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Dynamics of vertical real rhombic
Weierstrass elliptic functions

Lorelei Koss and Katie Roy

(Communicated by Michael E. Zieve)

In this paper, we investigate the dynamics of iterating the Weierstrass elliptic
functions on vertical real rhombic lattices. The main result of this paper is to show
that these functions can have at most one real attracting or parabolic cycle. If
there is no real attracting or parabolic cycle, we prove that the real and imaginary
axes, as well as translations of these lines by the lattice, lie in the Julia set. Further,
we prove that if there exists a real attracting fixed point, then the intersection of
the Julia set with the real axis is a Cantor set. Finally, we apply the theorem to
find parameters in every real rhombic shape equivalence class for which the Julia
set is the entire sphere.

1. Introduction

There is a rich literature investigating the dynamics of iterating Weierstrass elliptic
functions [Hawkins 2006; 2010; 2013; Hawkins and Koss 2002; 2004; 2005;
Clemons 2012; Hawkins and McClure 2011; Koss 2014]. Both the lattice shape
and its orientation in the plane can affect the dynamical behavior of these functions.
Outside of specialized lattice shapes, such as triangular or rhombic square lattices,
few results have appeared on the dynamics of elliptic functions on rhombic lattices.

On any lattice, the Weierstrass elliptic function has three distinct critical values.
Standard results in the dynamics of meromorphic functions imply that there are at
most three different types of periodic Fatou components. Here, we focus on a large
subset of real rhombic lattices and show that these lattice shapes force restrictions
on the types of periodic Fatou components possible for the Weierstrass elliptic
function.

In Section 2, we give background on the Weierstrass elliptic function and describe
some results on iterating these functions. In Section 3, we focus on the dynamics of
the Weierstrass elliptic function restricted to the real line. In particular, we use the
Schwarzian derivative to extend results from [Hawkins 2010; Koss 2014] and show

MSC2010: 54H20, 37F10, 37F20.
Keywords: complex dynamics, meromorphic functions, Julia sets.
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362 LORELEI KOSS AND KATIE ROY

that there can be at most one real attracting or parabolic periodic cycle. We use this
result in Section 4 to investigate the Weierstrass elliptic function in the complex
plane and find examples that satisfy certain interesting dynamical properties. First,
we construct examples in Section 4A for which the real and imaginary axes lie
in the Julia set. Second, we develop criteria in Section 4B that guarantee that the
intersection of the real and imaginary axes with the Julia set is a Cantor set. Finally,
we find parameters in every real rhombic shape equivalence class for which the
Julia set is the entire sphere in Section 4C.

2. Background

We begin by fixing a lattice 3 defined by

3= [λ1, λ2] =
{
mλ1+ nλ2 | m, n ∈ Z, λ1, λ2 ∈ C \ {0}, λ2/λ1 /∈ R

}
.

We define the Weierstrass elliptic function by

℘3(z)=
1
z2 +

∑
w∈3\{0}

(
1

(z−w)2
−

1
w2

)
.

The Weierstrass elliptic function is an even, meromorphic function that is periodic
with respect to the lattice 3. In the following, we distinguish between iteration
and products by using the notation ℘n

3 or ℘n
3(z) to denote iteration and (℘3)n or

(℘3(z))n to denote products.
The Weierstrass elliptic function can also be defined by the differential equation

(℘ ′3(z))
2
= 4(℘3(z))3− g2℘3(z)− g3, (1)

where g2(3) = 60
∑

w∈3\{0}w
−4 and g3(3) = 140

∑
w∈3\{0}w

−6. Each pair of
complex numbers (g2, g3) with g3

2 − 27g2
3 6= 0 determines a unique equivalence

class of lattices and vice versa, where equivalence means that they generate the
same subgroup [Du Val 1973]. We call a lattice 3 with invariants g2(3) and g3(3)

a (g2, g3)-lattice.
The critical points of ℘3 are the half-lattice points 1

2λ1 + 3, 1
2λ2 + 3 and

1
2λ3 =

1
2λ1+

1
2λ2+3. By the periodicity of the Weierstrass elliptic function, ℘3

has exactly three distinct critical values denoted by

e1 = ℘3
( 1

2λ1
)
, e2 = ℘3

( 1
2λ2

)
, e3 = ℘3

( 1
2λ3

)
. (2)

The critical values of ℘3 satisfy the equations

e1+ e2+ e3 = 0, e1e3+ e2e3+ e1e2 =−
1
4 g2, e1e2e3 =

1
4 g3. (3)

The second derivative of the Weierstrass elliptic function satisfies the equation

℘ ′′3(z)= 6(℘3(z))2− 1
2 g2(3). (4)
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If 3= [λ1, λ2], and k 6= 0 is any complex number, then k3 is the lattice defined
by taking kλ for each λ ∈ 3, and k3 is said to be similar to 3. Similarity is an
equivalence relation between lattices, and an equivalence class of lattices is called
a shape. Similar lattices give rise to homogeneity properties of the Weierstrass
elliptic functions and their invariants:

Lemma 2.1 [Du Val 1973]. For lattices 3 and 3′ and for k ∈ C\{0}:

(1) If 3′ = k3 then g2(3
′)= k−4g2(3) and g3(3

′)= k−6g3(3).

(2) If 3′ = k3 then ℘3′(ku)= k−2℘3(u) for all u ∈ C.

The Weierstrass elliptic function satisfies a number of algebraic identities. If z is
neither a lattice point nor a half-lattice point, then

1
4

(
℘ ′′3(z)
℘ ′3(z)

)2

= ℘3(2z)+ 2℘3(z). (5)

A lattice3 is real if3=3. We say ℘3 is real if z ∈R implies ℘3(z)∈R∪{∞}.
Real lattices are associated with real lattice invariants.

Theorem 2.2 [Jones and Singerman 1987]. The following are equivalent:

(1) ℘3 is real.

(2) 3 is a real lattice.

(3) g2, g3 ∈ R.

By Theorem 2.2, we can identify a real lattice 3 with a point (g2, g3) in R2.
Further, any point (g2, g3) in R2 with g3

2 − 27g2
3 6= 0 gives rise to a real lattice

[Du Val 1973].
The following lemma appeared in [Hawkins and Koss 2002] and gives informa-

tion about ℘3 on the real line in the case when 3 is real.

Lemma 2.3 [Hawkins and Koss 2002]. If ℘3 is real, then it is periodic as a map
on R and has infinitely many real critical points and at least one real critical value.
The image of the real critical point is the minimum of ℘3 on R. In particular, if e1

denotes the critical value of the real critical points, then ℘3|R : R→ [e1,∞] is
piecewise monotonic and onto.

2A. Properties of lattice shapes. The real lattices have distinctive shapes for their
period parallelograms. We say 3 = [λ1, λ2] is real rectangular if there exist
generators such that λ1 is real and λ2 is purely imaginary. We say 3 = [λ1, λ2]

is real rhombic if there exist generators such that λ2 = λ̄1. In each case, the
period parallelogram with vertices 0, λ1, λ2, and λ1+ λ2 is rectangular or rhombic,
respectively.

Real rhombic and real rectangular lattices lie in regions of the (g2, g3)-plane
described in the following proposition.
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Figure 1. Horizontal (left) and vertical (right) lattices with period parallelograms.

Proposition 2.4 [Du Val 1973]. (1) 3 is real rhombic if and only if g3
2−27g2

3 < 0.

(2) 3 is real rectangular if and only if g3
2 − 27g2

3 > 0.

In this paper, we focus primarily on real rhombic lattices 3, those which have
generators of the form 3= [λ, λ̄]. Without loss of generality, we assume that λ lies
in quadrant one. Real rhombic lattices always have a real lattice point, which we
denote by λ1= λ+ λ̄∈R+. Given a real rhombic lattice 3= [λ, λ̄] with λ= a+ ib,
we say 3 is vertical if |b| > |a| and horizontal if |b| < |a|. If |a| = |b|, then the
lattice is called rhombic square. Figure 1 (left) shows a horizontal lattice and the
boundary of one period parallelogram, and Figure 1 (right) shows a vertical lattice
and the boundary of one period parallelogram.

Vertical real rhombic lattices have g3 > 0, and horizontal real rhombic lattices
have g3 < 0 [Du Val 1973]. Figure 2 shows the location of vertical and horizontal
real rhombic lattices in the (g2, g3)-plane. The light gray region represents the
location of vertical real rhombic lattices, the dark gray region represents horizontal
real rhombic lattices, and the white region represents rectangular lattices.

We can use Lemma 2.1 to find all real lattices that are similar to a given
real lattice. If 3 is the real lattice corresponding to the invariants (a, b) in the
(g2, g3)-plane, then parameters that lie on the planar curve g2

3 = b2g3
2/a

3 represent
real lattices similar to 3. In Figure 2, the orange curve represents the invariants
of real lattices that are similar to the lattice 3 with invariants (g2, g3)= (−5,−1).
In this case, the portion of the curve lying in the upper half-plane represents a
vertical real rhombic lattice similarity class, and the portion of the curve lying in
the lower half-plane represents horizontal real rhombic lattices in the similarity
class.

This paper primarily focuses on real rhombic lattices in the vertical position. The
following properties hold true for any such lattice.
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g3

g2

Figure 2. Real rhombic lattices are located in the shaded region
of the (g2, g3)-plane. Light gray shading shows the location of
vertical real rhombic lattices, and dark gray shading shows the
location of horizontal real rhombic lattices. Rectangular lattices
lie in the white region. All points colored orange represent real
lattices similar to the (−5,−1)-lattice.

Proposition 2.5 [Hawkins and Koss 2004; 2005; Du Val 1973]. If 3 is a vertical
real rhombic lattice, then all of the following properties hold true:

(1) g3 > 0.

(2) e1 > 0, where e1 is the image of the real critical point.

(3) e2 = ē3.

(4) Re(e2)= Re(e3)=−
1
2 e1.

(5) If z lies on a vertical line passing through any real lattice point or any real
half-lattice point, then ℘3(z) ∈ [−∞, e1).

Although our focus in this paper is rhombic lattices, the following proposition
about rectangular lattices will be used in Section 4A.

Proposition 2.6 [Hawkins and Koss 2004; 2005; Du Val 1973]. If 3 is a real
rectangular lattice, then all of the following properties hold true:

(1) e1, e2, e3 ∈ R.

(2) If g3 > 0, then e2 < e3 < 0< e1.

(3) If g3 < 0, then e2 < 0< e3 < e1.

(4) ℘3 maps the imaginary axis to [−∞, e2).

It will be helpful to identify a specified lattice within each shape equivalence class.
We define the standard lattice within any real (rhombic or rectangular) equivalence
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Figure 3. Standard lattices are shown in green.

class as the lattice 0 for which the real half-lattice point 1
2γ1 satisfies ℘0

( 1
2γ1

)
= 1.

Using the equations appearing in (3) with e1 = 1, we obtain

1+ e2+ e3 = 0, e2+ e3+ e2e3 =−
1
4 g2, e2e3 =

1
4 g3.

All real rhombic standard lattices lie on the line segment g3 =−g2+ 4 with g2 < 3
in real lattice space. All real rectangular standard lattices lie on the line segment
g3 = −g2 + 4 with 3 < g2 < 12 in real lattice space. (The ray when g2 > 12
represents real rectangular lattices for which one of the nonreal critical points gives
rise to the critical value of 1.) Figure 3 shows the location of real standard lattices
in the (g2, g3)-plane in green.

Given any standard lattice, we can use the homogeneity property to find infinitely
many similar lattices for which the real critical points land on a pole in one iteration.
The following lemma is a result of the homogeneity property in Lemma 2.1.

Lemma 2.7 [Hawkins and Koss 2004]. Let 0 be a standard real lattice, where γ1 is
chosen to be the smallest real positive lattice point. If m is any positive integer and
k = 3
√

1/(mγ1), then the lattice 3= k0 has ℘3
( 1

2λ1
)
= mλ1, and thus ℘3

( 1
2λ1

)
is

a pole.

2B. Iterating elliptic functions. We give a brief overview of the dynamics of
meromorphic functions; more details can be found in [Baker et al. 1992; Bergweiler
1993; Rippon and Stallard 1999]. Let f :C→C∞ be a meromorphic function. The
Fatou set F( f ) is the set of points z ∈ C∞ such that { f n

| n ∈ N} is defined and
normal in some neighborhood of z. The Julia set is the complement of the Fatou set
on the sphere, J ( f )= C∞\F( f ). A point z0 is periodic of period p if there exists
a p ≥ 1 such that f p(z0) = z0. We also call the set {z0, f (z0), . . . , f p−1(z0)} a
p-cycle. The multiplier of a point z0 of period p is the derivative ( f p)′(z0). A
periodic point z0 is classified as attracting, repelling, or neutral if |( f p)′(z0)| is
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less than, greater than, or equal to 1 respectively. If |( f p)′(z0)| = 0 then z0 is called
a superattracting periodic point.

Suppose U is a connected component of the Fatou set. We say U is preperiodic
if there exists n>m ≥ 0 such that f n(U )= f m(U ), and the minimum of n−m= p
for all such n,m is the period of the cycle. Elliptic functions have a finite number
of critical values, and thus it turns out that the classification of periodic components
of the Fatou set is no more complicated than that of rational maps of the sphere.
Periodic components of the Fatou set of elliptic functions may be attracting domains,
parabolic domains, Siegel disks, or Herman rings. In particular, elliptic functions
have no wandering domains or Baker domains [Baker et al. 1992; Hawkins and
Koss 2002; Rippon and Stallard 1999].

Let C = {U0,U1, . . . ,Up−1} be a periodic cycle of components of F( f ). If C is
a cycle of immediate attractive basins or parabolic domains, then Uj ∩Crit( f ) 6=∅
for some 0 ≤ j ≤ p − 1. If C is a cycle of Siegel disks or Herman rings, then
∂Uj ⊂

⋃
n≥0 f n(Crit( f )) for all 0≤ j ≤ p−1. In particular, any periodic component

of an elliptic function has an associated critical point.
Although the Weierstrass elliptic function can have three distinct postcritical or-

bits, there are restrictions on the possible types of distinct Fatou cycles. Rectangular
lattices have been investigated in [Hawkins and Koss 2002; 2004; 2005; Koss 2014].
The following proposition, proved in [Hawkins and Koss 2005], describes the possi-
ble postcritical behavior of the Weierstrass elliptic function on real rhombic lattices.

Proposition 2.8 [Hawkins and Koss 2005]. For any real rhombic lattice 3 one of
the following must occur:

(1) J (℘3)= C∞.

(2) There exist one real postcritical orbit and two conjugate postcritical orbits;
therefore, there are at most two different types of periodic Fatou components.
If the nonreal critical values lie in the Fatou set, then they are associated with
cycles with the same period and multiplier.

The periodicity of ℘3 on any real lattice3 gives rise to many forms of symmetry
in the Fatou and Julia sets, as well as restrictions on possible Fatou behavior.

Proposition 2.9 [Hawkins and Koss 2002; 2004]. For any real lattice 3:

(1) J (℘3)+3= J (℘3) and F(℘3)+3= F(℘3).

(2) (−1)J (℘3)= J (℘3) and (−1)F(℘3)= F(℘3).

(3) J (℘3)= J (℘3) and F(℘3)= F(℘3).

(4) J (℘3) and F(℘3) are symmetric with respect to any critical point. That is, if
c is any critical point of ℘3, then c+ z ∈ F(℘3) if and only if c− z ∈ F(℘3).

(5) ℘3 has no cycle of Herman rings.
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3. Dynamics on the real line

In this section, we focus on the dynamics of ℘3 restricted to the real line. When
g3= 0 and g2< 0, Hawkins [2010] showed that ℘3 has a Julia set that is equal to the
entire sphere. The proof of this result involved showing that ℘3 has no attracting or
parabolic cycles because the Schwarzian derivative of ℘3 was negative, extending
work of Singer [1978] on interval maps to the case of elliptic functions. Koss [2014]
showed that when 3 is real rectangular, the Schwarzian of ℘3 is negative, so there
can be at most one attracting fixed point. The techniques used in these proofs relied
on special properties of the critical values for these lattices: for real rhombic square
lattices, the critical values lie on the imaginary axis, and for real rectangular lattices,
the critical values are all real. As such, these methods cannot be applied in the
case of real rhombic lattices because the critical values are located elsewhere in the
plane. In this section, we present a different proof that when 3 is a vertical real
rhombic lattice, the Schwarzian is negative.

We begin with the definition of the Schwarzian derivative.

Definition 3.1. If x is not a critical point or pole of a meromorphic function F , the
Schwarzian derivative is defined to be

SF (x)=
F ′′′(x)
F ′(x)

−
3
2

(
F ′′(x)
F ′(x)

)2

.

When F =℘3, we have S℘3 restricted to R is a real-valued, even elliptic function
with poles at lattice points and half-lattice points [Hawkins 2010].

Using Lemma 2.3, we know ℘3(R)⊂ R∪ {∞}. For any p-cycle

S = {x0, ℘3(x0), . . . , ℘
p−1
3 (x0)} ⊂ R,

we associate to it a set

B(S)= {x ∈ R | ℘k
3(x)→ S as k→∞}.

The set S is topologically attracting if B(S) contains an open interval, and in this
case we call B(S) the real attracting basin of S. The real immediate attracting
basin of S is the union of components of B(S) in R that contain points from S, and
we denote this set by B0(S). Using Lemma 2.3, if |(℘ p

3)
′(z0)|< 1, then S⊂[e1,∞)

and B(S) 6=∅, so S is topologically attracting.
Hawkins [2010] proved that when g3 = 0 and g2 < 0, the Weierstrass elliptic

function satisfied a minimum principle. The proof relied on special properties of
the lattice shape, but the result was extended to all real rectangular lattices in [Koss
2014]. The proof in [Koss 2014] carries over identically for real rhombic lattices,
and we state the result here without proof.
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Lemma 3.2 (minimum principle). Assume that3 is a real lattice. Suppose we have
a closed interval I ⊂ R with endpoints l < r , not containing any poles or critical
points of fn,3,b. Then

| f ′n,3,b(x)|>min{| f ′n,3,b(l)|, | f
′

n,3,b(r)|} ∀x ∈ (l, r).

In [Hawkins 2010], the minimum principle was used to extend Singer’s theorem
on interval maps to the setting of the Weierstrass elliptic function on a real square
lattice. The extension of Singer’s theorem given in [Hawkins 2010] relied only on
the minimum principle and generic properties of elliptic functions on real lattices;
the proof for our setting follows identically, so we do not provide it.

Theorem 3.3. If 3 is a real rhombic lattice and S℘3 < 0, then:

(1) The real immediate basin of attraction of a topologically attracting periodic
orbit of ℘3 contains a real critical point.

(2) If y ∈ R is in a rationally neutral p-cycle for ℘3, then it is topologically
attracting; i.e., there exists an open interval I such that for every x ∈ I ,
limk→∞ ℘

kp
3 (x)= y.

Next, we show that the Schwarzian of ℘3 is negative on any vertical real rhombic
lattice.

Theorem 3.4. If 3 is a vertical real rhombic lattice, then S℘3 < 0.

Proof. Suppose g3 > 0 and g3
2 − 27g2

3 6= 0. From Lemma 2.3, g3 > 0 implies that
the critical value e1 is also positive. Further, e1 is the absolute minimum of ℘3 by
Lemma 2.3, so it follows that ℘3(x) > 0 for all x except lattice points when g3 > 0.
Rearranging (5) to (

℘ ′′3(x)
℘ ′3(x)

)2

= ℘3(2x)+ 2℘3(x),

we find that

S℘3(x)=
℘ ′′′3 (x)
℘ ′3(x)

− 6℘3(2x)− 12℘3(x). (6)

Twice differentiating (1) yields ℘ ′′′3 = 12℘3℘
′

3, and substituting into (6), we find

S℘3(x)=−6℘3(2x).

Because ℘3(x) > 0, we have S℘3(x)=−6℘3(2x) < 0. �

We show graphs of ℘3 and S℘3 on the lattice with invariants g2(3) = 4 and
g3(3) = 2 in Figure 4. Note that the proof of Theorem 3.4 did not rely on our
assumption that the lattice was rhombic but instead relied on the critical value being
positive. Thus it provides a new and much simpler proof that the Schwarzian is
negative for real rectangular lattices when g3 > 0.
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Figure 4. Graph of ℘3 shown in blue and S℘3 shown in yellow
for g2 = 4 and g3 = 2. The line y = x is shown in red.

The corollary below follows immediately from Theorems 3.3 and 3.4.

Corollary 3.5. If 3 is a vertical real rhombic lattice, then ℘ has either 0 or 1 real
attracting or parabolic cycles. If there exists a real nonrepelling cycle, then a real
critical point is contained in the cycle of Fatou components.

The assumption that 3 is a vertical real rhombic lattice is far from trivial. In fact,
it seems to be necessary because the next example, found experimentally, shows
that horizontal lattices might violate Corollary 3.5.

Example 3.6. Consider ℘3(x) with g2 = 27 and g3 =−27.07, shown in Figure 5.
In this case, 3 is a horizontal real lattice since g3 < 0. This function has only one

y

x
-6 -4 -2 2 4 6

x

-6

-4

-2

2

4

6

y

Figure 5. The graph of ℘3 as described in Example 3.6, which
has a real attracting fixed point that does not attract a real critical
point. The function ℘3 is shown in blue, and the line y = x is
shown in red.
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real critical value, but it has two real attracting fixed points. The critical value at
x ≈−2.997 is attracted to the attracting fixed point at x ≈−3.0006. There is an
additional attracting fixed point at x ≈ 1.50037 that does not attract any real critical
points.

4. Dynamics on the complex plane

Connectivity properties of Julia sets of Weierstrass elliptic functions are not well
understood except for the most regular cases where the lattice is square or triangular
[Clemons 2012; Hawkins 2006; 2010; Hawkins and Look 2006; Hawkins and Koss
2002; 2004; 2005]. It is not clear whether the Julia set of an arbitrary real rhombic
lattice or real rectangular lattice is connected, Cantor, or infinitely disconnected but
not Cantor.

In this section, we examine what the results of Section 3 imply for the complex
function ℘3. In Sections 4A and 4B, we prove some results about the Julia set
restricted to the real axis. In Section 4C, we find invariants for which the Julia set
is the entire sphere.

4A. The real axis lies in the Julia set. Here, we present conditions under which
the entire real axis must lie in the Julia set. We begin with a theorem, proved in
[Hawkins and Koss 2005]. It required knowing that the real critical value belonged
to the Julia set, as well as information about the orbits of the complex critical points.

Theorem 4.1 [Hawkins and Koss 2005]. If 3 is a real rhombic lattice such that
the complex critical values are associated with nonrepelling complex cycles and
the real critical value is in J (℘3), then the real and imaginary axes are contained
in J (℘3).

The hypotheses about the orbits of the complex critical values are necessary
because of behavior such as that which occurs in Example 3.6: it may be possible
that the real critical value lies in J (℘3) but there is a real attracting cycle that
attracts the complex critical values. However, the results in Section 3 enable us to
remove the hypotheses relating to the orbits of the complex critical values for ℘3
on a vertical real rhombic lattice.

Theorem 4.2. If 3 is a vertical real rhombic lattice and the real critical value is in
J (℘3), then the real and imaginary axes are contained in J (℘3).

Proof. By Proposition 2.9(5), ℘3 has no Herman rings. By Theorem 2.2, ℘3 is
real. No interval in R can lie within a Siegel disk component because ℘3 : R→ R,
which would contradict that ℘n

3 is conjugate to an irrational rotation of the unit
disk. Since the real critical value lies in J (℘3), Corollary 3.5 implies that there
are no attracting or parabolic cycles on the real axis. Therefore, the entire real axis
must lie in J (℘3). Proposition 2.5(5) implies that the imaginary axis maps to the
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Figure 6. The function ℘3 for g2 = 1 and g3 = 6.5 has the real
and imaginary axes lying in the Julia set.

real axis, and thus the imaginary axis must lie in J (℘3) by the invariance of the
Julia set. �

Figure 6 illustrates an example, found experimentally, of a function ℘3 for which
the real axis lies in the Julia set. The lattice 3 in this example has invariants g2 = 1
and g3 = 6.5. The function has two attracting fixed points at −0.607± 0.942i ,
each of which attracts a complex critical value. All points colored pink iterate to
−0.607+ 0.942i , and all points colored purple iterate to −0.607− 0.942i . Points
colored blue lie in the Julia set.

4B. The Julia set restricted to the real axis is Cantor. Next, we move to a discus-
sion about conditions which imply that the Julia set restricted to the real axis is
Cantor. In [Hawkins and Koss 2005], any real rectangular square lattice or real
triangular lattice with an attracting fixed point was shown to have a Cantor Julia set
on the real axis. Here we extend the result to all real rectangular and all vertical
real rhombic lattices.

The following proposition is an amalgamation of results from [Hawkins and
Koss 2002; 2005].

Proposition 4.3. Assume that 3 is a real rectangular or vertical real rhombic
lattice with real period λ1 such that ℘3 has an attracting fixed point. If 3n0 =

[n0λ1, (n0+ 1)λ1] is the interval containing e1, then the attracting fixed point tn0 is
in 3n0 . Further, there is a repelling fixed point Pn0 ∈3n0 where Pn0 = cn0 + q for
the critical point cn0 ∈3n0 and 0< q < 1

2λ1. Then B = (P ′n0
, Pn0) is the immediate

basin of attraction for tn0 , where P ′n0
= cn0 − q.

In addition, we need the following lemma in the proof.
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Lemma 4.4. If 3 is a real rectangular or vertical real rhombic lattice then ℘ ′3(x)
is monotone increasing.

Proof. We begin with (4),

℘ ′′3(x)= (6℘3(x))
2
−

1
2 g2.

If g2 < 0, then ℘ ′′3(x) > 0 at all x except lattice points.
Next, suppose g2 > 0 and g3 > 0. Using Lemma 2.3, e1 is the minimum of ℘3

on the real axis, so

℘ ′′3(x)= (6℘3(x))
2
−

1
2 g2 ≥ 6e2

1−
1
2 g2. (7)

Using the second property from (3),

6e2
1−

1
2 g2 = 6e2

1+ 2(e1e3+ e2e3+ e1e2)= 6e2
1+ 2e1(e2+ e3)+ 2e2e3.

Using the first property from (3),

6e2
1+ 2e1(e2+ e3)+ 2e2e3 = 6e2

1− 2e2
1+ 2e2e3 = 4e2

1+ 2e2e3. (8)

Finally, we apply the third property from (3) to obtain

4e2
1+ 2e2e3 = 4e2

1+
g3

2e1
.

Since g3 > 0 and e1 > 0 by Propositions 2.5(2) and 2.6(2), we have ℘ ′′3(x) > 0.
Finally, if g3 < 0 and 3 is real rectangular, Proposition 2.6(3) implies that

e2 < 0< e3 < e1, and e1 is the minimum of ℘3 on the real axis. Using the argument
from (7) to (8) in the previous paragraph, we have

℘ ′′3(x) > 4e2
1+ 2e2e3.

Using the first property from (3),

4e2
1+ 2e2e3 = 4e2

1+ 2e3(−e1− e3)

= 2(e2
1− e1e3)+ 2(e2

1− e2
3).

Since 0< e3 < e1, both terms are positive, so ℘ ′′3(x) > 0.
Thus, ℘ ′3(x) is monotone increasing over the intervals on which it is defined. �

The concavity can be observed in Figure 4. We are now ready to prove the main
result of this section.

Proposition 4.5. If3 is a real rectangular or vertical real rhombic lattice for which
℘3 has a real attracting fixed point, we have the following for any λ ∈3:

(1) J (℘3)∩ (R+ λ) is a Cantor set.

(2) J (℘3)∩
(
{z | z = iy, y ∈ R}+ λ

)
is a Cantor set.
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Proof. Using the notation of Proposition 4.3, let B = (P ′n0
, Pn0) be the immediate

basin of attraction for the attracting fixed point tn0 lying in the interval 3n0 . By
Lemma 2.3 and Proposition 2.9, if 3j = [ jλ1, ( j + 1)λ1], then ℘3(3j )= [e1,∞]

for all j . Further, ℘−1
3 (B) consists of infinitely many disjoint open intervals, one in

each 3j , each of which is a translation of B by a real lattice point. We label those
intervals Bj ⊂3j . We label the intervals complementary to the Bj using C j such that
Co contains the pole at the origin; then Cn0+1 contains the repelling fixed point Pn0 .

Let s = |℘ ′3(Pn0)| > 1 and α = 1
2(1+ s). Since ℘ ′3 is strictly monotonic by

Lemma 4.4,
℘3 : C j → [e1,∞]\ (B ∩ [e1,∞])

for each j , and |℘ ′3(x)|> α > 1 for each x ∈ C j .
Defining

JR =
{

x ∈ R
∣∣ ℘m

3(x) ∈
⋃

j≥n0
C j for all m for which ℘m

3 is analytic
}
,

we have
z ∈ JR ⇐⇒ z ∈ J (℘3)∩R.

Since |℘ ′3(z)| > α > 1 for all z ∈ C j , we know diam(℘−m
3 C j )→ 0 as m →∞.

Standard arguments imply that JR is a Cantor set (see [Devaney and Keen 1988]).
To show that the intersection of the Julia set with the imaginary axis is Cantor, we

need to investigate rectangular lattices and vertical real rhombic lattices separately.
First, if 3 is vertical real rhombic, then by Proposition 2.5(5) and the evenness
of ℘3, every point x ∈ (−∞, e1) has infinitely many pairs of preimages of the
form ±ia, a ∈ R, that lie on the imaginary axis. More precisely, let λ′ = λ− λ̄
denote the period of ℘3 along the imaginary axis, and set

3′j =
{
z ∈ C

∣∣ Re(z)= 0 and jλ′ < Im(z) < ( j + 1)λ′
}
;

we can think of 3′j as a set of line segments along the imaginary axis on which ℘3
is periodic. Then in each 3′j , j ∈ Z, there are exactly two preimages of every point
x ∈ (−∞, e1). Therefore, for each j , the set

℘−1
3 (JR)∩3′j = J (℘3)∩3′j

is a homeomorphic image of JR and hence a Cantor set. If we denote by JRi the
set J (℘3)∩ {z = iy}, then we have shown that JRi is a Cantor set.

Finally, if 3 is real rectangular, then by Proposition 2.6(4) and the evenness
of ℘3, every point x ∈ (−∞, e2) again has infinitely many pairs of preimages of
the form ±ia, a ∈ R, that lie on the imaginary axis. If 3 = [λ1, λ2], where λ2 is
pure imaginary, then let

3′j =
{
z ∈ C

∣∣ Re(z)= 0 and jλ2 < Im(z) < ( j + 1)λ2
}
.

Proceeding as in the vertical real rhombic case, JRi is Cantor. �
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Figure 7. An example where the Julia set restricted to the real axis
is Cantor.

We note that finding examples that satisfy the hypothesis of Proposition 4.5 is
straightforward using the homogeneity property.

Corollary 4.6. Let 0 be a standard real rectangular or a standard real vertical
rhombic lattice, where γ1 is chosen to be the smallest positive real lattice point.
If m is any positive odd integer, k = 3

√
2/(mγ1), and 3= k0, then

(1) J (℘3)∩ (R+ λ) is a Cantor set,

(2) J (℘3)∩
(
{z | z = iy, y ∈ R}+ λ

)
is a Cantor set

for any λ ∈3.

Proof. Let 0 be a standard real rectangular or a standard real vertical rhombic
lattice, where γ1 is chosen to be the smallest positive real lattice point, m a positive
odd integer, k = 3

√
2/(mγ1), and 3= k0. Lemma 2.1(2) implies

℘3
( 1

2λ1
)
= ℘k0

( 1
2 kγ1

)
=

1
k2℘0

( 1
2γ1

)
=

1
2 mλ1.

Thus 1
2 mλ1 is a superattracting fixed point by the periodicity of ℘3. Proposition 4.5

gives the result. �

Figure 7 illustrates an example constructed through Corollary 4.6 of a function℘3
for which the intersection of the real axis and the Julia set is Cantor. We begin with
the standard real vertical rhombic lattice 0 with invariants g2(0)=−1 and g3(0)=5
and obtain the lattice 3 with invariants g2(3)≈−1.269 and g3(3)≈ 7.148. The
function ℘3 has a superattracting fixed point at approximately 1.126. Points colored
pink in Figure 7 iterate to the superattracting fixed point, and points colored blue
lie in the Julia set.
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4C. Invariants for which the Julia set is everything. Lemma 2.7 was used in
[Hawkins and Koss 2002; 2004] to find isolated examples for which the Julia set
of ℘3 is the entire sphere by constructing real lattices for which all three critical
values were prepoles. These results were broadened to ℘3 for every real rhombic
square lattice 3 in [Hawkins 2010] and a countable number of real rectangular
lattices 3 in every similarity class in [Koss 2014]. For real rhombic square or real
rectangular lattices, the entire postcritical orbit of ℘3 is real, except for at most two
points. The Schwarzian derivative was used to show that the functions examined in
these papers have no Fatou components.

For real rhombic lattices, the postcritical set is not real. However, we can use
the results of Section 3 to find parameters in each real rhombic shape equivalence
class for which the Fatou set is empty.

Theorem 4.7. Let 0 be a standard real vertical rhombic lattice, where γ1 is chosen
to be the smallest positive real lattice point. If m is any positive integer and
k = 3
√

1/(mγ1), then ℘3 on the lattice 3= k0 has J (℘3)= C∞.

Proof. Let 0, m, k, and 3 be defined as in the hypothesis. Since m is a positive
integer, k > 0 and 3 is a real vertical rhombic lattice. By Proposition 2.9(5),
℘3 has no Herman rings. By Lemma 2.7, ℘3

(1
2λ1

)
= mλ1 = e1 is a pole. By

Proposition 2.5(4), Re(e2)= Re(e3)=−
1
2 mλ1, so e2 and e3 lie on a vertical line

passing through a real lattice point or a real half-lattice point. Proposition 2.5(5)
implies

℘3(e2)= ℘3(e3) ∈ R∪ {∞}.

Using Theorem 2.2, the postcritical set is a subset of R∪ {e1, e2,∞}. No interval
in R can lie within a Siegel disk component because ℘3 : R→ R, which would
contradict that ℘n

3 is conjugate to an irrational rotation of the unit disk. No subset
of R can form the boundary of a Siegel disk since ℘3 is periodic with respect to
3. Theorem 3.3 implies that if there were an attracting or parabolic cycle of Fatou
components, then the cycle must lie on the real axis and contain a real critical point,
a contradiction to the assumption that all real critical points are prepoles. Thus
there can be no Fatou components, and J (℘3)= C∞. �

We can use Theorem 4.7 and previous results from [Hawkins 2010; Koss 2014]
to illustrate parameters in the (g2, g3)-plane for which J (℘3)= C∞. We show an
approximation of the locus of parameters for the cases m = 1, 2, 3, and 4 from
Theorem 4.7 in this paper and the corresponding Theorem 4.3 in [Koss 2014] in
increasingly darker shades in Figure 8: light blue corresponds to m = 1, medium
blue corresponds to m = 2, dark blue corresponds to m = 3, black corresponds to
m = 4. If 3 is a real rhombic square lattice, then J (℘3)= C∞ [Hawkins 2010];
these lattices appear in gray in Figure 8 as the negative real axis.



DYNAMICS OF VERTICAL REAL RHOMBIC WEIERSTRASS ELLIPTIC FUNCTIONS 377

g3

g2

50

0

50

−50 0 50

Figure 8. The locus of parameters for which J (℘3)= C∞.
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Pattern avoidance in double lists
Charles Cratty, Samuel Erickson, Frehiwet Negassi and Lara Pudwell

(Communicated by Anant Godbole)

We consider pattern avoidance in a subset of words on {1, 1, 2, 2, . . . , n, n} called
double lists. We enumerate double lists avoiding any permutation pattern of length
at most 4 and completely determine the corresponding Wilf classes.

1. Introduction

Let Sn be the set of all permutations on {1, 2, . . . , n}. Given π ∈ Sn and ρ ∈ Sm ,
we say that π contains ρ as a pattern if there exists 1≤ i1 < i2 < · · ·< im ≤ n such
that πia ≤ πib if and only if ρa ≤ ρb. In this case we say that πi1 · · ·πim is order-
isomorphic to ρ, and that πi1 · · ·πim is an occurrence of ρ in π. If π does not con-
tain ρ, then we say that π avoids ρ. An inversion is an occurrence of the pattern 21,
and a coinversion is an occurrence of the pattern 12. Pattern-avoiding permutations
have been well-studied with applications to algebraic geometry, theoretical computer
science, and more. Of particular interest are the sets Sn(ρ)= {π ∈ Sn | π avoids ρ}.
Let sn(ρ)= |Sn(ρ)|. It is well known that sn(ρ)=

(2n
n

)
/(n+ 1) for ρ ∈ S3 [Knuth

1968]. For ρ ∈ S4, three different sequences are possible for {sn(ρ)}n≥1. Two of
these sequences are well-understood, but the computation of sn(1324) remains open
for n ≥ 37 [Conway and Guttmann 2014].

Pattern avoidance has been studied for a number of combinatorial objects other
than permutations. The definition above extends naturally for patterns in words (i.e.,
permutations of multisets) and there have been several algorithmic approaches to
determining the number of words avoiding various patterns [Brändén and Mansour
2005; Burstein 1998; Jelínek and Mansour 2009; Pudwell 2010].

In another direction, a permutation may be viewed as a bijection on [n] =
{1, . . . , n}. When we graph the points (i, πi ) in the Cartesian plane, all points lie
in the square [0, n+ 1]× [0, n+ 1], and thus we may apply various symmetries of
the square to obtain involutions on the set Sn . For π ∈ Sn , let πr

= πn · · ·π1 be the
reverse of π and let π c

= (n+ 1− π1) · · · (n+ 1− πn) be the complement of π .

MSC2010: 05A05.
Keywords: permutation pattern, double list, Wilf class, Lucas number.
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π = 1342 π r
= 2431 π c

= 4213

Figure 1. The graphs of π = 1342, πr
= 2431, and π c

= 4213.

For example, the graphs of π = 1342, πr
= 2431, and π c

= 4213 are shown in
Figure 1. Pattern avoidance in centrosymmetric permutations, i.e., permutations π
such that πrc

= π , has been studied by Egge [2010] and by Barnabei, Bonetti and
Silimbani [Barnabei et al. 2010]. Ferrari [2011] generalized this idea to pattern
avoidance in centrosymmetric words. In all of these cases, knowing the first half of
the word or permutation uniquely determines the second half.

A final variation involves circular permutations. In a circular permutation π1 · · ·πn ,
we consider the last digit in the permutation to be adjacent to the first and two
permutations are considered the same if they differ by only a rotation. For example,
1234, 2341, 3412, and 4123 are all the same circular permutation. A circular permu-
tation π is said to contain ρ as a pattern if there exists a rotation of π that contains ρ.
Circular permutations avoiding permutation patterns were studied by Callan [2002]
and Vella [2002/03], who obtained a number of interesting enumeration sequences.

In this paper we consider a specific type of word that borrows ideas from cen-
trosymmetric and circular permutations. In particular, we define the set of double
lists on n letters to be

Dn = {ππ | π ∈ Sn}.

In other words, a double list is a permutation of {1, . . . , n} concatenated with itself.
We see immediately that |Dn| = n!. As with centrosymmetric objects, knowing the
first half of a double list determines the second half. As with circular permutations,
we have taken a permutation and appended the end to the beginning. Yet, double
lists are a new combinatorial object of interest in their own right. Consider

Dn(ρ)= {σ ∈ Dn | σ avoids ρ},

and let dn(ρ)= |Dn(ρ)|. We obtain a number of interesting enumeration sequences
for {dn(ρ)}n≥1 with connections to other combinatorial objects. The goal of this
paper is to completely determine dn(ρ) for ρ ∈ S1 ∪S2 ∪S3 ∪S4.

2. Avoiding patterns of length 1, 2, or 3

The main focus of this paper is avoidance of length-4 patterns, but for completeness
we first consider shorter patterns. First, notice that the graph of a double list σ ∈Dn
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is a set of points on the rectangle [0, 2n+ 1] × [0, n+ 1]. Using the reverse and
complement involutions described in Section 1, we see that

σ ∈Dn(ρ) ⇐⇒ σ r
∈Dn(ρ

r ) ⇐⇒ σ c
∈Dn(ρ

c).

We will partition the set of permutation patterns of length m into equivalence classes,
where ρ ∼ τ means that dn(ρ)= dn(τ ) for n ≥ 1. In this case ρ and τ are said to
be Wilf equivalent. When this equivalence holds because of one of the symmetries
of the rectangle, we say that ρ and τ are trivially Wilf equivalent. Using trivial Wilf
equivalence, we have 12∼ 21, 123∼ 321 and 132∼ 213∼ 231∼ 312, so we need
only consider four patterns in this section: 1, 12, 123, and 132.

Avoiding a pattern of length 1 or length 2 is trivial. It is straightforward to check
that for n ≥ 1, we have dn(1)= 0, and similarly

dn(12)= dn(21)=
{

1 if n = 1,
0 if n ≥ 2.

With pattern-avoiding permutations, avoiding a pattern of length 3 is the first
nontrivial enumeration, and for any pattern ρ of length 3, we have that sn(ρ) is
the n-th Catalan number. Double lists are more restrictive, so we obtain simpler
sequences for dn(ρ). More strikingly, although sn(123) = sn(132) for n ≥ 1, we
obtain two distinct sequences in this new context.

Proposition. dn(123)= dn(321)=
{

n! if n ≤ 2,
1 if n ≥ 3.

Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3. However,
for n ≥ 3, the unique double list avoiding 123 is n · · · 1n · · · 1. We verify this
directly for the six members of D3, with a copy of 123 underlined in each of the
other five double lists: 123123, 132132, 213213, 231231, 312312. Now, assume
Dn(123)={n · · · 1n · · · 1} and consider Dn+1(123). Given σ ∈Dn+1(123), let σ ′ be
the double list obtained by deleting both copies of n+1 in σ. Since σ ∈Dn+1(123),
we know σ ′ ∈ Dn(123). By assumption, σ ′ = n · · · 1n · · · 1. To construct σ, we
must only reinsert the two copies of n+ 1 so that σ avoids 123. If n+ 1 is inserted
after the initial n, then we have 1n(n+ 1) as a copy of 123 in σ , where the 1 is in
the first half of σ, and n(n+ 1) is in the second half of σ. Therefore, n+ 1 must be
inserted before the initial n, and Dn+1(123)= {(n+ 1)n · · · 1(n+ 1)n · · · 1}. �

Finally, we consider double lists avoiding 132.

Proposition. dn(132)= dn(213)= dn(231)= dn(312)=


n! if n ≤ 2,
1 if n = 3,
0 if n = 4.

Proof. For n ≤ 2, all double lists avoid permutation patterns of length 3. However,
for n = 3, the unique double list avoiding 132 is 231231. Indeed for the other
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five double lists in D3, we have 123123, 132132, 213213, 312312, 321321. Now,
consider the four ways to insert 4 into 231231: 42314231, 24312431, 23412341,
23142314. We see (via the underlined occurrences) that each of these double lists
contains a 132 pattern. If there are no 132-avoiding double lists of length n, then
there are no 132-avoiding double lists of length n+1, since deleting both occurrences
of n+ 1 in such a list should produce another 132-avoiding double list. �

At this point, we have completely characterized double lists avoiding a single
pattern of length 1, 2, or 3. Although we obtained only trivial sequences, the fact that
we obtained two distinct Wilf classes for avoiding patterns of length 3 is a noteworthy
difference between avoidance in double lists and avoidance in permutations.

3. Avoiding patterns of length 4

The remainder of this paper is concerned with double lists avoiding a single pattern
of length 4. Using the symmetries of the rectangle, we can partition the 24 patterns
of length 4 into eight trivial Wilf classes, as shown in Table 1. Notably, the
trivial Wilf equivalences are the only Wilf equivalences for patterns of length 4.
This is in contrast to the case for pattern-avoiding permutations. In that context,
we have an additional trivial Wilf equivalence since sn(ρ) = sn(ρ

−1) for n ≥ 1,
so sn(1342) = sn(1423). As it turns out, there are a number of nontrivial Wilf
equivalences for pattern-avoiding permutations so that every length-4 pattern is
equivalent to one of 1342, 1234, or 1324. For large n, we have

sn(1342•) < sn(1234†) < sn(1324◦).

In Table 1 each pattern is marked according to its Wilf equivalence class for
permutations; patterns equivalent to 1342 are marked with •, those equivalent to
1234 are marked with †, and those equivalent to 1324 are marked with ◦. A closer
look at the table reveals a couple more subtleties of the pattern-avoiding double

pattern ρ {dn(ρ)}
10
n=1

1342• ∼ 2431• ∼ 3124• ∼ 4213• 1, 2, 6, 12, 15, 15, 15, 15, 15, 15
2143†

∼ 3412† 1, 2, 6, 12, 13, 14, 16, 18, 20, 22
1423• ∼ 2314• ∼ 3241• ∼ 4132• 1, 2, 6, 12, 17, 23, 27, 30, 33, 36
1432†

∼ 2341†
∼ 3214†

∼ 4123† 1, 2, 6, 12, 17, 23, 31, 40, 50, 61
1243†

∼ 2134†
∼ 3421†

∼ 4312† 1, 2, 6, 12, 19, 25, 34, 44, 55, 67
2413• ∼ 3142• 1, 2, 6, 12, 18, 29, 47, 76, 123, 199
1324◦ ∼ 4231◦ 1, 2, 6, 12, 21, 38, 69, 126, 232, 427
1234†

∼ 4321† 1, 2, 6, 12, 27, 58, 121, 248, 503, 1014

Table 1. Enumeration of double lists avoiding a pattern of length 4.



PATTERN AVOIDANCE IN DOUBLE LISTS 383

lists problem. For permutations, the monotone pattern 1234 is neither the hardest
nor the easiest pattern to avoid; for double lists, it is the easiest pattern to avoid.
Similarly, one might expect that all patterns equivalent to 1324 may produce smaller
sequences than those avoiding 1234, which produce smaller sequences than those
avoiding 1324, but this is also not the case. Other than the trivial equivalences of
reverse and complement, Wilf equivalence in the context of double lists appears to
be a very different phenomenon than equivalence in the context of permutations.
We now consider each of these patterns in turn.

3.1. The pattern 1342. The pattern 1342 is the hardest permutation of length 4 to
avoid, and, from initial data, is the easiest pattern for which to conjecture a general
enumeration formula.

Theorem 1. dn(1342)=


n! if n ≤ 3,
12 if n = 4,
15 if n ≥ 5.

Proof. For n≤3, all double lists avoid 1342, and for n=4, a check of the 24 members
of Dn yields exactly 12 that avoid 1342. They are 12431243, 21342134, 23142314,
23412341, 24132413, 24312431, 31243124, 32143214, 32413241, 42314231,
43124312, 43214321.

We now consider Dn(1342) for n ≥ 5 and make three key structural observations.
Let σ =ππ ∈Dn(1342) and let σ ′=π ′π ′ ∈Dn−2(1342) be the double list obtained
by deleting both copies of n and both copies of n− 1 from σ. Then:

(1) π ′ avoids 123.

(2) π ′ contains at most one coinversion.

(3) If π ′ contains a coinversion, then the coinversion is composed of the digits 1
and 2 or the digits 2 and 3.

For the first observation, suppose to the contrary that π ′ contains 123 and the
occurrence of 123 is formed by the digits π ′a < π

′

b < π
′
c. If n (resp. n− 1) appears

before π ′b or after π ′c in π, then π ′aπ
′
cnπ ′b (resp. π ′aπ

′
c(n−1)π ′b) is a copy of 1342 in

σ = ππ. Therefore, n and n− 1 must both appear between π ′b and π ′c in π. If they
are in increasing order, then π ′a(n− 1)nπ ′c is a copy of 1342 in π , and thus in σ. If
they are in decreasing order, then π ′a(n− 1)nπ ′c is a copy of 1342 in σ. Since we
have exhausted all possible options, it must be the case that π ′ avoids 123.

For the second observation, we know π ′ avoids 123, so if π ′ contains two
coinversions, either (a) π ′ contains the pattern 132, (b) π ′ contains the pattern 213,
or (c) π ′ contains the pattern 3412. It can be shown that cases (a) and (b) are
impossible by an analysis similar to the previous paragraph, conditioning on various
possible positions of n and n− 1. Case (c) is even more readily discounted, since
34123412 already contains a copy of 1342.
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Finally, if π ′ contains a coinversion, we show that it must use two consecutive
digits and they must include the digit 2. Suppose on the contrary that we have the
coinversion π ′i < π

′

j , where |π ′j −π
′

i |> 1. Then no matter the location of π ′i + 1, it
forms a coinversion with either π ′i or π ′j . This contradicts our previous observation
that π ′ contains at most one coinversion. Therefore, the coinversion must use
consecutive digits. Now suppose the coinversion uses digits π ′i and π ′i + 1, where
π ′i ≥ 3. To avoid other coinversions, it must be the case that

π ′ = (n− 2)(n− 3)(n− 4) · · · (π ′i + 3)(π ′i + 2)π ′i (π
′

i + 1)(π ′i − 1)(π ′i − 2) · · · 21.

However, in this case, 1π ′i (π
′

i+1)2 is a copy of 1342 in σ. Therefore, any coinversion
must either use the digits 1 and 2 or the digits 2 and 3.

Using these three observations, we see that there are only three possible forms
for π ′. They are (n− 2) · · · 1 (the decreasing permutation), (n− 2) · · · 4231, and
(n− 2) · · · 312. Now, we consider ways to reinsert n and n− 1 into π ′ to form π

so that σ = ππ is a member of Dn(1342). There are six ways to insert them into
the decreasing permutation; namely,

n · · · 1, (n− 1) · · · 1n, (n− 1) · · · 2n1,

(n− 2) · · · 1n(n− 1), (n− 2) · · · 2n1(n− 1), (n− 2) · · · 2n(n− 1)1.

There are also six ways to insert them into (n− 2) · · · 4231; namely,

n · · · 4231, (n− 1) · · · 4231n,

(n− 1) · · · 423n1, (n− 2) · · · 4231n(n− 1),

(n− 2) · · · 423n1(n− 1), (n− 2) · · · 423n(n− 1)1.

Finally, there are only three ways to insert them into (n− 2) · · · 312; namely,

n · · · 312, (n− 1) · · · 312n, (n− 2) · · · 312n(n− 1).

These 15 permutations π uniquely describe all possible members σ = ππ ∈

Dn(1342) for n ≥ 5. �

To illustrate, the 15 members of D6(1342) are shown in Figure 2. While an even-
tually constant sequence is expected for smaller patterns, the constant sequence 15
is perhaps a bit more surprising in this context. Nonetheless the structural argument
in this proof sets the stage for several of the proofs in the following subsections.

3.2. The patterns 2143 and 1423. Two of our patterns yield avoidance sequences
that grow linearly.

Theorem 2. dn(2143)=


n! if n ≤ 3,
12 if n = 4,
13 if n = 5,
2(n+ 1) if n ≥ 6.
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Figure 2. The members of D6(1342).

Proof. The cases for n≤ 5 are easily verified by brute force methods, so we focus on
the case where n ≥ 6. Intuitively there are an even number of double lists avoiding
2143 for a geometric reason. We have 2143rc

= 2143, so ρ avoids 2143 if and only
if ρrc avoids 2143. For n ≥ 6, there are exactly two members σ = ππ of Dn(2143)
that are reverse-complement invariant. If n is even, they are

π = 12 · · · n and π =
n+2

2
· · · n1 · · · n

2
.

If n is odd, they are

π = 12 · · · n and π =
n+3

2
· · · n n+1

2
1 · · · n−1

2
.

All other 2143-avoiders come in pairs ρ and ρrc. However, it turns out that it is
easier to characterize the members of Dn(2143) using other distinguishing features.

Notice that there are no inversions among elements after 1 and larger than 2
in π. Suppose to the contrary that i < j < k, where πi = 1 and πj > πk > 2. Then
21πjπk forms an occurrence of 2143 in σ. Similarly, all elements before n and
other than n− 1 must appear in increasing order. Therefore, there are only three
possible double lists σ = ππ where 1 precedes n: π = 12 · · · n, π = 13 · · · n2, and
π = (n− 1)12 · · · (n− 2)n. So far, we have described three members of Dn(2143),
as shown in Figure 3. It remains to consider when n precedes 1 in π.
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Figure 3. 2143-avoiding lists where 1 precedes n.

Figure 4. 2143-avoiders where n is two positions before 1.

Figure 5. 2143-avoiders where n immediately precedes 1.

If n precedes 1, then there is at most one element between n and 1. Suppose to
the contrary that there are two elements πa > πb that appear between n and 1 in π.
Then πb1nπa forms a 2143 pattern in σ, taking πb1 from the first copy of π and
nπa from the second copy. We have two subcases: either πj−1 = n and πj+1 = 1 or
πj−1 = n and πj = 1.

In the case where πj−1 = n and πj+1 = 1, let i = πj . Consider elements πa

and πb, such that a < j − 1 and b > j + 1. It must be the case that πa > πj > πb;
otherwise, a case analysis shows that σ contains a 2143 pattern. Next, an inversion
πa > πb after πj+1 creates the 2143 occurrence πaπbni in σ, while an inversion
πa > πb before πj−1 creates the 2143 occurrence i1πaπb in σ. Therefore, the only
2143-avoiders in this case are the n− 2 lists where π = (i + 1) · · · ni1 · · · (i − 1)
(2≤ i ≤ n− 1), as shown in Figure 4.

On the other hand, if πj−1 = n and πj = 1, if there is an inversion in π1 · · ·πj−2

or in πj+1 · · ·πn , there is a 2143 pattern with two exceptions. The double lists
where π = 4 · · · n132 or π = (n− 1)(n− 2)n1 · · · (n− 3) are 2143-avoiding. In
addition, we obtain n− 1 lists where π = i · · · n1 · · · i − 1 (2≤ i ≤ n). There are
2+ (n − 1) = n + 1 members of Dn(2143) where n immediately precedes 1, as
shown in Figure 5.

We have now accounted for (n−2)+(n+1)= 2n−1 additional permutations π
such that ππ ∈Dn(2143). Together with the original three lists we have 2n−1+3=
2(n+ 1) double lists avoiding 2143. �

The number of 1423-avoiding double lists also grows linearly but for a different
reason.
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Theorem 3. dn(1423)=



n! if n ≤ 3,
12 if n = 4,
17 if n = 5,
23 if n = 6,
3(n+ 2) if n ≥ 7.

Proof. Again, the cases for n ≤ 6 are easily verified by brute force methods, so we
focus on the case where n ≥ 7. Now, we condition on which of the letters 1 and n
comes first in σ = ππ ∈ Dn(1423).

If 1 precedes n, then all other digits must appear in decreasing order in π ;
otherwise, 1n in the first copy of π and any increasing pair in the second copy
of π form a 1423 pattern in σ = ππ. Further, n must be the last element of π.
Since all other digits appear in decreasing order, if n is not the last digit of π , then
πn = 2, and 1n23 is a 1423 pattern in σ. Since n is last, then either πn−1 = 1,
πn−2 = 1, or πn−3 = 1. Otherwise, πn−3 > πn−2 > πn−1 and 1πn−3πn−1πn−2

is a copy of 1423 in σ, taking the first three digits from the first copy of π and
the remaining digit from the second copy. There are exactly three double lists in
Dn(1423) where 1 precedes n; namely, π = (n−1) · · · 4132n, π = (n−1) · · · 312n
and π = (n− 1) · · · 1n.

Now, suppose n precedes 1. We quickly see that the digits after 1 in π must
appear in decreasing order; otherwise, 1 from the first copy of π and n and the
increasing pair from the second copy form a 1423 pattern. This implies there are at
most two digits after 1 in π ; otherwise, we can form a 1423 pattern using 1πn−2πn

from the first copy of π and πn−1 from the second copy of π. Similarly, all digits
after n and larger than 1 in π must appear in decreasing order.

What can be said about the digits that appear before n? Two things: (a) either the
only digit before n is n− 2, or all digits before n are larger than all digits after n,
and (b) if there are at least four digits before n, then they appear in decreasing order.
For observation (a), if π1 = i and π2 = n, where i < n− 2, then in(n− 2)(n− 1)
forms a 1423 pattern in σ, where the first three digits come from the first copy of π.
Further, if there is more than one digit before n in π , let the first two digits of π be
a and b, where a < b. By assumption there exists a digit c that appears after n in π ,
where a < c. We have either anbc or ancb is a 1423 pattern in σ , where in the first
case, an comes from the first copy of π and in the second case, anc comes from
the first copy of π. Therefore, observation (a) holds. A similar analysis supports
observation (b). If there are two digits before n in π , they may appear in either
order, and if there are three digits before n they may form either a 132 pattern or a
321 pattern as all other patterns lead to a 1423 pattern in σ.

Here, then, is the final enumeration. We have seen three double lists where
πn = n. We have also seen that if n precedes 1, we may choose the position of n, the
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arrangement of the digits before n, and the position of 1 (one of the last three digits),
and then the rest of the double list is decreasing. Therefore, there are three double
lists beginning with n, three beginning with (n−1)n, three beginning with (n−2)n,
three beginning with (n− 2)(n− 1)n, three beginning with (n− 1)(n− 2)n, three
beginning with (n−3)(n−1)(n−2)n, three beginning with (n−1)(n−2)(n−3)n,
and three where πi = n for 5≤ i ≤ n−3. Finally there are two lists where πn−2= n
(since there are only two positions to place 1 following n), and one list where
πn−1 = n. Adding these together, we have 3 · 8+ 3 · (n− 7)+ 3= 3(n+ 2) double
lists avoiding 1423. �

3.3. The patterns 1432 and 1243. The avoidance sequences for two patterns grow
quadratically.

Theorem 4. dn(1432)=


n! if n ≤ 3,
12 if n = 4,
17 if n = 5,
1
2 n2
+

3
2 n− 4 if n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so we
focus on the case where n ≥ 7.

First, consider σ ′ = π ′π ′ ∈ Dn−1(1432). Notice that all digits after n− 1 in π ′

and larger than 1 must appear in increasing order; otherwise, the 1 from the first
copy of π ′ followed by n − 1 and a decreasing pair from the second copy of π ′

form a 1432 pattern.
Now, we claim that if σ ′=π ′π ′ ∈Dn−1(1432), then inserting n immediately after

n−1 produces a member σ = ππ of Dn(1432). Suppose to the contrary that insert-
ing n immediately after n−1 creates a 1432 pattern. Then n must play the role of “4”
in this new occurrence. If n−1 does not play the role of “3”, then using n−1 instead
of n would be a 1432 pattern in σ ′. Therefore, the new forbidden pattern must involve
the n from the first copy of π and the n−1 from the second copy of π with two num-
bers a and b playing the roles of “1” and “2” respectively. Next, if b<n−2, we know
that one copy of n−2 must occur somewhere between the two copies of n−1 in σ ′,
so a(n−1)(n−2)b would be a forbidden pattern in σ ′. Thus, b= n−2. If a< n−3,
then one copy of n−3 must appear somewhere between the two copies of n−2 in σ ′,
so a(n−1)(n−2)(n−3)would be a forbidden pattern in σ ′. Thus, a=n−3. We now
know that in π ′, the largest four digits appear in the order (n− 3)(n− 1)n(n− 2).
We also assume n ≥ 7, so there are at least three smaller digits in π ′. If any of these
smaller digits d appears before n− 1 in π ′, then d(n− 1)(n− 2)(n− 3) would be
a forbidden pattern in σ ′, so it must be the case that all digits smaller than n− 3
appear after n − 1 in π ′. From the previous paragraph, we know that the digits
2, 3, . . . , n− 4 must appear in increasing order before n− 2. Now, 1(n− 2) from
the first copy of π ′, followed by (n− 3)(n− 4) from the second copy of π ′ form
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a forbidden pattern in σ ′. In every case, we have shown that if σ ′ avoids 1432, then
the insertion of n immediately after n− 1 results in σ avoiding 1432 as well.

Further, there is at most one digit after n− 1 in π ′. Suppose to the contrary that
both digits b and c (with b< c) appear after n−1 in π ′. Then a(n−1)cb is a 1432
pattern in σ ′, where the first three digits come from the first copy of π ′. Also, since
we assumed n ≥ 7, there are at least two digits that appear before n− 1 in π ′. Pick
one such digit d , where d 6= a. If d < a, then d(n− 1)ba is a forbidden pattern. If
d > a, then a(n− 1)bd or a(n− 1)db is a forbidden pattern. In any case, we have
shown that σ contains a forbidden pattern not including n, so σ ′ /∈ Dn−1(1432),
which is a contradiction.

Now, we must account for members σ =ππ of Dn(1432)where n does not imme-
diately follow n−1 in π. We consider two cases: n follows n−1 and n precedes n−1.

If n follows n− 1, but not immediately, there can be at most one digit between
them; otherwise, if a < b are two digits between them in π, then an(n− 1)b forms
a 1432 pattern in σ. Further, that one digit between n and n− 1 must be smaller
than all digits before n− 1 and larger than all digits after n. Otherwise, suppose
a< b or b< c, where a is before n−1, b is between n−1 and n, and c is after n. If
a < b, then an(n−1)b forms a forbidden pattern. If b< c, then bn(n−1)c forms a
forbidden pattern. Next, all digits before n−1 in π must appear in increasing order;
otherwise, bn from the first copy of π followed by the descent is a forbidden pattern.
Finally, the only digit that can appear after n is 1. We already have seen that all digits
after n−1 and smaller than n−1 and larger than 1 must appear in increasing order.
A digit cannot be smaller than b and in increasing order with b at the same time.
The only two lists of this form are when π = 2 · · · (n−1)1n or π = 3 · · · (n−1)2n1.

If n precedes n− 1, we have a different situation. We know everything after n
and larger than 1 appears in increasing order; otherwise, 1 from the first copy of π
followed by n and the decreasing pair form a 1432 pattern. Finally we show that
in this case, n must be the first digit of π. Suppose n is preceded by two digits
a < b. Then an(n− 1)b is a forbidden pattern in σ, where an(n− 1) comes from
the first copy of π and b comes from the second copy. Therefore, n must be the
first or second digit in π. Suppose n is preceded by a digit a. If a < n − 2 then
an(n− 1)(n− 2) is a forbidden pattern in σ. If a = n− 2, recall all digits after n
other than 1 must be in increasing order and n ≥ 6 so (n− 4)(n− 1)(n− 2)(n− 3)
is a forbidden pattern. Thus if n precedes n− 1, then n is the first digit of π , and
after choosing the position of 1, the rest of π is uniquely determined. There are
n− 1 choices for the position of 1, so we get n− 1 double lists in this case.

In summary, we have shown that

dn(1432)= dn−1(1432)+ 2+ (n− 1)= dn−1(1432)+ n+ 1,

and combining this with d6(1432)= 23 yields the quadratic formula above. �
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Theorem 5. dn(1243)=


n! if n ≤ 3,
12 if n = 4,
19 if n = 5,
1
2 n2
+

5
2 n− 8 if n ≥ 6.

Proof. Again, the base cases are easily checked by brute force techniques, so we
focus on the case where n ≥ 7.

We claim that if σ ′ = π ′π ′ ∈Dn−1(1243), then appending 1 to the end of π ′ and
increasing all other digits by 1 produces a member σ = ππ of Dn(1243). Suppose
to the contrary that σ contains a 1243 pattern but σ ′ does not. Then the 1 at the end
of the first copy of π must play the role of “1” and π ′ contains a 132 pattern. Further,
the digit 2 in the second copy of π must play the role of “1” in this 132 pattern;
otherwise, taking 2 from the first copy of π followed by the 132 pattern in the
second copy of π implies there is a 1243 pattern in σ ′. Therefore the 1243 pattern
in σ uses 1 from the first copy of π , 2 from the second copy of π , and digits a
and b playing the roles of “4” and “3” respectively.

Further, there are at most two digits between the 2 and the 1 in π. If the digits
between 2 and 1 contain a 132 occurrence then 2 followed by this occurrence is a
forbidden 1243 occurrence. We know that the only double list of length 3 or more
that avoids 132 is 231231. If the digits between 2 and 1 contain the pattern 231231,
then a sublist of σ is 2453124531, which contains the 1243 occurrence 1253. Now,
since n ≥ 7, there are at least three digits appearing before 2. If at least one of
them, c, is less than b, then 2cab is a forbidden pattern in σ. If at least one of
them, d , is greater than a, then 2bda is a forbidden pattern. If all three digits are
greater than b and less than a and there is a decreasing pair e > f , then 2be f is a
forbidden pattern, so we may assume the three digits before 2 appear in increasing
order with e < f < g and are all between a and b in value. However, in this case
e f ag is a forbidden pattern. In all cases we have found a copy of 1243 in σ ′, so it
must be the case that inserting a 1 at the end of π ′ and incrementing all other digits
produces another 1243-avoiding double list.

Now, we consider members σ = ππ of Dn(1243) that do not end in 1. Notice
that 1 must be one of the last three digits of π. If there were three digits after 1
with a < b < c, then in order for the digits 1, a, b, c to avoid 1243, we must have
1bca1bca. Now consider d and e as digits before 1. If d < a then 1dba is a
forbidden pattern. If d > b then 1adb is a forbidden pattern so we may assume d
and e are both between a and b in value. If d > e appear in decreasing order, then
1ade is a forbidden pattern. If d > e appear in increasing order, then edcb is a
forbidden pattern. Thus, it must be the case that there are at most two digits after 1.

Suppose then that 1 is followed by two digits in π. Let a < b be those two
digits. If b < n, then 1anb forms a forbidden pattern, so b = n. Further, we know
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that all digits larger than a must appear in increasing order in π , lest we create
a 1243 pattern using 1 and a as “1” and “2”. Thus, the last three digits of π are
1ab= 1an. If there are at least four digits c< d < e< f larger than a, then cd f e is
a 1243 pattern in σ. So, it must be the case that a ≥ n−3. If a = n−3 or a = n−2,
then 1an(n− 1) is a forbidden pattern, so the only option is to end in 1(n− 1)n.
The digits before 1 must appear in decreasing order; otherwise, the increasing pair
followed by n(n− 1) is a forbidden pattern. In this case, we get one double list
where π = (n− 2) · · · 1(n− 1)n.

Suppose 1 is followed by exactly one digit in π. If π ends in 1i , where
i ≤ n − 4, then all numbers larger than i must be in increasing order in π and
(n− 3)(n− 2)n(n− 1) is a forbidden pattern in σ. If 1 is followed by n, then we
have n− 2 choices for the location of n− 1 and the rest of the digits must appear
in decreasing order, lest we have a 1243 pattern. If 1 is followed by i , where
n − 2 ≤ i ≤ n − 1, then n appears in position n− i and the rest of the digits are
decreasing. If 1 is followed by n−3, we have π = (n−2)(n−1)n(n−4) · · · 1(n−3).
There are 1+ (n− 2)+ 3= n+ 2 possible double lists that do not end in 1.

In summary, dn(1243)= dn−1(1243)+ n+ 2, and putting this together with the
base cases above, we achieve the desired enumeration. �

3.4. The patterns 1234, 2413, and 1324. The results of the previous sections make
a stark contrast with pattern-avoiding permutations, where most avoidance sequences
grow exponentially. However, pattern avoidance in double lists is more restrictive,
so it should not be surprising that we achieve such a variety of behaviors. We
conclude by examining the three final patterns of length 4, each of whose avoidance
sequences exhibits exponential growth.

We begin with the monotone pattern. In the context of permutations, 1234 is
neither the hardest nor the easiest pattern to avoid, but for double lists it turns out
that it is the easiest to avoid.

Theorem 6. dn(1234)=


n! if n ≤ 3,
12 if n = 4,
2n
− n if n ≥ 5.

Proof. If σ = ππ ∈ Dn(1234), where n ≥ 5, the digits of π may be partitioned
into two subsequences: for some i , where 0≤ i ≤ n, the largest i digits appear in
decreasing order in π , the smallest n − i digits appear in decreasing order in π ,
and these two subsequences may be interleaved in any way. In either case, the
permutation π may be encoded by a list of `’s and s’s for whether a digit belongs
to the decreasing subsequence of larger digits or the decreasing subsequence of
smaller digits. There are 2n such encodings of a sequence of n `’s and s’s; however,
n+ 1 of them (those of the form `i sn−i ) encode the decreasing permutation, so we
have overcounted by n. There are 2n

− n double lists avoiding the pattern 1234. �
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The remaining two patterns also produce nice sequences that are characterized
by linear recurrences with constant coefficients. Double lists avoiding 2413 are
counted by the Lucas numbers Ln , where L0 = 2, L1 = 1, and Ln = Ln−1+ Ln−2

for n ≥ 2.

Theorem 7. dn(2413)=


n! if n ≤ 3,
12 if n = 4,
Ln+1 if n ≥ 5.

Proof. As usual, it is straightforward to confirm the theorem via brute force
techniques for specific small n. We show that dn(2413)= dn−1(2413)+dn−2(2413)
for n ≥ 7.

We actually prove a more specific result. Let

Di
n = {σ ∈ Dn(2413) | σ1 = i}

and di
n(2413)= |Di

n(2413)|. It turns out that di
n(2413)= 0 if i /∈ {1, n−2, n−1, n},

and for n ≥ 7,
d1

n (2413)= d1
n−1(2413)+ d1

n−2(2413),

dn−2
n (2413)= dn−2

n−1(2413)+ dn−2
n−2(2413),

dn−1
n (2413)= dn−1

n−1(2413)+ dn−1
n−2(2413),

dn
n (2413)= dn

n−1(2413)+ dn
n−2(2413).

First, consider σ =ππ ∈Di
n(2413) for i /∈ {1, n−2, n−1, n}. If n−2 precedes n

in π then (n−2)ni(n−1) forms a forbidden pattern in σ , where the first two digits
come from the first copy of π and the last two digits come from the second copy.
Therefore, n− 2 comes after n. Now, in1(n− 2) forms a forbidden pattern, where
in comes from the first copy of π , 1 comes from somewhere between the two copies
of n, and n− 2 comes from the second copy of π. In every event, it is impossible
to avoid 2413, so di

n(2413)= 0 for i /∈ {1, n− 2, n− 1, n}.
Next, consider σ = ππ ∈ D1

n(2413). Any coinversion in π that does not include
the digit 1 must consist of a pair of consecutive digits and therefore must appear in
consecutive positions. Suppose to the contrary there is a coinversion with a< b such
that b 6= a+1. Then ab1(a+1) forms a forbidden pattern, where the first two digits
come from the first copy of π. If a(a+1) is a coinversion in nonconsecutive positions,
we have the subsequence ab(a+1) in π. If b<a then b(a+1) is another coinversion
with nonconsecutive digits, which is not allowed. If b > a+ 1 then ab is another
coinversion with nonconsecutive digits, which is still not allowed. We may only
preserve these properties of coinversions by inserting (n−1)n after 1 in any member
of D1

n−2(2413) or inserting n after 1 in any member of D1
n−1(2413) to obtain σ.

Next, consider σ =ππ ∈Dn−2
n (2413). If π1=n−2, we claim that π2=n−1 and

πn = n. Suppose to the contrary that n precedes n− 1. Then (n− 2)n1(n− 1) is a
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forbidden pattern in σ. Now suppose π2= i<n−2. Then (n−2)ni(n−1) is a forbid-
den pattern, so π2= n−1. Finally, suppose πn = i < n−2. Then (n−2)ni(n−1) is
a forbidden pattern, so we know π1= n−2, π2= n−1, and πn = n. Now, the digits
n−2, n−1, and n can only play the role of “4” in a 2413 pattern so any coinversions
amongst the digits 1, . . . , n − 3 in π must appear between consecutive digits in
consecutive positions as in the previous case. Given a member of Dn−4

n−2(2413), we
may increment n−4, n−3, and n−2 by 2 and insert (n−4)(n−3) in the third and
fourth positions to obtain a member of Dn−2

n (2413). For example, 34215∈D3
5(2413)

produces 5634217∈D5
7(2413). Given a member of Dn−3

n−1(2413), we may increment
n−3, n−2, and n−1 by 1 and insert n−3 in the third position to obtain a member
of Dn−2

n (2413). For example, 452316 ∈ D4
6(2413) produces 5642317 ∈ D5

7(2413).
Next, consider σ = ππ ∈ Dn−1

n (2413). Then either π2 = n or πn = n. Suppose
to the contrary that πi = n, where 3≤ i ≤ n−1. First, all digits between n−1 and n
in π must be smaller than all digits after n in π ; otherwise, we have a 2413 pattern
in σ. Since we assume n ≥ 7, either there are at least two digits between n−1 and n
in π or there are at least two digits after n in π. In the first case, suppose the digits
between n−1 and n include a< b and c is a digit after n in π. Then bnac is a 2413
pattern in σ. If the digits after n in π include a < b and c is a digit between n− 1
and n then a(n−1)cb is a forbidden pattern in σ. Therefore n is either the second or
the last digit in π. In the first case, given σ = ππ ∈Dn−3

n−2(2413), where π2 = n−2,
we may prepend (n− 1)n to the front of π to obtain a 2413-avoiding member of
Dn−1

n (2413). If σ =ππ ∈Dn−2
n−1(2413), where π2= n−1, then increment π1 and π2

and insert n− 2 into the third position. For example, 563412 ∈ D5
6(2413) becomes

6753412 ∈ D6
7(2413). Now, if πn = n, we approach the situation differently. If

σ ′ = π ′π ′ ∈ Dn−3
n−2(2413) with π ′n−2 = n− 2, then remove π ′1 and π ′n−2 to obtain a

permutation on {1, . . . , n− 4} then create the new permutation

π = (n− 1)(n− 3)(n− 2)π ′2 · · ·π
′

n−3n.

By inspection, ππ ∈ Dn−1
n (2413). If σ ′ = π ′π ′ ∈ Dn−2

n−1(2413) with π ′n−1 = n− 1,
then remove π ′1 and π ′n−1 to obtain a permutation on {1, . . . , n−3}; then create the
new permutation

π = (n− 1)(n− 2)π ′2 · · ·π
′

n−2n,

where again, by inspection, ππ ∈ Dn−1
n (2413).

Finally, consider σ =ππ ∈Dn
n(2413). Given σ ′=π ′π ′ ∈Dn−2

n−2(2413), delete π ′1
and create

n(n− 2)(n− 1)π ′2 · · ·π
′

n−2n(n− 2)(n− 1)π ′2 · · ·π
′

n−2 ∈ D
n
n(2413).

If σ ′ = π ′π ′ ∈ Dn−1
n−1(2413), prepend n to the front of π ′ to obtain a member σ of

Dn
n(2413). �
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The final sequence is perhaps the most surprising result. The task of enumerating
1324-avoiders in other contexts has proven especially challenging. For double lists,
however, structure is evident beginning with the n = 7 term. It turns out these
double lists satisfy a tribonacci recurrence.

Theorem 8. dn(1324)=



n! if n ≤ 3,
12 if n = 4,
21 if n = 5,
38 if n = 6,
69 if n = 7,
126 if n = 8,
232 if n = 9,
dn−1(1324)+ dn−2(1324)+ dn−3(1324) if n ≥ 10.

Proof. As before, we focus on the n ≥ 10 case, and leave the n ≤ 9 cases to brute
force verification.

First, given σ = ππ ∈ Dn(1324), it is impossible for 1 to precede n if n ≥ 7.
Suppose to the contrary that 1 precedes n. All digits in {2, . . . , n − 1} appear
between the first 1 and the last n and must appear in increasing order to avoid 1324.
Suppose two digits a < b appear between 1 and n in π. Then 1ban is a 1324
pattern in σ. Suppose there is just one digit i between 1 and n in π . If i > 2,
the 1i2n is a forbidden pattern, and if i = 2, then 132n is a forbidden pattern.
Therefore if 1 appears before n, it must be immediately before n and the digits
2, . . . , n− 1 appear in increasing order between the first occurrence of 1n and the
second occurrence of 1n in σ. Since n ≥ 7, there are either three digits a < b < c
before the first 1 (in which case acbn is a forbidden pattern) or there are three digits
a < b< c in π after the first n (in which case 1bac is a forbidden pattern). In every
event we have forced the occurrence of a 1324 pattern, so it is impossible for 1 to
precede n if n ≥ 7.

Now, if n precedes 1, then n must appear as one of the first three digits of π.
Suppose n appears in position i ≥ 4. Then π1 · · ·πi−1π1 · · ·πi−1 must avoid 132.
We have seen that this is impossible for i − 1 ≥ 4, and the only way to do this if
i − 1 = 3 is for π1π2π3 to form a 231 pattern. However, π3 < π1 < π2 implies
π1π2π3n1π1π2π3n1 contains the 1324 pattern 1π2π3n. Therefore n must appear
in one of the first three positions.

Let
Di

n(1324)= {σ ∈ Dn(1324) | σi = n}

and let di
n(1324)=|Di

n(1324)|. We claim that d1
n(1324)= d2

n(1324) and d3
n(1324)=

d1
n−2(1324) for n ≥ 6.

First we show d1
n(1324)= d2

n(1324) for n ≥ 6. We claim that if ππ ∈D2
n(1324),

then π1 and π2 = n can be transposed to produce a member of D1
n(1324). Suppose
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to the contrary that ππ ∈ D2
n(1324) but π2π1π3 · · ·πnπ2π1π3 · · ·πn /∈ D1

n(1324).
In this case, we know π1 < n− 1 since if π1π2 = (n− 1)n, both (n− 1) and n can
only play the role of “4” in a 1324 pattern and transposing them does not change
their involvement. If π1 < n− 1 and it plays the role of a “1” in a pattern where n
plays the role of “4”, we must have used the first copy of π1 and the second copy
of n, so transposing them within each copy of π does not affect the existence of the
1324 patterns. The only other way for both to be involved in the same copy of 1324
that could possibly be destroyed by transposing π1 and π2 is for π1 to play the role
of “2” and n to play the role of “4” in a 1324 pattern in ππ. In this case, suppose
the double list beginning with π1n contains 1324 but the list beginning with nπ1

avoids 1324. Since nπ1π3 · · ·πnnπ1π3 · · ·πn avoids 1324, all digits larger than π1

must appear in increasing order immediately after π1 and π1 ≥ n− 3. Now, a case
analysis shows that any σ beginning with (n−3)n(n−2)(n−1) or (n−2)n(n−1)
cannot have σ1 play the role of “2” in a 1324 pattern, so it is the case that transposing
π1 and π2 provides a bijection between D1

n(1324) and D2
n(1324).

To see that d3
n(1324)= d1

n−2(1324) for n ≥ 6, notice that if ππ ∈D3
n(1324), then

π1 = n− 2 and π2 = n− 1. We know these two numbers must appear in increasing
order since 1 comes after n. If there exists i where π1 < i < π2, then π1π2in is a
forbidden pattern and if there exists i where π2 < i < n, then π1iπ2n is a forbidden
pattern. Since π = (n− 2)(n− 1)nπ3 · · ·πn , we may delete n− 1 and n to obtain
π ′π ′ ∈ D1

n−2(1324).
It remains to show that d1

n(1324) satisfies the tribonacci recurrence (and thus so
do d2

n(1324), d3
n(1324), and dn(1324)). For σ ′ ∈ D1

n−3(1324), replace n− 3 with
n(n−3)(n−2)(n−1) to obtain σ ∈D1

n(1324). For σ ′ ∈D1
n−2(1324), replace n−2

with n(n− 2)(n− 1) to obtain σ ∈ D1
n(1324). For σ ′ ∈ D1

n−1(1324), prepend n to
the front of each copy of π to obtain σ ∈ D1

n(1324). This map sends members of
D1

n−3(1324)∪D1
n−2(1324)∪D1

n−1(1324) to D1
n(1324).

Further, each of these operations is bijective. That is, if σ = ππ ∈ D1
n(1324),

then π either begins with n(n − 1), n(n − 2)(n − 1), or n(n − 3)(n − 2)(n − 1).
Indeed, if π2≤n−4, then n−1, n−2, and n−3 appear in increasing order in π , and
(n−4)(n−2)(n−3)(n−1) is a 1324 pattern in σ, so π2 ≥ n−3. If π2= n−2 and
π3 6= n−1, then πn = n−1. If not, then we see all digits between π2 and n−1 must
be larger than all digits after n−1 in π to avoid a 1324 pattern where n−1 plays the
role of “3” and n plays the role of “4”. However, if a < n− 2 is before n− 1 in π
and b< a is after n−1 in π , then b(n−2)a(n−1) is a copy of 1324 in σ. Therefore,
if π2 = n− 2 and π3 6= n− 1, then πn = n− 1. Now, since we assume n ≥ 6, let
a < b < c be three digits less than n− 2 in π. If πn = n− 1, then a(n− 2)c(n− 1)
is a 1324 pattern in σ, so it must be the case that π3 = n− 1 if π2 = n− 2. Finally,
if π2 = n− 3, then n− 2 appears before n− 1 in π (or (n− 3)(n− 1)(n− 2)n is a
1324 pattern in σ ). If π3 < (n− 3) then π3(n− 2)(n− 3)(n− 1) is a 1324 pattern
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in σ. Now that we know π2 = n− 3 implies π3 = n− 2, a similar analysis to the
case where π2 = n− 2 shows that π4 = n− 1 as well.

By editing appropriate prefixes, we now have a bijection between D1
n(1324)

and D1
n−3(1324)∪D1

n−2(1324)∪D1
n−1(1324), so d1

n(1324) satisfies the tribonacci
recurrence. Because D1

n(1324) is in bijection with D2
n(1324) and D3

n(1324) is
in bijection with D1

n−2(1324), we have d2
n(1324) and d3

n(1324) also satisfy the
tribonacci recurrence. Finally, since

dn(1324)= d1
n(1324)+ d2

n(1324)+ d3
n(1324),

dn(1324) satisfies the tribonacci recurrence as well, which is what we wanted to
show. �

4. Summary

We have now completely characterized dn(ρ) where ρ is a permutation pattern of
length at most 4. The corresponding results are given in Table 2. These results
provide an interesting contrast to pattern-avoiding permutations. First, the only
Wilf equivalences are the trivial ones. Second, the monotone pattern is the easiest
pattern to avoid in the context of double lists. Finally, we obtained a variety of
behaviors (constant, linear, quadratic, and exponential), as opposed to permutation
pattern sequences which only grow exponentially.

pattern ρ dn(ρ) OEIS

1342, 2431, 15 (n ≥ 5) A010854
3124, 4213

2143, 3412 2n+ 2 (n ≥ 6) A005843

1423, 2314, 3n+ 6 (n ≥ 7) A008585
3241, 4132

1432, 2341, 1
2 n2
+

3
2 n− 4 (n ≥ 6) A052905

3214, 4123

1243, 2134, 1
2 n2
+

5
2 n− 8 (n ≥ 6) A183897

3421, 4312

2413, 3142 Ln+1 (n ≥ 5) A000032

1324, 4231 |Dn−1(ρ)| + |Dn−2(ρ)| + |Dn−3(ρ)| (n ≥ 10)

1234, 4321 2n
− n (n ≥ 4) A000325

Table 2. Formulas for dn(ρ), where ρ ∈ S4 and the sequence
numbers in the far right column are from [OEIS 2015].
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The variety of sequence behaviors and the complete classification for length-4
patterns are both exciting developments, but this work raises additional possibilities
for future work. In particular:

(1) Is 1 · · · n the easiest pattern of length n to avoid for all n? Can we characterize
the hardest pattern of length n to avoid in general?

