
inv lve
a journal of mathematics

msp

A bijective proof of a q-analogue of
the sum of cubes using overpartitions

Jacob Forster, Kristina Garrett, Luke Jacobsen and Adam Wood

2017 vol. 10, no. 3





msp
INVOLVE 10:3 (2017)

https://doi.org/10.2140/involve.2017.10.523

A bijective proof of a q-analogue of
the sum of cubes using overpartitions

Jacob Forster, Kristina Garrett, Luke Jacobsen and Adam Wood

(Communicated by Jim Haglund)

We present a q-analogue of the sum of cubes, give an interpretation in terms
of overpartitions, and provide a combinatorial proof. In addition, we note a
connection between a generating function for overpartitions and the q-Delannoy
numbers.

1. Introduction

The formula for the sum of the first n cubes,
n∑

k=1

k3
=

(n+1
2

)2
, (1)

is well known and has been proven using various methods. Benjamin and Orrison
[2002] gave two combinatorial proofs. More recently, Garrett and Hummel [2004]
proved a q-analogue of (1) using integer partitions. (A q-analogue is an expression
involving q-binomial coefficients — see Section 2.3 on the next page — and reducing
to the given expression when q→1−.) In this paper, we give an alternate q-analogue
of (1) and provide a bijective proof using overpartitions. The first section is devoted
to an introduction to partition theory and establishing necessary notation and facts
for our work. Then we state and explain a generating function for overpartitions
and relate it to the Delannoy numbers. In the last section we give our q-analogue
and provide a combinatorial proof.

2. Background

In this section, we introduce aspects of partition theory that are relevant to our work.
For further reading, see [Andrews 1976; Corteel and Lovejoy 2004].
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2.1. Partitions.

Definition 1. A partition λ of a positive integer n is a nonincreasing sequence of
positive integers λ1, λ2, . . . , λk such that

∑k
i=1 λi = n. The λi are called the parts

of the partition.

As an example, consider n = 4. The five distinct partitions of 4 are

4, 31, 22, 211, 1111.

One method of displaying partitions graphically is with Ferrers shapes. A Ferrers
shape of a partition λ= λ1, λ2, . . . , λk , where λi ≥ λi+1, is a left-justified array of
cells with λi cells in row i of the shape and i = 1 defined as the top row. Below is
the Ferrers shape for the partition λ= 31:

2.2. Overpartitions.

Definition 2. An overpartition λ is a partition λ1, λ2, . . . , λk in which the first
occurrence of a given part size may be overlined.

Below are the fourteen distinct overpartitions of n = 4:

4, 4, 31, 31, 31, 31, 22, 22, 211, 211, 211, 211, 1111, 1111.

Overpartitions can also be graphically represented using Ferrers shapes by letting
the last cell of the rows corresponding to overlined parts be shaded. For example,
the Ferrers shape for the overpartition λ= 31 is

a

2.3. Partitions in a k × (n − k) box. In order to discuss partitions whose Ferrers
shapes fit inside of a k × (n − k) box, we must first introduce the q-binomial
coefficient. The q-binomial coefficient is defined as[n

k

]
q
=

∏n
i=n−k+1(1− q i )∏k

i=1(1− q i )
,

and is a q-analogue of the binomial coefficient. It is well known that

gn,k(q)=
[n

k

]
q

is the generating function for the number of partitions whose Ferrers shapes fit
inside of a k× (n− k) box. This generating function can be easily shown to satisfy
the recurrence relation

gn,k(q)= qk gn−1,k(q)+ gn−1,k−1(q),
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which is a q-analogue of the binomial coefficient recurrence. Note that, in this case,
the empty partition is included in the set of partitions that fit inside the k×(n−k) box.

