\bullet
 involve

 a journal of mathematicsUlrich partitions for two-step flag varieties
Izzet Coskun and Luke Jaskowiak

Ulrich partitions for two-step flag varieties

Izzet Coskun and Luke Jaskowiak
(Communicated by Ravi Vakil)

Ulrich bundles play a central role in singularity theory, liaison theory and BoijSöderberg theory. It was proved by the first author together with Costa, Huizenga, Miró-Roig and Woolf that Schur bundles on flag varieties of three or more steps are not Ulrich and conjectured a classification of Ulrich Schur bundles on twostep flag varieties. By the Borel-Weil-Bott theorem, the conjecture reduces to classifying integer sequences satisfying certain combinatorial properties. In this paper, we resolve the first instance of this conjecture and show that Schur bundles on $F(k, k+3 ; n)$ are not Ulrich if $n>6$ or $k>2$.

1. Introduction

Let $j, k, l>0$ be positive integers. Let

$$
P=\left(a_{1}, \ldots, a_{k}\left|b_{1}, \ldots, b_{j}\right| c_{1}, \ldots, c_{l}\right)
$$

be a strictly increasing sequence of integers divided into three nonempty subsequences $a_{\bullet}, b_{\bullet}, c_{\bullet}$. Let $P(t)$ denote the sequence

$$
P(t)=\left(a_{1}+t, \ldots, a_{k}+t\left|b_{1}, \ldots, b_{j}\right| c_{1}-t, \ldots, c_{l}-t\right)
$$

obtained by adding t to each of the entries in the sequence $a_{\text {. }}$ and subtracting t from each of the entries in the subsequence $c_{.}$. Set $N=k j+k l+j l$.

Definition 1.1. The partition P is called an Ulrich partition if the sequences $P(t)$ have exactly two equal entries for $1 \leq t \leq N$.

Note that $P(t)$ can have repeated entries for at most N values of t. We will refer to $P(t)$ as the time evolution of P at time t. Hence, Ulrich partitions are those for which there are a maximum number of collisions among the entries during their time evolution and these collisions all occur at consecutive times.

[^0]Two partitions P_{1} and P_{2} are equivalent if they differ by adding a constant to all the entries. If P_{1} and P_{2} are equivalent, then P_{1} is Ulrich if and only if P_{2} is. We always consider partitions up to equivalence. Our main theorem is the following.

Theorem 1.2. If $P=\left(a_{1}, \ldots, a_{k}\left|b_{1}, b_{2}, b_{3}\right| c_{1}, \ldots, c_{l}\right)$ is an Ulrich partition, then $k+l \leq 3$.

Given a partition $P=\left(a_{1}, \ldots, a_{k}\left|b_{1}, \ldots, b_{j}\right| c_{1}, \ldots, c_{l}\right)$, we obtain a new partition P^{s} called the symmetric partition by multiplying all the entries by -1 and listing the entries in the reverse order:

$$
P^{s}=\left(-c_{l}, \ldots,-c_{1}\left|-b_{j}, \ldots,-b_{1}\right|-a_{k}, \ldots,-a_{1}\right) .
$$

The partition P is Ulrich if and only if P^{s} is Ulrich. Similarly, there is a dual partition P^{*} obtained by
$P^{*}=\left(c_{1}-(N+1) t, \ldots, c_{l}-(N+1) t\left|b_{1}, \ldots, b_{j}\right| a_{1}+t(N+1), \ldots, a_{k}+t(N+1)\right)$.
This is the partition $P(N+1)$ reordered so that the entries are increasing. By running the time evolution backwards, it is clear that P is Ulrich if and only if P^{*} is Ulrich (see [Coskun et al. 2017, §3] for more details). We can also form $\left(P^{s}\right)^{*}$, which is Ulrich if and only if P is.