(2) All of the sequences in Table 2 have rational generating functions. Do there
exist patterns ρ where the sequence {dn(ρ)} does not have a rational generating
function?

(3) With the exception of the proof of Theorem 6, the proofs in this paper were
the result of detailed case analysis. While this is a thorough treatment that
reveals much about the structure of pattern-avoiding double lists, it is not the
most elegant approach. What are alternate proofs of these results?
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On a randomly accelerated particle
Michelle Nuno and Juhi Jang

(Communicated by Kenneth S. Berenhaut)

The focus of this note is to learn more about the Kolmogorov equation describing
the dynamics of a randomly accelerated particle. We first explore some existing
results of the Kolmogorov equation from the stochastic and differential equation
points of view and discuss its solvability with and without boundary conditions.
More specifically, we introduce stochastic processes and Brownian motion and
we present a connection between a stochastic process and a differential equation.
After looking at stochastic processes, we introduce generalized functions and
derive the fundamental solution to the heat equation and to the Fokker–Planck
equation. The problem with a reflecting boundary condition is also studied by
using various methods such as separation of variables, self-similarity, and the
reflection method.

1. Introduction

In our studies of mathematics, we will often come across different types of pro-
cesses, including the stochastic process. A stochastic process is one that changes
randomly with time. Even if one starts at the same point, one cannot predict how
the process will evolve in the future. We can use stochastic processes to model
random fluctuations. The best known example of a stochastic process is Brownian
motion, which is the continuous, random movement of particles. It derives its name
from Robert Brown’s study [1828] of pollen floating on water; he noticed that the
pollen grains moved continuously, but he could not find a pattern to their movement.
Brownian motion is also a Markov process, in which future behavior depends only
on the current or previous state, and all other states are irrelevant [Ibe 2013].

Later, Einstein [1905; 1926] derived a diffusion equation for the density of
Brownian particles, whereas Smoluchowski [1906] created a kinetic model to
represent the collision of the particles.

When dealing with stochastic processes, in particular Markov processes, a useful
tool is the Chapman–Kolmogorov equation. This equation is used to determine the
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transition density function for moving from one state to another. The Chapman–
Kolmogorov equation is

p.x; t jy; s/D

Z C1
�1

p.x; t j z; r/p.z; r jy; s/ dz for s < r < t: (1-1)

This equation considers the fact that if you go from y at time s to x at time t ,
you must go through an intermediate point z at time r [van Kampen 1981]. In many
stochastic processes, the Chapman–Kolmogorov equation is very helpful because
again, stochastic processes are random processes. We cannot predict exactly where
a particle will be at a given time; we can only predict the probability that the particle
will be at a certain point in a given time. This applies directly when we look at
Brownian motion. In the case of Brownian motion, the transition probability density
function is

p.x; t jy/D
1
p

2� t
e�.x�y/2=.2t/ for t > 0: (1-2)

It is easy to see that p satisfies the partial differential equation (the heat equation)

@p

@t
D

1

2

@2p

@x2
; (1-3)

and the initial condition p.x; 0 jy/D ı.x � y/. Here ı is a generalized function,
which we will discuss more in detail in Section 3.1. This example illustrates the
connection between Brownian motion (stochastic process) and the heat equation
(differential equation) via the Chapman–Kolmogorov equation.

A wider range of diffusion processes can yield diffusion equations, which are
often called the Fokker–Planck equations. The Fokker–Planck equations have many
different applications such as modeling Brownian motion in drift, finance, and
physics [Risken 1984]. For this reason, it is worthwhile to learn about their many
properties and characteristics. The focus of this note is to investigate some properties
of the simplest kinetic Fokker–Planck equation, also known as the Kolmogorov
equation, given by

@p

@t
D�v

@p

@x
C k

@2p

@v2
; (1-4)

where

p D p.t;x; v/ for x 2 R; v 2 R; t > 0; and k > 0:

Here k is a diffusion coefficient. In the Kolmogorov equation, we have t , x, and v
as single variables, whereas the more complicated forms of the Fokker–Planck
equation consist of vectors in both x and v. It is important to look at the Kolmogorov
equation first because once the simplest form has been studied, similar techniques
may be applied to other forms of the equation.
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Because the Fokker–Planck equation is used to model the movement of particles,
it is necessary to look at some of the ways in which particles behave. In this note
we will look at the case in which a particle moves randomly in a given space. The
particle is not free to move as it pleases though; there is a wall, and once the particle
hits the wall it is bounced back to the original space. In previous works, researchers
(such as Skorohod [1961]) solved similar problems using approximation methods.
In this work, we attempt to do so using separation of variables, self-similarity, and
the reflection method.

2. Stochastic process of Fokker–Planck equation

We start out by determining if, like Brownian motion, the Fokker–Planck equation
(1-4) comes from a stochastic process. For simplicity, we will take kD 1. A general
form of the Fokker–Planck equation is

@p

@t
D�

nX
iD1

@

@xi
.bip/C

1

2

nX
i;jD1

@2

@xi@xj
.aij p/; (2-1)

where n is a positive integer, bi is the drift coefficient and aij is the diffusion
coefficient.

Let us first consider nD 2. Letting x D x1 and v D x2, we see that in (1-4), v
is the same as b1. Since x is not included in this term, we will form a vector Eb such
that Eb D Œx2; 0�

T. Notice also that in (2-1),

1

2

nD2X
i;jD1

@2

@xixj
.aij p/

is nonzero only when both i and j are equal to 2. Therefore a11 D a12 D a21 D 0

and a22 D 2, so we have a matrix

AD .aij /D ��
T
D

�
0 0

0 2

�
:

A stochastic differential equation for EX D Œx1;x2�
T has the form

d EX D Eb. EX ; t/ dt C �. EX ; t/ d EB: (2-2)

Plugging in our values, we have�
dx1

dx2

�
D

�
x2

0

�
dt C

�
0 0

0
p

2

�
d EB:

Multiplying these out, we obtain

dx1 D x2 dt and dx2 D
p

2 dB2:
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Recalling that x D x1; v D x2, and letting dB D �.t/ dt (white noise), we obtain

dx D v dt; dv D
p

2�.t/ dt:

We have found the stochastic differential equation for the Fokker–Planck equation.
Looking at the solution above, we see that

d2x

dt2
D
p

2�.t/:

Therefore, the Kolmogorov equation models a randomly accelerated particle.
We can do the same with the multidimensional Kolmogorov equation with no

external forces. For instance, (1-4) can be generalized as

@p

@t
D�v � rxpC�vp; (2-3)

where p D p.t;x; v/ and x 2 R3, v 2 R3. Recall that

v � rxp D v1@x1
pC v2@x2

pC v3@x3
p: (2-4)

Similar to the previous case, we will let x D .x1;x2;x3/ and v D .x4;x5;x6/.
Notice nD 6 in this case. We see in (2-1), vi is the same as bi . Let

Eb D Œx4;x5;x6; 0; 0; 0�
T :

Notice that in (2-3), the term

1

2

nD6X
i;jD1

@2

@xi@xj
.aij p/

only exists when both i and j are equal to 4, 5, and 6. Therefore, we have a matrix A

in which a44 D a55 D a66 D 2 and all other terms are equal to 0. This gives us
degenerate diffusion, which is different from Brownian motion. Here, “degenerate”
means that the diffusion coefficient matrix is nonnegative, but not positive definite.
We also know that our vector EX D Œx1;x2;x3;x4;x5;x6�

T . Recalling the general
form of a stochastic process (2-2) and plugging in our vectors and multiplying them
out, we obtain

dx1 D x4 dt; dx2 D x5 dt; dx3 D x6 dt;

dx4 D
p

2 dB4; dx5 D
p

2 dB5; dx6 D
p

2 dB6:

We have once again found the stochastic differential equations, so we know that
the kinetic Fokker–Planck equation (2-4) comes from a stochastic process. The
result of this section is well-known and we refer to [van Kampen 1981] for more
discussion on the stochastic processes and the Fokker–Planck equation.
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For the rest of the note, we will study the properties of the solutions to (1-4) and
(2-3) by using various methods.

3. Fundamental solutions of the Fokker–Planck equation

The fundamental solution is the solution of a particular equation with initial data
at a single, concentrated point. The idea behind this is that if we have enough
information about the solution of an equation at this infinitely dense point, we can
draw enough information about the behavior of the equation at other points.

3.1. Delta function and fundamental solutions. We use the delta function (which
is referred to as a generalized function) to represent the infinitely dense point. The
delta function is formally defined by

ı.x� �/D

�
0; x ¤ �;

C1; x D �;

such that Z b

a

ı.x� �/ dx D 1 as long as a< � < b:

An interesting and very helpful property is that for any function f .x/,Z b

a

f .x/ı.x� �/ dx D f .�/ if a< � < b:

The above properties hold even if a D �1 and b D C1. Because of the
information it yields, we often use the delta function as the initial condition when
searching for fundamental solutions.

The definition of a fundamental solution for a linear differential operator L is

LF D 0; F.tD0/ D ı: (3-1)

3.2. Heat equation. In the introduction, we presented an example of the probability
density function for Brownian motion when looking at stochastic processes. In this
section, we show that we can also find a solution without considering a stochastic
process. For instance, we can use the Fourier transform method to give rise to the
fundamental solution of the heat equation [Olver 2014]. We denote the solution as
u.t;x/D F.t;xI �/ and set the initial condition to be F.0;xI �/D ı.x� �/. This
must satisfy the heat equation (1-3), so we know

@F

@t
D
@2F

@x2
:

We must now reconstruct the equation using the properties of linearity and the
Fourier transform method. After solving this, we take the inverse Fourier transform
to obtain the fundamental solution of the heat equation (1-3).
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We find that

F.t;x; �/D
1
p

2�

Z C1
�1

eik.x��/�k2t dk

D
1

2
p
� t

e�.x��/
2=.4t/ for t > 0:

(3-2)

Recall the probability density function (1-2). In this section we obtained the
same result, except we are off by a multiple of 1

2
. The reason for this is that here,

we started with the diffusion coefficient k D 1 instead of k D 1
2

.
Once we have the fundamental solution of a differential equation, we can find

other solutions using the convolution

u.t;x/D .F �f /.t;x/; (3-3)

where

.F �f /.t;x/D

Z
�2R

F.t;x; �/f .�/

and with the initial condition u.0;x/D f .x/.

3.3. Kolmogorov equation. In this section, we are interested in constructing the
fundamental solution to the Fokker–Planck equation (1-4) and (2-3). In fact,
Kolmogoroff [1934] provided the formula for the fundamental solution to the
Fokker–Planck equation, but did not give any details on the construction. After
finding the solution for the Fokker–Planck equation, we will consider the case of
the Kolmogorov equation.

Tanski [2004] found the fundamental solution of the Fokker–Planck equation

@n

@t
C vx

@n

@x
C vy

@n

@y
C vz

@n

@z
�˛

�
@

@vx
.vxn/C

@

@vy
.vyn/C

@

@vz
.vzn/

�
D k

�
@2n

@v2
x

C
@2n

@v2
y

C
@2n

@v2
z

�
: (3-4)

He used the method of characteristics to come up with the fundamental solution of
the form

G D
1

.2�/6

�
�

k
p

D

�3

exp

(
�1

4kD

"
1

2˛
.1� e�2˛t /. Ox2

C Oy2
C Oz2/

�

�
2

˛2
.1� e�˛t /�

1

˛2
.1� e�˛t /

�
. Ox OvxC Oy Ovy C Oz Ovz/

C

�
t

˛2
�

2

˛3
.1� e�˛t /C

1

2˛3
.1� e�2˛t /

�
. Ov2

xC Ov
2
y C Ov

2
z /

#)
; (3-5)
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where

Ox D x� .x0C .vx0=˛/.1� e�˛t //;

Oy D y � .y0C .vy0=˛/.1� e�˛t //;

Oz D z� .z0C .vz0=˛/.1� e�˛t //;

D D
det.A/

k2
;

and A is a matrix with

det.A/D k2˛t.1� e�2˛t /� 2.1� e�˛t /2

2˛4
:

This matches the results of [Kolmogoroff 1934].
In our case, we would like to look at a slightly more specific equation. We look

at the Fokker–Planck equation of the form

@tpC v � rxp D�vp; (3-6)

which can be rewritten as

@tpC v1@x1
pC v2@x2

pC v3@x3
p D .@2

v1
pC @2

v2
pC @2

v3
p/:

We follow Tanski’s method in order to find the fundamental solution of our equa-
tion. The result does not follow directly from [Tanski 2004]. We have that
x D x1;y D x2; z D x3, and vx D v1; vy D v2; vz D v3, and k D 1. We let
N D N.t;p1;p2;p3; q1; q2; q3/ be the Fourier transformation in .x; v/. It is
equivalent to

1

.2�/6

Z
R6

e�i.x1px1
Cx2px2

Cx3px3
Cv1q1Cv2q2Cv3q3/p dx1 dx2 dx3 dv1 dv2 dv3:

In terms of N, the Fourier transform equals

@tN �p1@q1
N �p2@q2

N �p3@q3
N D�.q2

1 C q2
2 C q2

3/N:

We then come up with

dt D
dp1

0
D

dp2

0
D

dp3

0
D

dq1

�p1

D
dq2

�p2

D
dq3

�p3

D
�dN=N

.q2
1
C q2

2
C q2

3
/
:

Solving this we find

p1 D p10; p2 D p20; p3 D p30;

q1 D�p1t C q10; q2 D�p2t C q20; q3 D�p3t C q30;

N DN0e�
1
2

�
.p2

1
Cp2

2
Cp2

3
/ 1

3
t3�.p1q10Cp2q20Cp3q30/t

2C.q2
10
Cq2

20
Cq2

30
/t
�
:
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Plugging in our values for q10; q20, and q30, we obtain

N DN0 exp
n
�

1
2

�
.p2

1 Cp2
2 Cp2

3/
1
3
t3

�
�
p1.q1Cp1t/Cp2.q2Cp2t/Cp3.q3Cp3t/

�
t2

C
�
.q1Cp1t/2C .q2Cp2t/2C .q3Cp3t/2

�
t
�o

which leaves us with

N DN0e�
1
2

�
.p2

1
Cp2

2
Cp2

3
/ 1

3
t3�.p1q1Cp2q2Cp3q3/t

2C.q2
1
Cq2

2
Cq2

3
/t
�
:

We take the initial density value as

n0 D ı.x1�x10/ı.x2�x20/ı.x3�x30/ı.v1�x10/ı.v2�x20/ı.v3�x30/:

The Fourier transform of the initial density becomes

N0 D e�i.x10p1Cx20p2Cx30p3Cv10q1Cv20q2Cv30q3/:

Plugging in the initial values we obtaincN0 D e�i.x10p1Cx20p2Cx30p3Cv10.p1tCq10/Cv20.p2tCq20/Cv30.p3tCq30//;

which is the Fourier transform of

bn0 D ı.x1� .x10C v10t//ı.x2� .x20C v20t//

ı.x3� .x30C v30t//ı.v1� v10/ı.v2� v20/ı.v3� v30/:

In our example, we get the matrix A to be

AD

"
1
3
t3 �

1
2
t2

�
1
2
t2 t

#
:

This matrix is created from the terms related to N, where a11 is the term coming
from p2

i , and the a12 and a21 terms are obtained by dividing the term for piqj in
half. Finally, a22 is the term associated with q2

i . Its determinant is

det.A/D 1
12

t4

and

D D 1
12

t4; since D D
det.A/

k2
and k D 1:

The inverse is given by

A�1
D

12

t4

"
t 1

2
t2

1
2
t2 1

3
t3

#
:
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We now combine bn0 with A�1 to obtain

G D
1

.2�/6

�
�

k
p

D

�3bn0 exp
�
�

3

t4

�
t.x2

1Cx2
2Cx2

3/�t2.x1v1Cx2v2Cx3v3/

C
1
3
t3.v2

1Cv
2
2Cv

2
3/
��
;

which gives us

G D
1

.2�/6

�
�

k
p

D

�3

exp
�
�

3

t4

�
t.bx1

2
Cbx2

2
Cbx3

2
/�t2.bx1bv1Cbx2bv2Cbx3bv3/

C
1
3
t3.bv1

2
Cbv2

2
Cbv3

2
/
��
:

Plugging in D D 1
12

t4, we have

G D
1

.2�/6

�
2
p

3�

t2

�3

exp
�
�

3

t4

�
t.bx1

2
Cbx2

2
Cbx3

2
/�t2.bx1bv1Cbx2bv2Cbx3bv3/

C
1
3
t3.bv1

2
Cbv2

2
Cbv3

2
/
�
;

�
wherebx1 D x1� .x10C v10t/; bx2 D x2� .x20C v20t/; bx3 D x3� .x30C v30t/;bv1 D v1� v10; bv2 D v2� v20; bv3 D v3� v30:

The same procedure can be performed for the Kolmogorov equation (1-4):

@tpC v@xp D @2
vp:

We obtain the fundamental solution

G D
1

.2�/2

�
2
p

3�

t2

�
e
� 3

t4

�
t Ox2�t2 Ox OvC 1

3
t3 Ov2

�
; (3-7)

where Ox D x� .x0C v0t/ and Ov D v� v0.
If we want to solve a problem with general initial conditions, we can do so using

p.t;x; v/D

“
G.t;x; v;x0; v0/p.x0; v0/ dx0 dv0: (3-8)

This gives a representation formula for a solution to the Kolmogorov equation in
the whole space.

Remark 3.1. After this work had been performed, we found out that Tanski [2008]
solved the problem. We refer to [Tanski 2004; 2008] for more details on the
construction of the fundamental solution of the general Fokker–Planck equations.
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4. Reflecting boundary conditions

Oftentimes, particles are not free to move around as they please; they are influenced
by their surroundings. This is the focus of this section. In particular, we are
interested in the case where the particle is reflected back to the plane once it hits
the boundary (or wall). Consider, for example, that fx D 0g is the wall of the
domain fx > 0; v 2 Rg. We represent this behavior with the boundary condition

p.0;�v/D p.0; v/ for all v: (4-1)

The first natural question is: are there any “simple solutions” of (1-4) satisfying
this boundary condition? We first consider the possible stationary solutions. The
equation to solve is

v@xp D @2
vp; (4-2)

with the condition (4-1).

4.1. Stationary solutions. Suppose the solution to (4-1)–(4-2) takes the form

p.x; v/DX.x/V .v/: (4-3)

Plugging this into (4-2), we get

vX 0V DXV 00:

Dividing both sides by vXV and letting this equal ��, we get

X 0

X
D

V 00

vV
D��:

Solving for X we find
X.x/DX0e��x;

where X0 is some constant.
We now try to solve for V. Because of the boundary condition, we know that V

must satisfy
V .v/D V .�v/:

It will also satisfy
V 00.v/D V 00.�v/:

Replacing these values we find

��vV .v/D �vV .�v/:

Using our boundary condition, we obtain

��vV .v/D �vV .v/:
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Moving everything to one side we see that

�2�vV .v/D 0:

We do not want v or V .v/ to equal 0; therefore �D 0 must be true. This also means
that V 00 D 0. Integrating leads us to the solution V .v/ D avC b. We need this
equation to satisfy the boundary condition, which in turn leads us to the conclusion
that V .v/D b.

Now that we know �, let us solve for X . Plugging in our value of �, we find
that X.x/DX0. Recall the form from (4-3). Therefore we get p.x; v/DC , where
C DX0b. Hence we see that only constants will solve the problem.

In many cases, the total mass of particles is positive. If we view p as a probability
density, then Z

x>0

Z
v2R

p.x; v/ dx dv D 1:

Since the domain is infinite, no constant will satisfy this criterion. There is no other
interesting solution to the stationary problem by using separation of variables.

4.2. Kummer functions. We will try again to find a solution to (4-1)-(4-2)- by a
different method. Because of the scaling invariance property of the equation, we
want a solution of the form

p.x; v/D x˛�.�v3=.9x//:

When done this way, we get

@xp D ˛x˛�1�C .v3=.9x2//x˛�0;

@2
vp D x˛.�3v2=.9x//2�00Cx˛.�6v=.9x//�0:

After some calculations, we obtain

z�00C
�

2
3
� z
�
�0C˛� D 0; (4-4)

where z D�v3=.9x/. This form satisfies the Kummer equations. Equation (4-4)
has two independent solutions: M and U [Abramowitz and Stegun 1965].

We now examine the asymptotic behavior of the solutions to see whether the
boundary conditions are satisfied by these solutions. Our boundary condition is
given in (4-1): p.0; v/D p.0;�v/.

Taking the boundary condition into account, when x approaches 0 and v > 0,
we notice z approaches C1, and when x approaches 0 and v < 0, we notice z

approaches�1. Therefore, we will study the asymptotic behavior of the solution of
(4-4) as z approachesC1 and �1 to match the boundary condition. We start with
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the first kind of solution M . From [Abramowitz and Stegun 1965, 13.1.5], we obtain

M
�
�˛; 2

3
;�z

�
�

�
�

2
3

�
�
�

2
3
C˛

�z˛ as z!C1; (4-5)

and from [Abramowitz and Stegun 1965, 13.1.4],

M
�
�˛; 2

3
; z
�
�
�
�

2
3

�
ezz�˛�

2
3

�.�˛/
as z!C1: (4-6)

The behavior as z approaches C1 differs from when z approaches �1. There-
fore, the first kind of solution does not satisfy the boundary condition.

Now we will look at our second independent solution, U.�˛; 2
3
; z/. Recall the

solution from [Abramowitz and Stegun 1965, 13.5.2]:

U
�
�˛; 2

3
; z
�
D z˛

�R�1X
nD0

.�˛/n
�
1�˛� 2

3

�
n

n!
.�z/�n

CO.jzj�R/

�
;

where �3
2
� < arg.z/ < 3

2
� .

As z approaches C1, the defining behavior becomes

U
�
�˛; 2

3
; z
�
� z˛:

Let us define a new variable S so that

z D�v3=.9x/D�S3
D .�S/3 where S 2 R;�1

2
� < arg.�S/ < 1

2
�:

Therefore, we obtain

U
�
�˛; 2

3
;�S3

�
� jS j3˛ as S !�1:

In order to examine the behavior as z approaches �1, we look at [Abramowitz
and Stegun 1965, 13.1.3]:

U
�
�˛; 2

3
; z
�
D

�

sin
�

2
3
�
�� M

�
�˛; 2

3
; z
�

�
�
1�˛�2

3

�
�
�

2
3

��z1� 2
3

M
�
1�˛�2

3
; 2�2

3
; z
�

�.�˛/�
�
2�2

3

� �
: (4-7)

Recall that z D�S3 and the previously obtained formula (4-5). Plugging this
into (4-7), we obtain

U
�
˛; 2

3
;�S3

�
D

�

sin.2
3
�/

�
1

�
�

1
3
�˛

�
�
�

2
3
C˛

� C 1

�.�˛/�.1C˛/

�
S3˛:

We now use the following identity from [Abramowitz and Stegun 1965]:

�.�x/�.1Cx/D�
�

sin.�x/
;
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which gives us

�
�

1
3
�˛

�
�
�

2
3
C˛

�
D

�

sin
�
�
�

2
3
C˛

�� and �.�˛/�.1C˛/D�
�

sin.�˛/
:

Recall the trigonometric identity

sin
�
�
�
˛C 2

3

��
� sin.�˛/

sin.2
3
�/

D 2 cos
�
�
�
˛C 1

3

��
:

As a result,

U
�
�˛; 2

3
;�S3

�
� 2 cos

�
�
�
˛C 1

3

��
S3 as S !C1:

If our boundary conditions are satisfied, then we have

2 cos
�
�
�
˛C 1

3

��
jS j3˛ D jS j3˛I

hence,
2 cos

�
�
�
˛C 1

3

��
D 1:

Solving for ˛, we find that ˛ D 0 or ˛ D�2
3

.
In the case that ˛D 0, we would obtain a constant, which has been already found

in the previous section by separation of variables. In the case of ˛ D�2
3

, there is a
singularity near the origin. However, it turns out that it is positive and integrable
near the origin. The solution

p.x; v/D x�
2
3 U
�

2
3
; 2

3
;�v3=.9x/

�
to the stationary problem (4-1)–(4-2) could be useful in studying the behavior of
the solution with the boundary condition near the boundary. We refer to [Hwang
et al. 2015a] for more discussion on the Kummer functions and their applications
to the Kolmogorov equation (1-4).

5. Reflection method

We will now try to solve (1-4),

@tpC v@xp D @2
vp;

where x > 0, v 2 R and t > 0. We also require that p.t;x; v/ satisfies p.t; 0; v/D

p.t; 0;�v/ and initial data p.0;x; v/D p0.x; v/ satisfies the compatibility condi-
tion p0.0; v/D p0.0;�v/.

Although we do not know the solution of this problem yet, we do know the
solution on the whole real line (when x 2 R). Therefore, we will attempt to use the
reflection method to solve our problem.

The main result of this section is the following.
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Theorem 5.1. Define

Np.t;x; v/D

Z C1
�1

Z C1
0

ŒG.t;x; v;x0; v0/CG.t;x; v;�x0;�v0/�p0.x0; v0/ dx0 dv0

for t > 0, x > 0, v 2 R. Here G is the fundamental solution obtained in Section 3.3
and p0 is the given initial data for our problem. Then Np.t;x; v/ satisfies:

(1) Npt C v Npx D Npvv for t > 0, x > 0, v 2 R.

(2) limt!0 Np.t;x; v/D p0.x; v/ for x > 0, v 2 R.

(3) Np.t; 0; v/D Np.t; 0;�v/ for t > 0, v 2 R.

Proof. In order to prove the theorem, we first assume that p solves our problem
and extend p to the whole space.

We let

Nq.t;x; v/D

�
p.t;x; v/; x > 0;

p.t;�x;�v/; x < 0;

and let

Nq0.x0; v0/D Nq.0;x; v/D

�
p0.x; v/; x > 0;

p0.�x;�v/; x < 0:

We see that Nq.t;x; v/ satisfies our boundary conditions: plugging in 0 for x, we
have

p.t; 0; v/D p.t; 0;�v/ if Nq.t;x; v/ is continuous.

First, we check that Nq solves the problem in the whole space. We know that
the equation satisfies the problem when x > 0, since this is our original problem.
However, we must check that the second half of our solution also satisfies the
problem.

When x < 0, we find that Nq D p.t;�x;�v/ satisfies

@t Nq.t;x; v/D @tp.t;�x;�v/;

@x Nq.t;x; v/D�@xp.t;�x;�v/;

@2
v Nq.t;x; v/D�@

2
vp.t;�x;�v/:

On the other hand, since �x> 0, we have that p.t;�x;�v/ satisfies the equation

@tp.t;�x;�v/C .�v/.@xp.t;�x;�v//� @2
vp.t;�x;�v/D 0;

which is the same as

@tp.t;�x;�v/C .v/.�@xp.t;�x;�v//� @2
vp.t;�x;�v/D 0:

Now by using the above relations for the derivatives of Nq, we see that

@t Nq.t;x; v/C v.@x Nq.t;x; v//� @
2
v Nq.t;x; v/D 0
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for x < 0. Since we have seen that Nq solves the whole space problem, we can
obtain the solution Nq.t;x; v) with the extended initial data Nq0.x0; v0/ by using
G.t;x; v;x0; v0/, where G is the fundamental solution we obtained earlier in (3-7),

Nq.t;x; v/D

Z C1
�1

Z C1
�1

G.t;x; v;x0; v0/ Nq0.x0; v0/ dx0 dv0

D

Z C1
�1

Z C1
0

G.t;x; v;x0; v0/p0.x0; v0/ dx0 dv0

C

Z C1
�1

Z 0

�1

G.t;x; v;x0; v0/p0.�x0;�v0/ dx0 dv0:

Let Qx D�x0 and Qv D�v0. We get

Nq.t;x; v/D

Z C1
�1

Z C1
0

G.t;x; v;x0; v0/p0.x0; v0/ dx0 dv0

C

Z C1
�1

Z C1
0

G.t;x; v;� Qx;�Qv/p0. Qx; Qv/ d Qx d Qv:

We can now add the two parts and we obtain

Nq.t;x; v/D

Z C1
�1

Z C1
0

ŒG.t;x; v;x0;v0/CG.t;x; v;�x0;�v0/�p0.x0; v0/ dx0 dv0:

This is a solution to the whole space problem, but we are only looking for the
solution to the half line. Therefore, we restrict the solution to x > 0, v 2 R, t > 0.
It is now clear that the first two conditions in the theorem are satisfied. We must
now check the third condition.

Recall our solution

Nq.t;x; v/

D

Z C1
�1

Z C1
0

p0.x0; v0/

� p
3

2� t2
e
� 3

t4

�
t.x�x0�v0t/2�t2.x�x0�v0t/.v�v0/C

t3

3
.v�v0/

2
�

C

p
3

2� t2
e
� 3

t4

�
t.xCx0Cv0t/2�t2.xCx0Cv0t/.vCv0/C

t3

3
.vCv0/

2
��

dx0 dv0:

Let us check if our boundary conditions are satisfied:

Nq.t; 0; v/

D

Z C1
�1

Z C1
0

p0.x0; v0/

� p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.v0�v/C

1
3

t3.v�v0/
2
�

C

p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.vCv0/C

1
3

t3.vCv0/
2
��

dx0 dv0;
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Nq.t; 0;�v/

D

Z C1
�1

Z C1
0

p0.x0; v0/

� p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.v0Cv/C

1
3

t3.vCv0/
2
�

C

p
3

2� t2
e
� 3

t4

�
t.x0Cv0t/2�t2.x0Cv0t/.v0�v/C

1
3

t3.v�v0/
2
��

dx0 dv0:

As we can see, both of these are equal and therefore our solution meets all three
conditions. We see that Nq D Np and find that when Nq is restricted to the half line, it
is Np defined in the statement of the theorem. �

6. Conclusion

Our note focuses on the Kolmogorov equation and teaches us some of its important
properties. We first introduced stochastic processes including Brownian motion.
Next, we searched for stationary solutions to our equation. We started off by looking
for a solution of the form p.x; v/DX.x/V .v/. When looking at this case, we found
that the result is a constant. Next, we searched for a solution of self-similar type,
but this time one of the form p.x; v/D x˛�.�v3=.9x//; because of the scaling
invariant property of the equation. In our attempt to solve this we found that with a
reflecting boundary condition, a nonconstant solution exists when ˛D�2

3
. We also

found the fundamental solution to the heat equation and the Kolmogorov equation.
Once we had the fundamental solution, we were able to solve the differential
equation with reflecting boundary condition. We first solved the problem on the
whole space and then restricted it to the half line. Now that we have completed
our investigations, it would be worthwhile to see the behavior of the Kolmogorov
equation with different boundary conditions. In the case of absorbing boundary
conditions, we refer to [Hwang et al. 2014; 2015b]. It would be interesting to
investigate the long term behavior of the solutions, particularly whether the solution
to the evolution problem would converge to the stationary solution. We leave this
study for future projects. In addition, it would be useful to look at some of the many
applications of this multifaceted equation. These investigations would be beneficial
for many fields and could provide insight to some of the more obscure areas.
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Reeb dynamics of the link of the An singularity
Leonardo Abbrescia, I. Huq-Kuruvilla, J. Nelson and N. Sultani

(Communicated by Colin Adams)

The link of the An singularity, L An ⊂ C3 admits a natural contact structure ξ0

coming from the set of complex tangencies. The canonical contact form α0

associated to ξ0 is degenerate and thus has no isolated Reeb orbits. We show that
there is a nondegenerate contact form for a contact structure equivalent to ξ0 that
has two isolated simple periodic Reeb orbits. We compute the Conley–Zehnder
index of these simple orbits and their iterates. From these calculations we compute
the positive S1-equivariant symplectic homology groups for (L An , ξ0). In addition,
we prove that (L An , ξ0) is contactomorphic to the lens space L(n+1, n), equipped
with its canonical contact structure ξstd.

1. Introduction and main results

The classical topological theory of isolated critical points of complex polynomials
relates the topology of the link of the singularity to the algebraic properties of the
singularity [Milnor 1968]. More generally, the link of an irreducible affine variety
An
⊂ CN with an isolated singularity at 0 is defined by L A = A ∩ S2N+1

δ . For
sufficiently small δ, the link L A is a manifold of real dimension 2n− 1, which is
an invariant of the germ of A at 0. The links of Brieskorn varieties can sometimes
be homeomorphic but not always diffeomorphic to spheres (see [Brieskorn 1966],
a preliminary result which further motivated the study of such objects). Recent
developments in symplectic and contact geometry have shown that the algebraic
properties of a singularity are strongly connected to the contact topology of the link
and symplectic topology of (the resolution of) the variety. A wide range of results
demonstrating the power of investigating the symplectic and contact perspective
of singularities include [Keating 2015; Kwon and van Koert 2016; McLean 2016;
Ritter 2010; Seidel 2008b; Ustilovsky 1999].

In this paper we study the contact topology of the link of the An singularity,
providing a computation of positive S1-equivariant symplectic homology. This

MSC2010: primary 37B30, 53D35, 57R17; secondary 53D42.
Keywords: contact geometry, contact topology, Conley–Zehnder index, An singularity, Reeb

dynamic, Maslov index.
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is done via our construction of an explicit nondegenerate contact form and the
computation of the Conley–Zehnder indices of the associated simple Reeb orbits
and their iterates. Our computations show that positive S1-equivariant symplectic
homology is a free Q[u] module of rank equal to the number of conjugacy classes
of the finite subgroup An of SL(2;C). This provides a concrete example of the
relationship between the cohomological McKay correspondence and symplectic
homology, which is work in progress by McLean and Ritter [≥ 2017]. As a result,
the topological nature of the singularity is reflected by qualitative aspects of the
Reeb dynamics associated to the link of the An singularity.

The link of the An singularity is defined by

L An = f −1
An
(0)∩ S5

⊂ C3, f An = zn+1
0 + 2z1z2. (1-1)

It admits a natural contact structure coming from the set of complex tangencies,

ξ0 := TL An ∩ J0(TL An ).

The contact structure can be expressed as the kernel of the canonically defined
contact form,

α0 =
i
2

( m∑
j=0

(z j dz j − z j dz j )

)∣∣∣∣
L An

.

The contact form α0 is degenerate and hence not appropriate for computing Floer-
theoretic invariants as the periodic orbits of the Reeb vector field defined by

α0(Rα0)= 1, ιRα0
dα0 = 0

are not isolated.
Our first result is the construction of a nondegenerate contact form αε such that

(L An , kerα0) and (L An , kerαε) are contactomorphic. Define the Hamiltonian on
C3 by

H : C3
→ R,

(z0, z1, z2) 7→ |z|2+ ε(|z1|
2
− |z2|

2),

where ε is chosen so that H > 0 on S5. We will show

αε =
1
H

[
(n+1)i

8
(z0dz0− z0dz0)+

i
4
(z1dz1− z1dz1+ z2dz2− z2dz2)

]
(1-2)

is a nondegenerate contact form. We also find the simple Reeb orbits of Rαε
and compute the associated Conley–Zehnder index with respect to the canonical
trivialization of C3 of their iterates.

Theorem 1.1. The 1-form αε is a nondegenerate contact form for L An such that
(L An , kerα0) and (L An , kerαε) are contactomorphic. The Reeb orbits of Rαε are
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defined by
γ+(t)= (0, e2i(1+ε)t , 0), 0≤ t ≤ π/(1+ ε),

γ−(t)= (0, 0, e2i(1−ε)t), 0≤ t ≤ π/(1− ε).

The Conley–Zehnder index for γ = γ N
±

in 0≤ t ≤ Nπ/(1± ε) is

µC Z (γ
N
±
)= 2

(⌊
2N

(n+ 1)(1± ε)

⌋
+

⌊
N (1∓ ε)

1± ε

⌋
−

⌊
2N

1± ε

⌋)
+ 2N + 1. (1-3)

Remark 1.2. If ε is chosen such that 0< ε� 1/N then (1-3) can be simplified to

µC Z (γ
N
−
)= 2

⌊
2N

(n+ 1)(1− ε)

⌋
+ 1,

µC Z (γ
N
+
)= 2

⌊
2N

(n+ 1)(1+ ε)

⌋
+ 1.

(1-4)

The proof of Theorem 1.1 is obtained by adapting methods of Ustilovsky [1999]
to obtain αε and to compute the Conley–Zehnder indices. The Conley–Zehnder
index is a Maslov index for arcs of symplectic matrices and is defined in Section 2D.
These paths of matrices are obtained by linearizing the flow of the Reeb vector field
along the Reeb orbit and restricting to ξ0. To better understand the spread of the
Reeb orbits and their iterates in various indices, we have the following example.

Example 1.3. Let n = 2 and 0< ε� 1
10 . Then

µC Z (γ−)= 1, µC Z (γ+)= 1,

µC Z (γ
2
−
)= 3, µC Z (γ

2
+
)= 3,

µC Z (γ
3
−
)= 5, µC Z (γ

3
+
)= 3,

µC Z (γ
4
−
)= 5, µC Z (γ

4
+
)= 5,

µC Z (γ
5
−
)= 7, µC Z (γ

5
+
)= 7,

µC Z (γ
6
−
)= 9, µC Z (γ

6
+
)= 7,

µC Z (γ
7
−
)= 9, µC Z (γ

7
+
)= 9.

It is interesting to note that the spread of integers is not uniform between µC Z (γ
N
−
)

and µC Z (γ
N
+
), and where these jumps in index occur. However, we see that there

are n = 2 Reeb orbits with Conley–Zehnder index 1 and n + 1 = 3 orbits with
Conley–Zehnder index 2k+ 1 for each k ≥ 1.

Remark 1.4. Extrapolating this to all values of n and N demonstrates that the
numerology of the Conley–Zehnder index realizes the number of free homotopy
classes of L An. Recall [6L An ] = π0(6L An ) = π1(L An )/{conjugacy classes} and
H1(L An ,Z) = Zn+1. The information that the (n+ 1)-th iterate of γ± is the first
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contractible Reeb orbit is also encoded in the above formulas. Qualitative aspects of
the Reeb dynamics reflect this topological information in the following computation
of a Floer-theoretic invariant of the contact structure ξ0.

Theorem 1.1 allows us to easily compute positive S1-equivariant symplectic
homology SH+,S

1

∗
. Symplectic homology is a Floer-type invariant of symplectic

manifolds with contact-type boundary; see [Seidel 2008a]. Under additional as-
sumptions, one can prove that the positive S1-equivariant symplectic homology
SH+,S

1

∗
is in fact an invariant of the contact structure; see [Gutt 2015, Theorems 1.2

and 1.3; Bourgeois and Oancea 2012, Section 4.1.2]. Because of the behavior of the
Conley–Zehnder index in Theorem 1.1, we can directly compute SH+,S

1

∗
(L An , ξ0)

and conclude that it is a contact invariant. As a result, the underlying topology of
the manifold determines qualitative aspects of any Reeb vector field associated to a
contact form defining ξ0.

Theorem 1.5. The positive S1-equivariant symplectic homology of (L An , ξ0) is

SH+,S
1

∗
(L An , ξ0)=


Qn, ∗ = 1,
Qn+1, ∗ ≥ 3 and odd,
0, ∗ else.

Proof. To obtain a contact invariant from SH+,S
1

∗
we need to show in dimension 3

that all contractible Reeb orbits γ satisfy µC Z (γ )≥ 3; see [Gutt 2015, Theorems 1.2
and 1.3; Bourgeois and Oancea 2012, Section 4.1.2]. The first iterate of γ± which
is contractible is the (n + 1)-th iterate, and by Theorem 1.1, will always satisfy
µC Z (γ±)≥ 3.

If α is a nondegenerate contact form such that the Conley–Zehnder indices of
all periodic Reeb orbits are lacunary, meaning they contain no two consecutive
numbers, then we can appeal to [Gutt 2015, Theorem 1.1]. This result of Gutt
allows us to conclude that over Q-coefficients the differential for SH S1,+ vanishes.
In light of Theorem 1.1 we obtain the above result. �

Remark 1.4 yields the following corollary of Theorem 1.5, indicating a Floer-
theoretic interpretation of the McKay correspondence [Ito and Reid 1996] via the
Reeb dynamics of the link of the An singularity. The An singularity is the singularity
of f −1

An
(0), where f An is described as (1-1). This is equivalent to its characterization

as the absolutely isolated double point quotient singularity of C2/An , where An is
the cyclic subgroup of SL(2;C); see Section 4A. The cyclic group An acts on C2

by (u, v) 7→ (e2π i/(n+1)u, e2π in/(n+1)v).

Corollary 1.6. The positive S1-equivariant symplectic homology SH+,S
1

∗
(L An , ξ0)

is a free Q[u] module of rank equal to the number of conjugacy classes of the finite
subgroup An of SL(2;C).



REEB DYNAMICS OF THE LINK OF THE An SINGULARITY 421

Remark 1.7. The ongoing work of Nelson [2015; ≥ 2017] and Hutchings and
Nelson [2014; ≥2017] is needed in order to work under the assumption that a related
Floer-theoretic invariant, cylindrical contact homology is a well-defined contact
invariant of (L An , ξ0). Once this is complete, the index calculations provided in
Theorem 1.1 show that positive S1-equivariant symplectic homology and cylindrical
contact homology agree up to a degree shift.

Bourgeois and Oancea [2012] prove that there are restricted classes of contact
manifolds for which one can prove that cylindrical contact homology (with a degree
shift) is isomorphic to the positive part of S1-equivariant symplectic homology
when both are defined over Q-coefficients. Their isomorphism relies on having
transversality for a generic choice of J , which is presently the case for unit cotangent
bundles DT ∗L such that dim L≥5 or when L is Riemannian manifold which admits
no contractible closed geodesics [Bourgeois and Oancea 2015]. Our computations
confirm that their results should hold for many more closed contact manifolds.

