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We study the dynamical behavior of functions on vertices of a graph that are
contractions in the graph metric. We show that the fixed point set of such functions
must be convex. If a function has no fixed points and the graph is a tree, we prove
that every dynamical cycle must have an even period and the function behaves
eventually like a symmetry.

1. Introduction

This work was inspired by dynamics of analytic functions on the unit disk. The key
property of such functions is the point-invariant Schwarz lemma, i.e., that analytic
functions are contractions in the hyperbolic metric of the disk. This property allows
the proof of various results about iteration of analytic functions; see, for example,
the survey paper [Poggi-Corradini 2011].

Our purpose is to study dynamics of contractions in a discrete setting. In particular,
we study dynamics on finite graphs (in most cases, trees). A connected graph can
be considered as a discrete metric space of vertices with the graph metric. Let
G = (V, E) be a finite, connected, simple graph with the set of vertices V and the
set of edges E . Then for all vertices x, y ∈ V, we say the distance between x and y,
denoted d(x, y), is the number of edges in the shortest path connecting x to y.
Such path is called a geodesic. Note that trees as metric spaces are 0-hyperbolic
[Anderson 1999], so we expect them to have some similar properties to the unit
disk with hyperbolic metric.

We wish to study contractions (in the graph metric) on the vertices of a graph.
Let f be a function on the vertices of G to the vertices of G. We say f is a
contraction if, for all vertices x, y ∈ V, we have d( f (x), f (y)) ≤ d(x, y). We
will need some terminology from dynamics. Let f be a function. We denote by
f ◦n(x)= f ◦ f ◦ f ◦ · · · ◦ f (x) (n terms) the n-th iterate of f . If for some point x
and some positive integer n, we have f ◦n(x)= x , then we say x is a periodic point,
x lies on a dynamical cycle of f of period n, or that x lies on a dynamical n-cycle
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of f . If f (x)= x , we say x is a fixed point of f . We use the term dynamical cycle
to distinguish these cycles from the graph cycles.

It is easy to show by induction that, given a contraction f , the map f ◦n is also a
contraction for any positive integer n. Dynamical cycles and fixed points will be
the main focus of our study.

2. Fixed point sets

Our goal is to characterize the set of fixed points of a contraction on graph vertices.
Note that in the general case, the fixed point set can be empty:

Example 2.1. Let G1 be a graph with four vertices x, y, z, w. Let f be a function
on the vertices of G1 defined by f (x)= y, f (y)= z, f (z)=w, and f (w)= x . Then
{x, y, z, w} forms a dynamical 4-cycle of f (see Figure 1). The map f is clearly a
contraction since for all a, b ∈ {x, y, w, z}, we have d( f (a), f (b)) = d(a, b). In
this case, the set of fixed points of f is empty.

Example 2.2. Let G2 be a graph with vertices x0, x1, x2, y0, y1, z0 and z1 as shown
in Figure 2. Let f be a contraction on the vertices of G2 such that x0, x1, x2 are
fixed by f , and {y0, y1} and {z0, z1} are dynamical 2-cycles of f .

Note that one main difference between the two examples is that for any two
vertices in G2, the geodesic connecting them is unique, whereas this is not the case
with G1. Notice also that for any two fixed points in G2, the geodesic connecting
them contains only fixed points.

x

y

z

w

Figure 1. Dynamical 4-cycle.
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Figure 2. Cycles and fixed points.
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Figure 3. The graph G3 with nonunique geodesics.

Definition 2.3. Let G = (V, E) be a graph and let H ⊂ V. We say H is convex
if for any two vertices in H , the geodesic connecting them contains only vertices
in H. (See, for example, [Gross and Yellen 2006].)

Thus in Example 2.2, the set of fixed points of f is convex. In fact, this is true
in general:

Theorem 2.4. Let G = (V, E) be a graph such that the geodesic between any two
vertices is unique. Let f be a contraction on the vertices of G. Then the set of fixed
points of f is convex.

Proof. Let x, y ∈ V be fixed by f . Let L be the unique geodesic connecting them.
Let z ∈ L . We need to show that f (z)= z. We will first show that f (z) ∈ L and it
will follow that f (z)= z.

By way of contradiction, suppose f (z) /∈ L . Then there exist unique geodesics
connecting x to f (z) and y to f (z), respectively. We can concatenate these geodesics
to construct a walk K connecting x to y, so the length of K is d(x, f (z))+d( f (z), y)

and the length of L is d(x, z)+d(z, y). Since f is a contraction and x and y are fixed
points, we have d( f (z), x) ≤ d(z, x) and d( f (z), y) ≤ d(z, y). Then it follows
that d(x, f (z)) + d( f (z), y) ≤ d(x, z) + d(z, y). If d(x, f (z)) + d( f (z), y) =

d(x, z)+d(z, y), then L is not a unique geodesic between x and y, a contradiction.
If d(x, f (z))+ d( f (z), y) < d(x, z)+ d(z, y), then K is shorter than L , which is
also a contradiction. Thus it must be that z ∈ L .

