma(t)$ to $M_{\theta(t)}$ for different values of t. To do this, one uses the isomorphism $M_{\theta} \rightarrow M$ to bring the position and velocity vectors along γ back on M. One obtains the curve $\eta(t)=R(\gamma(t),-\theta(t))=\langle\boldsymbol{x}(t), 0\rangle$ on M and the vector field

$$
\begin{equation*}
V(t)=R\left(\gamma^{\prime}(t),-\theta(t)\right)=\left\langle x^{\prime}(t), x_{n-1}(t) \theta^{\prime}(t)\right\rangle \tag{4-3}
\end{equation*}
$$

along η. Therefore, to compare the relative positions of $\gamma(t)$ to $M_{\theta(t)}$ at different values of t, we instead compare $V(t)$ along $\eta(t)$ on M at different t-values. This requires a way of comparing the geometry of M at different points along the curve $\eta(t)$, which is exactly what parallel transport along η can do. Let ∇ denote the connection on M induced by the Euclidean metric on \mathbb{R}^{n}. We define a loxodrome $\gamma(t)$, where $t \in(a, b)$, by the equation

$$
\nabla_{\eta^{\prime}(t)} V(t)=0 \quad \text { for all } t \in(a, b)
$$

From (4-3), we have $V(t)=\eta^{\prime}(t)+x_{n-1}(t) \psi^{\prime}(t) \vec{N}$, where $\vec{N}=\langle 0, \ldots, 0,1\rangle$, the unit normal vector to $\mathbb{R}^{n-1} \times\{0\}$. It follows that

$$
\begin{aligned}
0=\nabla_{\eta^{\prime}(t)} V(t) & =\nabla_{\eta^{\prime}(t)}\left(\eta^{\prime}(t)+x_{n-1}(t) \psi^{\prime}(t) \vec{N}\right) \\
& =\nabla_{\eta^{\prime}(t)} \eta^{\prime}(t)+\frac{d}{d t}\left(x_{n-1}(t) \psi^{\prime}(t)\right) \vec{N}+x_{n-1} \psi^{\prime}(t) \nabla_{\eta^{\prime}(t)} \vec{N} \\
& =\nabla_{\eta^{\prime}(t)} \eta^{\prime}(t)+\frac{d}{d t}\left(x_{n-1}(t) \psi^{\prime}(t)\right) \vec{N}
\end{aligned}
$$

which is equivalent to the pair of equations

$$
\left\{\begin{array}{l}
\nabla_{\eta^{\prime}(t)} \eta^{\prime}(t)=0 \tag{4-4}\\
\psi^{\prime}(t) x_{n-1}(t)=c
\end{array}\right.
$$

where c is a constant. The first equation in the coupled system (4-4) is the geodesic equation, and the second equation gives the angle of rotation along the geodesic η. In other words, each loxodrome on S is obtained by rotating a geodesic of M by the angle $\psi(t)=k \int d t / x_{n-1}(t)$, where k is a constant and $x_{n-1}(t)$ is the $(n-1)$-th component of the geodesic. Note that our definition of loxodrome is consistent with the definition of loxodrome on surfaces, since on a surface $\eta(t)=\gamma(t)$ and the second equation in (4-4) is the same as (3-2).

Example 4. The ($n-1$)-dimensional sphere \mathbb{S}^{n-1} is a hypersurface of revolution with profile manifold \mathbb{S}^{n-2}. To obtain the parametric equations of an arbitrary loxodrome on \mathbb{S}^{n-1}, we first need to find the parametric equations of an arbitrary geodesic
on \mathbb{S}^{n-2}. Geodesics on \mathbb{S}^{n-2} are the great circles. Each great circle is the intersection of the sphere with a two-dimensional plane \mathcal{P} that passes through the origin. Choose an orthonormal basis $\{\boldsymbol{u}, \boldsymbol{v}\}$ in \mathcal{P}. Then the great circle $\mathbb{S}^{2} \cap \mathcal{P}$ can be parametrized as

$$
\gamma(\theta)=\boldsymbol{u} \cos \theta+\boldsymbol{v} \sin \theta, \quad 0 \leq \theta \leq 2 \pi
$$

From (4-4), we must have

$$
\psi^{\prime}(\theta)=\frac{c}{u_{n-1} \cos \theta+v_{n-1} \sin \theta}=A \cdot \sec \left(\theta+\theta_{0}\right)
$$

where A and θ_{0} are constants that depend on u_{n-1}, v_{n-1}. It follows that

$$
\psi(\theta)=A \ln \left|\sec \left(\theta+\theta_{0}\right)+\tan \left(\theta+\theta_{0}\right)\right|+B
$$

and consequently, the general equation of a loxodrome on \mathbb{S}^{3} is given by

$$
\begin{aligned}
x_{i}(\theta) & =u_{i} \cos \theta+v_{i} \sin \theta, \quad 1 \leq i \leq n-2, \\
x_{n-1}(\theta) & =\left(u_{n-1} \cos \theta+v_{n-1} \sin \theta\right) \cos \left(A \ln \left|\sec \left(\theta+\theta_{0}\right)+\tan \left(\theta+\theta_{0}\right)\right|+B\right), \\
x_{n}(\theta) & =\left(u_{n-1} \cos \theta+v_{n-1} \sin \theta\right) \sin \left(A \ln \left|\sec \left(\theta+\theta_{0}\right)+\tan \left(\theta+\theta_{0}\right)\right|+B\right) .
\end{aligned}
$$