Our final result is an explicit proof that the singularity (L An , ξ0) and the lens
space (L(n+ 1, n), ξstd) are contactomorphic. The lens space

L(n+ 1, n)= S3/
(
(u, v)∼ (e2π i/(n+1)u, e2πni/(n+1)v)

)
admits a contact structure, which is induced by the one on S3 and can be expressed
as the kernel of the contact form

λstd =
1
2 i(udū− ūdu+ vd v̄− v̄dv).

Theorem 1.8. The link of the An singularity (L An , ξ0 = kerα0) and the lens space
(L(n+ 1, n), ξstd = ker λstd) are contactomorphic.

Theorems 1.5 and 1.8 allow us to reprove the following result of Kwon and
van Koert [2016]. Since (L An , ξ0) and (L(n+ 1, n), ξstd) are contactomorphic and
SH S1,+
∗

is a contact invariant, SH S1,+
∗

(L(n+ 1, n), ξstd)= SH S1,+
∗

(L An , ξ0).

Theorem 1.9 [Kwon and van Koert 2016, Appendix A]. The positive S1-equivariant
symplectic homology of (L(n+ 1, n), ξstd) is

SH+,S
1

∗
(L(n+ 1, n), ξstd)=


Qn, ∗ = 1,
Qn+1, ∗ ≥ 3 and odd,
0, ∗ else.

Their proof relies on the nondegenerate contact form on (L(n + 1, n), ξstd).
If a1, a2 are any rationally independent positive real numbers then

λa1,a2 =
i
2

2∑
j=1

a j (z j dz j − z j dz j )
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is a nondegenerate contact form for (L(n+ 1, n), ξstd). The simple Reeb orbits on
L(n+ 1, n) are given by

γ1 = (ei t/a1, 0), 0≤ t ≤ (2a1π)/(n+ 1),

γ2 = (0, ei t/a2), 0≤ t ≤ (2a2π)/(n+ 1),

which descend from the simple isolated Reeb orbits on S3. Again, the n+1 different
free homotopy classes associated to this lens space are realized by covers of the
isolated Reeb orbits γi for i = 1 or 2. The Conley–Zehnder index for γ N

1 is

µC Z (γ
N

1 )= 2
(⌊

N
n+ 1

⌋
+

⌊
Na1

(n+ 1)a2

⌋)
+ 1, (1-5)

with a similar formula holding for γ N
2 .

Outline. The necessary background is given in Section 2. The construction of a
nondegenerate contact form and the proof of Theorem 1.1 is given in Section 3.
The proof of Theorem 1.8 is given in Section 4.

2. Background

In this section we recall all the necessary symplectic and contact background which
is needed to prove Theorems 1.1 and 1.8.

2A. Contact structures. First we recall some notions from contact geometry.

Definition 2.1. Let M be a manifold of dimension 2n+ 1. A contact structure is a
maximally nonintegrable hyperplane field ξ = kerα ⊂ TM .

Remark 2.2. The kernel of a 1-form α on M2n+1, ξ = kerα, is a contact structure
whenever

α∧ (dα)n 6= 0,

which is equivalent to the condition that dα be nondegenerate on ξ .

Note that the contact structure is unaffected when we multiply the contact form α

by any positive or negative function on M . We say that two contact structures
ξ0 = kerα0 and ξ1 = kerα1 on a manifold M are contactomorphic whenever there
is a diffeomorphism ψ : M→ M such that ψ sends ξ0 to ξ1,

ψ∗(ξ0)= ξ1.

If a diffeomorphism ψ : M→ M is in fact a contactomorphism then there exists a
nonzero function g : M→ R such that ψ∗α1 = gα0. Finding an explicit contacto-
morphism often proves to be a rather difficult and messy task, but an application of
Moser’s argument yields Gray’s stability theorem, which essentially states that there
are no nontrivial deformations of contact structures on a fixed closed manifold.
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First we give the statement of Moser’s theorem, which says that one cannot vary
a symplectic structure by perturbing it within its cohomology class. Recall that a
symplectic structure on a smooth manifold W 2n is a nondegenerate closed 2-form
ω ∈�2(W ).

Theorem 2.3 (Moser’s theorem, [McDuff and Salamon 1998, Theorem 3.17]). Let
W be a closed manifold and suppose that ωt is a smooth family of cohomologous
symplectic forms on W . Then there is a family of diffeomorphisms9t of W such that

90 = id, ψ∗t ωt = ω0.

The aforementioned contact analogue of Moser’s theorem is Gray’s stability
theorem, stated formally below.

Theorem 2.4 (Gray’s stability theorem, [Geiges 2008, Theorem 2.2.2]). Let ξt ,
t ∈ [0, 1], be a smooth family of contact structures on a closed manifold V . Then
there is an isotopy (ψt)t∈[0,1] of V such that

ψt∗(ξ0)= ξt for each t ∈ [0, 1].

Next we give the most basic example of a contact structure.

Example 2.5. Consider R2n+1with coordinates (x1,y1,...,xn,yn,z) and the 1-form

α = dz+
n∑

j=1

x j dy j .

Then α is a contact form for R2n+1. The contact structure ξ = kerα is called the
standard contact structure on R2n+1.

As in symplectic geometry, a variant of Darboux’s theorem holds. This states
that locally all contact structures are diffeomorphic to the standard contact structure
on R2n+1.

A contact form gives rise to a unique Hamiltonian-like vector field as follows.

Definition 2.6. For any contact manifold (M, ξ = kerα) the Reeb vector field Rα
is defined to be the unique vector field determined by α,

ι(Rα)dα = 0, α(Rα)= 1.

We define the Reeb flow of Rα by ϕt : M→ M, ϕ̇t = Rα(ϕt).

The first condition says that Rα points along the unique null direction of the
form dα and the second condition normalizes Rα. Because

LRαα = dιRαα+ ιRαdα,



424 L. ABBRESCIA, I. HUQ-KURUVILLA, J. NELSON AND N. SULTANI

the flow of Rα preserves the form α and hence the contact structure ξ . Note that
if one chooses a different contact form f α, the corresponding vector field R f α is
very different from Rα, and its flow may have quite different properties.

A Reeb orbit γ of period T associated to Rα is defined to be a path γ :R/T Z→M
given by an integral curve of Rα. That is,

dγ
dt
= Rα ◦ γ (t), γ (0)= γ (T ).

Two Reeb orbits
γ1, γ0 : R/T Z→ M

are considered equivalent if they differ by reparametrization, i.e., precomposition
with a translation of R/T Z.

The N -fold cover γ N is defined to be the composition of γ± with R/N T Z→

R/T Z. A simple Reeb orbit is one such that γ : R/T Z→ M is injective.

Remark 2.7. Since Reeb vector fields are autonomous, the terminology “simple
Reeb orbit γ ” refers to the entire equivalence class of orbits, and likewise for its
iterates.

A Reeb orbit γ is said to be nondegenerate whenever the linearized return map

d(ϕT )γ (0) : ξγ (0)→ ξγ (T )=γ (0)

has no eigenvalue equal to 1. A nondegenerate contact form is one whose Reeb
orbits are all nondegenerate and hence isolated. Note that since the Reeb flow
preserves the contact structure, the linearized return map is symplectic.

Next we briefly review the canonical contact form on S3 and its Reeb dynamics.

Example 2.8 (canonical Reeb dynamics on the 3-sphere). If we define the function
f : R4

→ R,
f (x1, y1, x2, y2)= x2

1 + y2
1 + x2

2 + y2
2 ,

then S3
= f −1(1). Recall that the canonical contact form on S3

⊂R4 is given to be

λ0 := −
1
2 d f ◦ J = (x1dy1− y1dx1+ x2dy2− y2dx2)|S3 . (2-1)

The Reeb vector field is given by

Rλ0 =

(
x1

∂

∂y1
− y1

∂

∂x1
+ x2

∂

∂y2
− y2

∂

∂x2

)
= (−y1, x1,−y2, x2). (2-2)

Equivalently we may reformulate these using complex coordinates by identifying
R4 with C2 via

u = x1+ iy1, v = x2+ iy2.
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We obtain
λ0 =

1
2 i(udū− ūdu+ vd v̄− v̄dv)|S3,

and

Rλ0 = i
(

u
∂

∂u
− ū

∂

∂ ū
+ v

∂

∂v
− v̄

∂

∂v̄

)
= (iu, iv).

(2-3)

The second expression for Rλ0 follows from (2-2) since iu = (−y1, x1) and iv =
(−y2, x2).

To see that the orbits of Rλ0 define the fibers of the Hopf fibration, recall that a
fiber through a point

(u, v)= (x1+ iy1, x2+ iy2) ∈ S3
⊂ C2

can be parameterized as

ϕ(t)= (ei t u, ei tv), t ∈ R. (2-4)

We compute the time derivative of the fiber

ϕ̇(0)= (iu, iv)= (i x1− y1, i x2− y2).

Expressed as a real vector field on R4, which is tangent to S3, this is the Reeb
vector field Rλ0 as it appears in (2-3), so the Reeb flow does indeed define the Hopf
fibration.

2B. Hypersurfaces of contact type. Another notion that we need from symplectic
and contact geometry is that of a hypersurface of contact type in a symplectic
manifold. The following notion of a Liouville vector field allows us to define
hypersurfaces of contact type. Liouville vector fields will be used to understand the
Reeb dynamics of the nondegenerate contact form α1 as well as to construct the
contactomorphism between (L An , ξ0) and (L(n+ 1, n), ξstd).

Definition 2.9. A Liouville vector field Y on a symplectic manifold (W, ω) is a
vector field satisfying

LYω = ω.

The flow ψt of such a vector field is conformal symplectic, i.e., ψ∗t (ω)= etω. The
flow of these fields is volume expanding, so such fields may only exist locally on
compact manifolds.

Whenever there exists a Liouville vector field Y defined in a neighborhood of
a compact hypersurface Q of (W, ω), which is transverse to Q, we can define a
contact 1-form on Q by

α := ιYω.
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Proposition 2.10 [McDuff and Salamon 1998, Proposition 3.58]. Let (W, ω) be a
symplectic manifold and Q ⊂W a compact hypersurface. Then the following are
equivalent:

(i) There exists a contact form α on Q such that dα = ω|Q .

(ii) There exists a Liouville vector field Y :U→ T W defined in a neighborhood U
of Q, which is transverse to Q.

If these conditions are satisfied then Q is said to be of contact type.

We will need the following application of Gray’s stability theorem to hypersur-
faces of contact type to prove Theorem 1.8 in Section 4.

Lemma 2.11 [Geiges 2008, Lemma 2.1.5]. Let Y be a Liouville vector field on a
symplectic manifold (W, ω). Suppose that M1 and M2 are hypersurfaces of contact
type in W . Assume that there is a smooth function

h :W → R (2-5)

such that the time-1 map of the flow of hY is a diffeomorphism from M1 to M2.
Then this diffeomorphism is in fact a contactomorphism from (M1, ker ιYω|TM1) to
(M2, ker ιYω|TM2).

2C. Symplectization. The symplectization of a contact manifold is an important
notion in defining Floer-theoretic theories like symplectic and contact homology. It
will also be used in our calculation of the Conley–Zehnder index. Let (M, ξ =kerα)
be a contact manifold. The symplectization of (M, ξ = kerα) is given by the
manifold R×M and symplectic form

ω = et(dα−α∧ dt)= d(etα).

Here t is the coordinate on R, and it should be noted that α is interpreted as a 1-form
on R×M , as we identify α with its pullback under the projection R×M→ M .

Any contact structure ξ may be equipped with a complex structure J such that
(ξ, J ) is a complex vector bundle. This set is nonempty and contractible. There is a
unique canonical extension of the almost complex structure J on ξ to an R-invariant
almost complex structure J̃ on T (R×M), whose existence is due to the splitting,

T (R×M)= R
∂

∂t
⊕RRα ⊕ ξ. (2-6)

Definition 2.12 (canonical extension of J to J̃ on T (R× M)). Let [a, b; v] be
a tangent vector where a, b ∈ R and v ∈ ξ . We can extend J : ξ → ξ to J̃ :
T (R×M)→ T (R×M) by

J̃ [a, b; v] = [−b, a, Jv].
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Thus J̃ |ξ = J and J̃ acts on R∂/∂t ⊕RRα in the same manner as multiplication
by i acts on C, namely J∂/∂t = Rα.

2D. The Conley–Zehnder index. The Conley–Zehnder index µC Z is a Maslov
index for arcs of symplectic matrices which assigns an integer µC Z (8) to every
path of symplectic matrices 8 : [0, T ] → Sp(n), with 8(0)= 1. In order to ensure
that the Conley–Zehnder index assigns the same integer to homotopic arcs, one must
also stipulate that 1 is not an eigenvalue of the endpoint of this path of matrices, i.e.,
det(1−8(T )) 6= 0. We define the following set of continuous paths of symplectic
matrices that start at the identity and end on a symplectic matrix that does not have
1 as an eigenvalue:

6∗(n)={8 :[0, T ]→Sp(2n) :8 is continuous,8(0)=1, and det(1−8(T )) 6=0}.

The Conley–Zehnder index is a functor satisfying the following properties, and
is uniquely determined by the homotopy, loop, and signature properties.

Theorem 2.13 [Robbin and Salamon 1993, Theorem 2.3, Remark 5.4; Gutt 2014,
Theorem 2, Propositions 8 and 9]. There exists a unique functor µC Z called the
Conley–Zehnder index that assigns the same integer to all homotopic paths 9
in 6∗(n),

µC Z :6
∗(n)→ Z,

such that the following hold:

(1) Homotopy: The Conley–Zehnder index is constant on the connected compo-
nents of 6∗(n).

(2) Naturalization: For any paths 8,9 : [0, 1] → Sp(2n),

µC Z (898
−1)= µC Z (9).

(3) Zero: If 9(t) ∈ 6∗(n) has no eigenvalues on the unit circle for t > 0, then
µC Z (9)= 0.

(4) Product: If n= n′+n′′, identify Sp(2n′)⊕Sp(2n′′) with a subgroup of Sp(2n)
in the obvious way. For 9 ′ ∈ 6∗(n′) and 9 ′′ ∈ 6∗(n′′), we have µC Z (9

′
⊕

9 ′′)= µC Z (9
′)+µC Z (9

′′).

(5) Loop: If 8 is a loop at 1, then µC Z (89)= µC Z (9)+2µ(8), where µ is the
Maslov Index.

(6) Signature: If S ∈ M(2n) is a symmetric matrix with ‖S‖ < 2π and 9(t) =
exp(J0St), then µC Z (9)=

1
2 sgn(S).

The linearized Reeb flow of γ yields a path of symplectic matrices

d(ϕt)γ (0) : ξγ (0)→ ξγ (t)=γ (0)
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for t ∈ [0, T ], where T is the period of γ .
Thus we can compute the Conley–Zehnder index of dϕt , t ∈ [0, T ]. This index

is typically dependent on the choice of trivialization τ of ξ along γ which was used
in linearizing the Reeb flow. However, if c1(ξ ;Z)= 0 we can use the existence of
an (almost) complex volume form on the symplectization to obtain a global means
of linearizing the flow of the Reeb vector field. The choice of a complex volume
form is parametrized by H 1(R× M;Z), so an absolute integral grading is only
determined up to the choice of volume form. See [Nelson ≥ 2017, §1.1.1].

We define

µτC Z (γ ) := µC Z ({dϕt }|t∈[0,T ]).

In the case at hand we will be able to work in the ambient space of (C3, J0), and
use a canonical trivialization of C3.

2E. The canonical contact structure on Brieskorn manifolds. The An link is an
example of a Brieskorn manifold, which are defined generally by

6(a)=
{
(z0, . . . , zm) ∈ Cm+1

∣∣∣ f :=
m∑

j=0

za j
j = 0, a j ∈ Z>0 and

m∑
j=0

|z j |
2
= 1

}
.

The link of the An singularity after a linear change of variables is 6(n+ 1, 2, 2)
for n > 3; see (3-1). Brieskorn gave a necessary and sufficient condition on a
for 6(a) to be a topological sphere, and means to show when these yield exotic
differentiable structures on the topological (2n− 1)-sphere in [Brieskorn 1966]. A
standard calculus argument [Geiges 2008, Lemma 7.1.1] shows that 6(a) is always
a smooth manifold.

In the mid 1970s, Brieskorn manifolds were found to admit a canonical contact
structure, given by their set of complex tangencies,

ξ0 = T6 ∩ J0(T6),

where J0 is the standard complex structure on Cm+1. The contact structure ξ0 can
be expressed as ξ0 = kerα0 for the canonical 1-form

α0 := (−dρ ◦ J0)|6 =
i
4

( m∑
j=0

(z j dz j − z j dz j )

)∣∣∣∣
6

,

where ρ = (‖z‖2 − 1)/4. A proof of this fact may be found in [Geiges 2008,
Theorem 7.1.2]. The Reeb dynamics associated to α0 are difficult to understand.
There is a more convenient contact form α1 constructed by Ustilovsky [1999,
Lemma 4.1.2] via the following family.
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Proposition 2.14 [Geiges 2008, Proposition 7.1.4]. The 1-form

αt =
i
4

m∑
j=0

1
1− t + t/a j

(z j dz j − z j dz j )

is a contact form on 6(a) for each t ∈ [0, 1].

Via Gray’s stability theorem we obtain the following corollary.

Corollary 2.15. For all t ∈ (0, 1], the contact manifold (6(a), kerα0) is contacto-
morphic to (6(a), kerαt).

Next, the Reeb dynamics associated to α1 =
1
4 i
∑m

j=0 a j (z j dz j − z j dz j ) are
computed.

Remark 2.16. While α1 is degenerate, one can still easily check that the Reeb
vector field associated to α1 is given by

Rα1 = 2i
m∑

j=0

1
a j

(
z j

∂

∂z j
− z j

∂

∂z j

)
= 2i

(
z0

a0
, . . . ,

zm

am

)
.

Indeed, one computes

d f (Rα1)= f (z) and dρ(Rα1)= 0.

This shows that Rα1 is tangent to 6(a). The defining equations for the Reeb vector
field are satisfied since

α1(Rα1)≡ 1 and ιRα1
dα1 =−dρ,

with the latter form being zero on the Tp6(a). The flow of Rα1 is given by

ϕt(z0, . . . , zm)= (e2i t/a0, . . . , e2i t/am ).

All the orbits of the Reeb flow are closed, and the flow defines an effective S1-action
on 6(a).

In the next section we perturb α1 to a nondegenerate contact form.

3. Proof of Theorem 1.1

3A. Constructing a nondegenerate contact form. Here, we adapt a method used
by Ustilovsky [1999, §4] to obtain a nondegenerate contact form αε on L An whose
kernel is contactomorphic to ξ0. Ustilovsky’s methods yielded a nondegenerate
contact form on Brieskorn manifolds of the form 6(p, 2, . . . , 2), which are diffeo-
morphic to S4m+1.
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We define the change of coordinates to go from 6(n + 1, 2, 2) with defining
function f = zn+1

0 + z2
1+ z2

2 to L An with defining function f An = w
n+1
0 + 2w1w2:

9(w0, w1, w2)=
(
w0︸︷︷︸
:=z0

,
√

2
2 (w1+w2)︸ ︷︷ ︸
:=z1

,
√

2
2 (−iw1+ iw2)︸ ︷︷ ︸

:=z2

)
. (3-1)

We obtain

9∗ f (z0, z1, z2)= w
n+1
0 + 2w1w2. (3-2)

Then the pull-back of

α1

2
=

i
8

m∑
j=0

a j (z j dz j − z j dz j )

is given by

9∗α1
2
=
(n+1)i

8
(w0dw0−w0dw0)+

i
4
(w1dw1−w1dw1+w2dw2−w2dw2).

We now construct the Hamiltonian function

H(w)= |w|2+ ε(|w1|
2
− |w2|

2).

We choose 0< ε < 1 such that H(w) is positive on S5, and define the contact form

αε =9
∗α1/(2H). (3-3)

Remark 3.1. The above shows that (6(n+ 1, 2, 2), kerα1) is contactomorphic to
(9(6(n+ 1, 2, 2)), kerαε). Moreover L An = 9(6(n+ 1, 2, 2)), where L An was
defined in (1-1).

Proposition 3.2. The Reeb vector field for αε is

Rαε =
4i

n+1
w0

∂

∂w0
−

4i
n+1

w0
∂

∂w0
+ 2i(1+ ε)

(
w1

∂

∂w1
−w1

∂

∂w1

)
+ 2i(1− ε)

(
w2

∂

∂w2
−w2

∂

∂w2 j

)
=

(
4i

n+1
w0, 2i(1+ ε)w1, 2i(1− ε)w2

)
. (3-4)

Remark 3.3. The second formulation of the Reeb vector field is equivalent to
the first in the above proposition via the standard identification of R4 with C2, as
explained in Example 2.8, (2-3).

Before proving Proposition 3.2 we need the following lemma.
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Lemma 3.4. On C3, the vector field

X (w)= 1
2

( 2∑
j=0

w j
∂

∂w j
+w j

∂

∂w j

)
(3-5)

is a Liouville vector field for the symplectic form

ω1 =
d(9∗α1)

2
=

i(n+ 1)
4

dw0 ∧ dw0+
i
2

2∑
j=1

dw j ∧ dw j .

The Hamiltonian vector field X H of H with respect to ω1 is −Rαε , as in (3-4).

Proof. Recall that the condition to be a Liouville vector field is LXω1 = ω1. We
show this with Cartan’s formula, given as

LXω1 = ιX dω1+ d(ιXω1)

= d(ιXω1).

We do the explicit calculation for the first term and the rest easily follows:

d
(

i(n+1)
4

dω0∧dω0

(
1
2

(
w0

∂

∂w0
+w0

∂

∂w0

)
, ·

))
= d

(
i(n+1)

8
w0dw0−w0dw0

)
=

i(n+1)
8

(dw0∧dw0−dw0∧dw0)

=
i(n+1)

4
dw0∧dw0,

so X (w) is indeed a Liouville vector field for ω1.
Next we prove that ω1(−Rαε , · )= d H( · ). First we calculate d H :

d H =
( 2∑

j=0

w j dw j +w j dw j

)
+ ε(w1dw1+w1dw1−w2dw2−w2dw2).

Then we compare the coefficients of d H to the coefficients of ω1(−Rαε , · ) associ-
ated to each term, (dwi ∧ dwi ). The (dw0 ∧ dw0) term is

i(n+ 1)
4

dw0 ∧ dw0

(
−

4i
n+ 1

w0
∂

∂w0
+

4i
n+ 1

w0
∂

∂w0
, ·

)
=

i(n+ 1)
4

(
−

4i
n+ 1

w0dw0−
4i

n+ 1
w0dw0

)
= w0dw0+w0dw0.
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The (dw1 ∧ dw1) term is

1
2 idw1 ∧ dw1

(
−2i(1+ ε)w1

∂

∂w1
+ 2i(1+ ε)w1

∂

∂w1

)
=

1
2 i(−2i(1+ ε)w1dw1− 2i(1+ ε)w1dw1)

= (1+ ε)w1dw1+ (1+ ε)w1dw1.

The (dw2 ∧ dw2) term is obtained in a similar way. Summing the terms yields
ω1(−Rαε , · )= d H( · ). �

Proof of Proposition 3.2. First we show that X H = −Rαε is tangent to the link
9(6(n+ 1, 2, 2)). We compute

(9∗d f )(Rαε )= ((n+ 1)wn
0 dw0+ 2w1dw2+ 2w2dw1)(Rαε )

= 4iwn+1
0 + 4i(1− ε)w1w2+ 4i(1+ ε)w1w2

= 4i(9∗ f )

= 0.

The last equality is because 9∗ f is constant along 9(6(n + 1, 2, 2)). Now we
have to show that 1

29
∗α1(X H )=−H . We have

1
29
∗α1( · )= ιXω1( · )= ω1(X (w), · )=−ω( · , X (w)),

1
29
∗α1(X H )=−ω(X H , X (w))=−d H(X (w))

=−|w|2− ε(|w1|
2
− |w2|

2)

=−H.

From these, we conclude

αε(X H )=−
1
H

H =−1,

dαε(X H , · )=−
1

2H 2 (d H∧9∗α1)(X H , · )+
1

2H
d9∗α1(X H , · )

=−
1

2H 2 d H(X H )9
∗α1( · )+

1
2H 29

∗α1(X H )d H( · )+
1
H
ω(X H , · )

=−
1

2H 2ω1(X H , X H )9
∗α1( · )−

1
H

d H( · )+
1
H

d H( · )

= 0.

By Lemma 3.4, we know −X H = Rαε so the result follows. �

3B. Isolated Reeb orbits. In this short section, we prove the following proposition.
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Proposition 3.5. The only simple periodic Reeb orbits of Rαε are nondegenerate
and defined by

γ+(t)= (0, e2i(1+ε)t , 0), 0≤ t ≤ π/(1+ ε),

γ−(t)= (0, 0, e2i(1−ε)t), 0≤ t ≤ π/(1+ ε).

Proof. The flow of

Rαε =
(

4i
n+ 1

w0, 2i(1+ ε)w1, 2i(1− ε)w2

)
is given by

ϕt(w0, w1, w2)=

(
e4i t/(n+1)w0, e2i(1+ε)tw1, e2i(1−ε)tw2

)
.

Since ε is small and irrational, the only possible periodic trajectories are

γ0(t)= (e4i/(n+1)t , 0, 0),

γ+(t)= (0, e2i(1+ε)t , 0),

γ−(t)= (0, 0, e2i(1−ε)t).

It is important to note that the first trajectory does not lie in 9(6(n+ 1, 2, 2)),
but rather on the total space C3. This is because the point γ0(0)= (1, 0, 0) is not a
zero of f An = w

n+1
0 + 2w1w2.

Next we need to check that the linearized return maps dφ|ξ associated to γ+ and
γ− have no eigenvalues equal to 1. We consider the first orbit γ+ of period π/(1+ε),
as a similar argument applies to the return flow associated to γ−. The differential
of its total return map is

dϕT =

e4iT/(n+1) 0 0
0 1 0
0 0 e2i(1−ε)T


∣∣∣∣∣∣∣
T=π/(1+ε)

.

Since ε is a small irrational number, the total return map only has one eigenvalue
which is 1. The eigenvector associated to the eigenvalue which is 1 is in the
direction of the Reeb orbit γ+, but since we are restricting the return map to ξ , we
can conclude that γ+ is nondegenerate. �

3C. Computation of the Conley–Zehnder index. To compute the Conley–Zehnder
indices of the Reeb orbits in Theorem 1.1 we use the same method as shown in
[Ustilovsky 1999], extending the Reeb flow to give rise to a symplectomorphism
of C3

\ {0}. This permits us to do the computations in C3, equipped with the
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symplectic form

ω1 =
d(9∗α1)

2
=

i(n+ 1)
4

dw0 ∧ dw0+
i
2

2∑
j=1

dw j ∧ dw j .

We may equip the contact structure ξ0 with the symplectic form ω = dα1 instead
of dαε when computing the Conley–Zehnder indices. This is because kerαε =
kerα1 = ξ0, as αε = (1/H)α1 with H > 0 and because ω|ξ = Hdαε |ξ and H is
constant along Reeb trajectories.

Our first proposition shows that we can construct a standard symplectic basis for
the symplectic complement

ξω = {v ∈ C3
: ω(v,w)= 0 for all w ∈ ξ}

of ξ in C3. As a result, c1(ξ
ω) = 0. Since c1(C

3) = 0, we know c1(ξ) = 0. Thus
we may compute the Conley–Zehnder indices in the ambient space C3 and use
additivity of the Conley–Zehnder index under direct sums of symplectic paths to
compute it in ξ .

Proposition 3.6. There exists a standard symplectic basis for the symplectic com-
plement ξω with respect to ω = dα1.

Proof. Notice that ξω = span(X1, Y1, X2, Y2), where

X1 = (w
n
0, w1, w2), Y1 = i X1,

X2 = Rε, Y2 = w.

We make this into a symplectic standard basis for ξω via a Gram–Schmidt process.
The new basis is given by

X̃1 =
X1

√
ω(X1, Y2)

, Ỹ1 =
Y1

√
ω(X1, Y1)

= i X̃1,

X̃2 = X2, Ỹ2 = Y2−
ω(X1, Y2)Y1−ω(Y1, Y2)X1

ω(X1, Y1)

= Y2−
n− 1

2
wn+1

0 w(X1, Y1)X1.

This is a standard basis for the symplectic vector space ξω; i.e., the form ω in this
basis is given by 

(
0 1
1 0

)
(

0 1
1 0

)
 . �

Now we are ready to prove the Conley–Zehnder index formula in Theorem 1.1.
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Proposition 3.7. The Conley–Zehnder index for γ = γ N
±

in 0≤ t ≤ Nπ/(1± ε) is

µC Z (γ
N
±
)= 2

(⌊
2N

(n+1)(1±ε)

⌋
+

⌊
N (1∓ε)

1±ε

⌋
−

⌊
2N

1±ε

⌋)
+ 2N + 1. (3-6)

Proof. The Reeb flow ϕ which we introduced in the previous section can be extended
to a flow on C3, which we also denote by ϕ. The action of the extended Reeb flow
on C3 is given by

dϕt(w)X̃1 = e4i t X̃1(ϕt(w)), dϕt(w)Ỹ1 = e4i t Ỹ1(ϕt(w)),

dϕt(w)X̃2 = X̃2(ϕt(w)), dϕt(w)Ỹ2 = Ỹ2(ϕt(w)).

Define
8 := dϕt |C3 = diag(e4i/(n+1)t , e2i(1+ε)t , e2i(1−ε)t).

We can now use the additivity of the Conley–Zehnder index under direct sums of
symplectic paths, Theorem 2.13(4) to get

µC Z (γ±)= µC Z (8)−µC Z (8ξω),

where
8ξω := dϕt |ξω = diag(e4i t , 1). (3-7)

The right-hand side of (3-7) is easily computed via the crossing form; see [Robbin
and Salamon 1993, Remark 5.4]. In particular we have

µC Z
(
{ei t
}|t∈[0,T ]

)
=

{
T/π, T ∈ 2πZ,

2bT/2πc+ 1, otherwise.

Thus for {8(t)} = {e4i t/(n+1)
⊕ e2i t (1+ε)

⊕ e2i t (1−ε)
} with 0≤ t ≤ T we obtain

µC Z (8)=

{
4T/((n+ 1)π), T ∈ 1

2(n+ 1)πZ,

2
⌊

2T/((n+ 1)π)
⌋
+ 1, T /∈ 1

2(n+ 1)πZ,

+

{
2T (1+ ε)/π, T ∈ π/(1+ ε)Z,
2
⌊

T (1+ ε)/π
⌋
+ 1, T /∈ π/(1+ ε)Z,

+

{
2T (1− ε)/π, T ∈ π/(1− ε)Z,
2
⌊

T (1− ε)/π
⌋
+ 1, T /∈ π/(1− ε)Z.

Likewise for 8ξω with 0≤ t ≤ T we obtain

µC Z (8ξω)=

{
4T/π, T ∈ π/2Z,

2b2T/πc+ 1, T /∈ π/2Z.

Hence we get that the Conley–Zehnder index for γ N
±

in 0 ≤ t ≤ Nπ/(1± ε) is
given by

µC Z (γ
N
±
)= 2

(⌊
2N

(n+1)(1±ε)

⌋
+

⌊
N (1∓ε)

1±ε

⌋
−

⌊
2N

1±ε

⌋)
+ 2N + 1. (3-8)



436 L. ABBRESCIA, I. HUQ-KURUVILLA, J. NELSON AND N. SULTANI

This completes the proof. �

4. Proof of Theorem 1.8

This section proves that (L An , ξ0) and (L(n+1, n), ξstd) are contactomorphic. This
is done by constructing a 1-parameter family of contact manifolds via a canonically
defined Liouville vector field and applying Gray’s stability theorem.

4A. Contact geometry of (L(n + 1, n), ξstd). The lens space L(n + 1, n) is ob-
tained via the quotient of S3 by the binary cyclic subgroup An ⊂ SL(2,C). The
subgroup An is given by the action of Zn+1 on C2 defined by(

u
v

)
7→

(
e2π i/(n+1) 0

0 e2nπ i/(n+1)

)(
u
v

)
.

The following exercise shows that L(n+ 1, n) is homeomorphic to L An . This
construction will be needed later in another proof, so we explain it here to set up
the notation.

The origin is the only fixed point of the An action on C2 and hence is an isolated
quotient singularity of C2/An . We can represent C2/An as a hypersurface of C3 as
follows. Consider the monomials

z0 := uv, z1 :=
1
√

2
iun+1, z2 :=

1
√

2
ivn+1.

These are invariant under the action of An and satisfy the equation zn+1
0 +2z1z2= 0.

Recall that

f An (z0, z1, z2)= zn+1
0 + 2z1z2 and L An = S5

∩ { f −1
An
(0)}.

Moreover,
ϕ̃ : C2

→ C3,

(u, v) 7→ (uv, 1
√

2
iun+1, 1

√
2
ivn+1),

(4-1)

descends to the map
ϕ : C2/An→ C3,

which sends ϕ(C2/An) homeomorphically onto the hypersurface f −1
An
(0).

Rescaling away from the origin of C3 yields a homeomorphism between ϕ(S3/An)

and L An . As 3-manifolds which are homeomorphic are also diffeomorphic [Moise
1952], we obtain the following proposition.

Proposition 4.1. L(n+ 1, n) is diffeomorphic to L An .

Remark 4.2. In order to prove that two manifolds are contactomorphic, one must
either construct an explicit diffeomorphism or make use of Gray’s stability theorem.
Sadly, ϕ is not a diffeomorphism onto its image when u = 0 or v = 0. As the above
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diffeomorphism is only known to exist abstractly, we will need to appeal the latter
method to prove that (L An , ξ0) and (L(n+ 1, n), ξstd) are contactomorphic. As a
result, this proof is rather involved.

Our application of Gray’s stability theorem uses the flow of a Liouville vector
field to construct a 1-parameter family of contactomorphisms. First we prove that
L(n+1, n) is a contact manifold whose contact structure descends from the quotient
of S3.

Consider the standard symplectic form on C2 given by

ωC2 = dλC2,

λC2 =
1
2 i(udū− ūdu+ vd v̄− v̄dv).

(4-2)

The following proposition shows that λ0 restricts to a contact form on L(n+ 1, n).
We define ker λ= ξstd on L(n+ 1, n).

Proposition 4.3. The vector field

Y0 =
1
2

(
u
∂

∂u
+ ū

∂

ū
+ v

∂

∂v
+ v̄

∂

v̄

)
is a Liouville vector field on (C2/An, ωC2) away from the origin and transverse to
L(n+ 1, n).

Proof. We have that C2/An is a smooth manifold away from the origin because 0
is the only fixed point by the action of An . Write

S3/An = {(u, v) ∈ C2/An : |u|2+ |v|2 = 1}.

Then L(n+ 1, n)= S3/An is a regular level set of g(u, v)= |u|2+ |v|2 Choose a
Riemannian metric on C2/An and note that

Y0 =
1
4∇g.

Thus Y0 is transverse to L(n+ 1, n). Since

LY0ωC2 = d(iY0dλC2)= ωC2,

we may conclude that Y0 is indeed a Liouville vector field on (C2/An, ωC2) away
from the origin. Thus by Proposition 2.10, L(n+ 1, n) is a hypersurface of contact
type in C2/An . �

4B. The proof that (L An, ξ0) and (L(n + 1, n), ξstd) are contactomorphic. First
we set up L An and ϕ(L(n+1, n)) as hypersurfaces of contact type in { f −1

An
(0)}\{0}.

Define ρ : C3
→ R by

ρ(z)= 1
4 |z|

2
− 1= 1

4 z0z0+ · · ·+ z2z2− 1.
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The standard symplectic structure on C3 is given by

ωC3 =
1
2 i(dz0 ∧ dz0+ · · ·+ dz2 ∧ dz2).

Moreover,

Y =∇ρ = 1
2

2∑
j=0

z j
∂

∂z j
+ z j

∂

∂z j
(4-3)

is a Liouville vector field for (C3, ωC3). We define

λC3 = ιYωC3 .

A standard calculation analogous to the proof of Proposition 4.3 shows that Y is a
Liouville vector field on ({ f −1

An
(0)} \ {0}, ωC3).

Remark 4.4. Both ϕ(L(n + 1, n)) and L An are hypersurfaces of contact type in
({ f −1

An
(0)}\{0}, ωC3). Note that ϕ(L(n+1, n)) is in fact transverse to the Liouville

vector field Y because

ϕ(L(n+1, n))= ϕ({|u|2+|v|2 = 1}/An)

= ϕ({|u|4+2|u|2|v|2+|v|4 = 1}/An)

=
{
2|z0|

2
+41/(n+1)

|z1|
4/(n+1)

+41/(n+1)
|z2|

4/(n+1)
= 1

}
∩ f −1

An
(0).

We will want ϕ(L(n+ 1, n)) and L An to be disjoint in { f −1
An
(0)}. This is easily

accomplished by rescaling r in the definition of the link.

Definition 4.5. Define
Lr

An
= f −1

An
(0)∩ S5

r ,

with the assumption that r has been chosen so that ϕ(L(n + 1, n)) and Lr
An

are
disjoint in { f −1

An
(0)} and so that the flow of the Liouville vector field Y “hits”

ϕ(L(n+ 1, n)) before Lr
An

.

The first result is the following lemma, which provides a 1-parameter family of
diffeomorphic manifolds starting on ϕ(L(n+ 1, n)) and ending on Lr

An
. First we

set up some notation. Let
ψt : R× X→ X

be the flow of Y and ψt(z) = γz(t) the unique integral curve passing through
z ∈ ϕ(L(n+ 1, n)) at time t = 0. For any integral curve γ of Y we consider the
initial value problem

γ ′(t)= Y (γ (t)) and γ (0)= z ∈ ϕ(L(n+ 1, n)). (4-4)

By means of the implicit function theorem and the properties of the Liouville vector
field Y we can prove the following claim.
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Lemma 4.6. For every γz , there exists a τ(z) ∈ R>0 such that γz(τ (z)) ∈ Lr
An

. The
choice of τ(z) varies smoothly for each z ∈ ϕ(L(n+ 1, n)).

Proof. In order to apply the implicit function theorem, we must show for all (t, z)
with ρ ◦ γ = 0 that

∂(ρ ◦ γ )

∂t
6= 0.

Note that ρ ◦ γ is smooth. By the chain rule,

∂(ρ ◦ γ )

∂t

∣∣∣∣
(s,p)
= grad ρ|γ (s,p) · γ̇ |(s,p),

where γ̇ |(s,p) = ∂γ /∂t |(s,p).
If grad ρ|γ (s,p) ·γ̇ |(s,p)= 0, then grad ρ is not transverse along {(ρ◦γ ) (s, p)= 0}

or γ̇ |(s,p) = 0, since grad ρ 6= 0. By construction, grad ρ =∇ρ is a Liouville vector
field transverse to Lr

An
. Furthermore, the conformal symplectic nature of a Liouville

vector field implies that for any integral curve γ satisfying the initial value problem
given by (4-4), γ̇ |(s,p) 6= 0. Thus we see that the conditions for the implicit function
theorem are satisfied and our claim is proven. �

Remark 4.7. The time τ(z) can be normalized to 1 for each z, yielding a 1-
parameter family of diffeomorphic contact manifolds (Mt , ζt) for 0≤ t ≤ 1 given by

Mt = ψt
(
ϕ(L(n+ 1, n))

)
, ζt = TMt ∩ JC3(TMt),

where

M0 = ψ0
(
ϕ(L(n+ 1, n))

)
= ϕ(L(n+ 1, n)), M1 = ψ1

(
ϕ(L(n+ 1, n))

)
= L An .

Moreover, we can relate the standard contact structure on L(n+ 1, n) under the
image of ϕ. To avoid excessive parentheses, we use S3/An in place of L(n+ 1, n)
in this lemma.

Lemma 4.8. On ϕ(S3/An),

ϕ∗(ξstd)= T (ϕ(S3/An))∩ JC3
(
T (ϕ(S3/An))

)
.

Proof. Since An ⊂ SL(2,C), we have

ϕ̃(JC2 T S3)= JC3(T ϕ̃(S3)).

Examining ϕ∗(ξstd) yields

ϕ∗(T (S3/An)∩ JC2 T (S3/An))= ϕ̃∗(T S3
∩ JC2(T S3))= ϕ̃∗(T S3)∩ ϕ̃∗(JC2(T S3))

= ϕ̃∗(T S3)∩ JC3 ϕ̃∗(T S3)= T ϕ̃(S3)∩ JC3(T ϕ̃(S3))

= T (ϕ(S3/An))∩ JC3(Tϕ(S3/An)). �
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Lemmas 4.6 and 4.8 in conjunction with Remark 4.7 and Lemma 2.11 yield the
following proposition.

Proposition 4.9. The image of the lens space (ϕ(L(n+ 1, n)), ϕ∗ξstd) is contacto-
morphic to (L An , ξ0).

It remains to show that (ϕ(L(n+ 1, n)), ϕ∗ξstd) and (L(n+ 1, n), ξstd) are con-
tactomorphic. To accomplish this, we use Moser’s lemma to prove the following
lemma.

Lemma 4.10. The manifolds (C2
\ {0}, dλC2) and (C2

\ {0}, dϕ̃∗λC3) are contacto-
morphic.

Proof. Consider the family of 2-forms

ωt = (1− t)ωC2 + t ϕ̃∗ωC3

for 0 ≤ t ≤ 1. Then ωt is exact because Y0 and Y are Liouville vector fields for
C2
\0 equipped with the symplectic forms ωC2 and ωC3 respectively; thus dλt =ωt

for
λt = (1− t)λC2 + t ϕ̃∗(λC3)

for 0≤ t ≤ 1. We claim that λt is a family of contact forms for each t ∈ [0, 1].
We compute

2
i
ϕ̃∗dλC3 = d(uv)∧d(uv)+d(un+1)∧d(ūn+1)+d(vn+1)∧d(v̄n+1)

= ((n+1)2|u|2n
+|v|2)du∧dū+2<(uv̄dv∧dū)

+((n+1)2|v|2n
+|u|2)dv∧d v̄.