Now we will show f (z)= z. Suppose f (z) 6= z. Since f (z) lies on the geodesic L
connecting x to y, we have d(x, z)+ d(z, y)= d(x, f (z))+ d( f (z), y)= d(x, y).
We can assume without loss of generality that d(x, f (z)) < d(x, z), in which
case we obtain d(y, f (z)) = d(x, y)− d(x, f (z)) > d(x, y)− d(x, z) = d(y, z),
contradicting the fact that f is a contraction. Thus we conclude that f (z)= z. �

Note that if for any two points in G the geodesic connecting them is not unique
then the conclusion of Theorem 2.4 does not necessarily hold, as can be seen in the
following counterexample.

Example 2.5. Let G3 be a graph with vertices x0, x1, y and z as shown in Figure 3.
Let f be a contraction such that the vertices z and y are fixed and the points x0

and x1 form a dynamical 2-cycle. Note that the geodesic connecting z to y is
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not unique, since the path from z to y through x0 is the same length as the path
through x1. Despite the fact that z and y are fixed and that x0, x1 lie on the geodesics
connecting them, x0 and x1 are clearly not fixed. Thus the conclusion of Theorem 2.4
does not hold in this case.

Corollary 2.6. Let G = (V, E) be a graph such that for any two vertices in G
the geodesic connecting them is unique. Let f be a contraction on V. Suppose f
has a dynamical cycle J of period k. Let z be a point which lies on the geodesic
connecting two consecutive points in J. Then z lies on a dynamical cycle whose
period divides k.

Proof. Let x, y ∈ J. Let z ∈ V such that z lies on the geodesic between x and y.
Since J is a dynamical cycle of period k, we know f ◦k(x) = x and f ◦k(y) = y.
Thus x and y are fixed by the k-th iterate of f . Since f is a contraction, any iterate
of f is also a contraction. Thus Theorem 2.4 applied to f ◦k implies f ◦k(z) = z.
So z must lie on a dynamical cycle whose period divides k. �

Now we will consider a particular case when the graph is a tree. For any
tree, a path connecting any two points is unique, hence geodesics are unique, so
Theorem 2.4 holds. But the converse is also true for trees: any convex set of vertices
will be a fixed point set for some contraction.

We will need the following property of a tree structure: in a tree, a concatenation
of two geodesics from x to y and from y to z is either a geodesic from x to z or a walk
that follows the geodesic connecting x to y until the first common point of the two
geodesics, y′, then follows the geodesic from y′ to y, then goes back to y′ along the
same geodesic and finally follows the geodesic from y′ to z. Note that concatenation
of geodesics from x to y′ and from y′ to z will form a geodesic that connects x to z.

Proposition 2.7. Let T = (V, E) be a tree and H ⊂ V be convex set. Then there
exists a contraction f such that H is the fixed point set of f .

Proof. Given H, we define the desired contraction f as follows: for all x ∈ V,
f (x)= y, where y ∈ H is the closest vertex to x in H; see Figure 4. Note that such
a y is unique. Indeed, suppose y1, y2 ∈ H are at the same shortest distance from
x /∈ H . Apply the property mentioned above the proposition to the concatenation of
geodesics connecting y1 to x and x to y2. If it is a geodesic, then x ∈ H , which is a
contradiction. If instead there is a common point y′, then y′ ∈ H and it is closer
to x than y1 and y2 are, again a contradiction. Thus the point y is unique and the
function f is well-defined. Also, H is clearly fixed point set of f .

Now we need to show that f is a contraction. Let f (x1)= y1 and f (x2)= y2.
Consider a walk following the geodesic from x1 to y1, then from y1 to y2. If there is
a common point of these geodesics other than y1, then this point is in H and within
a shorter distance to x1 than y1, which contradicts the construction of y1. So the
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H

Figure 4. Constructing the contraction f for a given convex subset
of vertices H.

concatenation of these two geodesics is the geodesic from x1 to y2. Similarly, the
geodesic from y1 to x2 passes through y2, and finally, the geodesic from x1 to x2 is
just a concatenation of those from x1 to y1, y1 to y2 and y2 to x1. So we have

d(x1, x2)= d(x1, y1)+ d(y1, y2)+ d(y2, x2)≥ d(y1, y2),

and f is a contraction. �

3. Contractions with no fixed points

In the previous section, we characterized the set of fixed points of a contraction on
the vertices of a graph with unique geodesics, in particular a tree. Next we want to
consider the case when a contraction has no fixed points. Then there must exist a
dynamical cycle. We will use the following property of periodic points:

Lemma 3.1. Let G be a finite graph, and f be a contraction on vertices of G. If x
and y are two periodic points of f (not necessarily from the same dynamical cycle),
then d( f (x), f (y))= d(x, y).