3. Overpartitions in a 2 × (n − 1) box

For our main theorem, we are interested in counting the number of overpartitions
whose Ferrers shape fits in a 2×(n−1) box. The generating function for the number
of partitions in a 2× (n− 1) box is

[ n+1
2

]
q . In this section, we give an analogy of

this generating function for overpartitions. We will discuss the recurrence relation
for overpartitions that fit in a k× (n− k) box and then use it to verify a generating
function for the number of overpartitions that fit in a 2× (n− 1) box.

3.1. Recurrence relation for overpartitions. We will first discuss the general case
of overpartitions in a k×(n−k) box and then consider the case of a 2×(n−1) box.
Let p̄n,k denote the number of overpartitions that can fit in a k× (n− k) box. Then,
p̄n,k satisfies the recurrence relation

p̄n,k = p̄n−1,k + p̄n−1,k−1+ p̄n−2,k−1. (2)

We will explain each term in the recurrence relation. Note that, given a k× (n− k)
box, this recurrence relation indicates that there are three possible disjoint ways of
transforming the k× (n− k) box which, when taken together, describe all possible
overpartitions that can fit inside a k×(n−k) box. These disjoint cases can be easily
seen by considering the largest part of an overpartition, λ, in a k× (n− k) box and
are as follows:

(i) lp(λ) < n − k. Then the other parts of the overpartition must be less than
or equal to lp(λ). This situation describes the number of overpartitions in a
k× (n− k− 1) box.

(ii) lp(λ)=n−k and lp(λ) is not overlined. Then the other parts of the overpartition
are less than or equal to n − k. Thus, this collection of overpartitions is
equivalent to the number of overpartitions in a (k− 1)× (n− k) box.

(iii) lp(λ)= n− k and lp(λ) is overlined. Then the other parts of the overpartition
must be less than (n − k). Hence, this case is equivalent to the number of
overpartitions that fit inside of a (k− 1)× (n− k− 1) box.

These cases are shown in Figure 1.
Hence, the three disjoint cases of the recurrence relation cover all possible cases

of overpartitions that can fit in a k× (n− k) box.
To be useful when verifying the generating function in question, (2) must be

written in terms of q. That is, let G(n, k, q) be the generating function for the
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k−1

n−k

k

n−k−1

k−1

n−k

n−k−1

Figure 1. Illustration of the three cases for the recurrence relation.
The dimensions of all of the boxes are k×(n−k). Black denotes
a fixed part, gray denotes that the portion can be filled with all
possible overpartitions, and white corresponds to empty space. Left:
lp(λ) < n−k. Middle: lp(λ) = n−k and lp(λ) is not overlined.
Right: lp(λ)= n−k and lp(λ) is overlined.

number of overpartitions that fit in a k× (n− k) box. Then,

G(n, k, q)= G(n− 1, k, q)+ qn−k G(n− 1, k− 1, q)+ qn−k G(n− 2, k− 1, q).

In the case of overpartitions in 2× (n− 1) box, we have the recurrence relation

G(n+ 1, 2, q)= G(n, 2, q)+ qn−1G(n, 1, q)+ qn−1G(n− 1, 1, q). (3)

We now give the generating function.

Lemma 3. Let n be a positive integer and |q|< 1. Then f (q)= (2q+2q2)
[n

2

]
q+1

is the generating function for overpartitions that fit inside of a 2× (n− 1) box.

It can be shown that f (q) satisfies (3); therefore, Lemma 3 holds.

3.2. The q-analogue of Delannoy numbers. Now that we have verified our gen-
erating function for the number of overpartitions in a 2× (n−1) box, we will draw
a connection between Lemma 3 and the Delannoy numbers.

Definition 4. Let m, n be positive integers. The Delannoy numbers D(m, n) are
the number of lattice paths from (0, 0) to (m, n) in which only east, north, and
northeast steps are allowed.

It is easy to see that when we consider the cells above the path drawn from (0, 0)
to (m, n) as a Ferrers shape, the Delannoy numbers are equal to the number of
overpartitions that fit inside of a m× n box. Note that in this model, the northeast
steps correspond to overlined, and thus shaded, cells.
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Example 5. Consider a 2× 4 box. The following is a lattice path in this box:

This lattice path corresponds to the Ferrers shape

a

and thus the overpartition 43.