Since ωt is exact for each t ∈[0, 1], we know d(ωt)=0 for each t ∈[0, 1]. Moreover,
a simple calculation reveals that ωt ∧ωt is a volume form on C2 for each t ∈ [0, 1].
Thus we may conclude that ωt is a symplectic form for each t ∈ [0, 1]. Applying
Moser’s argument, Theorem 2.3, yields the desired result. �

This yields the desired corollary.

Corollary 4.11. The manifolds (L(n+1, n), ker λC2) and (L(n+1, n), kerϕ∗λC3)

are contactomorphic.

Proof. Let φ : (C2
\ {0}, dλC2) and (C2

\ {0}, dϕ̃∗λC3) be the symplectomorphism,
which exists by Lemma 4.10. It induces the desired contactomorphism. On C2

\{0},

φ∗d(ϕ∗λC3)= dλC2;

thus,
dφ∗(ϕ∗λC3)= dλC2 .

So on L(n+ 1, n),

φ∗(ξstd)= φ∗(ker λC2)= kerϕ∗λC3 = ϕ∗ξstd.
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Proposition 4.9 and Corollary 4.11 complete the proof of Theorem 1.8. �
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The vibration spectrum of
two Euler–Bernoulli beams

coupled via a dissipative joint
Chris Abriola, Matthew P. Coleman, Aglika Darakchieva and Tyler Wales

(Communicated by Kenneth S. Berenhaut)

The asymptotic estimation of the vibration spectrum for a system of two identical
Euler–Bernoulli beams coupled via each of the four standard types of linear
dissipative joint has been solved for the case when one beam is clamped and the
other beam is free at the outer ends. Here, we generalize those results and solve the
problem for all 40 combinations of energy-conserving end conditions. We provide
both asymptotic and numerical results, and we compare the various systems with
an eye toward determining which configurations lead to asymptotically equivalent
vibration spectra.

1. Introduction

The design of large or complex structures — bridges, airplanes, robots, buildings,
machinery, etc. — entails the joining or coupling of smaller, simpler components,
which often can be modeled as beams, plates, or shells. These couplings may include
active or passive damping mechanisms for the damping of unwanted vibrations.
Successful design requires a knowledge of the system’s vibration spectrum, i.e., the
set of its natural frequencies of vibration.

There are four standard linear models for describing the vibration of beams —
the Euler–Bernoulli, Rayleigh, shear, and Timoshenko beams. Of these, the Euler–
Bernoulli is the simplest, with each of the others incorporating one or more physical
effects neglected by the Euler–Bernoulli model. Despite the better accuracy of
these latter models, the Euler–Bernoulli is accurate enough to be the model of
choice for a multitude of physical applications. In addition, the most commonly
utilized models for plates and shells are those based on the same assumptions
as those governing the Euler–Bernoulli beam. Indeed, given its simplicity and
applicability, the Euler-Bernoulli beam may be thought of as the most universal
element in structural dynamics.

MSC2010: 74H10, 74H15.
Keywords: vibration, eigenfrequency, Euler–Bernoulli beam, dissipative.
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In this paper, we consider the vibration of a system consisting of two identical
Euler–Bernoulli beams, coupled end to end by each of four standard types of dissipa-
tive joint, and satisfying any of the standard energy-conserving boundary conditions
at each end. Our intent is to estimate and classify the vibration spectrum for all
40 possible configurations (four joint conditions and ten sets of end conditions.)

The problem of serially connected Euler–Bernoulli beams seems first to have been
treated in [Chen et al. 1987], while the specific problem here was solved in [Chen
et al. 1989] for the case involving a so-called type I joint with clamped-free end
conditions. The authors employ an asymptotic method in order to compute the spec-
trum analytically, and provide numerical results for comparison. In addition, they
provide physical models for the four joint types (three being special cases, involving
only some of the damping parameters), and present some early experimental results.
In [Chen et al. 1988], the authors provide more experimental results and, after
smoothing this data, show good agreement with the results from [Chen et al. 1989].

Krantz and Paulsen [1991] generalize to a great extent the asymptotic results in
[Chen et al. 1989]. They again treat the case with clamped-free end conditions, but
they consider all four types of joints. In addition, they allow for an arbitrary number
of beams of arbitrary length! Finally, in [Chen and Zhou 1990], an alternate solution
of the problem in [Chen et al. 1989] is provided, using the elegant asymptotic wave
propagation method (WPM) of Keller and Rubinow [1960].

In this paper, we consider the case of two identical Euler–Bernoulli beams subject
to any of the four types of joint conditions, as given in [Chen et al. 1989], and
we generalize by considering all possible combinations of energy-conserving end
conditions. We employ WPM in order to derive analytic/asymptotic results, and
the Legendre–Tau spectral method for numerical comparisons. These are the first
numerical results that we know of for Euler–Bernoulli systems with types II, III
and IV joints, and the first asymptotic results for systems without clamped-free end
conditions. The asymptotic results allow us easily to compare the vibration spectra
for all 40 configurations, permitting us to categorize them, in order to see which
configurations may be equivalent insofar as they lead to identical vibration spectra.

This paper is organized as follows: In Section 2, we present the problem and, in
Section 3, it is recast in dimensionless form; WPM is applied and the asymptotic
results are presented in Section 4, with a brief discussion of the results in Section 5.
In Section 6, the numerical results and comparisons are presented.

2. The problem

As mentioned, we consider the problem of two identical Euler–Bernoulli beams,
connected by any of the four standard dissipative joints, as presented in [Chen et al.
1989]. We have, then, an Euler–Bernoulli beam equation satisfied along each beam:
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mw1t t + E Iw1xxxx = 0, −L < x < 0, t > 0,

mw2t t + E Iw2xxxx = 0, 0 < x < L , t > 0.

Here, wj (x, t), j = 1, 2, is the transverse displacement along beam j, E is the
constant Young’s modulus, I is the constant (vertical) moment of inertia, and m is
the constant linear mass density.

In addition, we have the joint conditions:

Type I:
M2(0, t)= M1(0, t),

V2(0, t)= V1(0, t),

w2t(0, t)−w1t(0, t)= k2
1 V1(0, t)+ c1 M1(0, t),

w2xt(0, t)−w1xt(0, t)= c2V1(0, t)− k2
2 M1(0, t);

Type II:
w2(0, t)= w1(0, t),

M2(0, t)= M1(0, t),

V2(0, t)− V1(0, t)= k2
1w1x(0, t)+ c1 M1(0, t),

w2xt(0, t)−w1xt(0, t)= c2w1t(0, t)− k2
2 M1(0, t);

Type III:
w2(0, t)= w1(0, t),

w2x(0, t)= w1x(0, t),

V2(0, t)− V1(0, t)= k2
1w1t(0, t)+ c1w1xt(0, t),

M2(0, t)−M1(0, t)= c2w1t(0, t)− k2
2w1xt(0, t);

Type IV:
w2x(0, t)= w1x(0, t),

V2(0, t)= V1(0, t),

w2t(0, t)−w1t(0, t)= k2
1 V1(0, t)+ c1w1xt(0, t),

M2(0, t)−M1(0, t)= c2V1(0, t)− k2
2w1xt(0, t);

where Mj (x, t) is the bending moment, and Vj (x, t) the shear force, along beam j.
The damping constants k2

1 , k2
2 , c1 and c2 ensure dissipation of energy so long as

k2
1 + k2

2 > 0 and k2
1α

2+ k2
2β

2+ (c1− c2)αβ > 0 ∀α, β ∈ R

[Chen and Zhou 1990]. For the sake of convenience, we assume throughout the
paper that k1 6= 0 (corresponding to “type a” joints in [Krantz and Paulsen 1991])
and that k2

1k2
2 + c1c2 > 0. (It is easy to show that k2

1k2
2 + c1c2 ≥ 0, with equality if

and only if c1 =−c2 =±k1k2.)
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Finally, at the left end of the first beam, we have one of the energy-conserving
boundary conditions

clamped (C): w1(−L , t)= w1x(−L , t)= 0,

simply supported (S): w1(−L , t)= w1xx(−L , t)= 0,

roller supported (R): w1x(−L , t)= w1xxx(−L , t)= 0,

free (F): w1xx(−L , t)= w1xxx(−L , t)= 0,

and similarly at the right end of the second beam. Thus, we have the following ten
combinations of boundary conditions to consider:

C-C, C-S, C-R, C-F, S-S, S-R, S-F, R-R, R-F, F-F.

We note here that, in order for a joint to exist, at least one of the variables w (or wt ),
wx (or wxt ), M or V must be discontinuous. In addition, at most one of each pair of
conjugate variables (w and V, wx and M) can be discontinuous. Thus, types I–IV
do, indeed, represent the most general situation for linear joints [Pilkey 1969].

3. Dimensionless form

We first separate variables,

wj (x, t)= e−iξ2tvj (x), j = 1, 2,

and introduce the new variables

y = x
L
, u j (y)= vj (x)

L
, j = 1, 2.

Also, in order to apply WPM, we let y→−y along the second beam, as it is
convenient to have both beams on the same y-interval. The resulting dimensionless
ODEs are

u(4)j (y)− k4u j (y)= 0, −1< y < 0, j = 1, 2, (1)

where

k2 =
√

m
E I

L2ξ 2.

The new joint conditions are:

Type I:
u′′2(0)− u′′1(0)= 0,

u′′′2 (0)+ u′′′1 (0)= 0,

ik2[u2(0)− u1(0)] − p11u′′′1 (0)− q11u′′1(0)= 0,

ik2[u′2(0)+ u′2(0)] − p12u′′1(0)+ q12u′′′1 (0)= 0;
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Type II:
u2(0)− u1(0)= 0,

u′′2(0)− u′′1(0)= 0,

u′′′2 (0)+ u′′′1 (0)+ ik2 p21u1(0)+ q21u′′1(0)= 0,

ik2[u′2(0)+ u′1(0)] − p22u′′1(0)+ ik2q22u1(0)= 0;

Type III:
u2(0)− u1(0)= 0,

u′2(0)+ u′1(0)= 0,

u′′2(0)− u′′1(0)+ ik2 p31u′1(0)− ik2q31u1(0)= 0,

u′′′2 (0)+ u′′′1 (0)+ ik2 p32u1(0)+ ik2q32u′1(0)= 0;

Type IV:
u′2(0)+ u′1(0)= 0,

u′′′2 (0)+ u′′′1 (0)= 0,

ik2[u2(0)− u1(0)] − p41u′′′1 (0)− ik2q41u′1(0)= 0,

u′′2(0)− u′′1(0)+ ik2 p42u′1(0)− q42u1(0)= 0.

Here, the constants pi j and qi j , where i = 1, 2, 3, 4, j = 1, 2, are given by:

Type I:

p11 = k2
1

√
m E I
L

, p12 = k2
2 L
√

m E I , q11 = c1
√

m E I , q12 = c2
√

m E I ;

Type II:

p21 = k2
1 L√

m E I
, p22 = k2

2 L
√

m E I , q21 = c1L , q22 = c2L;

Type III:

p31 = k2
1

L
√

m E I
, p32 = k2

2 L√
m E I

, q31 = c1√
m E I

, q32 = c2√
m E I
;

Type IV:

p41 = k2
1

√
m E I
L

, p42 = k2
2

L
√

m E I
, q41 = c1

L
, q42 = c2

L
.

Note that k2
1α

2+ k2
2β

2+ (c1− c2)αβ ≥ 0 if and only if

p j1α
2+ p j2β

2+ (q j1− q j2)αβ ≥ 0, j = 1, 2, 3, 4.
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For j = 1, 2, the new boundary conditions are

C: u j (−1) = u′j (−1)= 0,

S: u j (−1) = u′′j (−1)= 0,

R: u′j (−1)= u′′′j (−1)= 0,

F: u′′j (−1)= u′′′j (−1)= 0.

4. Asymptotic estimation of vibration frequencies by WPM

Applying WPM to the problem is identical to writing the general solutions of the
ODEs (1) as

u(x)=
[

u1(x)
u2(x)

]
=
[

A1

A2

]
eikx+

[
B1

B2

]
e−ikx+

[
C1

C2

]
ekx+

[
D1

D2

]
e−k(x+1)

=
[

A3

A4

]
eik(x+1)+

[
B3

B4

]
e−ik(x+1)+

[
C1

C2

]
ekx+

[
D1

D2

]
e−k(x+1), (2)

applying the joint conditions to the first expression in (2) and the boundary conditions
to the second expression in (2). Here, we follow Chen and Zhou [1990] and stipulate
that Re(k)≥ 0 (else, we just replace k by −k). Applying the boundary conditions,
neglecting the terms of O(e−k), and eliminating D1 and D2 leads to[

A3

A4

]
=
[

a 0
0 b

] [
B3

B4

]
= R2

[
B3

B4

]
. (3)

Here, a and b depend on the boundary conditions, as follows:

a = b = i : C-C, C-F, F-F,

a = b = 1 : R-R, a = b =−1 : S-S, a =−1, b = 1 : S-R,

a= i, b=1 : C-R, a= i, b=−1 : C-S, a=1, b= i : R-F, a=−1, b= i : S-F,

where, e.g., C-F signifies that the first beam is clamped at the left end and the
second beam is free at the right end.

Next, we apply the joint conditions, again neglecting terms of O(e−k), and
eliminate C1 and C2. The result is a relationship of the form

M1(k)
[

B1

B2

]
= M2(k)

[
A1

A2

]
, (4)

where each matrix Mj is 2× 2. Solving for
[ B1

B2

]
, we have[

B1

B2

]
= M−1

1 (k)M2(k)
[

A1

A2

]
= R1(k)

[
A1

A2

]
, (5)
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for which we find it more convenient to write[
B1

B2

]
= 1

det M1(k)
R′1(k)

[
A1

A2

]
. (6)

For the sake of completeness, we provide R′1 and det M1 for each of the four
joints:

Type I:
det M1 = 2(1+ i)p11k2+ i(p11 p12+ q11q12+ 8)k+ 2(−1+ i)p12 = t11,

R′1 =
[

u+ v w+ z
w− z u− v

]
= T11,

where

u = 2i p11k2− (p11 p12+ q11q12)k− 2i p12, v = 2(q11− q12)k,

w = 2p11k2+ 8ik− 2p12, z = 2(q11+ q12)k.

Type II:
det M1 = 8ik2+ 2(−1+ i)(p21+ p22+ q21+ q22)k− 2(p21 p22+ q21q22),

R′1 =
[−v 2u

2u −v
]
,

where
u = 4ik2+ [−(p21+ p22)+ i(q21+ q22)]k,
v = 2[i(p21+ p22)− (q21+ q22)]k− 2(p21 p22+ q21q22).

Type III:
det M1 = 2(1+ i)p31k2+ i(p31 p32+ q31q32)k+ 2(−1+ i)p32 = t31,

R′1 =
[

u+ v w− z
w+ z u− v

]
= T31,

where

u = 2i p31k2− (p31 p32+ q31q32)k− 2i p32, v =−2(q31− q32)k,

w = 2p31k2+ 8ik− p32, z = 2(q31+ q32)k.

Type IV:
det M1 =−2i(p41 p42+ q41q42)k2+ 2(1− i)(p41+ p42+ q41+ q42)k+ 8,

R′1 =
[ −u −2v
−2v −u

]
,

where

u = 2i(p41 p42+ q41q42)k2+ 2[−(p41+ p42)+ i(q41+ q42)]k,
v = [i(p41+ p42)− (q41+ q42)]k− 4.
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Now, we also see from the general solution (2) that[
A1

A2

]
=
[

A3

A4

]
eik,

[
B1

B2

]
=
[

B3

B4

]
e−ik. (7)

Combining (3), (5), and (7) then gives us[
B1

B2

]
= R1(k)

[
A1

A2

]
= R1(k)eik

[
A3

A4

]
= R1(k)eik R2

[
B3

B4

]
= R1(k)eik R2eik

[
B1

B2

]
. (8)

Thus, we are to find those values of k for which

det [e2ik R1(k)R2− I ] = 0

or

det
[
R′1 R2− e−2ik(det M1(k))I

]= det [R′1 R2− λI ] = 0.

Thus, we need only compute the eigenvalues of R′1(k)R2.
It is easy to see that, if we identify p11→ p31, p12→ p32, q11→q31, q12→q32,

we have t31 = t11 and T31 = (T11)
T. Thus, R′11 R2 and R′13 R2 will have the same

eigenvalues, and the spectra for the types I and III joints are identical for each R2;
i.e., given any set of end/boundary conditions, the types I and III joints have identical
spectra, asymptotically. This generalizes the result in [Krantz and Paulsen 1991]
where they show that these spectra are identical in the case of C-F end conditions.

Continuing the analysis, in each case the matrix R′1(k)R2 will have two eigen-
values, λ1(k) and λ2(k). It is easy to show, as in [Chen and Zhou 1990], that these
eigenvalues are distinct. It follows that, in each case, there will be two streams or
branches of frequencies, satisfying

λj (k)= e−2ik det M1(k) or e−2ik = λj (k)
det M1(k)

, j = 1, 2, (9)

where each λj (k) and det M1(k) are quadratic polynomials in k. Thus, as (9) is
unwieldy, we follow [Chen and Zhou 1990] and we use the first-degree Taylor
approximation

a1k2+ b1k+ c1

a2k2+ b2k+ c2
= a1

a2
+ a2b1− a1b2

a2
2

1
k
+O

(
1
k2

)
. (10)

Applying (10) to (9) yields an equation of the form

e−2ik = d1

(
1− d2

1
k

)
+O

( 1
k2

)
, |d1| = 1, (11)
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and, taking the (complex) log of (11) and using the Taylor approximation

ln
(

1− d2
1
k
+O

( 1
k2

))
=−d2

1
k
+O

( 1
k2

)
,

we have

−2ik =−d2
1
k
+ i(arg d1− 2nπ)+O

( 1
k2

)
, n = 0, 1, 2, . . . . (12)

We note here that the choice of −2nπ is based on our earlier assumption that
Re(k) ≥ 0. We rewrite (12) as a quadratic equation, realizing that multiplying
by k will add an extraneous root of O(1/k), and after also employing the Taylor
approximation

√
1+ ε = 1+ 1

2ε+O(ε2),

we arrive at

−ik2 =−d2−
( 1

2 arg d1− nπ
)2i +O

(1
k

)
.

Here, we provide the expressions for −ik2 for all 40 cases:

Type I:

a = b (C-C, C-F, F-F, S-S, R-R, F-F):

−ik2 =− p11 p12+ q11q12

2p11
− ( 1

2 arg a− nπ
)2i,

−ik2 =− 4
p11
− ( 1

2 arg(−a)− nπ
)2i;

a =−b =−1 (S-R):

−ik2 =−(4p11)
−1[p11 p12+ q11q12+ 8− 2

√
2(q11− q12)i] −

(1
8π − nπ

)2i,

−ik2 =−(4p11)
−1[p11 p12+ q11q12+ 8+ 2

√
2(q11− q12)i] −

(5
8π − nπ

)2i;

a = 1, b = i (R-F):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3−1)]

−( 1
12π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3+1)]

−( 5
12π−nπ

)2i;
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a =−1, b = i (S-F):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3−1)]

−( 1
3π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3+1)]

−( 2
3π−nπ

)2i;
a = i , b = 1 (C-R):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3−1)]

−( 1
12π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3+1)]

−( 5
12π−nπ

)2i;
a = i , b =−1 (C-S):

−ik2 =−(4√3p11)
−1[(√3+1)(p11 p12+q11q12)+4i(q11−q12)+8(

√
3−1)]

−( 1
3π−nπ

)2i,

−ik2 =−(4√3p11)
−1[(√3−1)(p11 p12+q11q12)−4i(q11−q12)+8(

√
3+1)]

−( 2
3π−nπ

)2i.

Type III: This is the same as type I, with p1 j → p3 j , q1 j → q3 j , j = 1, 2.

Type II:

a = b (C-C, C-F, S-S, R-R, F-F):

−ik2 =− 1
2 [p21+ p22+ i(q21+ q22)] −

( 1
2 arg a− nπ

)2i,

−ik2 =−( 1
2 arg(−a)− nπ

)2i;
a =−b =−1 (S-R):

−ik2 =− 1
4 [p21+ p22+ i(q21+ q22)] −

( 1
4π − nπ

)2i,

−ik2 =− 1
4 [p21+ p22+ i(q21+ q22)] −

( 3
4π − nπ

)2i;
a = i , b = 1 (C-R); a = 1, b = i (R-F):

−ik2 =− 1
8(2+

√
2)[p21+ p22+ i(q21+ q22)] −

( 1
8π − nπ

)2i,

−ik2 =− 1
8(2−

√
2)[p21+ p22+ i(q21+ q22)] −

( 5
8π − nπ

)2i;
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a = i , b =−1 (C-S); a =−1, b = i (S-F):

−ik2 =− 1
8(2+

√
2)[p21+ p22+ i(q21+ q22)] −

( 3
8π − nπ

)2i,

−ik2 =− 1
8(2−

√
2)[p21+ p22+ i(q21+ q22)] −

( 7
8π − nπ

)2i.

Type IV:

a = b (C-C, C-F, S-S, R-R, F-F):

−ik2 =−2
p41+ p42+ i(q41+ q42)

p41 p42+ q41q42
− ( 1

2 arg a− nπ
)2i,

−ik2 =−( 1
2 arg a− nπ

)2i;
a 6= b (C-S, C-R, S-R, S-F, R-F):

−ik2 =− p41+ p42+ i(q41+ q42)

p41 p42+ q41q42
− ( 1

2 arg a− nπ
)2i,

−ik2 =− p41+ p42+ i(q41+ q42)

p41 p42+ q41q42
− ( 1

2 arg b− nπ
)2i.

5. Discussion of asymptotic results

Again, we begin by noting that, for each set of end conditions, the type I and type III
joints are asymptotically equivalent. This agrees with what is found in [Krantz and
Paulsen 1991] for C-F end conditions.

We see also that, for many choices of the end conditions, the damping rates for
the type II and type IV joints are asymptotically equivalent. Specifically, for those
cases satisfying a = b, there is an asymptotically undamped branch, while, for the
other branch, we need only choose our damping constants so that

p21 = 4p41

p41 p42+ q41q42
, etc.

We have a similar equivalence for the case a =−b =−1 (S-R).
It is of particular interest that, in so many cases, for each type of joint, a term

of the form q j1− q j2 or q j1+ q j2 appears in Im(−ik2). Thus, there are examples
where the q j1 and q j2 affect the “frequency part” of the eigenfrequencies. Indeed,
a term of this form appears in all cases except for those where there is a type I or
type III joint and end conditions satisfying a = b. Thus, this behavior would not
have been encountered in [Chen and Zhou 1990]. These terms are encountered in
[Krantz and Paulsen 1991]; however, they seem to be discarded.

More specifically, in computing the damping rates, [Krantz and Paulsen 1991]
arrives at a correct term similar to

p j1+ p j2+ i(q j1+ q j2),
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and then arrives at the, again correct, damping rate of

−Re[p j1+ p j2+ i(q j1+ q j2)].
However, the i(q j1 + q j2) part is then dropped from consideration; although, as
we shall see below, these efforts do show up in the numerical results. This does,
however, seem to be an easy fix for Krantz and Paulsen [1991, p. 399].

6. Numerical results and comparisons

We have applied the Legendre–Tau spectral method to the problem. The problem is
recast so that each beam has domain −1≤ x ≤ 1, after which we approximate u1

and u2 by

u1(x)=
N∑

n=0

an Pn(x), u2(x)=
N∑

n=0

bn Pn(x), (13)

where Pn is the Legendre polynomial of degree n [Gottlieb and Orszag 1977].
Computations were performed within MATLAB, and also using Fortran 90 on a
laptop. Computations at N = 40 and N = 42 show that all results in the table below
converge to at least five decimal places.

In each table, we present the first 20 eigenfrequencies. We note here that,
although we have only negative imaginary parts in our asymptotic results, in fact
the conjugate of each eigenfrequency also is an eigenfrequency. In the following
example, we list only those with positive imaginary parts.

In our first example, we compare numerical results for a type I and a type III joint,
with C-F end conditions, for q j1 = q j2 = 0, and for various values of p11 = p31

and p12 = p32. The results appear in Tables 1–3.
The purpose here is threefold — to compare the numerical results for type I

and type III joints (remembering that we have shown them to be asymptotically
equivalent), to compare the numerical and asymptotic results, of course, and to see
what happens when we vary the “dominant” damping parameters, pi j .

For Table 1, we have taken p11 = p31 = p12 = p32 = 1. The first thing we must
point out is the very close match between the type I and type III numerical results.
We shall see similar behavior in the remaining results examining types I and III
(Tables 2–4).

We also are surprised to see such a good match between the numerical and
asymptotic results at this low end of the spectrum. Indeed, from the second eigenfre-
quency on, it is clear that the numerical spectrum already has split into the expected
two branches or streams.

For Table 2, we have let p11 = p31 = 2 and p12 = p32 = 0.5. Again, we have a
very close match between types I and III, and a close match between the numerical
and asymptotic results.
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−0.49507 0.77898 −0.49507 0.77898
−0.53772 5.5070 −0.53772 5.5070 −0.5 5.5517
−3.6704 20.562 −3.6704 20.562 −4.0 22.207
−0.49979 30.205 −0.49979 30.205 −0.5 30.226
−3.8734 60.711 −3.8734 60.711 −4.0 61.685
−0.49981 74.625 −0.49981 74.625 −0.5 74.639
−3.9307 120.20 −3.9307 120.20 −4.0 120.90
−0.49989 138.78 −0.49989 138.78 −0.5 138.79
−3.9561 199.31 −3.9561 199.31 −4.0 199.86
−0.49992 222.67 −0.49992 222.67 −0.5 222.68
−3.9697 298.10 −3.9697 298.10 −4.0 298.56
−0.49995 326.31 −0.49995 326.31 −0.5 326.31
−3.9778 416.61 −3.9777 416.61 −4.0 416.99
−0.49996 449.68 −0.49997 449.68 −0.5 449.68
−3.9830 554.83 −3.9829 554.83 −4.0 555.17
−0.49997 592.79 −0.49999 592.79 −0.5 592.79
−3.9866 712.79 −3.9866 712.79 −4.0 713.08
−0.49997 755.64 −0.49987 755.64 −0.5 755.64
−3.9889 890.47 −3.9901 890.47 −4.0 890.73
−0.50000 938.22 −4.9987 938.22 −0.5 938.23

Table 1. Types I and III joints, C-F end conditions, with p11 =
p12 = 1, q11 = q12 = 0.

For Table 3, we have p11 = p31 = 0.5 and p12 = p32 = 2. Here, once more,
the match for types I and III is very close. Meanwhile, the convergence of the
numerical to the asymptotic results is somewhat slower than in the previous two
tables, especially for the branch with real part equaling −8. Indeed, this slower but
smooth convergence is seen quite clearly in Figure 1, where we have plotted the
data from Table 3.

For Table 4, we continue to consider types I and III joints and C-F end conditions,
with p11 = p31 = p12 = p32 = 1 but with q11 = q31 = 0.5 and q12 = q32 = 0.7.
Once again, the types I and III results are an excellent match. In addition, the
smooth convergence of the numerical to the asymptotic results is similar to that in
the previous example, and can be seen clearly in Figure 2.

Given the excellent agreement between the type I and type III numerical results,
we are curious as to “how equivalent” they actually are. We have tried to compare
the determinant equations for the exact solutions, but so far we have had no luck.
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−1.7301 1.1041 −1.7300 1.1041
−0.28489 5.5602 −0.28489 5.5602 −0.25 5.5517
−1.9703 21.818 −1.9702 21.818 −2.0 22.207
−0.25005 30.221 −0.25005 30.220 −0.25 30.226
−1.9856 61.556 −1.9856 61.445 −2.0 61.685
−0.24998 75.635 −0.24998 74.635 −0.25 74.639
−1.9917 120.73 −1.9917 120.72 −2.0 120.90
−0.24999 138.79 −0.24999 138.79 −0.25 138.79
−1.9946 199.72 −1.9946 199.72 −2.0 199.86
−0.24999 222.68 −0.24999 222.68 −0.25 222.68
−1.9963 298.44 −1.9963 298.44 −2.0 298.56
−0.24999 326.31 −0.24999 326.31 −0.25 326.13
−1.9973 416.90 −1.9973 416.90 −2.0 418.99
−0.25000 449.68 −0.25000 449.68 −0.25 449.68
−1.9979 555.08 −1.9979 555.08 −2.0 555.17
−0.25000 592.79 −0.24999 592.79 −0.25 592.79
−1.9983 713.00 −1.9983 713.00 −2.0 713.08
−0.25000 755.64 −0.25004 755.64 −0.25 755.64
−1.9989 890.67 −1.9984 890.67 −2.0 890.73
−0.25000 938.23 −0.25003 938.23 −0.25 938.23

Table 2. Types I and III joints, C-F end conditions, with p11 = 2,
p12 = 0.5, q11 = q12 = 0.

For Table 5, we consider a type II joint with C-F end conditions. The purpose
here is to investigate the behavior of the “undamped” branch, the contribution of
q21 and q22 to the imaginary parts of the eigenfrequencies, and, of course, again to
compare the numerical and asymptotic results.

Here, we let p21= p22= 1. The first two columns give the numerical results, and
the next two columns the asymptotic results for the case where q21 = q22 = 0. We
see here that the numerical real parts for the “undamped” branch are very small and,
in most cases, are negative, as expected. For those that are not negative (the fifth,
seventh and thirteenth eigenfrequencies), we assume that it is due to the numerical
approximation. In addition, the match between the numerical and asymptotic results
is again quite good, even as early as the second eigenfrequency. This can also be
seen clearly in Figure 3, where we have plotted these results.

The last four columns are arranged as are the first four, but here we have let
q21 = 0.5 and q22 = 0.7. We note that the effect of these values on the imaginary
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−0.41842 0.79717 −0.41842 0.79717
−1.0353 5.3641 −1.0353 5.3641 −1.0 5.5517
−3.8189 17.042 −3.8189 17.042 −8.0 22.207
−0.99732 30.143 −0.99732 30.143 −1.0 30.226
−6.6452 57.777 −6.6452 57.777 −8.0 61.685
−0.99849 74.584 −0.99849 74.584 −1.0 74.639
−7.3547 118.07 −7.3547 118.07 −8.0 120.90
−0.99909 138.75 −0.99909 138.75 −1.0 138.79
−7.6154 197.65 −7.6154 197.65 −8.0 199.86
−0.99940 222.65 −0.99940 222.65 −1.0 222.68
−7.7423 296.75 −7.7423 296.75 −8.0 298.56
−0.99957 326.29 −0.99957 326.29 −1.0 326.13
−7.8144 415.45 −7.8144 415.46 −8.0 418.99
−0.99968 449.66 −0.99969 449.66 −1.0 449.68
−7.8598 553.83 −7.8595 553.83 −8.0 555.17
−0.99977 592.77 −0.99980 592.77 −1.0 592.79
−7.8901 711.90 −7.8905 711.91 −8.0 713.08
−0.99976 755.62 −0.99947 755.62 −1.0 755.64
−7.9105 889.67 −7.9140 889.68 −8.0 890.73
−0.99981 938.20 −0.99924 938.22 −1.0 938.23

Table 3. Types I and III joints, C-F end conditions, with p11= 0.5,
p12 = 2, q11 = q12 = 0.
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Figure 1. Plot of the vibration frequencies from Table 3.
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type I
numerical

type III
numerical

WPM

Re Im Re Im Re Im

−0.45378 0.76895 −0.45378 0.76895
−0.95917 5.2515 −0.95917 5.2515 −1.35 5.5517
−3.6112 17.067 −3.6112 17.067 −8.0 22.207
−1.0664 29.951 −1.0664 29.951 −1.35 30.226
−6.5928 57.645 −6.5928 57.645 −8.0 61.685
−1.1599 74.377 −1.1599 74.377 −1.35 74.639
−7.3698 117.99 −7.3698 117.99 −8.0 120.90
−1.2226 138.56 −1.2226 138.56 −1.35 138.79
−7.6396 197.61 −7.6396 197.61 −8.0 199.86
−1.2611 222.48 −1.2611 222.48 −1.35 222.68
−7.7645 296.72 −7.7645 296.72 −8.0 298.56
−1.2853 326.14 −1.2853 325.14 −1.35 326.13
−7.8331 415.44 −7.8331 415.44 −8.0 418.99
−1.3012 449.53 −1.3012 449.53 −1.35 449.68
−7.8751 553.82 −7.8751 553.82 −8.0 555.17
−1.3119 592.65 −1.3120 592.65 −1.35 592.79
−7.9026 711.89 −7.9028 711.89 −8.0 713.08
−1.3197 755.51 −1.3196 755.52 −1.35 755.64
−7.9225 889.67 −7.9222 889.67 −8.0 890.73
−1.3253 938.12 −1.3251 938.11 −1.35 938.23

Table 4. Types I and III joints, C-F end conditions, with p11 =
p12 = 1, q11 = 0.5, q12 = 0.7.
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Figure 2. Plot of the vibration frequencies from Table 4.
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type II joint

q11 = q12 = 0 q11 = 0.5, q12 = 0.7

numerical WPM numerical WPM
Re Im Re Im Re Im Re Im

−0.21945 0.82672 0.0 0.61685 −0.16897 0.72184 0.0 0.61685
−1.0236 5.5617 −1.0 5.5517 −0.95445 6.1571 −1.0 6.1577
−7.6 ·10−4 15.424 0.0 15.421 −6.6 ·10−4 15.424 0.0 15.421
−1.0025 30.234 −1.0 30.226 −0.98966 30.834 −1.0 30.826

1.4 ·10−6 49.964 0.0 49.965 −1.3 ·10−6 49.965 0.0 49.965
−1.0011 74.642 −1.0 74.639 −0.99584 75.242 −1.0 75.239

3.4 ·10−10 104.25 0.0 104.25 1.1 ·10−9 104.25 0.0 104.25
−1.0006 138.70 −1.0 138.79 −0.99777 139.39 −1.0 139.39
−1.3 ·10−8 178.27 0.0 178.27 −1.1 ·10−8 178.27 0.0 178.27
−1.0004 222.68 −1.0 222.68 −0.99861 223.28 −1.0 223.28
−9.5 ·10−8 272.03 0.0 272.03 −7.5 ·10−8 272.03 0.0 272.03
−1.0003 326.31 −1.0 326.31 −0.99905 326.91 −1.0 326.91

2.2 ·10−8 385.53 0.0 385.53 3.8 ·10−7 385.53 0.0 385.53
−1.0002 449.68 −1.0 449.68 −0.99930 450.28 −1.0 450.28
−5.3 ·10−8 518.77 0.0 518.77 −5.4 ·10−7 518.77 0.0 518.77
−1.0001 592.79 −1.0 592.79 −0.99947 593.39 −1.0 593.39
−8.1 ·10−6 671.75 0.0 671.75 −7.6 ·10−6 671.75 0.0 671.75
−1.0002 755.64 −1.0 755.64 −0.99970 756.24 −1.0 756.24
−8.5 ·10−6 844.47 0.0 844.47 −2.2 ·10−5 844.48 0.0 844.47
−1.0002 938.23 −1.0 938.23 −0.99972 938.84 −1.0 938.83

Table 5. Type II joint, C-F end conditions, with p11 = p12 = 1,
q11 = q12 = 0, and p11 = p12 = 1, q11 = 0.5, q12 = 0.7.

parts of the eigenfrequencies of the “damped” branch should be

q21+ q22

2
= 0.6 (14)

and, indeed, this is what we see in the numerical results. Here, again, and in
Figure 4, we see a strong match between the numerical and asymptotic results.

Table 6 is arranged exactly as Table 5, but here we consider, instead, a type IV
joint, with p41 = p42 = 1. As before, q41 = q42 = 0 for the first four columns, while
q41 = 0.5 and q42 = 0.7 for the last four. Once more, we provide the first twenty
eigenfrequencies. For the q41= q42= 0 results, the asymptotic results occur in pairs
with equal imaginary parts, and we can see from the table and from Figure 5, where
these data are plotted, that the numerical results are approaching the same behavior
asymptotically. For the case q41= 0.5, q42= 0.7, we again see the effect of nonzero
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Figure 3. Plot of the vibration frequencies from Table 5 for the
case q11 = q12 = 0.
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Figure 4. Plot of the vibration frequencies from Table 5 for the
case q11 = 0.5, q12 = 0.7.

q-values on the imaginary part of the “damped” branch. Here, the effect is

q41+ q42

p41 p42+ q41q42
= 1.7778. (15)

We plot these results in Figure 6, where, although it is difficult to see the effects of
the nonzero q-values, we can see, again, a very good match between the asymptotic
and numerical results.

We realize that the damping parameters we have used may not be physically
realistic. Indeed, in other work, we have seen that, for realistic data, the convergence
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type IV joint

q41 = q42 = 0 q41 = 0.5, q42 = 0.7

numerical WPM numerical WPM
Re Im Re Im Re Im Re Im

3.3 ·10−16 0.0000 7.8 ·10−16 0.0000
−0.46155 0.53410 −0.26096 0.45158
−4.2 ·10−2 5.5592 0.0 5.5517 −2.3 ·10−2 5.5606 0.0 5.5517
−4.0964 6.6697 −4.0 5.5517 −2.3443 7.6742 −2.96 7.3295
−1.2 ·10−4 30.226 0.0 30.226 −7.0 ·10−5 30.226 0.0 30.226
−4.1652 30.395 −4.0 30.226 −2.8528 32.136 −2.96 32.004
−1.2 ·10−4 74.639 0.0 74.639 −1.5 ·10−7 74.639 0.0 74.639
−4.0704 74.698 −4.0 74.639 −2.9217 76.474 −2.96 76.417
−2.1 ·10−10 138.79 0.0 138.79 2.3 ·10−9 138.79 0.0 138.79
−4.0382 138.82 −4.0 138.79 −2.9415 140.60 −2.96 140.57
−1.4 ·10−8 222.68 0.0 222.68 −2.4 ·10−10 222.68 0.0 222.68
−4.0239 222.70 −4.0 222.68 −2.9498 224.48 −2.96 224.46
−3.5 ·10−8 326.31 0.0 326.31 −5.0 ·10−8 326.31 0.0 326.31
−4.0163 326.33 −4.0 326.31 −2.9540 328.10 −2.96 328.09
−8.7 ·10−8 449.68 0.0 449.68 −2.7 ·10−7 449.68 0.0 449.68
−4.0118 449.69 −4.0 449.68 −2.9565 451.47 −2.96 451.46
−3.2 ·10−7 592.79 0.0 592.79 1.2 ·10−7 592.79 0.0 592.79
−4.0090 592.80 −4.0 592.79 −2.9581 594.58 −2.96 594.57

1.8 ·10−6 755.64 0.0 755.64 3.6 ·10−6 755.64 0.0 755.64
−4.0071 755.65 −4.0 755.64 −2.9592 757.42 −2.96 757.42

Table 6. Type IV joint, C-F end conditions, with p11 = p12 = 1,
q11 = q12 = 0, and p11 = p12 = 1, q11 = 0.5, q12 = 0.7.

of the numerical to the asymptotic results sometimes takes much longer. However,
we have not been able to find realistic parameters in the literature. In particular, in
the two papers which give experimental results [Chen et al. 1988; 1989], the physical
parameters have not been determined, and the comparison with the asymptotic
results is based instead on a very clever use of the patterns that result from looking
at various differences between the eigenfrequencies.

Finally, we should mention that, in order to utilize the wave propagation method
in its current form, it is necessary that the possible wave speeds are the same along
each beam, thus the assumption here and in the references that each of the physical
parameters m, E , and I is the same for each beam. We can generalize a bit, given
that the wave speeds actually depend only on the ratio EI/m, so we need only
have the ratio be the same for each beam. Once this condition is not met, however,
the problem becomes far more difficult — indeed, we have found nothing in the
literature regarding an asymptotic analysis of this problem.
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Figure 5. Plot of the vibration frequencies from Table 6 for the
case q41 = q42 = 0.
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Figure 6. Plot of the vibration frequencies from Table 6 for the
case q41 = 0.5, q42 = 0.7.
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Loxodromes on hypersurfaces of revolution
Jacob Blackwood, Adam Dukehart and Mohammad Javaheri

(Communicated by Gaven Martin)

A loxodrome is a curve that makes a constant angle with the meridians. We use
conformal maps and the notion of parallel transport in differential geometry to
investigate loxodromes on hypersurfaces of revolution and their spiral behavior
near a pole.

1. Introduction

Loxodromes appear historically as mathematical tools in navigation, since they
provide efficient navigation routes from one point to another by making a constant
course angle with the meridians. Even modern technology relies on the ability
to calculate loxodromes [Alexander 2004]. Loxodromes are best understood via
conformal maps, maps that preserve angles locally. For example, the Mercator
projection map is a conformal map under which the meridians and curves of constant
latitude (parallels) are mapped to vertical and horizontal lines. A curve making a
constant angle with vertical lines as it crosses them is itself a straight line; therefore,
the Mercator projection map represents loxodromes as straight lines. As another
example of a conformal map, consider the stereographic projection which maps the
meridians and parallels to lines through the origin (radial lines) and circles centered
at the origin. The curves that make a constant angle with the radial lines are the
well-known logarithmic spirals. In other words, the stereographic projection maps
loxodromes to logarithmic spirals.

The construction of loxodromes on the sphere and oblate-spheroidal surfaces,
which approximate the shape of the earth, has been investigated previously [Bennett
1996; Carlton-Wippern 1992; Smart 1946; Williams 1950]. Spheres and spheroids
are examples of surfaces of revolution that we now define. Let η(t)= (u(t), v(t)),
where t ∈ (a, b), be a curve in the half-plane H = {(x, y, 0) ∈ R3

: y > 0}. By
rotating the profile curve η(t) around the x-axis in R3, one obtains a surface of
revolution parametrized as

x = u(t), y = v(t) cos θ, z = v(t) sin θ, where t ∈ (a, b), θ ∈ [0, 2π).