As a consequence of the proof, we obtain a complete classification of Ulrich partitions where the b. subsequence has length 3 . Up to equivalence and these symmetries, they are

$$
(0|1,2,3| 8),(-8,0|1,2,3| 8),(0|1,2,5| 8),(-1|1,2,6| 7),(0|1,3,6| 8) .
$$

We now explain the significance of Ulrich partitions. Let $X \subset \mathbb{P}^{m}$ be an arithmetically Cohen-Macaulay projective variety of dimension d. A vector bundle \mathcal{E} on X is called an Ulrich bundle if $H^{i}(X, \mathcal{E}(-i))=0$ for $i>0$ and $H^{j}(X, \mathcal{E}(-j-1))=0$ for $j<d$ (see [Herzog et al. 1991; Brennan et al. 1987; Eisenbud et al. 2003]). These are the bundles whose Hilbert polynomials have d zeros at the first d negative integers. They play a central role in singularity theory, liaison theory and BoijSöderberg theory. For example, if X admits an Ulrich bundle, then the cone of cohomology tables of X coincides with that of \mathbb{P}^{m} [Eisenbud and Schreyer 2011]. Thus, classifying Ulrich bundles on projective varieties is an important problem in commutative algebra and algebraic geometry, as discussed by E. Coskun et al. [2013], I. Coskun et al. [2017], and Faenzi [2008], who also give further references. In particular, it is interesting to decide when representation theoretic bundles on flag varieties are Ulrich.

Let $0<k_{1}<k_{2}<n$ be three positive integers. Set $k_{0}=0$ and $k_{3}=n$. Let V be an n-dimensional vector space. The two-step partial flag variety $F\left(k_{1}, k_{2} ; n\right)$ parameterizes partial flags $W_{1} \subset W_{2} \subset V$, where W_{i} has dimension k_{i}. The variety
$F\left(k_{1}, k_{2} ; n\right)$ has a minimal embedding in projective space corresponding to the ample line bundle with class the sum of the two Schubert divisors. We will always consider $F\left(k_{1}, k_{2} ; n\right)$ in this embedding and $\mathcal{O}(1)$ will refer to the hyperplane bundle in this embedding.

The variety $F\left(k_{1}, k_{2} ; n\right)$ has a collection of tautological bundles

$$
0=T_{0} \subset T_{1} \subset T_{2} \subset T_{3}=\underline{V}=V \otimes \mathcal{O}_{F\left(k_{1}, k_{2} ; n\right)},
$$

where \underline{V} is the trivial bundle of rank n and T_{i}, for $i=1$ or 2, is the subbundle of \underline{V} of rank k_{i} which associates to a point [$W_{1} \subset W_{2}$] the subspace W_{i}. Let $U_{i}=T_{i} / T_{i-1}$. Given $\lambda=\left(\lambda_{1}\left|\lambda_{2}\right| \lambda_{3}\right)$ a concatenation of partitions λ_{i} of length $k_{i}-k_{i-1}$, the Schur bundle E_{λ} is defined by

$$
E_{\lambda}=\mathbb{S}^{\lambda_{1}} U_{1}^{*} \otimes \mathbb{S}^{\lambda_{2}} U_{2}^{*} \otimes \mathbb{S}^{\lambda_{3}} U_{3}^{*},
$$

where \mathbb{S}^{λ} is the Schur functor of type λ.
Costa and Miró-Roig [2015] initiated the study of determining when Schur bundles are Ulrich. They showed every Grassmannian admits Ulrich Schur bundles and classified these bundles. Coskun et al. [2017] showed that Schur bundles on flag varieties with three or more steps are never Ulrich for their minimal embedding. They also constructed several infinite families of Ulrich Schur bundles on specific two-step flag varieties and showed that many two-step flag varieties do not admit Ulrich Schur bundles. They conjectured a complete classification of Ulrich Schur bundles on two-step flag varieties.
Conjecture 1.3 [Coskun et al. 2017, Conjecture 5.9]. A two-step flag variety $F\left(k_{1}, k_{2} ; n\right)$ does not admit an Ulrich Schur bundle with respect to $\mathcal{O}(1)$ if $k_{2} \geq 3$ and $n-k_{2} \geq 3$.

The Borel-Weil-Bott theorem computes the cohomology of Schur bundles and allows one to determine whether a Schur bundle is Ulrich. There is a bijective correspondence between equivalence classes of Ulrich partitions of type ($n-k_{2}$, $\left.k_{2}-k_{1}, k_{1}\right)$ and Schur bundles E_{λ} on $F\left(k_{1}, k_{2} ; n\right)$ which are Ulrich [Coskun et al. 2017, Proposition 3.5]. Hence, classifying Ulrich Schur bundles is equivalent to classifying Ulrich partitions. Consequently, as a corollary of Theorem 1.2, we resolve the first case of Section 1.

Theorem 1.4. The flag variety $F(k, k+3 ; n)$ does not admit an Ulrich Schur bundle with respect to $\mathcal{O}(1)$ if $n>6$ or $k>2$.