Proof. Assume x belongs to a dynamical m-cycle and y belongs to a dynamical
n-cycle. Let K be a common multiple of m and n. Then we have

d(x, y)≥ d( f (x), f (y))≥ · · · ≥ d( f ◦K (x), f ◦K (y))= d(x, y).

So all inequalities must be, in fact, equalities and in particular, d( f (x), f (y)) =

d(x, y). �

Now let us introduce some notation. Let G = (V, E) be a graph and f a
contraction on V. Let J ⊂ V be a dynamical cycle of f . Then we denote by J ′

the set of all vertices which lie on geodesics connecting consecutive points in J,
together with the vertices in J.

Theorem 3.2. Let T be a finite tree. Let f be a contraction on the vertices of T . If
f has no fixed points, then f has a dynamical 2-cycle such that the points in the
cycle are connected by an edge. Moreover, such a cycle is unique.
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Proof. Suppose f has no fixed points. Since the number of vertices of T is finite,
every vertex of T either lies on a dynamical cycle of period greater than 1 or is eventu-
ally mapped into one. Let k be the smallest period of all dynamical cycles of f . Let J
be a dynamical cycle of period k such that the distance between consecutive points in
J is least among all dynamical cycles of f of period k. We want to show that k= 2.

We claim that for k > 2 there must exist two geodesics connecting consecutive
points in J that intersect at a point other than their endpoints. If not, the points in J ′

would form a graph cycle, which is a contradiction since T is a tree. Thus there must
exist two geodesics which intersect at a point which is not one of their endpoints.

Suppose two nonconsecutive geodesics intersect at some point y. Then we claim
that there must exist two consecutive geodesics which intersect at point z which
is not one of their endpoints. Indeed, if we start from the point y of intersection
of two nonconsecutive geodesics and follow one of the geodesics to the point x j on
the cycle J, then follow the next geodesic to the point x j+1 = f (x j ), and so on, we
will eventually return to the point y. Since the graph is a tree, the walk constructed
this way must go over each edge in this walk at least twice. In particular, there must
exist a vertex w which is farthest away from y on this walk and an edge {w, z}
such that our walk will follow the edge from z to w and then immediately return
to z through the same edge. Note that w must be an endpoint of two consecutive
geodesics, because one geodesic cannot follow the same edge twice. Then z lies
on the intersection of two consecutive geodesics.

Without loss of generality, let x0, x1, x2 be the endpoints of the two consecutive
geodesics constructed above. By Corollary 2.6, z must lie on a dynamical cycle
whose period divides k, but since k is the smallest possible cycle length, z must
lie on a dynamical k-cycle.

Since f is a contraction and x0, x1, x2 are points on a dynamical cycle, f
must map the geodesic from x0 to x1 bijectively to the geodesic from x1 to x2.
Since z lies on the geodesic from x0 to x1, the point f (z) must lie on the geodesic
from x1 to x2. Thus both z and f (z) lie on the geodesic from x1 to x2 and we
have d(z, f (z)) < d(x1, x2) = d(x0, x1). So we have found a dynamical k-cycle
{z, f (z), . . . , f ◦(k−1)(z)} such that the distance between two consecutive points in
this cycle is less than d(x0, x1).

This contradicts the way we selected J, so k must be equal to 2 and the geodesic
from x0 to x1, which is the same as the geodesic from x1 to x0, must contain no
other points. This means there is a dynamical 2-cycle {x0, x1} and x0 and x1 are
connected by an edge.

Now we need prove that such a dynamical 2-cycle is unique. Let {y0, y1} be
another such cycle. Without loss of generality assume that the distance a between x0

and y0 is the shortest among all distances from a point in {x0, x1} to a point in {y0, y1}.
Now consider x1; it is connected to x0 by an edge. If x1 lies on the geodesic from x0
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X0 x0
x1
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Figure 5. Unique 2-cycle {x0, x1} and sets X0 and X1.

to y0, then d(x1, y0) < d(x0, y0), which contradicts the choice of x0, y0. Otherwise,
the geodesic from y0 to x1 follows the geodesic from y0 to x0 and then the edge
connecting x0 to x1, so d(y0, x1) = a + 1. Similarly, d(x0, y1) = a + 1, and
finally, d(x1, y1)= a+2. But then d(x1, y1)= d( f (x0), f (y0)) > d(x0, y0), which
contradicts the assumption that f is a contraction. �

It will in fact turn out that every dynamical cycle of a contraction with no fixed
points has even period. To prove this, we will need the following corollary to
Theorem 3.2. Let us introduce the following notation. Let {x0, x1} be the points
in the 2-cycle constructed in Theorem 3.2. We let X0 denote the set of all points
which are within shorter distance to x0 than to x1. Similarly we let X1 denote the
set of all points which are within shorter distance to x1 than to x0; see Figure 5.