MSC2010: 53A04, 53A05, 53A07, 14H50, 14Q10.
Keywords: loxodromes, surfaces of revolution.
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The meridians of the surface are the curves of constant θ , while the parallels of the
surface are the curves of constant t . A curve on S is called a loxodrome of S if it
makes a constant angle with the meridians of S as it crosses them.

In Section 2, we derive the parametric equations of loxodromes on a surface of
revolution. We also define a stereographic projection on a given surface of revolution
that maps loxodromes to logarithmic spirals in the plane. Finally, we study the
distances along loxodromes as well as the spiral behavior of loxodromes near a pole.

In Section 3, we consider the case where the profile curve is a Jordan curve (and
so the resulting surface of revolution is a torus). In particular, we study closed
loxodromes and their density in the set of all loxodromes. We also show that
loxodromes are geodesics in a suitable metric on the surface.

Hypersurfaces of revolution are important and interesting geometric objects,
and they have been studied extensively by geometers [Coll and Harrison 2013;
do Carmo and Dajczer 1983; Zhang 2012]. In Section 4, we give a definition of
loxodromes on hypersurfaces of revolution. As an example, we also find parametric
equations of loxodromes on higher-dimensional spheres.

2. The loxodrome equation

Suppose that the profile curve of a surface of revolution S is given by y = f (x),
where f (x) is a differentiable function on the interval (a, b)⊆R such that f (x)> 0
for all x ∈ (a, b). Then S is parametrized by the cylindrical map

r(x, θ)= 〈x, f (x) cos θ, f (x) sin θ〉.

Let
γ (x)= 〈x, f (x) cos θ(x), f (x) sin θ(x)〉

be a loxodrome that makes a constant angle ψ0 with the meridians. The tangent
vector to the meridian r(x, θ), where θ is constant, is given by

a = ∂

∂x
r(x, θ)= 〈1, f ′(x) cos θ, f ′(x) sin θ〉,

while the tangent vector to γ at x ∈ (a, b) is given by

b= d
dx
γ (x)=

〈
1, f ′(x) cos θ − f (x)θ ′(x) sin θ, f ′(x) sin θ + f (x)θ ′(x) cos θ

〉
.

The constant-angle constraint gives (a · b)2 = ‖a‖2‖b‖2 cos2(ψ0), which yields

1+ ( f ′(x))2 =
(
1+ ( f ′(x))2+ ( f (x)θ ′(x))2

)
cos2(ψ0).

After solving for θ ′(x) and integrating, one has

θ(x)= tan(ψ0)A(x), (2-1)
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where

A(x)=
∫ x

c

√
1+ ( f ′(x))2

f (x)
dx +C, (2-2)

with constants c ∈ (a, b) and C ∈ R.

2.1. The conformal stereographic projection. The stereographic projection on the
sphere has the property that it is conformal and it maps meridians and parallels
to lines through the origin and circles centered at the origin respectively. We now
describe a map with the same properties on the surface of revolution S with the
profile curve y = f (x). Let

L(r, s)= 〈ln(r2
+ s2), arctan(s/r)〉

and
F(x, θ)= 〈A−1(x), f (A−1(x)) cos θ, f (A−1(x)) sin θ〉,

where A(x) is given by (2-2).
We claim that the composition T = F ◦ L is a conformal map from an open

subset of R2 to S. The map L is the logarithmic conformal mapping such that
L−1 maps the horizontal and vertical lines in the (x, θ)-plane to lines through the
origin and circles centered at the origin respectively. The map F is also a conformal
map that maps the horizontal and vertical lines in the (x, θ)-plane to meridians and
parallels on the surface S. To see this, we note that with g(x)= A−1(x), one has

Fx = 〈g′(x), f ′ ◦ g(x)g′(x) cos θ, f ′ ◦ g(x)g′(x) sin θ〉, (2-3)

Fθ = 〈0, − f ◦ g(x) sin θ, f ◦ g(x) cos θ〉. (2-4)
Therefore,[

Fx ·Fx Fx ·Fθ
Fθ ·Fx Fθ ·Fθ

]
=

[
(g′(x))2(1+( f ′ ◦g(x))2) 0

0 ( f ◦g(x))2

]
. (2-5)

For F to be a conformal map from the (x, θ)-plane to the surface of revolution S,
the matrix in (2-5) must be a multiple of the identity matrix. By (2-2), one has

g′(x)= (A−1)′(x)=
1

A′(g(x))
=

f (g(x))√
1+ f ′(g(x))2

,

which implies that the matrix (2-5) is a multiple of identity; hence F is a conformal
map. It follows that T, being a composition of conformal maps, is a conformal map.
Moreover, T−1 maps the meridians and parallels of S to lines through the origin
and circles centered at the origin respectively. Therefore, every loxodrome on S is
mapped under T−1 to a logarithmic spiral in the (r, s)-plane.

A feature of the logarithmic spiral is its infinite spiraling around the origin. We
now study this spiral behavior of loxodromes in more detail.
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Figure 1. Left: spiral at a point. Right: spiral at infinity.

Theorem 1. Let y = f (x) be differentiable on the interval (a, b)⊆ R and suppose
that limx→b− f (x) = 0 or∞. Let γ (x) = (x, f (x) cos θ(x), f (x) sin θ(x)) be a
loxodrome, where θ(x) is given by (2-2) with tan(ψ0) 6= 0. Then

lim
x→b−

θ(x)=±∞, (2-6)

where the plus or minus sign is determined by sign(tan(ψ0)).

Proof. Let c ∈ (a, b). Then

|θ(x)− θ(c)| =
∣∣∣∣tan(ψ0)

∫ x

c

√
1+ ( f ′(x))2

f (x)
dx
∣∣∣∣≥ |tan(ψ0)|

∫ x

c

∣∣∣∣ f ′(x)
f (x)

∣∣∣∣ dx

≥ |tan(ψ0)||ln f (c)− ln f (x)| →∞,

as x→ b−, since limx→b− f (x)= 0 or∞, and in either case |ln f (x)| →∞. �

In the next theorem, we compute distances along loxodromes. We denote the
length of a curve γ by `(γ ) and the length of the graph of a function f by `( f ).

Theorem 2. Let y = f (x) be a differentiable positive function on the interval
(a, b)⊆R, and let γ (x)=〈x, f (x) cos θ(x), f (x) sin θ(x)〉 be a loxodrome, where
θ(x) is given by (2-2). Then

`(γ )= |sec(ψ0)|`( f )= |sec(ψ0)|

∫ b

a

√
1+ ( f ′(x))2 dx . (2-7)

Proof. By (2-1), we have

‖γ ′(x)‖2 = 1+( f ′(x) cos θ− f (x)θ ′(x) sin θ)2+( f ′(x) sin θ+ f (x)θ ′(x) cos θ)2

= 1+( f ′(x))2+( f (x)θ ′(x))2

= 1+( f ′(x))2+tan2(ψ0)(1+( f ′(x))2)

= sec2(ψ0)(1+( f ′(x))2),

which implies (2-7). �
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Figure 2. A toric loxodrome.

3. Loxodromes on the torus

Let C be a simple plane curve parametrized by arc length, C(t) = (x(t), y(t)),
where x(t) and y(t) are differentiable functions of t ∈ (a, b) and y(t) > 0 for all
t ∈ (a, b). Rotating C around the x-axis yields a surface of revolution with the
parametrization

u(t, θ)= 〈x(t), y(t) cos θ, y(t) sin θ〉. (3-1)

Suppose that
η(t)= 〈x(t), y(t) cos θ(t), y(t) sin θ(t)〉

is a loxodrome. A similar calculation to that the previous section implies

θ(t)= tan(ψ0)B(t), (3-2)
where

B(t)=
∫

dt
y(t)

. (3-3)

In the next theorem, we discuss closed loxodromes on surfaces of revolution with
periodic profile curves.

Theorem 3. Let C(t) = 〈x(t), y(t)〉, y(t) > 0, be a simple closed differentiable
curve parametrized by the arc length and with period T > 0, i.e., C(t + T )= C(t)
for all t ∈ R. Let S be the surface of revolution with profile curve C(t). Let η(t) be
a loxodrome on S, making a constant angle ψ0 with the meridians of S. Then η(t)
is a closed curve if and only if

tan(ψ0) ·
1

2π

∫ T

0

dt
y(t)
∈Q. (3-4)

In particular, closed loxodromes on S are dense in the set of all loxodromes. In
addition, if a loxodrome is not closed, then the loxodrome is dense in S.

Proof. Since C is parametrized by arc length, we have from (3-2) that

θ(mT + t)− θ(t)= tan(ψ0)

∫ mT+t

t

dt
y(t)
= m tan(ψ0)

∫ T

0

dt
y(t)

. (3-5)
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For η(t) to be a closed curve, we must have θ(mT + t)− θ(t) = 2nπ for some
integers m, n with m 6= 0. It follows that

m tan(ψ0)

∫ T

0

dt
y(t)
= 2πn,

which is equivalent to (3-4).
The set of angles ψ0 for which (3-4) holds is dense in R, and so the set of periodic

loxodromes is dense among all loxodromes on S.
Next, suppose that η(t) is not closed, and so (3-4) fails. It follows from (3-5) that

θ(mT + t)− θ(t)= 2πmλ, where λ is a fixed irrational number. By Kronecker’s
approximation theorem, the set {2πmλ (mod 2π) : m ∈ Z} is dense in the interval
[0, 2π). Therefore, the set {η(mT + t) : m ∈ Z} is dense in the parallel obtained by
rotating η(t) around the x-axis. In other words, if η intersects a parallel of S then it
is dense in that parallel of S. Since η intersects every parallel of S, we conclude
that η is dense in S. �

The flat metric on the torus has the property that every geodesic (paths that are
locally of shortest length) is either periodic or dense in the torus. This resembles
the property we discussed in Theorem 3 for loxodromes of S. In fact, there exists
a metric on S for which the loxodromes are exactly the geodesics. The metric is
simply the pullback of the Euclidean flat metric on R2 by the map R−1, where

R(s, θ)=
〈
x(B−1(s)), y(B−1(s)) cos θ, y(B−1(s)) sin θ

〉
,

where B(t) is defined by (3-3).

4. Hypersurfaces of revolution

In this section, we give a definition of loxodromes on hypersurfaces of revolution.
Let M be an (n−2)-dimensional submanifold of Rn−1

×{0} ⊆ Rn, and consider a
local parametrization of M

〈x, 0〉 = 〈x1, . . . , xn−1, 0〉 : U→ Rn, (4-1)

where U ⊆ {〈x1, . . . , xn−1, 0〉 : xn−1 > 0} is open. There is a natural embedding of
M ×S1 in Rn defined by

〈x, 0, θ〉 7→ R(x, θ)= 〈x1, . . . , xn−2, xn−1 cos θ, xn−1 sin θ〉. (4-2)

We call this embedded (n−1)-dimensional submanifold S of Rn the hypersurface
of revolution and call M the profile manifold. By the meridians of S we mean the
submanifolds of S given by the images of R(x, θ) for constant θ -values. We denote
the meridians of S by Mθ , where θ ∈ R.
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Let γ : (a, b)→ N be a smooth curve so that

γ (t)=
〈
x1(t), . . . , xn−2(t), xn−1(t) cos θ(t), xn−1(t) sin θ(t)

〉
.

To be a loxodrome on S, we require the curve γ to have the property that its
relative position to the meridians stays constant. We need to be able to compare the
relative position of γ (t) to Mθ(t) for different values of t . To do this, one uses the
isomorphism Mθ→M to bring the position and velocity vectors along γ back on M.
One obtains the curve η(t)= R(γ (t),−θ(t))= 〈x(t), 0〉 on M and the vector field

V (t)= R(γ ′(t),−θ(t))= 〈x′(t), xn−1(t)θ ′(t)〉 (4-3)

along η. Therefore, to compare the relative positions of γ (t) to Mθ(t) at differ-
ent values of t , we instead compare V (t) along η(t) on M at different t-values.
This requires a way of comparing the geometry of M at different points along
the curve η(t), which is exactly what parallel transport along η can do. Let ∇
denote the connection on M induced by the Euclidean metric on Rn. We define a
loxodrome γ (t), where t ∈ (a, b), by the equation

∇η′(t)V (t)= 0 for all t ∈ (a, b).

From (4-3), we have V (t) = η′(t)+ xn−1(t)ψ ′(t) EN , where EN = 〈0, . . . , 0, 1〉,
the unit normal vector to Rn−1

×{0}. It follows that

0=∇η′(t)V (t)=∇η′(t)
(
η′(t)+ xn−1(t)ψ ′(t) EN

)
=∇η′(t)η

′(t)+ d
dt
(xn−1(t)ψ ′(t)) EN + xn−1ψ

′(t)∇η′(t) EN

=∇η′(t)η
′(t)+ d

dt
(xn−1(t)ψ ′(t)) EN ,

which is equivalent to the pair of equations{
∇η′(t)η

′(t)= 0,

ψ ′(t)xn−1(t)= c,
(4-4)

where c is a constant. The first equation in the coupled system (4-4) is the geodesic
equation, and the second equation gives the angle of rotation along the geodesic η.
In other words, each loxodrome on S is obtained by rotating a geodesic of M by
the angle ψ(t)= k

∫
dt/xn−1(t), where k is a constant and xn−1(t) is the (n−1)-th

component of the geodesic. Note that our definition of loxodrome is consistent
with the definition of loxodrome on surfaces, since on a surface η(t)= γ (t) and
the second equation in (4-4) is the same as (3-2).

Example 4. The (n−1)-dimensional sphere Sn−1 is a hypersurface of revolution
with profile manifold Sn−2. To obtain the parametric equations of an arbitrary loxo-
drome on Sn−1, we first need to find the parametric equations of an arbitrary geodesic
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on Sn−2. Geodesics on Sn−2 are the great circles. Each great circle is the intersection
of the sphere with a two-dimensional plane P that passes through the origin. Choose
an orthonormal basis {u, v} in P . Then the great circle S2

∩P can be parametrized as

γ (θ)= u cos θ + v sin θ, 0≤ θ ≤ 2π.

From (4-4), we must have

ψ ′(θ)=
c

un−1 cos θ + vn−1 sin θ
= A · sec(θ + θ0),

where A and θ0 are constants that depend on un−1, vn−1. It follows that

ψ(θ)= A ln|sec(θ + θ0)+ tan(θ + θ0)| + B,

and consequently, the general equation of a loxodrome on S3 is given by

xi (θ)= ui cos θ + vi sin θ, 1≤ i ≤ n− 2,

xn−1(θ)= (un−1 cos θ + vn−1 sin θ) cos
(

A ln|sec(θ + θ0)+ tan(θ + θ0)| + B
)
,

xn(θ)= (un−1 cos θ + vn−1 sin θ) sin
(

A ln|sec(θ + θ0)+ tan(θ + θ0)| + B
)
.
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an approximation of stationary mean-field games
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Hector Velasco-Perez, Vardan Voskanyan and Xianjin Yang

(Communicated by Kenneth S. Berenhaut)

Here, we consider a regularized mean-field game model that features a low-
order regularization. We prove the existence of solutions with positive density.
To do so, we combine a priori estimates with the continuation method. In
contrast with high-order regularizations, the low-order regularizations are easier
to implement numerically. Moreover, our methods give a theoretical foundation
for this approach.

1. Prologue

On August 22, 2015, eighteen young mathematicians (B.Sc. and M.Sc. students)
arrived at King Abdullah University of Science and Technology (KAUST) in Thuwal,
Kingdom of Saudi Arabia. They were participants in the first KAUST summer
camp in applied partial differential equations. Among them were Argentinians,
Armenians, Chinese, Italians, Japanese, Mexicans, Portuguese, and Saudis. For
many of them, this was their first time abroad. All were looking forward to the
following three weeks.

We designed the summer camp to give an intense hands-on three-week Ph.D. ex-
perience. It comprised courses, seminars, a project, and a final presentation. The

MSC2010: 49L25, 91A13, 35J87.
Keywords: mean-field games, low-order regularizations, monotone methods, positive solutions.
Rita Ferreira, Diogo Gomes, David Evangelista Junior, Levon Nurbekyan, Mariana Prazeres, Vardan
Voskanyan, and Xianjin Yang were partially supported by KAUST baseline and start-up funds and
KAUST SRI, Uncertainty Quantification Center in Computational Science and Engineering. The
other authors were partially supported by KAUST Visiting Students Research Program.

473

http://msp.org
http://msp.org/involve/
https://doi.org/10.2140/involve.2017.10-3
https://doi.org/10.2140/involve.2017.10.473


474 GOMES ET AL.

project was an essential component of the summer camp, and its main outcome is
the present paper. Our objectives were to introduce students to an active research
topic, teach effective paper writing techniques, and develop their presentation
skills. Numerous challenges lay ahead. First, we had three weeks to achieve these
goals. Second, students had distinct backgrounds. Third, we planned to study a
research-level problem, not a simple exercise.

We selected a problem in mean-field games, a recent and active area of research.
The primary goal was to prove the existence of solutions of a system of partial
differential equations. To avoid unnecessary technicalities, we considered the
one-dimensional case, where the partial differential equations become ordinary
differential equations. The project involved partial differential equation methods
that are usually taught in advanced courses: a priori estimate methods, the infinite-
dimensional implicit function theorem, and the continuation method. In spite of
the elementary nature of the proofs, the results presented here are a relevant and
original contribution to the theory of mean-field games.

We divided the students into five groups and assigned tasks to each of them.
Roughly, each of the sections of this paper corresponds to a task. The students were
given a rough statement of the results to be proven, and their task was to figure out
the appropriate assumptions, the precise statements, and the proofs. The work of the
different groups had to be coordinated to make sure that the assumptions, results,
and proofs fit nicely with each other and that duplicate work was avoided. Several
KAUST graduate students and postdocs were of invaluable help in this regard.

This project would not have been possible within such a short time frame without
the use of new technologies. The paper was written in a collaborative fashion using
the platform Authorea that allowed all the groups to work simultaneously. In this
way, all groups had access to the latest version of the assumptions and to the current
statements of the theorems and propositions. Each group could easily comment and
make corrections on other group’s work.

This project illustrates how research in mathematics can be a collaborative
experience even with a large number of participants. Moreover, it gave each of the
students in the summer camp a glimpse of real research in mathematics. Finally,
this was the first experience for the Ph.D. students and postdocs who helped in this
project in mentoring and advising students. This summer camp was a unique and
valuable experience for all participants whose results we share in this paper.

2. Introduction

Mean-field game (MFG) theory is the study of strategic decision making in large
populations of small interacting individuals who are also called agents or players.
The MFG framework was developed in the engineering community by Caines,

http://authorea.com
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Huang, and Malhamé [Huang et al. 2006; 2007] and in the mathematical community
by Lasry and Lions [2006a; 2006b; 2007]. These games model the behavior of
rational agents who play symmetric differential games. In these problems, each
player chooses their optimal strategy in view of global (or macroscopic) statistical
information on the ensemble of players. This approach leads to novel problems in
nonlinear equations. Current research topics are the applications of MFGs (including,
for example, growth theory in economics and environmental policy), mathematical
problems related to MFGs (existence, uniqueness, and regularity questions), and
numerical methods in the MFGs framework (discretization, convergence, and
efficient implementation).

Here, we consider the following problem:

Problem 1. Let T = R/Z denote the one-dimensional torus, identified with the
interval [0, 1] whenever convenient. Fix a C2 Hamiltonian, H : R→ R, and a
continuous potential, V : T→ R. Let α and ε be positive numbers with ε ≤ 1 for
definedness. Find u,m ∈ C2(T) satisfying m > 0 and{

u− uxx + H(ux)+ V (x)= mα
+ ε(m−mxx),

m−mxx − (H ′(ux)m)x = 1− ε(u− uxx).
(2-1)

In this problem, m is the distribution of players and u(x) is the value function for
a typical player in the state x . We stress that the condition m > 0 is an essential
component of the problem. So, if (u,m) solves Problem 1, we require m to be
strictly positive. We will show the existence of solutions to this problem under
suitable assumptions on the Hamiltonian that are described in Section 3. An example
that satisfies those assumptions is H(p) = (1+ p2)γ /2 with 1 < γ < 2 and any
V : T→ R of class C2.

When ε = 0, (2-1) becomes{
u− uxx + H(ux)+ V (x)= mα,

m−mxx − (H ′(ux)m)x = 1.
(2-2)

The system in (2-2) is a typical MFG model similar to the one introduced in
[Lasry and Lions 2006a]. The Legendre transform of the Hamiltonian, H , given
by L(v) = supp −pv− H(p) is the cost in units of time that an agent incurs by
choosing to move with a drift v; the potential V accounts for spatial preferences of
the agents; the term mα encodes congestion effects.

The MFG models proposed in [Lasry and Lions 2006a; 2006b] consist of a
system of partial differential equations that have (2-2) as a particular case. The
current literature covers a broad range of problems, including stationary problems
[Gomes et al. 2012; 2014; Gomes and Ribeiro 2013; Gomes and Sánchez Morgado
2014; Pimentel and Voskanyan 2015], heterogeneous populations [Cirant 2015],
time-dependent models [Cardaliaguet et al. 2015; Gomes et al. 2015; 2016; Gomes
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and Pimentel 2015; 2016; Porretta 2014; 2015], congestion problems [Gomes and
Mitake 2015; Graber 2015], and obstacle-type problems [Gomes and Patrizi 2015].
For a recent account of the theory of MFGs, we suggest the survey paper [Gomes
and Saúde 2014] and the course [Lions 2012].

The system in (2-1) arises as an approximation of (2-2) that preserves mono-
tonicity properties. Monotonicity-preserving approximations to MFG systems were
introduced in [Ferreira and Gomes 2015]. In that paper, the authors consider
mean-field games in dimension d ≥ 1, which include the following example:{

u−1u+ H(Du, x)+ V (x)= mα
+ ε(m+12qm)+βε(m),

m−1m− div(Dp H(Du, x)m)= 1− ε(u+12qu),
(2-3)

where q is a large enough integer, and βε is a suitable penalization that satisfies
βε(m)→ −∞ as m → 0. Then, as ε → 0, the solutions of (2-3) converge to
solutions of (2-2). Yet, from the perspective of numerical methods, both the high-
order degree of (2-3) and the singularity caused by the penalty, βε , are unsatisfactory
due to a poor conditioning of discretizations. Here, we investigate a low-order
regularization that may be more suitable for computational problems.

A fundamental difficulty in the analysis of (2-1) is the nonnegativity of m. The
Fokker–Planck equation in (2-2) has a maximum principle, and, consequently, m≥0
for any solution of (2-2). Due to the coupling, this property is not evident in the cor-
responding equation in (2-1). The previous regularization in (2-3) relies on a penalty
that forces the positivity of m. This mechanism does not exist in (2-1), and we are
not aware of any general method to prove the existence of positive solutions of (2-1).

Our main result is the following theorem.

Theorem 2.1. Suppose that Assumptions 1–7 hold (see Section 3). Then, there
exists ε0 > 0 such that for all 0< ε < ε0, Problem 1 admits a C2,1/2 solution (u,m).

Theorem 2.1 introduces a low-order regularization procedure for (2-2) for which
existence of solutions can be established without penalty terms. Because high-order
regularization methods and penalty terms create serious difficulties in the numerical
implementation, this result is relevant to the numerical approximation of (2-2).
Moreover, we believe that the techniques we consider here can be extended to
higher-dimensional problems.

To prove the main result, we use the continuation method. The first step is
to establish a priori estimates for the solutions of (2-1). Then, we replace the
potential V by λV for 0 ≤ λ ≤ 1. For λ = 0, which corresponds to V = 0 in
(2-1), we determine an explicit solution. The a priori estimates give that the set 3
of values λ for which (2-1) has a solution is a closed set. Finally, we apply an
infinite-dimensional version of the implicit function theorem to show that 3 is
relatively open in [0, 1]. This proves the existence of solutions.
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The remainder of this paper is structured as follows. We discuss the main
assumptions in Section 3. Next, in Section 4, we start our study of (2-1) by
considering the case V = 0 and constructing an explicit solution. Sections 5–9
are devoted to a priori estimates for solutions of (2-1). These estimates include
energy and second-order bounds, discussed respectively in Sections 5 and 6, Hölder
and C2,1/2 estimates, addressed respectively in Sections 7 and 8, and lower bounds
on m, given in Section 9. Next, we lay out the main results needed for the implicit
function theorem. We introduce the linearized operator in Section 10 and discuss its
injectivity and surjectivity properties. Finally, the proof of Theorem 2.1 is presented
in Section 11.

3. Main assumptions

We start by recalling that C2,1/2(T) is the space of all functions in C2(T) whose
second derivative is 1

2 -Hölder continuous.
To prove Theorem 2.1, we need to introduce various assumptions that are natural

in this class of problems. These encode distinct properties of the Hamiltonian
in a convenient way. We begin by stating a polynomial growth condition for the
Hamiltonian.

Assumption 1. There exist positive constants, C1,C2,C3, and γ > 1, such that for
all p ∈ R, the Hamiltonian H satisfies

−C1+C2|p|γ ≤ H(p)≤ C1+C3|p|γ .

For convex Hamiltonians, the expression pH ′(p)− H(p) is the Lagrangian
written in momentum coordinates. The next assumption imposes polynomial growth
in this quantity.

Assumption 2. There exist positive constants, C̃1, C̃2, and C̃3, such that for all
p ∈ R, we have

−C̃1+ C̃2|p|γ ≤ pH ′(p)− H(p)≤ C̃1+ C̃3|p|γ .

Because we look for solutions (u,m) ∈ C2,1/2(T)×C2,1/2(T) of Problem 1, we
require in Assumptions 3 and 5 more regularity for V and H .

Assumption 3. The potential V is of class C2.

Because the Hamilton–Jacobi equation in (2-2) arises from an optimal control
problem, it is natural to suppose that the Hamiltonian H is convex.

Assumption 4. H is convex.

Assumption 5. The Hamiltonian H is of class C4.
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Here, we work with subquadratic Hamiltonians. Accordingly, we impose the
following condition on γ .

Assumption 6. The constant γ satisfies γ < 2.

Finally, we state a growth condition on the derivative of the Hamiltonian. The
exponent γ is the same as in Assumptions 1 and 2. This is a natural growth condition
that the model H(p)= (1+ |p|2)γ /2 satisfies.

Assumption 7. There exists a positive constant, C̄ , such that for all p ∈R, we have

|H ′(p)| ≤ C̄(1+ |p|γ−1).

4. The V = 0 case

To prove Theorem 2.1, we use the continuation method. More precisely, we consider
system (2-1) with V replaced by λV for 0≤ λ≤ 1. Next, we show the existence of
the solution for all 0≤ λ≤ 1. As a starting point, we study the λ= 0 case; that is,
V = 0. We show that (2-1) admits a solution in this particular instance.

Proposition 4.1. Suppose that V = 0. Then, there exists an ε0 > 0 such that for all
0< ε < ε0, Problem 1 admits a solution (u,m).

Proof. We look for constant solutions (u,m). In this case, we have ux = uxx =

mx = mxx = 0. Accordingly, (2-1) reduces to{
u+ H(0)= mα

+ εm,
m = 1− εu.

In the previous system, solving the first equation for u and replacing the resulting
expression into the second, we get

εmα
+ (1+ ε2)m− 1− εH(0)= 0. (4-1)

We set g(m)= εmα
+ (1+ ε2)m− 1− εH(0), so that (4-1) reads g(m)= 0. Next,

we notice that g(0)=−1− εH(0). For small enough ε0 > 0 and for all 0< ε < ε0,
we have g(0) < 0. On the other hand, if we take a constant C > |H(0)|, we have

g(1+ εC) > 1+ εC − 1− εH(0)= ε(C − H(0)) > 0.

Because 0< 1+ εC , by the intermediate value theorem, there exists a constant
m0 ∈ ]0, 1+ εC[ such that g(m0)= 0. Then, setting u0 = (1−m0)/ε, we conclude
that the pair (u0,m0) satisfies the requirements. �

Remark 4.2. Note that if H(0) > 0, then g(0) < 0 and g(1+εC) > 0. In this case,
the previous proposition holds for all ε > 0.
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5. Energy estimates

MFG systems such as (2-2) admit many a priori estimates. Among those, energy
estimates stand out for their elementary proof — the multiplier method. Here, we
apply this method to (2-1).

Proposition 5.1. Suppose that Assumptions 1 and 2 hold. Let (u,m) solve Problem 1.
Then,∫ 1

0
mα+1 dx +

∫ 1

0
|ux |

γ (1+m) dx + ε
∫ 1

0
(u2
+m2

+ u2
x +m2

x) dx ≤ C, (5-1)

where C is a universal positive constant depending only on the constants in Assump-
tions 1 and 2 and on ‖V ‖L∞ .

Proof. We begin by multiplying the first equation in (2-1) by (1+ ε−m) and the
second one by u. Adding the resulting expressions and integrating, we get∫ 1

0

[
(1+ε)H(ux)+m(ux H ′(ux)−H(ux))

]
dx

+

∫ 1

0
mα+1 dx+ε

∫ 1

0
(u2
+m2
+u2

x+m2
x) dx

=−ε

∫ 1

0
u dx+

∫ 1

0
(m−1−ε)V (x) dx+(1+ε)

∫ 1

0
mα dx+ε(1+ε)

∫ 1

0
m dx, (5-2)

where we used integration by parts and the periodicity of u and m to obtain∫ 1

0
muxx dx −

∫ 1

0
umxx dx = 0,∫ 1

0
uxx dx = ux

∣∣1
0= 0,

∫ 1

0
mxx dx = mx

∣∣1
0= 0,∫ 1

0
mmxx dx =−

∫ 1

0
m2

x dx,
∫ 1

0
uuxx dx =−

∫ 1

0
u2

x dx,∫ 1

0
u(H ′(ux)m)x dx =−

∫ 1

0
ux H ′(ux)m dx .

Next, we observe that by Assumptions 1 and 2, and using the fact that 0< ε ≤ 1,
we have∫ 1

0

[
(1+ ε)H(ux)+m(H ′(ux)ux − H(ux))

]
dx

≥

∫ 1

0
[−2C1− C̃1m+ K0|ux |

γ (1+m)] dx, (5-3)

where K0 :=min{C2, C̃2}.
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From (5-2) and (5-3), it follows that∫ 1

0
K0|ux |

γ (1+m) dx+
∫ 1

0
mα+1 dx+ε

∫ 1

0
(u2
+m2
+u2

x+m2
x) dx

≤
ε

2

∫ 1

0
u2 dx+1

2+(‖V ‖∞+2+C̃1)

∫ 1

0
m dx+2

∫ 1

0
mα dx+2(‖V ‖∞+C1), (5-4)

where we also used the estimates 2u ≤ u2
+ 1 and 0< ε ≤ 1.

Finally, we observe that for every δ1, δ2 > 0, there exist constants, K1 and K2,
such that∫ 1

0
mα dx ≤ δ1

∫ 1

0
mα+1 dx + K1,

∫ 1

0
m dx ≤ δ2

∫ 1

0
mα+1 dx + K2. (5-5)

Consequently, taking δ1 =
1
8 and δ2 = 1/(4(‖V ‖∞+ 2+ C̃1)) in (5-5) and using

the resulting estimates in (5-4), we conclude that (5-1) holds. �

Corollary 5.2. Suppose that Assumptions 1 and 2 hold. Let (u,m) solve Problem 1.
Then, ∫ 1

0
m dx ≤ C,

where C is a universal positive constant depending only on the constants in Assump-
tions 1 and 2 and on ‖V ‖L∞ .

Proof. Due to (5-1) and because m is positive,∫ 1

0
mα+1 dx ≤ C,

where C is a universal positive constant depending only on the constants in As-
sumptions 1 and 2 and on ‖V ‖L∞ . Consequently, using Young’s inequality, we
have ∫ 1

0
m dx ≤ 1

α+1

∫ 1

0
mα+1 dx + α

α+1
≤

C
α+1

+
α

α+1
. �

6. Second-order estimates

We proceed in our study of (2-1) by examining another technique to obtain a priori
estimates. These estimates give additional control over high-order norms of the
solutions.

Proposition 6.1. Suppose that Assumption 3 holds. Let (u,m) solve Problem 1.
Then, we have∫ 1

0
(H ′′(ux)u2

xx m+αmα−1m2
x) dx + ε

∫ 1

0
(m2

x +m2
xx + u2

x + u2
xx) dx ≤ C, (6-1)
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where C > 0 denotes a universal constant depending only on ‖V ‖C2 . Moreover,
under Assumption 4,∫ 1

0
αmα−1m2

x dx + ε
∫ 1

0
(m2

x +m2
xx + u2

x + u2
xx) dx ≤ C. (6-2)

Proof. To simplify the notation, we represent by C any positive constant that
depends only on ‖V ‖C2 and whose value may change from one instance to another.

Multiplying the first equation in (2-1) by mxx and the second one by uxx yields

(u− uxx + H(ux)+ V (x))mxx = (mα
+ ε(m−mxx))mxx ,

(m−mxx − (H ′(ux)m)x)uxx = (1− ε(u− uxx))uxx .

Subtracting the above equations integrated over [0, 1] gives∫ 1

0
(umxx −muxx + uxx) dx +

∫ 1

0
[H(ux)mxx + (H ′(ux)m)x uxx ] dx

+

∫ 1

0
V (x)mxx dx−

∫ 1

0
mαmxx dx+ε

∫ 1

0
(−mmxx+m2

xx−uuxx+u2
xx) dx=0. (6-3)

Next, we evaluate each of the integrals above. Using the integration by parts formula
and the periodicity of boundary conditions, we have∫ 1

0
(umxx −muxx + uxx) dx = 0. (6-4)

In addition,∫ 1

0

[
(H ′(ux)m)x uxx + H(ux)mxx

]
dx

=

∫ 1

0

[
H ′′(ux)mu2

xx + (H(ux))x mx + (H(ux))mxx
]

dx

=

∫ 1

0
H ′′(ux)mu2

xx dx . (6-5)

Furthermore, we have

−

∫ 1

0
mαmxx dx =

∫ 1

0
αmα−1m2

x dx (6-6)

and∫ 1

0
−V mxx dx =−

∫ 1

0
Vxx m dx ≤

∫ 1

0
|Vxx |m dx ≤ C

∫ 1

0
m dx ≤ C, (6-7)

where we used Corollary 5.2.
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Finally,

ε

∫ 1

0
(−mmxx +m2

xx − uuxx + u2
xx) dx = ε

∫ 1

0
(m2

x +m2
xx + u2

x + u2
xx) dx . (6-8)

Using (6-3)–(6-8), we get∫ 1

0
H ′′(ux)mu2

xx dx +
∫ 1

0
αmα−1m2

x dx

+ε

∫ 1

0
(m2

x +m2
xx + u2

x + u2
xx) dx =−

∫ 1

0
V mxx ≤ C.

This completes the proof of (6-1). To conclude the proof of Proposition 6.1, we
observe that Assumption 4 implies that H ′′ is a nonnegative function, which together
with (6-1) gives (6-2). �

7. Hölder continuity

We recall that Morrey’s theorem in one dimension [Evans 1998] gives the following
result.

Proposition 7.1. Let f ∈ C1(T). Then,

| f (x)− f (y)| ≤ ‖ fx‖L2 |x − y|1/2 ∀ x, y ∈ T.

Proposition 7.2. Suppose that Assumptions 1–4 hold. Let (u,m) solve Problem 1.
Then, u, ux , m, and mx are 1

2 -Hölder continuous functions with L∞-norms and
Hölder constants bounded by C/

√
ε, where C is a universal constant depending

only on the constants in Assumptions 1 and 2 and on ‖V ‖C2 .

Proof. By Proposition 5.1, we have that

ε

∫ 1

0
(m2
+ u2
+m2

x + u2
x) dx ≤ C, (7-1)

where C is a universal constant depending only on the constants in Assumptions 1
and 2 and on ‖V ‖L∞ .

According to Proposition 7.1, we have

|u(x)− u(y)| ≤ ‖ux‖L2 |x − y|1/2 ∀ x, y ∈ T. (7-2)

Moreover, combining the bound on ‖u‖L2 given by (7-1), the mean-value theorem
for definite integrals, and the Hölder continuity given by (7-2), we get the L∞ bound
on u. A similar inequality holds for m. Next, we observe that Proposition 6.1 (see
(6-2)) gives bounds for ‖uxx‖L2 and ‖mxx‖L2 of the same type as (7-1). Accordingly,
the functions ux and mx are also 1

2 -Hölder continuous, and their L∞ norms are
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bounded by C/
√
ε, where C depends only on the constants in Assumptions 1 and 2

and on ‖V ‖C2 . �

Remark 7.3. Consider Problem 1 with V replaced by λV for some λ ∈ [0, 1]. By
revisiting the proofs of Propositions 5.1 and 6.1, we can readily check that the
bounds stated in these propositions are uniform with respect to λ ∈ [0, 1]. More
precisely, (5-1), (6-1), and (6-2) are still valid for a universal positive constant C
that depends only on the constants in Assumptions 1 and 2 and on ‖V ‖C2 . In
particular, Proposition 7.2 remains unchanged.

8. Higher regularity

The bounds in the previous section give Hölder regularity for any solution (u,m)
of Problem 1 and for its derivatives (ux ,mx). Here, we use (2-1) to improve this
result and prove Hölder regularity for uxx and mxx .

Proposition 8.1. Suppose that Assumptions 1–5 hold. Let (u,m) solve Problem 1.
Then (u,m) ∈ C2,1/2(T)×C2,1/2(T).

Proof. Solving for m − mxx in the second equation of (2-1) and replacing the
resulting expression in the first equation yields

[1+ε2
+εH ′′(ux)m]uxx = (1+ε2)u+H(ux)−ε+V (x)−mα

−εH ′(ux)mx . (8-1)

Because H is convex, we have H ′′(ux)≥ 0. Consequently, 1+ ε2
+ εH ′′(ux)m ≥

1> 0. This allows us to rewrite (8-1) as

uxx =
(1+ ε2)u+ H(ux)− ε+ V (x)−mα

− εH ′(ux)mx

1+ ε2+ εH ′′(ux)m
. (8-2)

Because u, m, ux , and mx are 1
2 -Hölder continuous and because H and H ′ are

locally Lipschitz functions, it follows that

(1+ ε2)u+ H(ux)− ε+ V (x)−mα
− εH ′(ux)mx

is also 1
2 -Hölder continuous. Similarly, due to Assumption 5, 1+ε2

+εH ′′(ux)m is
also 1

2 -Hölder continuous and bounded from below by 1. Therefore, uxx is 1
2 -Hölder

continuous; thus, u ∈ C2,1/2(T).
Finally, we observe that the second equation in (2-1) is equivalent to

mxx = m+ ε(u− uxx)− 1− H ′′(ux)muxx − H ′(ux)mx . (8-3)

Hence, analogous arguments to those used above yield that mxx is also 1
2 -Hölder

continuous. Thus, m ∈ C2,1/2(T). �
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9. Lower bounds on m

Here, we establish our last a priori estimate, which gives lower bounds on m. We
begin by proving an auxiliary result.

Lemma 9.1. Suppose that Assumptions 1–4, 6, and 7 hold. Let (u,m) solve
Problem 1. Then, ‖ε(u − uxx)‖∞ ≤ Cε1−γ /2, where C is a universal positive
constant depending only on the constants in Assumptions 1, 2, and 7 and on ‖V ‖C2 .

Proof. To simplify the notation, C represents a positive constant depending only
on the constants in Assumptions 1, 2, and 7 and on ‖V ‖C2 and whose value may
change from one instance to another.

Note that max{ε1/2, ε, ε2−γ /2, ε3/2, ε2
} ≤ ε1−γ /2 because 0< 1− 1

2γ <
1
2 (see

Assumption 6).
By Proposition 7.2, we have that ‖u‖∞ ≤ C/

√
ε. Thus,

‖εu‖∞ ≤ Cε1−γ /2. (9-1)

Next, we examine ‖εuxx‖∞. The identity (8-2) and the condition 1 + ε2
+

εH ′′(ux)m > 1 give

‖εuxx‖∞ ≤ ‖ε(1+ ε2)u‖∞+‖εH(ux)‖∞

+ ε2
+‖εV ‖∞+‖εmα

‖∞+‖ε
2 H ′(ux)mx‖∞. (9-2)

By (9-1) and by the boundedness of V, it follows that

‖ε(1+ ε2)u‖∞+ ε2
+‖εV ‖∞ ≤ Cε1−γ /2.

According to Propositions 5.1 and 6.1, we have∫ 1

0
mα+1 dx ≤ C and

∫ 1

0
αmα−1m2

x dx =
4α

(α+ 1)2

∫ 1

0
(m(α+1)/2)2x dx ≤ C.

The first integral guarantees that there exists x0 ∈ T such that m(α+1)/2(x0) ≤ C .
Then, because m > 0 and because m ∈ C1(T), the second integral together with
Proposition 7.1 implies that for all x ∈ T,

0<mα(x)= (mα/2(x))2 ≤
(
m(α+1)/2(x)−m(α+1)/2(x0)+m(α+1)/2(x0)+1

)2
≤C.

Hence, ‖εmα
‖∞ ≤ Cε1−γ /2.

Assumption 1 and Proposition 7.2 give

|H(ux)| ≤ C(1+ ε−γ /2).

This implies that ‖εH(ux)‖∞ ≤ Cε1−γ /2.
Combining Assumption 7 with Proposition 7.2 gives the bound

|H ′(ux)| ≤ C(1+ ε−(γ−1)/2).
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By Proposition 7.2, we have that |mx | ≤ C/
√
ε. Therefore,

‖ε2 H ′(ux)mx‖∞ ≤ Cε1−γ /2.