In particular, the only two step flag varieties of the form $F(k, k+3 ; n)$ that admit Ulrich Schur bundles are $F(1,4 ; 5), F(1,4 ; 6)$ and $F(2,5 ; 6)$. All the Ulrich Schur bundles on these varieties have been classified in [Coskun et al. 2017]. There has been work on classifying Ulrich Schur bundles on other homogeneous varieties using the same strategy (see [Fonarev 2016]).

2. The proof of the main theorem

Theorem 2.1. There are no Ulrich partitions $\left(a_{1}, \ldots, a_{k}\left|b_{1}, b_{2}, b_{3}\right| c_{1}, \ldots, c_{l}\right)$ with $k+l>3$.

We begin with the following simple observation, which is a special case of [Coskun et al. 2017, Lemma 4.3].

Lemma 2.2. If $P=\left(a_{1}, \ldots, a_{l}\left|b_{1}, \ldots, b_{j}\right| c_{1}, \ldots, c_{k}\right)$ is an Ulrich partition, then all the entries in the sequences a_{0} and $c_{\text {. }}$ are equal modulo 2.

Proof. If P is Ulrich, the a_{p} and c_{q} entries of $P\left(t_{p q}\right)$ must be equal at some time $t_{p q}$. From now on, we will express this by saying a_{p} and c_{q} collide at time $t=t_{p q}$. Hence $a_{p}+t_{p q}=c_{q}-t_{p q}$ or, equivalently, $c_{q}-a_{p}=2 t_{p q}$. Consequently, a_{p} and c_{q} are equal modulo 2 . Since this holds for each $1 \leq p \leq l$ and $1 \leq q \leq k$, we conclude that all the entries in the sequences a_{0} and c_{0} have the same parity. Furthermore, their parities remain equal in $P(t)$ for all t.

Let $P=\left(a_{1}, \ldots, a_{k}\left|b_{1}, b_{2}, b_{3}\right| c_{1}, \ldots, c_{l}\right)$ be an Ulrich partition. Recall that we always assume $k, l>0$. Up to symmetry and duality, there are three possibilities:
(1) The sequence b_{1}, b_{2}, b_{3} may be consecutive.
(2) Only the entries b_{1}, b_{2} may be consecutive.
(3) Finally, no two of the entries in $b_{.}$are consecutive.

We will analyze each of these cases separately.
The $\boldsymbol{b}_{\mathbf{0}}$ sequence is consecutive. In this case, we will see that $k+l \leq 3$ and up to symmetry and duality the two possible partitions are $(0|1,2,3| 8)$ or $(-8,0 \mid$ $1,2,3 \mid 8)$. In fact, we can analyze sequences where the b. sequence is consecutive more generally.

Proposition 2.3. Let P be an Ulrich partition of the form $\left(a_{1}, \ldots, a_{k}|1,2, \ldots, r|\right.$ $\left.c_{1}, \ldots, c_{l}\right)$, where the b. sequence consists of r consecutive integers. Assume that $r \geq 3$. Then $k+l \leq 3$.
Proof. Without loss of generality, we may assume that at $t=1$, the collision is $a_{k} b_{1}$. Then for $1 \leq t \leq r$, the collision is $a_{k} b_{t}$. We claim that at $t=r+1$, the collision must be $a_{k} c_{1}$. The collision must be either $a_{k-1} b_{1}$ or $a_{k} c_{1}$. If r is odd, then it cannot be $a_{k-1} b_{1}$ since otherwise a_{k-1} and a_{k} would have different parities. If r is even and the collision is $a_{k-1} b_{1}$, we obtain a contradiction as follows. Let t_{0} be the time of the collision $a_{k} c_{1}$. Until that time all the collisions must be between an entry from a_{\bullet} and an entry from $b_{.}$. We conclude that $t_{0}=i r+1$ for some i. At time $t=t_{0}+1$, the collision cannot be $a_{k} c_{2}$. Otherwise, we would have $c_{2}-c_{1}=2$ and the collisions $c_{1} b_{1}$ and $c_{2} b_{3}$ would occur at the same time. If $i>1$, the collision at $t=t_{0}+1$ cannot be $b_{r} c_{1}$. Hence, at $t=t_{0}+1$, the collision must be $a_{k-i} b_{1}$. This
violates parity since a_{k} is even while a_{k-i} is odd. We conclude that at $t=r+1$, the collision is $a_{k} c_{1}$.