Corollary 3.3. Let T be a finite tree and f a contraction on the vertices of T such
that f has no fixed points. Let {x0, x1} be the unique dynamical 2-cycle, where x0

and x1 are connected by an edge. Then for all vertices z that lie on any dynamical
cycle, if z ∈ X0 (respectively X1), then f (z) ∈ X1 (respectively X0).

Proof. Let z lie on a dynamical cycle and z ∈ X0. By way of contradiction,
suppose f (z) ∈ X0. Let a = d(z, x0); then d(z, x1) = a + 1. By Lemma 3.1,
d( f (z), x1)= a, and since f (z)∈ X0, we must have d( f (z), x0) < d( f (z), x1)= a.
But by Lemma 3.1 again, d( f (z), x0)= d( f (z), f (x1))= d(z, x1)= a+ 1, which
is a contradiction. So f (z) ∈ X1. �

Note that if z is not a periodic point, then the above claim does not hold.

Example 3.4. Let T be a tree with vertices x0, x1 and z such that there are edges
between x0 and x1 and between x0 and z, and f be a contraction such that {x0, x1}

forms a dynamical 2-cycle and f (z)= x0 (see Figure 6). Then f has no fixed points,
and x0 and x1 form the unique 2-cycle connected by an edge. Since f (z)= x0, we
have z ∈ X0 and also f (z) ∈ X0. Thus we see that if a point z is in X0 but does not
lie on a dynamical cycle, it is not necessarily true that f (z) ∈ X1.
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z
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Figure 6

Now we are ready to prove the following:

Theorem 3.5. Let T be a finite tree and f a contraction on the vertices of T such
that f has no fixed points. Then every dynamical cycle of f has even period.

Proof. Since f has no fixed points, f has a dynamical 2-cycle {x0, x1} whose points
are connected by an edge and sets of vertices X0 and X1 as defined above. Let
{y0, y1, . . . , yn−1} be a dynamical n-cycle of f . Without loss of generality, suppose
y0 ∈ X0. Then by Corollary 3.3, we have y1 ∈ X1, and in general, y2k ∈ X0 and
y2k+1 ∈ X1. If n is odd, then y0= f (yn−1)∈ X1, which is a contradiction to y0 ∈ X0.
Hence every dynamical cycle of f has even period. �

If a contraction f on the vertices of a tree T has no fixed points, then f eventually
behaves like a symmetry. More precisely:

Theorem 3.6. Let T = (V, E) be a finite tree and f a contraction on V without
fixed points. Then there exists a subset H of V and a nonnegative integer N such
that f ◦N (V )= H and f is a symmetry on the connected subgraph induced by H.
In particular, there is an edge in the subgraph such that two connected components
obtained by removing this edge are isomorphic graphs and f is an isomorphism.

Proof. Since T is finite and has no fixed points, each vertex of T will be mapped even-
tually to a point on a dynamical cycle. Thus there exists N such that f ◦N (V )= H
contains only periodic points of f . Note that by Corollary 2.6, the subgraph induced
by H is connected. Let {x0, x1} be the unique dynamical 2-cycle whose points
are connected by an edge. Then by Corollary 3.3, for all z ∈ H ∩ X0, we have
f (z) ∈ H ∩ X1 and for all z ∈ H ∩ X1, we have f (z) ∈ H ∩ X0. Moreover, since
all points in H are periodic, f bijectively maps H ∩ X0 to H ∩ X1. Now we need
to show that any two vertices y, z in H ∩ X0 are connected by an edge if and only
if f (y) and f (z) are connected by an edge. But being connected by an edge is
equivalent to d(y, z)= 1, and since by Lemma 3.1, d(y, z)= d( f (y), f (z)), the
required conclusion follows. �

4. Conclusion

Note that in the classical case of the unit disk in the complex plane, any analytic
self-map of the disk always has a fixed point in the closed disk. This is the
consequence of the classical Denjoy–Wolff theorem (see, for example, [Abate 1989]
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and references therein). In our study, a contraction without fixed points must behave
like a symmetry. Symmetries are contractions in the unit disk, but they are not
analytic (in fact, they are anticonformal, i.e., they preserve the value of angles, but
change their orientation). So we can say that our result agrees with the classical case.
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