Example 6. Consider another lattice path in a 2× 4 box:

This lattice path corresponds to the Ferrers shape

and thus the partition 31.

Lemma 7. Let n be a positive integer and |q| < 1. The generating function for
overpartitions that fit inside a 2× (n− 1) box, g(q)= (2q + 2q2)

[ n+1
2

]
q + 1, is a

q-analogue of the Delannoy numbers, D(2, n− 1).

Proof. As per the definition of a q-analogue, we first take the limit as q → 1−

of g(q) to find the expression that our generating function generalizes in terms of q .
Therefore, we see

lim
q→1−

(2q + 2q2)
[n

2

]
q
+ 1= 4

(n
2

)
+ 1= 2n(n− 1)+ 1.

Next, we must show that this result, 2n(n − 1)+ 1, is indeed the expression for
the Delannoy numbers D(2, n− 1). According to [Pan 2015], a formula for the
Delannoy numbers is

D(n, k)=
n∑

d=0

2d
( k

d

)(n
d

)
.

Therefore, in this case, we have

D(2, n− 1)=
2∑

d=0

(n−1
d

)(2
d

)
,

which readily simplifies to

D(2, n− 1)= 2n(n− 1)+ 1.

Ergo, we have equality and the generating function g(q)= (2q + 2q2)
[ n+1

2

]
q + 1

is a q-analogue of the Delannoy numbers D(2, n− 1). �
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4. A q-analogue of the sum of cubes

In [Garrett and Hummel 2004], the authors give a q-analogue of the sum of cubes
and a bijective proof using partitions. We give another q-analogue of the sum of
cubes and provide a bijective proof with a similar method, but using overpartitions.

Theorem 8. Let n be a positive integer and let |q|< 1. Then,
n∑

i=1

2q i−1
(

1− q i−1

1− q

)2((1− q i−2

1− q

)
+

(
1− q i

1− q

))
= (2q + 2q2)

[n
2

]2

q
. (4)

Note that, taking the limit as q→ 1−, we obtain
n∑

i=1

i3
=

(n+1
2

)2
.

Thus, the above theorem is a q-analogue of the sum of cubes.

Bijective proof. We will prove Theorem 8 by interpreting the terms combinatorially
and finding a weight-preserving bijection between two sets of overpartitions. Let R
be a set of pairs of overpartitions, (λ, µ), where λ is a nonempty overpartition that
fits inside a 2× (n− 1) box and µ is a partition that fits inside a 2× (n− 2) box. It
follows that f (q)=

∑
(λ,µ)∈R q |λ|+|µ| is a generating function for R and is equal

to the right-hand side of (4).
Given a positive integer n, let L be a set of tuples, (v, a, b)∪ (v, a, b′), where

the allowed values of v, a, b, and b′ are:

• v is an overpartition into two parts, where the largest part is equal to at most
n− 1 and can be overlined and the smallest part is at most n− 2 and cannot
be overlined.

• 0≤ a ≤ n− 2.

• 0′ ≤ b′ ≤ (n− 3)′.

• 0≤ b ≤ n− 1.

Let ` = (v, a, b) ∈ L . Then g(q) =
∑

`∈L q |`|, where |`| = |v| + a + b is a
generating function for L and is equal to the left-hand side.

We will now define a bijection between the finite sets R and L . Then, we can show
that f (q)= g(q); therefore, (4) holds. So, let φ : R→ L , where φ(λ, µ)= (v, a, b)
and define φ in cases:

Case 1: λ1 > µ1.

(a) λ2 6= 0, and λ2 is not overlined.
(i) If λ1 is not overlined, then φ(λ, µ)= ((λ1)(λ2− 1), µ2, µ1+ 1).