Hence, for $t=r+1+i$ with $1 \leq i \leq r$, the collisions are $b_{r+1-i} c_{1}$. If the progression stops at time $t=2 r+1$, we obtain the Ulrich partition $(0|1,2, \ldots, r|$ $2 r+2)$. Else, at time $t=2 r+2$, the collision must be $a_{k-1} c_{1}$. Otherwise, the collision would have to be $a_{k} c_{2}$. At time $t=2 r+3$, since the collision could not be $a_{k} c_{3}$, the collision would have to be $a_{k-1} c_{1}$. Then at time $t=3 r+3$, the values a_{k-1}, b_{r} and c_{2} would collide simultaneously. This contradiction shows that the collision at $t=2 r+2$ must be $a_{k-1} c_{1}$. Hence, for times $t=2 r+2+i$ with $1 \leq i \leq r$, the collisions must be $a_{k-1} b_{i}$. If the progression stops at $t=3 r+2$, we obtain the Ulrich partition $(-2 r-2,0|1,2, \ldots, r| 2 r+2)$.

Otherwise, at time $t=3 r+3$, the collision must either be $a_{k} c_{2}$ or $a_{k-2} c_{1}$. Then at time $t=3 r+4$, the only possible collisions are $a_{k-2} c_{1}$ or $a_{k} c_{2}$, respectively, since the distance between consecutive entries in a_{0} or c_{0}. has to be at least $r>2$. If the order is $a_{k} c_{2}$ and $a_{k-2} c_{1}$, then at time $t=3 r+4$ the entry c_{2} is $3 r+2$ and a_{k-2} is $-r-2$. The entries a_{k-2}, b_{r} and c_{2} collide simultaneously at time $t=5 r+5$. Hence, the order of collisions must be $a_{k-2} c_{1}$ at time $t=3 r+3$ and $a_{k} c_{2}$ at time $3 r+4$. If $r \geq 5$, then at time $t=3 r+5$, there cannot be any collisions. If $3 \leq r \leq 4$, the only possible collision at time $t=3 r+5$ is $a_{k-3} c_{1}$. But then a_{k-3}, b_{r} and c_{2} collide simultaneously at time $t=5 r+8$. This is a contradiction. Hence, the time evolution must stop at time $t=3 r+2$ and we conclude the proposition.

In particular, we conclude that up to equivalence and symmetries, the only Ulrich partitions where the b. sequence consists of three or more consecutive integers are $(0|1,2, \ldots, r| 2 r+2)$ and $(-2 r-2,0|1,2, \ldots, r| 2 r+2)$.

Exactly two of the $\boldsymbol{b}_{\mathbf{.}}$ entries are consecutive. Up to symmetry and duality, we may assume that b_{1} and b_{2} are consecutive.
Lemma 2.4. Assume that b_{1} and b_{2} are the only two consecutive entries in the b_{0} sequence and $P=\left(a_{1}, \ldots, a_{k}\left|b_{1}, b_{2}, b_{3}\right| c_{1}, \ldots, c_{l}\right)$ is Ulrich. Then the b. sequence up to equivalence and symmetry must be $1,2,5$ or $1,2,6$. In the first case, at time $t=1$ the collision is $a_{k} b_{1}$. In the second case, at time $t=1$ the collision is $b_{3} c_{1}$. Proof. At time $t=1$, the collision is either $a_{k} b_{1}$ or $b_{3} c_{1}$. First, assume that at time $t=1$ the collision is $b_{3} c_{1}$. Since b_{2} and b_{3} are not consecutive, the collision at time $t=2$ cannot be $c_{1} b_{2}$. By parity, the collision cannot be $b_{3} c_{2}$. Consequently, at time $t=2$ the collision must be $a_{k} b_{1}$. Hence, at time $t=3$, the collision is $a_{k} b_{2}$. If at time $t=4$ the collision is $a_{k} c_{1}$, then the $b_{\text {. sequence is } 1,2,6 \text {. Otherwise, the }}$ only possible collision is $a_{k-1} b_{1}$ since $a_{k} b_{3}$ or $b_{2} c_{1}$ cannot occur before $a_{k} c_{1}$ and $b_{3} c_{2}$ is excluded by parity. Moreover, $\left|b_{3}-b_{2}\right| \geq 8$ and $a_{k}-a_{k-1}=2$.