References

[Alexander 2004] J. Alexander, "Loxodromes: a rhumb way to go", Math. Mag. 77:5 (2004), 349-356. MR Zbl
[Bennett 1996] G. G. Bennett, "Practical rhumb line calculations on the spheroid", J. Navigation 49:1 (1996), 112-119.
[Carlton-Wippern 1992] K. C. Carlton-Wippern, "On loxodromic navigation", J. Navigation 45:2 (1992), 292-297.
[do Carmo and Dajczer 1983] M. do Carmo and M. Dajczer, "Rotation hypersurfaces in spaces of constant curvature", Trans. Amer. Math. Soc. 277:2 (1983), 685-709. MR Zbl
[Coll and Harrison 2013] V. Coll and M. Harrison, "Hypersurfaces of revolution with proportional principal curvatures", Adv. Geom. 13:3 (2013), 485-496. MR Zbl
[Smart 1946] W. M. Smart, "On a problem in navigation", Monthly Not. Roy. Astr. Soc. 106 (1946), 124-127. MR Zbl
[Williams 1950] J. E. D. Williams, "Loxodromic distances on the terrestrial spheroid", J. Navigation 3:2 (1950), 133-140.
[Zhang 2012] Z. Zhang, "Remarks on hypersurfaces of revolution in Euclidean space \mathbb{R}^{n+1} ", Inter. J. Pure Appl. Math. 77:5 (2012), 595-604.

Received: 2015-11-17 Revised: 2015-11-17 Accepted: 2016-05-02
jm20blac@siena.edu
am06duke@siena.edu
mjavaheri@siena.edu

School of Science, Siena College, 515 Loudon Road, Loudonville, NY 12211, United States

School of Science, Siena College, 515 Loudon Road, Loudonville, NY 12211, United States

School of Science, Siena College, 515 Loudon Road, Loudonville, NY 12211, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US \$175/year for the electronic version, and $\$ 235 /$ year $(+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers

involve

Dynamics of vertical real rhombic Weierstrass elliptic functions 361
Lorelei Koss and Katie Roy
Pattern avoidance in double lists379
Charles Cratty, Samuel Erickson, Frehiwet Negassi and Lara Pudwell
On a randomly accelerated particle 399
Michelle Nuno and Juhi Jang
Reeb dynamics of the link of the A_{n} singularity 417
Leonardo Abbrescia, Irit Huq-Kuruvilla, Jo Nelson and Nawaz Sultani
The vibration spectrum of two Euler-Bernoulli beams coupled via a dissipative 443
joint
Chris Abriola, Matthew P. Coleman, Aglika Darakchieva and Tyler Wales
Loxodromes on hypersurfaces of revolution 465
Jacob Blackwood, Adam Dukehart and Mohammad Javaheri
Existence of positive solutions for an approximation of stationary mean-field games 473
Nojood Almayouf, Elena Bachini, Andreia Chapouto, Rita
Ferreira, Diogo Gomes, Daniela Jordão, David EvangelistaJunior, Avetik Karagulyan, Juan Monasterio, LevonNurbekyan, Giorgia Pagliar, Marco Piccirilli, Sagar Pratapsi,Mariana Prazeres, João Reis, André Rodrigues, OrlandoRomero, Maria Sargsyan, Tommaso Seneci, Chuliang Song,Kengo Terai, Ryota Tomisaki, Hector Velasco-Perez, VardanVoskanyan and Xianjin Yang
Discrete dynamics of contractions on graphs 495
Olena Ostapyuk and Mark Ronnenberg
Tiling annular regions with skew and T-tetrominoes505
Amanda Bright, Gregory J. Clark, Charles Lundon, KyleEvitts, Michael P. Hitchman, Brian Keating and Brian WhetterA bijective proof of a q-analogue of the sum of cubes using overpartitions523
Jacob Forster, Kristina Garrett, Luke Jacobsen and AdamWoodUlrich partitions for two-step flag varieties531Izzet Coskun and Luke Jaskowiak

[^0]: $x=u(t), \quad y=v(t) \cos \theta, \quad z=v(t) \sin \theta, \quad$ where $t \in(a, b), \quad \theta \in[0,2 \pi)$.
 MSC2010: 53A04, 53A05, 53A07, 14H50, 14Q10.
 Keywords: loxodromes, surfaces of revolution.