(ii) If λ1 is overlined, then φ(λ, µ)= ((λ1)(λ2− 1), µ2, µ1+ 1).
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(b) λ2 is overlined or λ2 = 0.

(i) If λ1 is not overlined, then φ(λ, µ)= ((λ1)(λ2), µ1, µ2).
(ii) If λ1 is overlined, then φ(λ, µ)= ((λ1)(λ2), µ1, µ2).

Case 2: λ1 ≤ µ1.

(a) λ2 is not overlined.

(i) If λ1 is not overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ2, (λ1− 1)′).
(ii) If λ1 is overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ2, (λ1− 1)′).

(b) λ2 is overlined.

(i) If λ1 is not overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ1, (λ2− 1)′).
(ii) If λ1 overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ1, (λ2− 1)′).

To prove that φ is a bijection, one can show that it is one-to-one and onto. It
is easier, however, to construct its inverse. We can define φ−1

: L → R by the
following cases, starting with the case of whether b is primed or not primed.

Case 1: b is not primed.

(a) a ≥ b.

(i) If v1 is not overlined, then φ−1(v, a, b)= (v, (a)(b)).
(ii) If v1 is overlined, then φ−1(v, a, b)= (v, (a)(b)).

(b) a < b.

(i) If v1 is not overlined, then φ−1(v, a, b)= ((v1)(v2+ 1), (b− 1)(a)).
(ii) If v1 is overlined, then φ−1(v, a, b)= ((v1)(v2+ 1), (b− 1)(a)).

Case 2: b is primed.

(a) a ≥ b+ 2.

(i) If v1 is not overlined, then φ−1(v, a, b)= ((a)(b+ 1), (v1− 1)(v2)).
(ii) If v1 is overlined, then φ−1(v, a, b)= ((ā)(b+ 1), (v1− 1)(v2)).

(b) a < b+ 2.

(i) If v1 is not overlined, then φ−1(v, a, b)= ((b+ 1)(a), (v1− 1)(v2)).
(ii) If v1 is overlined, then φ−1(v, a, b)= ((b+ 1)(a), (v1− 1)(v2)).

The details of verifying that φ and φ−1 are inverses are not hard and are left to
the reader. However, we will conclude the combinatorial proof with two examples
of φ and φ−1 to help make the bijection clearer.

Example 9. Let (λ, µ)= (54, 22). First, we find i . We have λ1>µ1, so i=5+1=6.
For φ, we are in Case 1(a)(i), so φ(λ, µ)= ((λ1)(λ2− 1), µ2, µ1+ 1). Therefore,
φ(54, 22)= (53, 2, 3). Note that |λ|+|µ|=9+4=13 and |v|+a+b=8+2+3=13.
Next, we act on (v, a, b) with the inverse. We are in Case 1(b)(i), so φ−1(v, a, b)=
((v1)(v2+ 1), (b− 1)(a)). So, φ−1(53, 2, 3)= (54, 22).
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Example 10. Let (λ, µ) = (21, 41). First, we find i . We have λ1 ≤ µ1, so i =
4+2= 6. For φ, we are in Case 2(a)(ii), so φ(λ, µ)= ((µ1+ 1)(µ2), λ2, (λ1−1)′).
Therefore, φ(21, 41)= (51, 1, 1′). Note that |λ|+|µ| = 3+5= 8 and |v|+a+b=
6+ 1+ 1= 8. Next, we act on (v, a, b) with the inverse. We are in Case 2(b)(ii),
so φ−1(v, a, b)= ((b+ 1)(a), (v1− 1)(v2)). So, φ−1(51, 1, 1′)= (21, 41).

5. Conclusion

Although the specific case of overpartitions whose Ferrers shape fits in a 2×(n−1)
box is central to the proof presented here, extending this idea to the general case of
a k× (n− k) box would be useful. This general work could lead to q-analogues
of other expressions. In particular, investigating q-analogues for the sums of other
integer powers is a natural extension of our work.
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