The last collision at time $t=N$ is either $a_{1} b_{3}$ or $b_{1} c_{l}$. If it is $b_{1} c_{l}$, then the collisions at time $t=N-1$ and $t=N-2$ must be $b_{2} c_{l}$ and $a_{l} b_{3}$, respectively. Note
that at time $t=N-2$, the collision cannot be $b_{1} c_{l-1}$. Otherwise, $c_{l}-c_{l-1}=2$ and c_{l} would collide with a_{k} at the same time as c_{l-1} collides with a_{k-1}. Then at time $t=N-3$, the collision cannot be $a_{k-1} b_{3}$ or $c_{l-1} b_{1}$ by parity. Since $b_{3}-b_{2} \geq 8$, the collision cannot be $a_{1} c_{l}$. We conclude that at $t=N-3$ there are no possible collisions. This is a contradiction.

If the last collision is $a_{1} b_{3}$, then the two previous collisions must be $b_{1} c_{l}$ and $b_{2} c_{l}$ by parity. At time $t=N-3$, the collision cannot be $b_{1} c_{l-1}$ since $c_{l}-c_{l-1}$ cannot be 2 . The collision cannot be $a_{2} b_{3}$ by parity. It cannot be $a_{1} c_{l}$ since $b_{3}-b_{2} \geq 8$. We obtain a contradiction. We conclude that if at $t=1$ the collision is $b_{3} c_{1}$, then at $t=4$ the collision must be $a_{k} c_{1}$ and the b. sequence is up to equivalence $1,2,6$.

Next assume that the collision at $t=1$ is $a_{k} b_{1}$. Let $t=2 j+1$ be the first odd time when the collision is not of the form $a_{i} b_{1}$. If $j=1$, since the entries in b. are not consecutive, at time $t=3$ the collision must be $b_{3} c_{1}$. Then at time $t=4$, by parity, the only possible collision is $a_{k} c_{1}$. Therefore, the b. sequence is $1,2,5$. If $j>1$, then $a_{k}-a_{k-1}=2$. The collision at time $t=2 j+1$ must be $b_{3} c_{1}$. Otherwise, the collision would have to be $a_{k} b_{3}$. Then at time $t=2 j+2$, by parity the collision would have to be $a_{k} c_{1}$. Then the collisions $a_{k-1} b_{3}$ and $b_{3} c_{1}$ would happen at the same time at $t=2 j+3$. We conclude that at time $t=2 j+1$ the collision is $b_{3} c_{1}$. At time $t=2 j+2$, by parity we cannot have a collision of the form $a_{i} b_{1}$ or $b_{3} c_{l-1}$. We conclude that the collision must be $a_{k} c_{1}$. If $j>1$, then at time $r=2 j+2$ the collisions $a_{k-1} c_{1}$ and $a_{k} b_{3}$ occur at the same time leading to a contradiction. We conclude that $j=1$ and the b. sequence is $1,2,5$.

We thus obtain two standard Ulrich partitions of type $(1,3,1)$ given by $(0 \mid$ $1,2,5 \mid 8)$ and $(-1|1,2,6| 7)$. To conclude the analysis in this case, we argue that these Ulrich partitions cannot be extended to longer Ulrich partitions.

Lemma 2.5. The only Ulrich partition of the form

$$
\left(a_{1}, \ldots, a_{k-1}, a_{k}=0\left|b_{1}=1, b_{2}=2, b_{3}=5\right| c_{1}=8, c_{2}, \ldots, c_{l}\right)
$$

is $(0|1,2,5| 8)$. The only Ulrich partition of the form

$$
\left(a_{1}, \ldots, a_{k-1}, a_{k}=-1\left|b_{1}=1, b_{2}=2, b_{3}=6\right| c_{1}=7, c_{2}, \ldots, c_{l}\right)
$$