Collecting all the estimates proved above, we conclude from (9-1) and (9-2) that

‖ε(u− uxx)‖∞ ≤ Cε1−γ /2. �

Proposition 9.2. Suppose that Assumptions 1–4, 6, and 7 hold. Let

ε̄0 :=

(
1

2C

)2/(2−γ )

,

where C is the constant given by Lemma 9.1. Let (u,m) solve Problem 1 with
0< ε <min{1, ε̄0}. Then, there exists m̄ > 0 such that m > m̄ on T. Moreover, m̄
is a universal constant depending only on the constants in Assumptions 1, 2, and 7,
on ‖V ‖C2 , and on ε.

Proof. Multiplying the second equation in (2-1) by 1/m and integrating with respect
to x in [0, 1], we obtain∫ 1

0

(
1−

mxx

m
−
(H ′(ux)m)x

m

)
dx =

∫ 1

0

(
1
m
− ε

u− uxx

m

)
dx . (9-3)

Integration by parts and periodicity yield∫ 1

0

mxx

m
dx =

∫ 1

0

m2
x

m2 dx .

Then, (9-3) can be rewritten as∫ 1

0

(
1
m
+

m2
x

m2

)
dx = 1+

∫ 1

0

ε(u− uxx)

m
dx −

∫ 1

0

(H ′(ux)m)x
m

dx .

Next, we estimate the right-hand side of this identity. By Lemma 9.1, for
0< ε < ε̄0, we have ‖ε(u− uxx)‖∞ <

1
2 . Consequently,∫ 1

0

(
1

2m
+

m2
x

m2

)
dx ≤ 1+

∣∣∣∣∫ 1

0

(H ′(ux)m)x
m

dx
∣∣∣∣= 1+

∣∣∣∣∫ 1

0
H ′(ux)

mx

m
dx
∣∣∣∣, (9-4)

where in the last equality we used the integration by parts formula and the periodicity
of ux . In view of Cauchy’s inequality, we conclude that∣∣∣∣∫ 1

0
H ′(ux)

mx

m
dx
∣∣∣∣≤ ∫ 1

0

∣∣∣∣H ′(ux)
mx

m

∣∣∣∣ dx ≤
∫ 1

0

(
(H ′(ux))

2

2
+

m2
x

2m2

)
dx . (9-5)

Invoking Assumptions 6 and 7, we obtain the estimates

(H ′(ux))
2
≤ C̄2(1+ |ux |

γ−1)2 ≤ 2C̄2(1+ |ux |
2(γ−1))≤ 2C̄2(2+ |ux |

2)
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in T. These estimates, (9-4), (9-5), and Proposition 5.1 yield∫ 1

0

(
1

2m
+

m2
x

2m2

)
dx ≤ 1+ C̄2(2+C/ε).

Consequently, for C̃ = 2+ 2C̄2(2+C/ε), we obtain the bounds∫ 1

0

1
m

dx ≤ C̃ and
∫ 1

0

m2
x

m2 dx =
∫ 1

0
(ln(m))2x dx ≤ C̃ .

The first bound implies that there exists x0 ∈ T such that 1/(m(x0))≤ C̃+1; that is,
ln(m(x0))≥− ln(C̃+1). The second bound, together with Proposition 7.1, implies
that for all x ∈ T, the value of |ln(m(x))− ln(m(x0))| ≤

√
C̃ . Hence, for all x ∈ T,

m(x)≥ e−
√

C̃−ln(C̃+1). �

Remark 9.3. As in Remark 7.3, the statement of Proposition 9.2 remains unchanged
if we replace V by λV for some λ ∈ [0, 1] in Problem 1.

10. The linearized operator

Consider the functional, F , defined for (u,m, λ)∈C2,1/2(T)×C2,1/2(T; ]0,∞[)×
[0, 1] by

F(u,m, λ)=
[

u− uxx + H(ux)+ λV −mα
− ε(m−mxx)

m−mxx − (H ′(ux)m)x − 1+ ε(u− uxx)

]
. (10-1)

Note that under Assumption 5, the functional F is a C1 map between C2,1/2(T)×

C2,1/2(T; ]0,∞[)×[0, 1] and C0,1/2(T)×C2,1/2(T).
To prove Theorem 2.1, we use the continuation method and show that for every

λ ∈ [0, 1], the equation
F(u,m, λ)= 0 (10-2)

has a solution, (u,m) ∈ C2,1/2(T)×C2,1/2(T; ]0,∞[). Theorem 2.1 then follows
by taking λ= 1 and by observing that system (2-1) is equivalent to F(u,m, 1)= 0.

The implicit function theorem plays a crucial role in proving the solvability
of (10-2). To use this theorem, for each λ ∈ [0, 1], we introduce the linearized
operator L of F(·, ·, λ) at (u,m) ∈ C2,1/2(T)×C2,1/2(T; ]0,∞[); that is,

L( f, v)= ∂F
∂µ
(u+µv,m+µ f, λ)

∣∣
µ=0

=

[
v− vxx + H ′(ux)vx −αmα−1 f − ε( f − fxx)

f − fxx − (H ′′(ux)vx m+ H ′(ux) f )x + ε(v− vxx)

] (10-3)

for ( f, v) ∈ C2,1/2(T)× C2,1/2(T). Under Assumption 5 and because (u,m) ∈
C2,1/2(T) × C2,1/2(T; ]0,∞[), the operator L defines a map from C2,1/2(T) ×
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C2,1/2(T) into C0,1/2(T)×C0,1/2(T). Moreover, this map is continuous and linear.
Next, we show that it is also an isomorphism between C2,1/2(T)×C2,1/2(T) and
C0,1/2(T)×C0,1/2(T).

Proposition 10.1. Suppose that Assumptions 4 and 5 hold. Fix λ ∈ [0, 1] and
assume that (u,m) ∈ C2,1/2(T)×C2,1/2(T; ]0,∞[) satisfies F(u,m, λ)= 0. Then,
the operator L given by (10-3) is an isomorphism between C2,1/2(T)×C2,1/2(T)

and C0,1/2(T)×C0,1/2(T).

Proof. To prove the proposition, we begin by applying the Lax–Milgram theorem
in H 1(T)×H 1(T), after which we bootstrap additional regularity. Here, we endow
H 1(T)× H 1(T) with the inner product〈

(θ1, θ2), (θ̄1, θ̄2)
〉
H1(T)×H1(T)

=

∫ 1

0
(θ1θ̄1+ θ2θ̄2+ θ1x θ̄1x + θ2x θ̄2x) dx

for (θ1, θ2), (θ̄1, θ̄2) ∈ H 1(T)× H 1(T).
Consider the bilinear form B : (H 1(T) × H 1(T)) × (H 1(T) × H 1(T)) → R

defined for (v, f ), (w1, w2) ∈ H 1(T)× H 1(T) by

B
((

v

f

)
,
(
w1
w2

))
=

∫ 1

0
( f + εv)w1 dx +

∫ 1

0
[ fx + H ′′(ux)vx m+ H ′(ux) f + εvx ]w1x dx

−

∫ 1

0
[v+ H ′(ux)vx −αmα−1 f − ε f ]w2 dx +

∫ 1

0
(ε fx − vx)w2x dx .

Note that if (v, f ) ∈ C2,1/2(T)×C2,1/2(T), then

B
((

v

f

)
,
(
w1
w2

))
=

∫ 1

0
[−L1( f, v)w2+ L2( f, v)w1] dx, (10-4)

where L1 and L2 are the first and second components of L , respectively.
Next, we prove that B is coercive and bounded in H 1(T)× H 1(T). Fix (v, f ),

(w1, w2) ∈ H 1(T)× H 1(T). Using the integration by parts formula and the period-
icity of v and f , we obtain

B
((

v

f

)
,
(
v

f

))
=

∫ 1

0
[αmα−1 f 2

+ H ′′(ux)v
2
x m+ ε(v2

+ v2
x + f 2

+ f 2
x )] dx .

Because H ′′ ≥ 0 by Assumption 4 and because m > 0, we have

B
((

v

f

)
,
(
v

f

))
≥ ε

∥∥∥∥( vf )
∥∥∥∥2

H1(T)×H1(T)

,

which proves the coercivity of B.
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Because m, u, and H are C2,1/2-functions on the compact set [0, 1], we have
that m, u, mx , ux , uxx , H , H ′(ux), and H ′′(ux) are bounded. Therefore, there
exists a positive constant, C , that depends only on these bounds and for which∣∣∣∣B(( vf ), (w1

w2

))∣∣∣∣≤ C
∥∥∥∥( vf )

∥∥∥∥
H1(T)×H1(T)

∥∥∥∥(w1
w2

)∥∥∥∥
H1(T)×H1(T)

,

where we also used Hölder’s inequality. This proves the boundedness of B.
Finally, we fix b= (b1, b2)∈C0,1/2(T)×C0,1/2(T), and we consider the bounded

and linear functional G :H 1(T)×H 1(T)→R defined for (w1, w2)∈H 1(T)×H 1(T)

by

G
(
w1
w2

)
=

∫ 1

0
(−b1w2+ b2w1) dx .

By the Lax–Milgram theorem, there exists a unique (v, f ) ∈ H 1(T)× H 1(T) such
that for all (w1, w2) ∈ H 1(T)× H 1(T), we have

B
((

v

f

)
,
(
w1
w2

))
= G

(
w1
w2

)
.

This is equivalent to saying that for all (w1, w2) ∈ H 1(T)× H 1(T),

B
((

v

f

)
,
(
−w2
w1

))
= G

(
−w2
w1

)
=

∫ 1

0
(−b1w1− b2w2) dx .

From this and (10-4), we conclude that L( f, v) = b has a unique weak solution
( f, v) ∈ H 1(T)× H 1(T). Because b ∈ C0,1/2(T)× C0,1/2(T) is arbitrary, L is
injective. To prove surjectivity, it suffices to check that the weak solution of
L( f, v) = b is in C2,1/2(T)× C2,1/2(T). This higher regularity follows from a
bootstrap argument.

Fix b= (b1, b2) ∈C0,1/2(T)×C0,1/2(T) and let ( f, v) ∈ H 1(T)×H 1(T) be the
weak solution of L( f, v)= b given by the Lax–Milgram theorem. Then, we have
the following identity in the weak sense:

vxx =
g

1+ ε2+ εH ′′(ux)m
, (10-5)

where

g = v(1+ ε2)+ H ′(ux)vx −αmα−1 f − εvx(H ′(ux)m)x
− ε(H ′(ux) f )x − εb2− b1 ∈ L2(T).

We recall that 1+ ε2
+ εH ′′(ux)m > 1. Hence, vxx ∈ L2(T), and so v ∈ H 2(T).

Moreover, because

fxx = f − (H ′′(ux)vx m)x − (H ′(ux) f )x + ε(v− vxx)− b2 (10-6)
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in the weak sense, similar arguments yield fxx ∈ L2(T) and f ∈ H 2(T).
So far, ( f, v) ∈ C1,1/2(T)×C1,1/2(T). This implies that g ∈ C0,1/2(T). Then,

using the fact that 1+ ε2
+ εH ′′(ux)m also belongs to C0,1/2(T) and is bounded

from below by 1, from (10-5) it follows that vxx ∈ C0,1/2(T). Consequently, in
view of (10-6), fxx ∈ C0,1/2(T). Hence, ( f, v) ∈ C2,1/2(T)×C2,1/2(T). Therefore,
the unique solution given by the Lax–Milgram theorem is a strong solution with
C2,1/2 regularity. Thus, L is surjective. Because L is injective and surjective, it is
an isomorphism. �

11. Proof of the main theorem

In this last section, we prove Theorem 2.1. We assume that ε > 0 satisfies ε <
min{1, ε0, ε̄0}, where ε0 and ε̄0 are given by Propositions 4.1 and 9.2, respectively.

Let F be the functional defined in (10-1). For each λ ∈ [0, 1], consider the
problem of finding (u,m) ∈ C2,1/2(T)×C2,1/2(T; ]0,∞[) satisfying (10-2). From
Propositions 4.1 and 8.1, such a pair (u,m) exists for λ= 0. Next, using the contin-
uation method, we prove that this is true not only for λ= 0 but also for all λ∈ [0, 1].

More precisely, let 3 be the set of values λ ∈ [0, 1] for which (10-2) has a
solution (u,m) ∈C2,1/2(T)×C2,1/2(T) with m ≥ m̄ in T, where m̄ > 0 is given by
Proposition 9.2. Note that m̄ does not depend on λ (see Remark 9.3). As we just
argued, 3 is a nonempty set. In the subsequent two propositions, we show that 3
is a closed and open subset of [0, 1]. Consequently, 3= [0, 1].

Proposition 11.1. Suppose that Assumptions 1–7 hold. Then, 3 is a closed subset
of [0, 1].

Proof. Let (λn)n∈N ⊂3 and λ ∈ [0, 1] be such that limn→∞ λ
n
= λ. We claim that

λ ∈3.
By definition of 3, for each n ∈N, there exists (un,mn)∈C2,1/2(T)×C2,1/2(T)

satisfying (10-2) and mn
≥ m̄ in T. Then, by Proposition 7.2 (also see Remark 7.3),

(un)n∈N, (mn)n∈N, (un
x)n∈N, and (mn

x)n∈N are uniformly bounded in C0,1/2(T). Con-
sequently, by the Arzelà–Ascoli theorem, we can find (u,m, ũ, m̃) ∈ C0,1/2(T)×

C0,1/2(T)×C0,1/2(T)×C0,1/2(T) such that, up to a subsequence that we do not
relabel,

lim
n→∞
‖(un,mn, un

x ,mn
x)− (u,m, ũ, m̃)‖∞ = 0. (11-1)

We now recall that if (wn)n∈N is a sequence of differentiable functions on [0, 1]
such that (wn)n∈N converges uniformly to some w on [0, 1] and such that (wn

x )n∈N

converges uniformly on [0, 1], then wx = limn→∞w
n
x on [0, 1]. Consequently, by

(11-1), we have ũ = ux and m̃ = mx .
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Next, we show that (un
xx)n∈N and (mn

xx)n∈N are also uniformly convergent se-
quences on [0, 1]. In view of (8-2), we have for every n ∈ N,

un
xx =

(1+ ε2)un
+ H(un

x)− ε+ λ
nV (x)− (mn)α − εH ′(un

x)m
n
x

1+ ε2+ εH ′′(un
x)mn . (11-2)

By Assumption 5 and by the uniform convergence of (un,mn, λn, un
x ,mn

x)n∈N to
(u,m, λ, ux ,mx) on [0, 1], it follows from (11-2) that (un

xx)n∈N converges uniformly
on [0, 1]. Then, the limit of (un

xx)n∈N is necessarily uxx . Analogous arguments (see
(8-3)) give that (mn

xx)n∈N converges uniformly to mxx on [0, 1]. Thus, (u,m) ∈
C2,1/2(T) × C2,1/2(T; ]0,∞[). Moreover, limn→∞ F(un,mn, λn) = F(u,m, λ).
Finally, because for all n ∈ N, the functional F(un,mn, λn)= 0 and mn

≥ m̄ in T,
we have that F(u,m, λ)= 0 and m ≥ m̄ in T. Hence, λ ∈3. �

Proposition 11.2. Suppose that Assumptions 1–7 hold. Then, 3 is an open subset
of [0, 1].

Proof. Let λ0 ∈3. Then, there exists (u0,m0) ∈ C2,1/2(T)×C2,1/2(T) satisfying
F(u0,m0, λ0) = 0 and m0 ≥ m̄ in T. By Proposition 10.1 and by the implicit
function theorem in Banach spaces (see, for example, [Dieudonné 1960]), we
can find δ > 0 such that, for every λ∗ ∈ ]λ− λ0, λ+ λ0[, there exists (u∗,m∗) ∈
C2,1/2(T)×C2,1/2(T) satisfying F(u∗,m∗, λ∗) = 0 and m∗ ≥ m̄ in T. Moreover,
the implicit function theorem also guarantees that the map λ∗ 7→ m∗ is continuous.
Hence, if δ is small enough, we have m∗ > 0 in T. Then, Proposition 9.2 gives
m∗ > m̄ in T. Therefore, λ∗ ∈3 and, consequently, 3 is open. �

Finally, we sum up the proof of our main result.

Proof of Theorem 2.1. Let ε > 0 be such that ε <min{1, ε0, ε̄0}, where ε0 is given
by Proposition 4.1 and where ε̄0 is given by Proposition 9.2.

Propositions 11.1 and 11.2 give that 3 is a relatively open and closed set in
[0, 1]. It is a nonempty set due to Propositions 4.1, 8.1, and 9.2. Hence, 3= [0, 1].
Finally, we observe that Theorem 2.1 corresponds to the λ= 1 case. �
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Discrete dynamics of contractions on graphs
Olena Ostapyuk and Mark Ronnenberg

(Communicated by Martin Bohner)

We study the dynamical behavior of functions on vertices of a graph that are
contractions in the graph metric. We show that the fixed point set of such functions
must be convex. If a function has no fixed points and the graph is a tree, we prove
that every dynamical cycle must have an even period and the function behaves
eventually like a symmetry.

1. Introduction

This work was inspired by dynamics of analytic functions on the unit disk. The key
property of such functions is the point-invariant Schwarz lemma, i.e., that analytic
functions are contractions in the hyperbolic metric of the disk. This property allows
the proof of various results about iteration of analytic functions; see, for example,
the survey paper [Poggi-Corradini 2011].

Our purpose is to study dynamics of contractions in a discrete setting. In particular,
we study dynamics on finite graphs (in most cases, trees). A connected graph can
be considered as a discrete metric space of vertices with the graph metric. Let
G = (V, E) be a finite, connected, simple graph with the set of vertices V and the
set of edges E . Then for all vertices x, y ∈ V, we say the distance between x and y,
denoted d(x, y), is the number of edges in the shortest path connecting x to y.
Such path is called a geodesic. Note that trees as metric spaces are 0-hyperbolic
[Anderson 1999], so we expect them to have some similar properties to the unit
disk with hyperbolic metric.

We wish to study contractions (in the graph metric) on the vertices of a graph.
Let f be a function on the vertices of G to the vertices of G. We say f is a
contraction if, for all vertices x, y ∈ V, we have d( f (x), f (y)) ≤ d(x, y). We
will need some terminology from dynamics. Let f be a function. We denote by
f ◦n(x)= f ◦ f ◦ f ◦ · · · ◦ f (x) (n terms) the n-th iterate of f . If for some point x
and some positive integer n, we have f ◦n(x)= x , then we say x is a periodic point,
x lies on a dynamical cycle of f of period n, or that x lies on a dynamical n-cycle

MSC2010: primary 39B12, 54H20; secondary 05C05.
Keywords: discrete dynamics, dynamics of contractions, graphs.
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of f . If f (x)= x , we say x is a fixed point of f . We use the term dynamical cycle
to distinguish these cycles from the graph cycles.

It is easy to show by induction that, given a contraction f , the map f ◦n is also a
contraction for any positive integer n. Dynamical cycles and fixed points will be
the main focus of our study.

2. Fixed point sets

Our goal is to characterize the set of fixed points of a contraction on graph vertices.
Note that in the general case, the fixed point set can be empty:

Example 2.1. Let G1 be a graph with four vertices x, y, z, w. Let f be a function
on the vertices of G1 defined by f (x)= y, f (y)= z, f (z)=w, and f (w)= x . Then
{x, y, z, w} forms a dynamical 4-cycle of f (see Figure 1). The map f is clearly a
contraction since for all a, b ∈ {x, y, w, z}, we have d( f (a), f (b)) = d(a, b). In
this case, the set of fixed points of f is empty.

Example 2.2. Let G2 be a graph with vertices x0, x1, x2, y0, y1, z0 and z1 as shown
in Figure 2. Let f be a contraction on the vertices of G2 such that x0, x1, x2 are
fixed by f , and {y0, y1} and {z0, z1} are dynamical 2-cycles of f .

Note that one main difference between the two examples is that for any two
vertices in G2, the geodesic connecting them is unique, whereas this is not the case
with G1. Notice also that for any two fixed points in G2, the geodesic connecting
them contains only fixed points.

x

y

z

w

Figure 1. Dynamical 4-cycle.
y0

x0 x1

x2 z1

z0

y1

Figure 2. Cycles and fixed points.



DISCRETE DYNAMICS OF CONTRACTIONS ON GRAPHS 497

x0

y

x1

z

Figure 3. The graph G3 with nonunique geodesics.

Definition 2.3. Let G = (V, E) be a graph and let H ⊂ V. We say H is convex
if for any two vertices in H , the geodesic connecting them contains only vertices
in H. (See, for example, [Gross and Yellen 2006].)

Thus in Example 2.2, the set of fixed points of f is convex. In fact, this is true
in general:

Theorem 2.4. Let G = (V, E) be a graph such that the geodesic between any two
vertices is unique. Let f be a contraction on the vertices of G. Then the set of fixed
points of f is convex.

Proof. Let x, y ∈ V be fixed by f . Let L be the unique geodesic connecting them.
Let z ∈ L . We need to show that f (z)= z. We will first show that f (z) ∈ L and it
will follow that f (z)= z.

By way of contradiction, suppose f (z) /∈ L . Then there exist unique geodesics
connecting x to f (z) and y to f (z), respectively. We can concatenate these geodesics
to construct a walk K connecting x to y, so the length of K is d(x, f (z))+d( f (z), y)

and the length of L is d(x, z)+d(z, y). Since f is a contraction and x and y are fixed
points, we have d( f (z), x) ≤ d(z, x) and d( f (z), y) ≤ d(z, y). Then it follows
that d(x, f (z)) + d( f (z), y) ≤ d(x, z) + d(z, y). If d(x, f (z)) + d( f (z), y) =

d(x, z)+d(z, y), then L is not a unique geodesic between x and y, a contradiction.
If d(x, f (z))+ d( f (z), y) < d(x, z)+ d(z, y), then K is shorter than L , which is
also a contradiction. Thus it must be that z ∈ L .

Now we will show f (z)= z. Suppose f (z) 6= z. Since f (z) lies on the geodesic L
connecting x to y, we have d(x, z)+ d(z, y)= d(x, f (z))+ d( f (z), y)= d(x, y).
We can assume without loss of generality that d(x, f (z)) < d(x, z), in which
case we obtain d(y, f (z)) = d(x, y)− d(x, f (z)) > d(x, y)− d(x, z) = d(y, z),
contradicting the fact that f is a contraction. Thus we conclude that f (z)= z. �

Note that if for any two points in G the geodesic connecting them is not unique
then the conclusion of Theorem 2.4 does not necessarily hold, as can be seen in the
following counterexample.

Example 2.5. Let G3 be a graph with vertices x0, x1, y and z as shown in Figure 3.
Let f be a contraction such that the vertices z and y are fixed and the points x0

and x1 form a dynamical 2-cycle. Note that the geodesic connecting z to y is



498 OLENA OSTAPYUK AND MARK RONNENBERG

not unique, since the path from z to y through x0 is the same length as the path
through x1. Despite the fact that z and y are fixed and that x0, x1 lie on the geodesics
connecting them, x0 and x1 are clearly not fixed. Thus the conclusion of Theorem 2.4
does not hold in this case.

Corollary 2.6. Let G = (V, E) be a graph such that for any two vertices in G
the geodesic connecting them is unique. Let f be a contraction on V. Suppose f
has a dynamical cycle J of period k. Let z be a point which lies on the geodesic
connecting two consecutive points in J. Then z lies on a dynamical cycle whose
period divides k.

Proof. Let x, y ∈ J. Let z ∈ V such that z lies on the geodesic between x and y.
Since J is a dynamical cycle of period k, we know f ◦k(x) = x and f ◦k(y) = y.
Thus x and y are fixed by the k-th iterate of f . Since f is a contraction, any iterate
of f is also a contraction. Thus Theorem 2.4 applied to f ◦k implies f ◦k(z) = z.
So z must lie on a dynamical cycle whose period divides k. �

Now we will consider a particular case when the graph is a tree. For any
tree, a path connecting any two points is unique, hence geodesics are unique, so
Theorem 2.4 holds. But the converse is also true for trees: any convex set of vertices
will be a fixed point set for some contraction.

We will need the following property of a tree structure: in a tree, a concatenation
of two geodesics from x to y and from y to z is either a geodesic from x to z or a walk
that follows the geodesic connecting x to y until the first common point of the two
geodesics, y′, then follows the geodesic from y′ to y, then goes back to y′ along the
same geodesic and finally follows the geodesic from y′ to z. Note that concatenation
of geodesics from x to y′ and from y′ to z will form a geodesic that connects x to z.

Proposition 2.7. Let T = (V, E) be a tree and H ⊂ V be convex set. Then there
exists a contraction f such that H is the fixed point set of f .

Proof. Given H, we define the desired contraction f as follows: for all x ∈ V,
f (x)= y, where y ∈ H is the closest vertex to x in H; see Figure 4. Note that such
a y is unique. Indeed, suppose y1, y2 ∈ H are at the same shortest distance from
x /∈ H . Apply the property mentioned above the proposition to the concatenation of
geodesics connecting y1 to x and x to y2. If it is a geodesic, then x ∈ H , which is a
contradiction. If instead there is a common point y′, then y′ ∈ H and it is closer
to x than y1 and y2 are, again a contradiction. Thus the point y is unique and the
function f is well-defined. Also, H is clearly fixed point set of f .

Now we need to show that f is a contraction. Let f (x1)= y1 and f (x2)= y2.
Consider a walk following the geodesic from x1 to y1, then from y1 to y2. If there is
a common point of these geodesics other than y1, then this point is in H and within
a shorter distance to x1 than y1, which contradicts the construction of y1. So the
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H

Figure 4. Constructing the contraction f for a given convex subset
of vertices H.

concatenation of these two geodesics is the geodesic from x1 to y2. Similarly, the
geodesic from y1 to x2 passes through y2, and finally, the geodesic from x1 to x2 is
just a concatenation of those from x1 to y1, y1 to y2 and y2 to x1. So we have

d(x1, x2)= d(x1, y1)+ d(y1, y2)+ d(y2, x2)≥ d(y1, y2),

and f is a contraction. �

3. Contractions with no fixed points

In the previous section, we characterized the set of fixed points of a contraction on
the vertices of a graph with unique geodesics, in particular a tree. Next we want to
consider the case when a contraction has no fixed points. Then there must exist a
dynamical cycle. We will use the following property of periodic points:

Lemma 3.1. Let G be a finite graph, and f be a contraction on vertices of G. If x
and y are two periodic points of f (not necessarily from the same dynamical cycle),
then d( f (x), f (y))= d(x, y).

Proof. Assume x belongs to a dynamical m-cycle and y belongs to a dynamical
n-cycle. Let K be a common multiple of m and n. Then we have

d(x, y)≥ d( f (x), f (y))≥ · · · ≥ d( f ◦K (x), f ◦K (y))= d(x, y).

So all inequalities must be, in fact, equalities and in particular, d( f (x), f (y)) =

d(x, y). �

Now let us introduce some notation. Let G = (V, E) be a graph and f a
contraction on V. Let J ⊂ V be a dynamical cycle of f . Then we denote by J ′

the set of all vertices which lie on geodesics connecting consecutive points in J,
together with the vertices in J.

Theorem 3.2. Let T be a finite tree. Let f be a contraction on the vertices of T . If
f has no fixed points, then f has a dynamical 2-cycle such that the points in the
cycle are connected by an edge. Moreover, such a cycle is unique.
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Proof. Suppose f has no fixed points. Since the number of vertices of T is finite,
every vertex of T either lies on a dynamical cycle of period greater than 1 or is eventu-
ally mapped into one. Let k be the smallest period of all dynamical cycles of f . Let J
be a dynamical cycle of period k such that the distance between consecutive points in
J is least among all dynamical cycles of f of period k. We want to show that k= 2.

We claim that for k > 2 there must exist two geodesics connecting consecutive
points in J that intersect at a point other than their endpoints. If not, the points in J ′

would form a graph cycle, which is a contradiction since T is a tree. Thus there must
exist two geodesics which intersect at a point which is not one of their endpoints.

Suppose two nonconsecutive geodesics intersect at some point y. Then we claim
that there must exist two consecutive geodesics which intersect at point z which
is not one of their endpoints. Indeed, if we start from the point y of intersection
of two nonconsecutive geodesics and follow one of the geodesics to the point x j on
the cycle J, then follow the next geodesic to the point x j+1 = f (x j ), and so on, we
will eventually return to the point y. Since the graph is a tree, the walk constructed
this way must go over each edge in this walk at least twice. In particular, there must
exist a vertex w which is farthest away from y on this walk and an edge {w, z}
such that our walk will follow the edge from z to w and then immediately return
to z through the same edge. Note that w must be an endpoint of two consecutive
geodesics, because one geodesic cannot follow the same edge twice. Then z lies
on the intersection of two consecutive geodesics.

Without loss of generality, let x0, x1, x2 be the endpoints of the two consecutive
geodesics constructed above. By Corollary 2.6, z must lie on a dynamical cycle
whose period divides k, but since k is the smallest possible cycle length, z must
lie on a dynamical k-cycle.

Since f is a contraction and x0, x1, x2 are points on a dynamical cycle, f
must map the geodesic from x0 to x1 bijectively to the geodesic from x1 to x2.
Since z lies on the geodesic from x0 to x1, the point f (z) must lie on the geodesic
from x1 to x2. Thus both z and f (z) lie on the geodesic from x1 to x2 and we
have d(z, f (z)) < d(x1, x2) = d(x0, x1). So we have found a dynamical k-cycle
{z, f (z), . . . , f ◦(k−1)(z)} such that the distance between two consecutive points in
this cycle is less than d(x0, x1).

This contradicts the way we selected J, so k must be equal to 2 and the geodesic
from x0 to x1, which is the same as the geodesic from x1 to x0, must contain no
other points. This means there is a dynamical 2-cycle {x0, x1} and x0 and x1 are
connected by an edge.

Now we need prove that such a dynamical 2-cycle is unique. Let {y0, y1} be
another such cycle. Without loss of generality assume that the distance a between x0

and y0 is the shortest among all distances from a point in {x0, x1} to a point in {y0, y1}.
Now consider x1; it is connected to x0 by an edge. If x1 lies on the geodesic from x0
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X0 x0
x1

X1

Figure 5. Unique 2-cycle {x0, x1} and sets X0 and X1.

to y0, then d(x1, y0) < d(x0, y0), which contradicts the choice of x0, y0. Otherwise,
the geodesic from y0 to x1 follows the geodesic from y0 to x0 and then the edge
connecting x0 to x1, so d(y0, x1) = a + 1. Similarly, d(x0, y1) = a + 1, and
finally, d(x1, y1)= a+2. But then d(x1, y1)= d( f (x0), f (y0)) > d(x0, y0), which
contradicts the assumption that f is a contraction. �

It will in fact turn out that every dynamical cycle of a contraction with no fixed
points has even period. To prove this, we will need the following corollary to
Theorem 3.2. Let us introduce the following notation. Let {x0, x1} be the points
in the 2-cycle constructed in Theorem 3.2. We let X0 denote the set of all points
which are within shorter distance to x0 than to x1. Similarly we let X1 denote the
set of all points which are within shorter distance to x1 than to x0; see Figure 5.

Corollary 3.3. Let T be a finite tree and f a contraction on the vertices of T such
that f has no fixed points. Let {x0, x1} be the unique dynamical 2-cycle, where x0

and x1 are connected by an edge. Then for all vertices z that lie on any dynamical
cycle, if z ∈ X0 (respectively X1), then f (z) ∈ X1 (respectively X0).

Proof. Let z lie on a dynamical cycle and z ∈ X0. By way of contradiction,
suppose f (z) ∈ X0. Let a = d(z, x0); then d(z, x1) = a + 1. By Lemma 3.1,
d( f (z), x1)= a, and since f (z)∈ X0, we must have d( f (z), x0) < d( f (z), x1)= a.
But by Lemma 3.1 again, d( f (z), x0)= d( f (z), f (x1))= d(z, x1)= a+ 1, which
is a contradiction. So f (z) ∈ X1. �

Note that if z is not a periodic point, then the above claim does not hold.

Example 3.4. Let T be a tree with vertices x0, x1 and z such that there are edges
between x0 and x1 and between x0 and z, and f be a contraction such that {x0, x1}

forms a dynamical 2-cycle and f (z)= x0 (see Figure 6). Then f has no fixed points,
and x0 and x1 form the unique 2-cycle connected by an edge. Since f (z)= x0, we
have z ∈ X0 and also f (z) ∈ X0. Thus we see that if a point z is in X0 but does not
lie on a dynamical cycle, it is not necessarily true that f (z) ∈ X1.
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x0 x1

Figure 6

Now we are ready to prove the following:

Theorem 3.5. Let T be a finite tree and f a contraction on the vertices of T such
that f has no fixed points. Then every dynamical cycle of f has even period.

Proof. Since f has no fixed points, f has a dynamical 2-cycle {x0, x1} whose points
are connected by an edge and sets of vertices X0 and X1 as defined above. Let
{y0, y1, . . . , yn−1} be a dynamical n-cycle of f . Without loss of generality, suppose
y0 ∈ X0. Then by Corollary 3.3, we have y1 ∈ X1, and in general, y2k ∈ X0 and
y2k+1 ∈ X1. If n is odd, then y0= f (yn−1)∈ X1, which is a contradiction to y0 ∈ X0.
Hence every dynamical cycle of f has even period. �

If a contraction f on the vertices of a tree T has no fixed points, then f eventually
behaves like a symmetry. More precisely:

Theorem 3.6. Let T = (V, E) be a finite tree and f a contraction on V without
fixed points. Then there exists a subset H of V and a nonnegative integer N such
that f ◦N (V )= H and f is a symmetry on the connected subgraph induced by H.
In particular, there is an edge in the subgraph such that two connected components
obtained by removing this edge are isomorphic graphs and f is an isomorphism.

Proof. Since T is finite and has no fixed points, each vertex of T will be mapped even-
tually to a point on a dynamical cycle. Thus there exists N such that f ◦N (V )= H
contains only periodic points of f . Note that by Corollary 2.6, the subgraph induced
by H is connected. Let {x0, x1} be the unique dynamical 2-cycle whose points
are connected by an edge. Then by Corollary 3.3, for all z ∈ H ∩ X0, we have
f (z) ∈ H ∩ X1 and for all z ∈ H ∩ X1, we have f (z) ∈ H ∩ X0. Moreover, since
all points in H are periodic, f bijectively maps H ∩ X0 to H ∩ X1. Now we need
to show that any two vertices y, z in H ∩ X0 are connected by an edge if and only
if f (y) and f (z) are connected by an edge. But being connected by an edge is
equivalent to d(y, z)= 1, and since by Lemma 3.1, d(y, z)= d( f (y), f (z)), the
required conclusion follows. �

4. Conclusion

Note that in the classical case of the unit disk in the complex plane, any analytic
self-map of the disk always has a fixed point in the closed disk. This is the
consequence of the classical Denjoy–Wolff theorem (see, for example, [Abate 1989]
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and references therein). In our study, a contraction without fixed points must behave
like a symmetry. Symmetries are contractions in the unit disk, but they are not
analytic (in fact, they are anticonformal, i.e., they preserve the value of angles, but
change their orientation). So we can say that our result agrees with the classical case.
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Tiling annular regions with skew and T-tetrominoes
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(Communicated by Arthur T. Benjamin)

In this paper, we study tilings of annular regions in the integer lattice by skew
and T-tetrominoes. We demonstrate the tileability of most annular regions by
the given tile set, enumerate the tilings of width-2 annuli, and determine the tile
counting group associated to this tile set and the family of all width-2 annuli.

1. Introduction

The first question in the mathematics of tilings is this: can a given region be tiled
by a given set of tiles? By tiled, we mean that the region can be covered without
gaps or overlaps by copies of the tiles in the tile set. If the answer is “yes”, the
proof is often a single picture, which is satisfying to be sure. However, if the
answer is “no”, the proof is often more interesting mathematically. Over the last
25 years, mathematical tools drawing on subjects in the undergraduate mathematics
curriculum have been developed to answer in the negative the tileability question in
many interesting cases (see, for instance, [Conway and Lagarias 1990; Korn 2004;
Pak 2000; Thurston 1990]).

Other tiling questions have received attention as well, such as enumeration
questions (how many different tilings are possible?) and connectivity questions (how
must any two tilings of a region be related?). In 2000, an abelian group called the tile
counting group was introduced in [Pak 2000] to encode information about such rela-
tionships, and this group has been found for several tile sets and families of regions
(see, e.g., [Moore and Pak 2002; Muchnik and Pak 1999; Pak 2000; Korn 2004]).

We consider the tile set T in Figure 1 consisting of four T-tetrominoes (tiles t1
through t4) and four skew tetrominoes (tiles t5 through t8). We refer to the first
four tiles as T-tiles, and the others as skew tiles. The regions we consider are
annular regions in the integer lattice. For positive integers a, b, and n we define
the annular region An(a, b) to be the region in the integer lattice obtained from an
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t1 t2 t3 t4 t5 t6 t7 t8
Figure 1. The tile set T consisting of T- and skew tetrominoes.

Figure 2. The annular regions A2(3, 2) and A3(1, 5).

(a + 2n)× (b+ 2n) rectangle by removing the central a× b rectangle. We may
think of An(a, b) as an annulus of width-n units wrapped around an a×b rectangle.
For instance, A2(3, 2) and A3(1, 5) are pictured in Figure 2. Certainly no annulus
with width-n = 1 may be tiled by T , so we assume n ≥ 2. For an integer n ≥ 2, let
An represent all width-n annuli, and A=

⋃
∞

n=2 An .
With respect to this tile set and family of regions, we prove three main results.

We solve the tileability question for most annular regions with Theorem 9, and
we enumerate tilings of width-2 annuli in Theorem 5. In Section 3 we address
the question of how tilings of a given width-2 annulus must be related. As noted
above, the tile counting group is an abelian group that gives information about such
relations, and we determine the tile counting group associated to T and width-2
annuli in Theorem 8. We define the tile counting group in its generality and provide
some illustration of it in Section 3 prior to the proof of Theorem 8.

The tile set T has been considered in other papers. For instance, [Lester 2012]
solves the tileability question for rectangles with respect to T , and [Korn 2004]
looks at the tile counting group for a subset of T with respect to rectangles. Much
is known about tile invariants and the tile counting group for tile sets over simply
connected regions (see, for instance, [Conway and Lagarias 1990; Korn 2004;
Moore and Pak 2002; Muchnik and Pak 1999; Pak 2000; Sheffield 2002; Thurston
1990]), but less is known for families of multiply connected regions, and this
motivates our decision to study annular regions. The annular regions offer some
control over the additional variation in possible tiling patterns that emerge beyond
those found in rectangular regions. Finally, we note that our proofs are somewhat
ad hoc, making use of the geometry of the annuli.

2. Tiling width-2 annular regions

Notice that the tile set T contains all rotations of each tile in the set, where by
rotation we mean rotation by an integer multiple of π/2 radians, a rotation that
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n

n− 2

Figure 3. An extended-T of length n, denoted by Xn .

Xk

Xn+2

Figure 4. Tiling extended-Ts of odd length.

keeps the tile in the integer lattice. Any rotation of an annular region produces an
annular region, and the set T tiles An(a, b) if and only if it tiles An(b, a). Further,
note that horizontal or vertical reflection of a tiling of the annulus An(a, b) will
produce a distinct tiling of the same annulus An(a, b).

It turns out that all width-2 annuli are tileable by T , a fact we prove en route to
enumerating the tilings of a given A2(a, b). To make this count it is first helpful to
consider the extended-T.

Definition 1. Let n ≥ 3. An extended-T of length n, denoted Xn , is any rotation
of a region formed by removing the two corner squares from the bottom row of a
2× n rectangle.

We note that an extended-T has area 2n−2, so if n is even, the area of Xn is not
divisible by 4, and hence Xn is not tileable by T . However, an extended-T with
odd length is more interesting with respect to the tile set T .

Lemma 2. Suppose n ≥ 3 is odd. The following hold for the extended-T Xn:

(i) Xn is tileable by T .

(ii) Any tiling of Xn by T uses an odd number of T-tiles.

(iii) The number of ways in which T can tile Xn is 2(n−3)/2.

Proof. (i): For odd n ≥ 3, the extended-T Xn as oriented in Figure 4 (left) may be
tiled by placing the T-tile t2 followed by (n− 3)/2 copies of the skew tile t7.

(ii): We proceed by strong induction. X3 can only be tiled by a single T-tile of the
same shape as X3. Now suppose any tiling of Xk uses an odd number of T-tiles for
all odd 3 ≤ k ≤ n. We show that any tiling of Xn+2 also requires an odd number
of T-tiles. In a given tiling of Xn+2, which we assume for the sake of argument is
oriented as in Figure 4 (right), the left-most square may be covered with either the
skew tile t8 or the T-tile t2. If it is covered by t8 then the remaining region is an
extended-T of length n, which requires an odd number of T-tiles by the inductive
hypothesis. It follows that the tiling of Xn+2 uses an odd number of T-tiles as well.
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Figure 5. Any tiling of A2(a, b) can be decomposed into four
extended-Ts, its T-structure.

Now suppose the left-most square of Xn+2 is covered by t2 instead. If no other
T-tiles are present, then we’re done. Otherwise, we proceed from left to right in
the tiling until the next T-tile is found. Notice that as we proceed from left to right,
if the next tile is not a T it must be the skew t7. Notice further that the next T-tile
placed will have to be the horizontal T-tile t1. At this point, the shape of the untiled
portion of the region is an extended-T of the form Xk for some odd k < n, as
suggested in Figure 4 (right). Any tiling of the remaining portion requires an odd
number of T-tiles by the inductive hypothesis, and it follows that the tiling of Xn+2

itself uses an odd number of T-tiles.