is $(-1|1,2,6| 7)$.
Proof. Suppose there exists an Ulrich partition of the form

$$
\left(a_{1}, \ldots, a_{k-1}, 0|1,2,5| 8, c_{2}, \ldots, c_{l}\right)
$$

with k or l bigger than 1 . Then the last collision at time $t=N$ must be either $a_{1} b_{3}$ or $b_{1} c_{l}$. If the collision is $a_{1} b_{3}$, then by parity the collision at time $t=N-1$ must be $b_{1} c_{l}$. Then a_{1} and c_{l} have different parities and can never collide. We obtain a contradiction. We conclude that at $t=N$ the collision must be $b_{1} c_{l}$. Hence, at
time $t=N-1$ the collision is $b_{2} c_{l}$. If the collision at $t=N-2$ is $a_{1} b_{3}$, then the distance between a_{1} and a_{k} (which is equal to $N-7$) is equal to the distance between c_{1} and c_{l}. Hence, these pairs collide simultaneously leading to a contradiction. We conclude that at time $t=N-2$, the collision must be $b_{1} c_{l-1}$. Hence the collisions at times $t=N-3, N-4$ must be $b_{2} c_{l-1}$ and $b_{3} c_{l}$, respectively. However, at time $t=N-5$ there are no possible collisions. The collision cannot be $b_{1} c_{l-2}$ by parity. There are no collisions between c_{l-1}, c_{l} and any entries in the b_{0}. sequence. On the other hand, if a_{1} collides with c_{l}, then at time $t=N-4$ the $a_{1} b_{3}$ collision coincides with the $b_{2} c_{l-1}$ collision. This contradiction shows that $k=l=1$.

Suppose there exists an Ulrich partition of the form

$$
\left(a_{1}, \ldots, a_{k-1},-1|1,2,6| 7, c_{2}, \ldots, c_{l}\right)
$$

with k or l bigger than 1 . The argument is almost identical to the previous case. The last collision at time $t=N$ cannot be $a_{1} b_{3}$. Otherwise, at time $t=N-1$ the collision would have to be $b_{1} c_{l}$ and the distance between a_{1} and a_{k} would be equal to the distance between c_{1} and c_{l}. We conclude that the collision at time $t=N$ is $b_{1} c_{l}$. Hence, at time $t=N-1$ the collision is $b_{2} c_{l}$. At time $t=N-2$, the collision cannot be $a_{1} b_{3}$, otherwise at that time c_{l} would be at position 3 and would have different parity from a_{1}. We conclude that at time $t=N-2$ the collision must be $b_{1} c_{l-1}$. This determines the collisions at $t=N-3, N-4$ which must be $b_{2} c_{l-1}$ and $b_{3} c_{l}$. Then, as in the previous case, at time $t=N-5$, there cannot be any collisions leading to a contradiction. This shows that $k=l=1$.

None of the $\boldsymbol{b}_{\mathbf{0}}$ entries are consecutive. In this case, we have the following lemma.
Lemma 2.6. Let $\left(a_{1}, \ldots, a_{k}\left|b_{1}, b_{2}, b_{3}\right| c_{1}, \ldots, c_{l}\right)$ be an Ulrich partition with $k, l>0$ and such that no entries in the $b_{\text {. sequence }}$ are consecutive. Then up to equivalence and symmetry the b. sequence is $1,3,6$.
Proof. Without loss of generality, we may assume that at $t=1$ the collision is $a_{k} b_{1}$. By parity and the fact that $b_{2}-b_{1}>1$, we conclude that at $t=2$ the collision must be $b_{3} c_{1}$. Similarly, by parity and the fact that $b_{3}-b_{2}>1$, at time $t=3$ the collision is either $a_{k} b_{2}$ or $a_{k-1} b_{1}$. If the collision is $a_{k} b_{2}$, then the collision at $t=4$ has to be $a_{k} c_{1}$. By parity, it cannot be $a_{k-1} b_{1}$. It cannot be $b_{3} c_{2}$, otherwise the collisions $b_{1} c_{1}$ and $b_{2} c_{2}$ would occur at the same time. We conclude that at time $t=0$ the b. sequence must be $1,3,6$ and $a_{k}=0$ and $c_{1}=8$.

If the collision at time $t=3$ is $a_{k-1} b_{1}$, then by parity the collision at $t=4$ may only be one of $a_{k} b_{2}, b_{2} c_{1}$ or $b_{3} c_{2}$. It cannot be $b_{2} c_{1}$, otherwise $a_{k} b_{3}$ and $a_{k-1} b_{2}$ would occur at the same time since both a_{k-1}, a_{k} and b_{2}, b_{3} would be 2 apart. Similarly, it cannot be $b_{3} c_{2}$, otherwise $a_{k} c_{2}$ and $a_{k-1} c_{1}$ would occur at the same time. We conclude that at $t=4$, the collision is $a_{k} b_{2}$. At time $t=5$, the collision cannot be $b_{3} c_{2}$ by parity. Hence, it is either $a_{k-2} b_{1}$ or $a_{k} c_{1}$. It cannot
be $a_{k} c_{1}$, otherwise at time $t=6$ all three a_{k-1}, b_{2} and c_{1} collide. Hence, at $t=5$ the collision is $a_{k-2} b_{1}$. In this case, we have $b_{3}-b_{2} \geq 5$. Now consider the last two collisions at $t=N$ and $N-1$. They are either $a_{1} b_{3}$ at $t=N$ and $b_{1} c_{l}$ at $t=N-1$, or $b_{1} c_{l}$ at $t=N$ and $a_{1} b_{3}$ at $t=N-1$. Notice that it cannot be the latter. Otherwise, the distance between a_{1} and a_{k} would be equal to the distance between c_{1} and c_{l} and the pair would collide simultaneously. We conclude that the collisions at $t=N$ and $N-1$ must be $a_{1} b_{3}$ and $b_{1} c_{l}$, respectively. Then at time $t=N-3$, the collision cannot be $a_{2} b_{3}$ by parity. It cannot be $a_{1} b_{2}$ or $b_{2} c_{l}$ because of the distances between the entries in the b. sequence. Finally, it cannot be $b_{1} c_{l-1}$ since otherwise the distance between c_{l} and c_{l-1} would be 2 and they would collide with the pair a_{k} and a_{k-1} simultaneously. We conclude that this case is not possible. This concludes the proof of the lemma.

We thus get the standard Ulrich partition of type $(1,3,1)$ given by $(0|1,3,6| 8)$. To conclude the analysis in this case, we argue that this Ulrich partition cannot be extended to longer Ulrich partitions.
Lemma 2.7. The only Ulrich partition of the form

$$
\left(a_{1}, \ldots, a_{k-1}, a_{k}=0\left|b_{1}=1, b_{2}=3, b_{3}=6\right| c_{1}=8, c_{2}, \ldots, c_{l}\right)
$$

is $(0|1,3,6| 8)$.
Proof. Suppose there were a longer Ulrich partition. Then the last two collisions at times $t=N$ and $t=N-1$ must be $a_{1} b_{3}$ and $b_{1} c_{l}$, respectively. Otherwise, as in the previous cases, the distance between a_{1} and a_{k} would equal the distance between c_{1} and c_{l}. But then at time $t=N-2$ there cannot be any collisions. The entries c_{l} and a_{k} do not collide with any entries in the $b_{\text {. sequence or with each }}$ other by the distribution of the $b_{\text {. sequence. The collision cannot be } b_{1} c_{l-1} \text { and it }}^{\text {a }}$ cannot be $a_{k-1} b_{3}$. Otherwise, the distance between a_{k} and a_{k-1} would be 2 and the collisions $a_{k} b_{1}$ and $a_{k-1} b_{2}$ would be at the same time. This contradiction concludes the proof.
Proof of Theorem 1.2. Let $P=\left(a_{1}, \ldots, a_{k}\left|b_{1}, b_{2}, b_{3}\right|, c_{1}, \ldots, c_{l}\right)$ be an Ulrich partition. If the b. sequence is consecutive, then by Proposition 2.3, up to symmetry, duality and equivalence, $P=(-8,0|1,2,3| 8)$ or $(0|1,2,3| 8)$. If only two entries in the b. sequence are consecutive, then by Lemmas 2.4 and $2.5, P=(0|1,2,5| 8)$ or $P=(-1|1,2,6| 7)$. Finally, if none of the entries in the b. sequence are consecutive, then by Lemmas 2.6 and $2.7, P=(0|1,3,6| 8)$. In all cases we have $k+l \leq 3$.

Acknowledgements

We would like to thank Jack Huizenga and Matthew Woolf for many discussions on Ulrich bundles on flag varieties. This paper grew out of Jaskowiak's senior thesis.

References

[Brennan et al. 1987] J. P. Brennan, J. Herzog, and B. Ulrich, "Maximally generated Cohen-Macaulay modules", Math. Scand. 61:2 (1987), 181-203. MR Zbl
[Coskun et al. 2013] E. Coskun, R. S. Kulkarni, and Y. Mustopa, "The geometry of Ulrich bundles on del Pezzo surfaces", J. Algebra 375 (2013), 280-301. MR Zbl
[Coskun et al. 2017] I. Coskun, L. Costa, J. Huizenga, R. M. Miró-Roig, and M. Woolf, "Ulrich Schur bundles on flag varieties", J. Algebra 474:1 (2017), 49-96.
[Costa and Miró-Roig 2015] L. Costa and R. M. Miró-Roig, "GL(V)-invariant Ulrich bundles on Grassmannians", Math. Ann. 361:1 (2015), 443-457. MR Zbl
[Eisenbud and Schreyer 2011] D. Eisenbud and F.-O. Schreyer, "Boij-Söderberg theory", pp. 35-48 in Combinatorial aspects of commutative algebra and algebraic geometry, edited by G. Fløystad et al., Abel Symp. 6, Springer, Berlin, 2011. MR Zbl
[Eisenbud et al. 2003] D. Eisenbud, F.-O. Schreyer, and J. Weyman, "Resultants and Chow forms via exterior syzygies", J. Amer. Math. Soc. 16:3 (2003), 537-579. MR Zbl
[Faenzi 2008] D. Faenzi, "Rank 2 arithmetically Cohen-Macaulay bundles on a nonsingular cubic surface", J. Algebra 319:1 (2008), 143-186. MR Zbl
[Fonarev 2016] A. Fonarev, "Irreducible Ulrich bundles on isotropic Grassmannians", preprint, 2016. arXiv
[Herzog et al. 1991] J. Herzog, B. Ulrich, and J. Backelin, "Linear maximal Cohen-Macaulay modules over strict complete intersections", J. Pure Appl. Algebra 71:2-3 (1991), 187-202. MR Zbl

Received: 2016-05-12
coskun@math.uic.edu
ljasko2@uic.edu

Accepted: 2016-06-15
Department of Mathematics, Statistics and CS, University of Illinois at Chicago, Chicago, IL 60607, United States

Department of Mathematics, Statistics and CS, University of Illinois at Chicago, Chicago, IL 60607, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $\$ 175 /$ year for the electronic version, and $\$ 235 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers

involve 2017 vol. 10 no. 3

Dynamics of vertical real rhombic Weierstrass elliptic functions 361
Lorelei Koss and Katie Roy
Pattern avoidance in double lists 379
Charles Cratty, Samuel Erickson, Frehiwet Negassi and Lara Pudwell
On a randomly accelerated particle 399
Michelle Nuno and Juhi Jang
Reeb dynamics of the link of the A_{n} singularity 417
Leonardo Abbrescia, Irit Huq-Kuruvilla, Jo Nelson and NawazSultani
The vibration spectrum of two Euler-Bernoulli beams coupled via a dissipative 443
joint
Chris Abriola, Matthew P. Coleman, Aglika Darakchieva and Tyler Wales
Loxodromes on hypersurfaces of revolution 465
Jacob Blackwood, Adam Dukehart and Mohammad Javaheri
Existence of positive solutions for an approximation of stationary mean-field games 473
Nojood Almayouf, Elena Bachini, Andreia Chapouto, Rita
Ferreira, Diogo Gomes, Daniela Jordão, David EvangelistaJunior, Avetik Karagulyan, Juan Monasterio, LevonNurbekyan, Giorgia Pagliar, Marco Piccirilli, Sagar Pratapsi,Mariana Prazeres, João Reis, André Rodrigues, OrlandoRomero, Maria Sargsyan, Tommaso Seneci, Chuliang Song,Kengo Terai, Ryota Tomisaki, Hector Velasco-Perez, VardanVoskanyan and Xianjin Yang
Discrete dynamics of contractions on graphs 495
Olena Ostapyuk and Mark Ronnenberg
Tiling annular regions with skew and T-tetrominoes505Amanda Bright, Gregory J. Clark, Charles Lundon, KyleEvitts, Michael P. Hitchman, Brian Keating and Brian Whetter
A bijective proof of a q-analogue of the sum of cubes using overpartitions 523
JAcob Forster, Kristina Garrett, LuKe Jacobsen and AdamWOODUlrich partitions for two-step flag varieties531IzZET Coskun and Luke Jaskowiak

[^0]: MSC2010: primary 14 M 15 ; secondary $14 \mathrm{~J} 60,13 \mathrm{C} 14,13 \mathrm{D} 02,14 \mathrm{~F} 05$.
 Keywords: flag varieties, Ulrich bundles, Schur bundles.
 During the preparation of this article the first author was partially supported by the NSF CAREER grant DMS-0950951535 and NSF grant DMS-1500031; and the second author was partially supported by an NSF RTG grant.