(iii): This enumeration problem boils down to first picking the number of T-tiles
used, which must be an odd number by (ii), and next picking the order in which skew
and T-tiles are placed from left to right in the tiling of Xn . Once the number of T-tiles
has been chosen, and the order of their placement has been chosen, the resulting
tiling of Xn is uniquely determined. Thus the number of ways of tiling Xn is

m∑
k=1

k is odd

(m
k

)
= 2m−1.

Here, m = (n− 1)/2, the number of total tiles needed to tile Xn . �

Lemma 3. If α is a tiling of A2(a, b) by T then α may be viewed as the disjoint
union of tilings of four extended-Ts.

Proof. Note that in any attempt to tile the annular region A2(a, b), the corners must
be covered by a tile. Both skew and T-tiles partially fill a corner in an L shape. Not
all such configurations of these L-shapes can lead to valid tilings; however, it is
necessary for any complete tiling of the region to have this structure. No matter
how these L-shapes are arranged they allow us to uniquely decompose the region
into four extended-Ts, as suggested in Figure 5. �

We call such a decomposition of an annulus into four extended-Ts a T-structure
for that annulus.
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a
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a
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a
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b+ 3 b+ 3

b+ 3b+ 3

Figure 6. T-structures in the case a, b are even.

a
+
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a
+
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a
+
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a
+

3

b+ 2

b+ 2b+ 4

b+ 4

Figure 7. T-structures in the case a is even, b is odd.

Lemma 4. There are exactly two T-structures for the annulus A2(a, b) in which
each extended-T has odd length.

Proof. We will consider three cases, according to the parities of a and b.

Case 1: Suppose a and b are both even. In this case, the use of an extended-T of
length a+ 1 or b+ 1 would leave uncovered squares in the region, so we must use
extended-Ts of length a+3 and b+3. There are only two possible ways to arrange
extended-Ts of this length to cover the region; see Figure 6.

Case 2: Suppose a is even and b is odd (the case a odd and b even is handled by
rotational symmetry). In this case, we must use two extended-Ts of length a+ 3
in our T-structure. This forces us to use one extended-T of length b+ 4 and one
of length b+ 2 in order to cover the annulus and obtain the correct parity for the
extended-Ts. Figure 7 depicts the two possible T-structures.

Case 3: Suppose a and b are odd. To obtain the correct parity for each extended-T,
we must use lengths of a+2, a+4, b+2, or b+4. Note that if we pick our vertical
extended-Ts such that one has length a+2 and the other has length a+4, then this
would force each horizontal extended-T to have length b+ 3. However, this would
be an extended-T of even length and therefore untileable. Thus the vertical (and
therefore horizontal) extended-Ts must have the same length. This leads us to two
possible configurations, as in Figure 8. �

We observe that because any width-2 annulus may be decomposed into odd length
extended Ts, it follows that any width-2 annulus is tileable by T . We can count
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a
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a
+
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+
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+
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b+ 2

b+ 2

b+ 4

b+ 4

Figure 8. T-structures in the case a, b are odd.

the number of possible tilings of A2(a, b), thanks to the restrictions on possible
T-structures.

Theorem 5. The number of ways of tiling A2(a, b) by T is 2a+b+1.

Proof. We may consider three cases, based on the parities of a and b. We will show
the calculations for the case where a and b are even. The other cases are analogous.

By Lemma 4, each horizontal extended-T in an allowable T-structure has length
b+ 3. By Lemma 2(iii), the number of ways to tile a horizontal extended-T of
this length is 2b/2. Similarly, the number of ways of tiling one of the vertical
extended-Ts is 2a/2. Thus the total number of ways to tile A2(a, b) is

2 · 2b/2
· 2b/2

· 2a/2
· 2a/2

= 2a+b+1,

since we have two T-structures and two horizontal and two vertical extended-Ts. �

3. The tile counting group for width-2 annuli

We now turn to the question of how any two tilings of an annular region A2(a, b) by
T must be related. Some mathematical machinery is necessary to address this ques-
tion, and we take time here to develop this machinery for the reader’s convenience.

Suppose a region 0 can be tiled by a tile set T . It may be that 0 can be tiled in
more than one way, and it is reasonable to ask how these tilings, or indeed any two
tilings of 0, must be related.

Suppose the tile set T = {τ1, τ2, . . . , τn} consists of n tiles, and each tile in T
has the same area (that is, it is comprised of the same number of squares). If α
represents a particular tiling by T of a region 0, we let ai (α) equal the number
of copies of tile τi that appears in the tiling. There are certain relations among
the ai (α) that hold for all tilings of a given region, and any such relation is called a
tile invariant [Pak 2000].

One relation is an area invariant: since all tiles in T have the same area, for any
tiling α of any region 0, the linear combination

∑n
i=1 ai (α) is constant. The value

of the constant depends only on the region, not the particular tiling, and its value
equals the total number of tiles needed to tile the region. A typical tile invariant
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has the form
n∑

i=1

ki ai (α)= c(0),

where c(0) is a constant, each ki is an integer, and the equality may be taken
(mod m) for some n. As the value of the constant is independent of the particular
tiling, and depends only on the region 0, it is often cleaner to drop the α from the
notation, in which case a tile invariant might be written as

2a1+ a2− a3 ≡ c(0) (mod 4),

which in this case would mean that for any tiling of 0, twice the number of copies
of τ1 plus the number of copies of τ2 minus the number of copies of τ3 is constant
modulo 4.

The tile counting group G(T ,R) associated to a tile set T and a collection of
regions R was introduced in [Pak 2000] as a way to record in the form of a group
the different tile invariants associated to a tile set and a family of regions. This
group is defined as follows. To any tiling α of a region 0 ∈ R we associate an
element wα in the abelian group Zn given by wα = (a1(α), a2(α), . . . , an(α)). We
call wα a tile vector. Now, if α and β are two tilings of the same region 0 ∈R, we
call wα −wβ a difference vector. In this setting we may view a tile invariant as
a linear function from Zn to Z (or possibly Zm) that maps each difference vector
to 0. Let H denote the normal subgroup of Zn generated by all possible difference
vectors obtainable from our family of regions R and our tile set T .

The tile counting group is then the quotient group

G(T ,R)= Zn/H.

It seems that as we include more regions in our family R, thus allowing for
more difference vectors (from more regions that can be tiled in more than one way),
the size of H will grow, and thus the size of the tile counting group will shrink.
However, the tile counting group can stabilize rather quickly as you grow the number
of regions in the family. Computations of tile counting groups can be difficult in
general. Some computations can be found in [Hitchman 2015; Korn 2004; Moore
and Pak 2002; Muchnik and Pak 1999; Pak 2000]. Before computing G(T ,A2),
we consider an example.

Suppose T3 consists of the ribbon tile trominoes as pictured in Figure 9, and R
consists of a single region, the 3×3 square. This square has six tilings by T3, given
in Figure 9. Tilings 3 and 1 give us difference vector (1, 1, 1, 0)− (3, 0, 0, 0) =
(−2, 1, 1, 0), and tilings 5 and 3 give us difference vector (0, 1, 1, 1)−(1, 1, 1, 0)=
(−1, 0, 0, 1). One can check that all other difference vectors from pairs of tilings
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1 2 3 4 5 6

Figure 9. Tilings of a 3× 3 square by ribbon tile trominoes.

taken from this collection are integer linear combinations of these two. Thus H is
generated by v1 = (−2, 1, 1, 0) and v2 = (−1, 0, 0, 1).

We use two tile invariants to calculate the tile counting group. First, we have the
area invariant: in any of the six tilings, we have that a1+ a2+ a3+ a4 is constant
(equal to 3); second, we note that a2−a3 is constant in all six tilings. Alternatively,
these are tile invariants because for any difference vector wα−wβ = (c1, c2, c3, c4),
we know c1+ c2+ c3+ c4 = 0 and c2− c3 = 0. The latter invariant is the Conway–
Lagarias invariant [1990].

We claim the tile counting group G(T3, {[3× 3]}) is isomorphic to Z2. To see
this, let φ : Z4

→ Z2 be defined by φ(a, b, c, d)= (a+b+c+d, b−c). First note
that φ is a group homomorphism and it is a surjection since we can map onto the
generators of Z2: φ(1, 0, 0, 0) = (1, 0) and φ(−1, 1, 0, 0) = (0, 1). Second, we
show kerφ ⊆ H : if g = (a, b, c, d) ∈ kerφ, then b = c, so g = (a, b, b, d) where
a =−2b− d so

g = (−2b− d, b, b, d)

= (−2b, b, b, 0)+ (−d, 0, 0, d)

= b(−2, 1, 1, 0)+ d(−1, 0, 0, 1)

= bv1+ dv2.

It follows that g ∈ H. Third, H ⊆ kerφ since φ(v1)= (0, 0) and φ(v2)= (0, 0).
Thus, by the first isomorphism theorem G(T3,R)= Z4/H ' Z2.

Remarkably, the tile counting group here does not shrink if R grows to include
all simply connected regions. That is, the two tile invariants used as the coordinate
functions of φ persist as we expand R. Conway and Lagarias [1990] introduced
combinatorial group theoretic methods for deriving their tile invariant. Their in-
ventive methods have motivated much research in tiling problems, including the
development of the tile counting group itself. The Conway–Lagarias invariant is
also revisited from a topological perspective in [Hitchman 2015], as is the tile
counting group itself.

We now turn to the computation of G(T ,A2). We begin again with extended-Ts.
Figure 10 shows so-called “local moves” one may perform on a tiling of a horizontal
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L1 L2

L3 L4

Figure 10. The set L of local moves on horizontal extended-T regions.

extended-T to produce a new tiling. That is, in each case, we may replace a local,
two-tile configuration with a different configuration to generate a new tiling of the
extended-T.

In general, a set of regions R has a local move property with respect to a tile
set T if there exists a set of local moves, L, such that every region 0 ∈R has the
feature that given any two tilings of 0 by T , one can be made to match the other
by a finite sequence of local moves.

Lemma 6. The family of horizontal extended-Ts has a local move property with
respect to the tile set T , using the four local moves in the set L= {L1, L2, L3, L4}

in Figure 10.

Proof. Suppose n ≥ 3 is odd, and α is a tiling of Xn , a horizontal extended-T
oriented as in Figure 3. We show that α, by a finite number of local moves from L,
can be transformed into the tiling of Xn consisting of a single T-tile followed by
(n− 3)/2 copies of the skew t7, as suggested in Figure 4 (left). It will then follow
that any two tilings of Xn can be made to match by making local moves from L.
First, note that moves L3 and L4 tell us that T-and skew tiles “commute”. By
application of moves L3 and L4, we may convert the tiling α to one that consists
of some number of T-tiles followed by some number of skew tiles. As observed
in Lemma 2(ii), the number of T-tiles used in the tiling must be odd. Moves L1

and L2 may then be made to reduce the number of T-tiles two at a time until the
number of T-tiles used is one. The (n− 3)/2 skews now present in the tiling must
all be copies of tile t7 in order to have a valid tiling. �

We note that an analogous result holds for vertical extended-T regions: for tilings
by T , the family of vertical extended-Ts has a local move property with respect
to four local moves, which correspond to the moves in Figure 11.

Figure 11. Local moves on vertical extended-T regions.
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Figure 12. Two tilings of A2(1, 1) generate v5 = (0, 0, 0, 0, 1, 1,−1,−1).

One can show that the collection A2 does not have a local move property,
essentially due to the fact that local moves cannot account for different T-structures
among tilings.

The local moves on horizontal extended-Ts produce two distinct difference
vectors in the subgroup H , the subgroup of Z8 generated by all difference vectors.
Consider two tilings of A2(a, b) that differ by a single application of an L1-move.
We let v1 denote the difference vector in this case, and note

v1 = (1, 1, 0, 0, 0, 0, 0,−2).

Two tilings of A2(a, b) that differ by a single L3-move or by a single L4-move
will generate the difference vector

v2 = (0, 0, 0, 0, 0, 0, 1,−1).

Two tilings that differ by an L2-move will produce the difference vector

(1, 1, 0, 0, 0, 0,−2, 0),

which equals v1− 2v2, so it is a consequence of v1 and v2.
By a similar argument, two tilings that differ by some combination of the four

vertical local moves in Figure 11 will have a difference vector that is a consequence
of these two:

v3 = (0, 0, 1, 1,−2, 0, 0, 0) and v4 = (0, 0, 0, 0, 1,−1, 0, 0).

These four vectors do not quite generate H. For instance,

v5 = (0, 0, 0, 0, 1, 1,−1,−1),

the difference vector determined by the two tilings of A2(1, 1) in Figure 12 is not a
linear combination of the first four. This difference vector arises from tilings having
distinct T-structures. It turns out that these five difference vectors generate H.
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Lemma 7. The subgroup H is generated by the five difference vectors

v1 = (1, 1, 0, 0, 0, 0, 0,−2),

v2 = (0, 0, 0, 0, 0, 0, 1,−1),

v3 = (0, 0, 1, 1,−2, 0, 0, 0),

v4 = (0, 0, 0, 0, 1,−1, 0, 0),

v5 = (0, 0, 0, 0, 1, 1,−1,−1).

Proof. Let H ′ be the normal subgroup of Z8 generated by the five difference
vectors vi . We show H = H ′, where H is the normal subgroup generated by all
difference vectors stated in the lemma. Clearly H ′⊆ H , and it remains to show that
H ⊆ H ′. Suppose α and β are two tilings of A2(a, b), and consider the difference
vector wα − wβ . If these tilings have the same T-structures, then each tiling may
be viewed as the tiling of a disjoint union of four extended-Ts of identical sizes,
so one can be made to look like the other by a sequence of our local moves on
extended-Ts. Thus, the difference vector wα −wβ is in H ′.

Now suppose α and β have distinct T-structures. Again, we consider cases based
on the parities of a and b.

Case 1: Assume a and b are even, and α and β are tilings with distinct T-structures,
given in Figure 6. Notice that in both T-structures, extended-Ts of the same
orientation have the same size. This ensures that the difference vector wα−wβ is a
consequence of v1, v2, v3, v4, so it is in H ′.

Case 2: Assume a is even and b is odd, and α and β represent tilings having distinct
T-structures (the case a is odd and b is even is handled analogously). The tiling α can
be transformed to a tiling α′ with the same T-structure as α but having just a single
T-tetromino in each extended-T as indicated in Figure 13. In particular, the single
T-tetromino is either the bottommost or leftmost tile in the tiling of the extended-T,
depending on its orientation. The rest of each extended-T is tiled by some number
of copies of a single skew. Since α′ was obtained from α by local moves within
extended-Ts, wα−wα′ ∈ H ′. Similarly, β can be transformed to a tiling β ′ having the
same T-structure but consisting of just one T-tetromino in each extended-T (at left or
bottom), andwβ−wβ ′ ∈H ′. Furthermore,wα′−wβ ′= (0, 0, 0, 0, 0, 0,−1, 1)=−v2,
which is also in H ′. It follows that wα −wβ is in H ′.

Case 3: Assume a and b are odd, and α and β represent tilings having distinct
T-structures. We may convert to tilings α′ and β ′ as we did in Case 2, resulting in
tilings with just one T-tile in each extended-T (see Figure 14). Then

wα′ −wβ ′ = (0, 0, 0, 0, 1, 1,−1,−1)= v5.
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a+ 3 a+ 3
a+ 3 a+ 3

b+ 2

b+ 2

b+ 4

b+ 4

α′ β ′

Figure 13. The difference vector for tilings with different T-structures
in the (even)× (odd) case.

a+ 4 a+ 4 a+ 2 a+ 2

b+ 2

b+ 2 b+ 4

b+ 4

α′ β ′

Figure 14. The difference vector for tilings with different T-structures
in the (odd)× (odd) case.

Since
wα −wβ = (wα −wα′)+ (wα′ −wβ ′)+ (wβ ′ −wβ)

is the sum of three elements in H ′, it follows that wα −wβ ∈ H ′.
Thus, H ′ = H. That is, the normal subgroup H is generated by the difference

vectors v1, v2, v3, v4, and v5. �

With a local move property on extended-T regions and the subgroup H in hand,
we can write down various tile invariants. Of course, we have the area invariant:
for any tiling α of a region 0 in A2 we have

8∑
i=1

ai = c(0).

Two other tile invariants arise by focusing on the horizontal and vertical T-
tetrominoes present in any tiling of A2(a, b). In particular, we have

a2− a1 = d(0),

a4− a3 = e(0).

The first of these invariants says that the difference in the number of horizontal
T-tiles used in any tiling of a given annulus is constant; the second says the same
for the difference of vertical T-tiles used.
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Also, the total number of horizontal tiles used in any tiling of a given A2(a, b)
must be constant, modulo 2. That is,

a1+ a2+ a7+ a8 ≡ k(0) (mod 2).

We now prove that all tile invariants are consequences of these four.

Theorem 8. The tile counting group G(T ,A2) is isomorphic to Z3
×Z2.

Proof. We use the tile invariants above to define φ : Z8
→ Z3

×Z2 as

φ(c1, c2, . . . , c8)=

( 8∑
i=1

ci , c2− c1, c4− c3, [c1+ c2+ c7+ c8]2

)
,

where [k]n represents the residue of k modulo n
The reader can check that φ is a homomorphism. To see that φ is a surjection,

suppose h ∈ Z3
× Z2. We want to show that there exists some g ∈ Z8 such that

φ(g)=h. Since h∈Z3
×Z2, we know h= (w, x, y, z), wherew, x, y∈Z and z∈Z2.

Further suppose that z= x+b, where b∈Z. In other words, h= (w, x, y, [x+b]2).
Let g= (0, x, 0, y, 0, w−(x+b+ y), 0, b)∈Z8. We have that φ(g)= h as desired,
and it follows that φ is surjective.

Next we show kerφ = H. To see that H ⊆ kerφ, suppose g ∈ H. Observe that
each vi ∈ kerφ for i = 1, . . . , 5. It follows directly that g ∈ kerφ since φ is a
homomorphism.

Now suppose that g= (c1, c2, . . . , c8) ∈ kerφ. Then c2−c1 = 0 and c4−c3 = 0.
Hence, c1 = c2 and c3 = c4. We also know that

0≡ c1+ c2+ c7+ c8 ≡ 2c1+ c7+ c8 ≡ c7+ c8 (mod 2).

That is, c7+ c8 is even, and c7 ≡ c8 (mod 2). Furthermore, we know that

8∑
i=1

ci = 2c1+ 2c3+ c5+ c6+ c7+ c8 = 0,

from which it follows that c5 ≡ c6 (mod 2) as well. In other words, if g ∈ kerφ,
then g has the form g = (c1, c1, c3, c3, c5, c6, c7, c8), where c5 ≡ c6 (mod 2) and
c7 ≡ c8 (mod 2).

With g expressed in such a way, it is possible to express g as a linear combination
of the difference vectors v1, . . . , v5. Indeed, if we let m = c3+

1
2(c5+ c6) (which

is an integer since c5+ c6 is even), then

g = c1v1+ (c7+m)v2+ c3v3+ (m− c6)v4+mv5.

Thus, g ∈ H , as desired. �
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4. Extensions and remarks

In this section we consider width-n annuli for general n.

Theorem 9. Let An(a, b) be an annular region with n ≥ 2. Then T tiles An(a, b)
if one of these conditions holds:

(i) n is even.

(ii) n = 3, with a ≡ b (mod 2), and a and b are not both divisible by four.

(iii) n ≥ 5 is odd and a ≡ b (mod 2).

Proof. (i): We have already seen that T tiles any width-2 annulus, and if An(a, b)
can be tiled by T then so can An+2(a, b), since An+2(a, b) may be viewed as
the disjoint union of An(a, b) and A2(a+ 2n, b+ 2n). It follows inductively that
An(a, b) can be tiled by T for any even n≥ 2, and we have tilings for all the regions
for (i).

(ii): If n ≥ 3 is odd, observe that An(a, b) has area divisible by 4 if and only if
a ≡ b (mod 2). Figure 15 shows tilings of A3(1, 1), A3(1, 3), A3(3, 3), A3(2, 2),
and A3(2, 4). One can then use reflections and rotations of the width-3 “expander”
region in Figure 16 to effectively increase the a-dimension and the b-dimension
of any of the tilings in Figure 15 by an integer multiple of 4 units. This can be
achieved by inserting the expander regions as needed along the bold face seams
given in the tilings of Figure 15. For instance, Figure 17 demonstrates how to
extend the tiling of A3(1, 3) in Figure 15 to a tiling of the annulus A3(5, 7). Along
each side of the annulus we may insert a width-3 expander region at the bold faced
seam, indicated by an arrow to increase the length and width dimensions of the
annulus by 4. Of course, we could have chosen to insert expander regions in just
the vertical sides to obtain a tiling of A3(5, 3) or just the horizontal sides to obtain
a tiling of A3(1, 7). In this way, we may generate tilings for all the regions for (ii).

Figure 15. Tilings of A3(1, 1), A3(1, 3), A3(3, 3), A3(2, 2), and A3(2, 4).
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Figure 16. Tiling a width-3 expander region.

Figure 17. Extending a tiling of A3(1, 3) to a tiling of A3(5, 7).

(iii): Figure 18 shows a tiling of A5(4, 4) and width-5 expander regions. From
these pieces, we may construct a tiling of A5(a, b) when a and b are both multiples
of 4. Other regions A5(a, b) in which a ≡ b (mod 2) may be viewed as the union
of an A3(a, b) region and an A2(a+ 6, b+ 6) region, both of which may be tiled,
so all A5(a, b) in which a ≡ b (mod 2) may be tiled by T . Finally, for odd n ≥ 7,
the region An(a, b) may be viewed as the disjoint union of annuli A5(a, b) and
Ak(a+ 10, b+ 10), where k ≥ 2 is even. If a ≡ b (mod 2) then both these regions
can be tiled by T so An(a, b) can be tiled by T as well. Thus we have tilings of all
the regions for (iii). �

We believe the converse to Theorem 9 holds as well. That is, if we suppose
An(a, b) has area divisible by 4, then we claim that T fails to tile An(a, b) if and
only if n = 3 and a ≡ b ≡ 0 (mod 4). At the time of this writing, the proof that
A3(4, 4) cannot be tiled by T is a brute force effort that involves tracking down
all the scenarios for placing tiles, an argument comparable to the proof in [Lester

Figure 18. Tiling A5(4, 4), and width-5 expander regions.
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2012] that T does not tile the 6× 6 rectangle. That T tiles none of the regions
A3(a, b) for a, b ≡ 0 (mod 4) follows again by a brute force argument appealing
to the geometry of the width-3 annuli. An elegant nonexistence proof using tile
invariants remains elusive. For instance, there exists a signed tiling of A3(4, 4)
by T , which means no coloring argument exists to demonstrate the nontileability
of A3(4, 4) by T .

Enumeration and connectivity questions remain open for width-3 annuli. In fact,
except for the area invariant, none of the tile invariants that hold for A2 persist
when we pass to A3. Consider the invariant a2 − a1 over A2, and look again at
the tiling of A3(1, 3) in Figure 15. In this tiling a2 − a1 = 4− 2 = 2, but if we
reflect this tiling about a horizontal axis we obtain a second tiling of A3(1, 3) in
which a2− a1 = 2− 4 = −2. So, a2− a1 is no longer a tile invariant if we pass
to width-3 annuli. These two tilings of A3(1, 3) may be rotated by π/2 to show
that a4− a3 is no longer invariant over A3. Finally, consider the tile invariant that
a1+ a2+ a7+ a8 is constant modulo 2, for tilings of regions in A2. The tiling of
A3(2, 2) in Figure 15 uses eight horizontal tiles and seven vertical tiles. So, the
given tiling gives a1+a2+a7+a8 ≡ 0 (mod 2). But if we rotate this tiling by π/2
we obtain a new tiling of the same annulus, A3(2, 2), that now has seven horizontal
tiles so that a1+ a2+ a7+ a8 ≡ 1 (mod 2) in this second tiling.

Finally, determining G(T ,An) for n > 2 remains open.
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A bijective proof of a q-analogue of
the sum of cubes using overpartitions

Jacob Forster, Kristina Garrett, Luke Jacobsen and Adam Wood

(Communicated by Jim Haglund)

We present a q-analogue of the sum of cubes, give an interpretation in terms
of overpartitions, and provide a combinatorial proof. In addition, we note a
connection between a generating function for overpartitions and the q-Delannoy
numbers.

1. Introduction

The formula for the sum of the first n cubes,
n∑

k=1

k3
=

(n+1
2

)2
, (1)

is well known and has been proven using various methods. Benjamin and Orrison
[2002] gave two combinatorial proofs. More recently, Garrett and Hummel [2004]
proved a q-analogue of (1) using integer partitions. (A q-analogue is an expression
involving q-binomial coefficients — see Section 2.3 on the next page — and reducing
to the given expression when q→1−.) In this paper, we give an alternate q-analogue
of (1) and provide a bijective proof using overpartitions. The first section is devoted
to an introduction to partition theory and establishing necessary notation and facts
for our work. Then we state and explain a generating function for overpartitions
and relate it to the Delannoy numbers. In the last section we give our q-analogue
and provide a combinatorial proof.

2. Background

In this section, we introduce aspects of partition theory that are relevant to our work.
For further reading, see [Andrews 1976; Corteel and Lovejoy 2004].
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2.1. Partitions.

Definition 1. A partition λ of a positive integer n is a nonincreasing sequence of
positive integers λ1, λ2, . . . , λk such that

∑k
i=1 λi = n. The λi are called the parts

of the partition.

As an example, consider n = 4. The five distinct partitions of 4 are

4, 31, 22, 211, 1111.

One method of displaying partitions graphically is with Ferrers shapes. A Ferrers
shape of a partition λ= λ1, λ2, . . . , λk , where λi ≥ λi+1, is a left-justified array of
cells with λi cells in row i of the shape and i = 1 defined as the top row. Below is
the Ferrers shape for the partition λ= 31:

2.2. Overpartitions.

Definition 2. An overpartition λ is a partition λ1, λ2, . . . , λk in which the first
occurrence of a given part size may be overlined.

Below are the fourteen distinct overpartitions of n = 4:

4, 4, 31, 31, 31, 31, 22, 22, 211, 211, 211, 211, 1111, 1111.

Overpartitions can also be graphically represented using Ferrers shapes by letting
the last cell of the rows corresponding to overlined parts be shaded. For example,
the Ferrers shape for the overpartition λ= 31 is

a

2.3. Partitions in a k × (n − k) box. In order to discuss partitions whose Ferrers
shapes fit inside of a k × (n − k) box, we must first introduce the q-binomial
coefficient. The q-binomial coefficient is defined as[n

k

]
q
=

∏n
i=n−k+1(1− q i )∏k

i=1(1− q i )
,

and is a q-analogue of the binomial coefficient. It is well known that

gn,k(q)=
[n

k

]
q

is the generating function for the number of partitions whose Ferrers shapes fit
inside of a k× (n− k) box. This generating function can be easily shown to satisfy
the recurrence relation

gn,k(q)= qk gn−1,k(q)+ gn−1,k−1(q),
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which is a q-analogue of the binomial coefficient recurrence. Note that, in this case,
the empty partition is included in the set of partitions that fit inside the k×(n−k) box.

3. Overpartitions in a 2 × (n − 1) box

For our main theorem, we are interested in counting the number of overpartitions
whose Ferrers shape fits in a 2×(n−1) box. The generating function for the number
of partitions in a 2× (n− 1) box is

[ n+1
2

]
q . In this section, we give an analogy of

this generating function for overpartitions. We will discuss the recurrence relation
for overpartitions that fit in a k× (n− k) box and then use it to verify a generating
function for the number of overpartitions that fit in a 2× (n− 1) box.

3.1. Recurrence relation for overpartitions. We will first discuss the general case
of overpartitions in a k×(n−k) box and then consider the case of a 2×(n−1) box.
Let p̄n,k denote the number of overpartitions that can fit in a k× (n− k) box. Then,
p̄n,k satisfies the recurrence relation

p̄n,k = p̄n−1,k + p̄n−1,k−1+ p̄n−2,k−1. (2)

We will explain each term in the recurrence relation. Note that, given a k× (n− k)
box, this recurrence relation indicates that there are three possible disjoint ways of
transforming the k× (n− k) box which, when taken together, describe all possible
overpartitions that can fit inside a k×(n−k) box. These disjoint cases can be easily
seen by considering the largest part of an overpartition, λ, in a k× (n− k) box and
are as follows:

(i) lp(λ) < n − k. Then the other parts of the overpartition must be less than
or equal to lp(λ). This situation describes the number of overpartitions in a
k× (n− k− 1) box.

(ii) lp(λ)=n−k and lp(λ) is not overlined. Then the other parts of the overpartition
are less than or equal to n − k. Thus, this collection of overpartitions is
equivalent to the number of overpartitions in a (k− 1)× (n− k) box.

(iii) lp(λ)= n− k and lp(λ) is overlined. Then the other parts of the overpartition
must be less than (n − k). Hence, this case is equivalent to the number of
overpartitions that fit inside of a (k− 1)× (n− k− 1) box.

These cases are shown in Figure 1.
Hence, the three disjoint cases of the recurrence relation cover all possible cases

of overpartitions that can fit in a k× (n− k) box.
To be useful when verifying the generating function in question, (2) must be

written in terms of q. That is, let G(n, k, q) be the generating function for the
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k−1

n−k

k

n−k−1

k−1

n−k

n−k−1

Figure 1. Illustration of the three cases for the recurrence relation.
The dimensions of all of the boxes are k×(n−k). Black denotes
a fixed part, gray denotes that the portion can be filled with all
possible overpartitions, and white corresponds to empty space. Left:
lp(λ) < n−k. Middle: lp(λ) = n−k and lp(λ) is not overlined.
Right: lp(λ)= n−k and lp(λ) is overlined.

number of overpartitions that fit in a k× (n− k) box. Then,

G(n, k, q)= G(n− 1, k, q)+ qn−k G(n− 1, k− 1, q)+ qn−k G(n− 2, k− 1, q).

In the case of overpartitions in 2× (n− 1) box, we have the recurrence relation

G(n+ 1, 2, q)= G(n, 2, q)+ qn−1G(n, 1, q)+ qn−1G(n− 1, 1, q). (3)

We now give the generating function.

Lemma 3. Let n be a positive integer and |q|< 1. Then f (q)= (2q+2q2)
[n

2

]
q+1

is the generating function for overpartitions that fit inside of a 2× (n− 1) box.

It can be shown that f (q) satisfies (3); therefore, Lemma 3 holds.

3.2. The q-analogue of Delannoy numbers. Now that we have verified our gen-
erating function for the number of overpartitions in a 2× (n−1) box, we will draw
a connection between Lemma 3 and the Delannoy numbers.

Definition 4. Let m, n be positive integers. The Delannoy numbers D(m, n) are
the number of lattice paths from (0, 0) to (m, n) in which only east, north, and
northeast steps are allowed.

It is easy to see that when we consider the cells above the path drawn from (0, 0)
to (m, n) as a Ferrers shape, the Delannoy numbers are equal to the number of
overpartitions that fit inside of a m× n box. Note that in this model, the northeast
steps correspond to overlined, and thus shaded, cells.
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Example 5. Consider a 2× 4 box. The following is a lattice path in this box:

This lattice path corresponds to the Ferrers shape

a

and thus the overpartition 43.

Example 6. Consider another lattice path in a 2× 4 box:

This lattice path corresponds to the Ferrers shape

and thus the partition 31.

Lemma 7. Let n be a positive integer and |q| < 1. The generating function for
overpartitions that fit inside a 2× (n− 1) box, g(q)= (2q + 2q2)

[ n+1
2

]
q + 1, is a

q-analogue of the Delannoy numbers, D(2, n− 1).

Proof. As per the definition of a q-analogue, we first take the limit as q → 1−

of g(q) to find the expression that our generating function generalizes in terms of q .
Therefore, we see

lim
q→1−

(2q + 2q2)
[n

2

]
q
+ 1= 4

(n
2

)
+ 1= 2n(n− 1)+ 1.

Next, we must show that this result, 2n(n − 1)+ 1, is indeed the expression for
the Delannoy numbers D(2, n− 1). According to [Pan 2015], a formula for the
Delannoy numbers is

D(n, k)=
n∑

d=0

2d
( k

d

)(n
d

)
.

Therefore, in this case, we have

D(2, n− 1)=
2∑

d=0

(n−1
d

)(2
d

)
,

which readily simplifies to

D(2, n− 1)= 2n(n− 1)+ 1.

Ergo, we have equality and the generating function g(q)= (2q + 2q2)
[ n+1

2

]
q + 1

is a q-analogue of the Delannoy numbers D(2, n− 1). �
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4. A q-analogue of the sum of cubes

In [Garrett and Hummel 2004], the authors give a q-analogue of the sum of cubes
and a bijective proof using partitions. We give another q-analogue of the sum of
cubes and provide a bijective proof with a similar method, but using overpartitions.

Theorem 8. Let n be a positive integer and let |q|< 1. Then,
n∑

i=1

2q i−1
(

1− q i−1

1− q

)2((1− q i−2

1− q

)
+

(
1− q i

1− q

))
= (2q + 2q2)

[n
2

]2

q
. (4)

Note that, taking the limit as q→ 1−, we obtain
n∑

i=1

i3
=

(n+1
2

)2
.

Thus, the above theorem is a q-analogue of the sum of cubes.

Bijective proof. We will prove Theorem 8 by interpreting the terms combinatorially
and finding a weight-preserving bijection between two sets of overpartitions. Let R
be a set of pairs of overpartitions, (λ, µ), where λ is a nonempty overpartition that
fits inside a 2× (n− 1) box and µ is a partition that fits inside a 2× (n− 2) box. It
follows that f (q)=

∑
(λ,µ)∈R q |λ|+|µ| is a generating function for R and is equal

to the right-hand side of (4).
Given a positive integer n, let L be a set of tuples, (v, a, b)∪ (v, a, b′), where

the allowed values of v, a, b, and b′ are:

• v is an overpartition into two parts, where the largest part is equal to at most
n− 1 and can be overlined and the smallest part is at most n− 2 and cannot
be overlined.

• 0≤ a ≤ n− 2.

• 0′ ≤ b′ ≤ (n− 3)′.

• 0≤ b ≤ n− 1.

Let ` = (v, a, b) ∈ L . Then g(q) =
∑

`∈L q |`|, where |`| = |v| + a + b is a
generating function for L and is equal to the left-hand side.

We will now define a bijection between the finite sets R and L . Then, we can show
that f (q)= g(q); therefore, (4) holds. So, let φ : R→ L , where φ(λ, µ)= (v, a, b)
and define φ in cases:

Case 1: λ1 > µ1.

(a) λ2 6= 0, and λ2 is not overlined.
(i) If λ1 is not overlined, then φ(λ, µ)= ((λ1)(λ2− 1), µ2, µ1+ 1).

(ii) If λ1 is overlined, then φ(λ, µ)= ((λ1)(λ2− 1), µ2, µ1+ 1).



PROOF OF A q -ANALOGUE OF THE SUM OF CUBES USING OVERPARTITIONS 529

(b) λ2 is overlined or λ2 = 0.

(i) If λ1 is not overlined, then φ(λ, µ)= ((λ1)(λ2), µ1, µ2).
(ii) If λ1 is overlined, then φ(λ, µ)= ((λ1)(λ2), µ1, µ2).

Case 2: λ1 ≤ µ1.

(a) λ2 is not overlined.

(i) If λ1 is not overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ2, (λ1− 1)′).
(ii) If λ1 is overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ2, (λ1− 1)′).

(b) λ2 is overlined.

(i) If λ1 is not overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ1, (λ2− 1)′).
(ii) If λ1 overlined, then φ(λ, µ)= ((µ1+ 1)(µ2), λ1, (λ2− 1)′).

To prove that φ is a bijection, one can show that it is one-to-one and onto. It
is easier, however, to construct its inverse. We can define φ−1

: L → R by the
following cases, starting with the case of whether b is primed or not primed.

Case 1: b is not primed.

(a) a ≥ b.

(i) If v1 is not overlined, then φ−1(v, a, b)= (v, (a)(b)).
(ii) If v1 is overlined, then φ−1(v, a, b)= (v, (a)(b)).

(b) a < b.

(i) If v1 is not overlined, then φ−1(v, a, b)= ((v1)(v2+ 1), (b− 1)(a)).
(ii) If v1 is overlined, then φ−1(v, a, b)= ((v1)(v2+ 1), (b− 1)(a)).

Case 2: b is primed.

(a) a ≥ b+ 2.

(i) If v1 is not overlined, then φ−1(v, a, b)= ((a)(b+ 1), (v1− 1)(v2)).
(ii) If v1 is overlined, then φ−1(v, a, b)= ((ā)(b+ 1), (v1− 1)(v2)).

(b) a < b+ 2.

(i) If v1 is not overlined, then φ−1(v, a, b)= ((b+ 1)(a), (v1− 1)(v2)).
(ii) If v1 is overlined, then φ−1(v, a, b)= ((b+ 1)(a), (v1− 1)(v2)).

The details of verifying that φ and φ−1 are inverses are not hard and are left to
the reader. However, we will conclude the combinatorial proof with two examples
of φ and φ−1 to help make the bijection clearer.

Example 9. Let (λ, µ)= (54, 22). First, we find i . We have λ1>µ1, so i=5+1=6.
For φ, we are in Case 1(a)(i), so φ(λ, µ)= ((λ1)(λ2− 1), µ2, µ1+ 1). Therefore,
φ(54, 22)= (53, 2, 3). Note that |λ|+|µ|=9+4=13 and |v|+a+b=8+2+3=13.
Next, we act on (v, a, b) with the inverse. We are in Case 1(b)(i), so φ−1(v, a, b)=
((v1)(v2+ 1), (b− 1)(a)). So, φ−1(53, 2, 3)= (54, 22).
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Example 10. Let (λ, µ) = (21, 41). First, we find i . We have λ1 ≤ µ1, so i =
4+2= 6. For φ, we are in Case 2(a)(ii), so φ(λ, µ)= ((µ1+ 1)(µ2), λ2, (λ1−1)′).
Therefore, φ(21, 41)= (51, 1, 1′). Note that |λ|+|µ| = 3+5= 8 and |v|+a+b=
6+ 1+ 1= 8. Next, we act on (v, a, b) with the inverse. We are in Case 2(b)(ii),
so φ−1(v, a, b)= ((b+ 1)(a), (v1− 1)(v2)). So, φ−1(51, 1, 1′)= (21, 41).

5. Conclusion

Although the specific case of overpartitions whose Ferrers shape fits in a 2×(n−1)
box is central to the proof presented here, extending this idea to the general case of
a k× (n− k) box would be useful. This general work could lead to q-analogues
of other expressions. In particular, investigating q-analogues for the sums of other
integer powers is a natural extension of our work.
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Ulrich partitions for two-step flag varieties
Izzet Coskun and Luke Jaskowiak

(Communicated by Ravi Vakil)

Ulrich bundles play a central role in singularity theory, liaison theory and Boij–
Söderberg theory. It was proved by the first author together with Costa, Huizenga,
Miró-Roig and Woolf that Schur bundles on flag varieties of three or more steps
are not Ulrich and conjectured a classification of Ulrich Schur bundles on two-
step flag varieties. By the Borel–Weil–Bott theorem, the conjecture reduces to
classifying integer sequences satisfying certain combinatorial properties. In this
paper, we resolve the first instance of this conjecture and show that Schur bundles
on F(k, k+ 3; n) are not Ulrich if n > 6 or k > 2.

1. Introduction

Let j, k, l > 0 be positive integers. Let

P = (a1, . . . , ak | b1, . . . , b j | c1, . . . , cl)

be a strictly increasing sequence of integers divided into three nonempty subse-
quences a•, b•, c•. Let P(t) denote the sequence

P(t)= (a1+ t, . . . , ak + t | b1, . . . , b j | c1− t, . . . , cl − t)

obtained by adding t to each of the entries in the sequence a• and subtracting t
from each of the entries in the subsequence c•. Set N = k j + kl + jl.

Definition 1.1. The partition P is called an Ulrich partition if the sequences P(t)
have exactly two equal entries for 1≤ t ≤ N .

Note that P(t) can have repeated entries for at most N values of t . We will refer to
P(t) as the time evolution of P at time t . Hence, Ulrich partitions are those for
which there are a maximum number of collisions among the entries during their
time evolution and these collisions all occur at consecutive times.
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Keywords: flag varieties, Ulrich bundles, Schur bundles.
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Two partitions P1 and P2 are equivalent if they differ by adding a constant to all
the entries. If P1 and P2 are equivalent, then P1 is Ulrich if and only if P2 is. We
always consider partitions up to equivalence. Our main theorem is the following.

Theorem 1.2. If P = (a1, . . . , ak | b1, b2, b3 | c1, . . . , cl) is an Ulrich partition,
then k+ l ≤ 3.

Given a partition P = (a1, . . . , ak | b1, . . . , b j | c1, . . . , cl), we obtain a new
partition Ps called the symmetric partition by multiplying all the entries by −1 and
listing the entries in the reverse order:

Ps
= (−cl, . . . ,−c1 | −b j , . . . ,−b1 | −ak, . . . ,−a1).

The partition P is Ulrich if and only if Ps is Ulrich. Similarly, there is a dual
partition P∗ obtained by

P∗=
(
c1−(N+1)t, . . . , cl−(N+1)t |b1, . . . , b j |a1+t (N+1), . . . , ak+t (N+1)

)
.

This is the partition P(N + 1) reordered so that the entries are increasing. By
running the time evolution backwards, it is clear that P is Ulrich if and only if P∗

is Ulrich (see [Coskun et al. 2017, §3] for more details). We can also form (Ps)∗,
which is Ulrich if and only if P is.

As a consequence of the proof, we obtain a complete classification of Ulrich
partitions where the b• subsequence has length 3. Up to equivalence and these
symmetries, they are

(0 |1, 2, 3 |8), (−8, 0 |1, 2, 3 |8), (0 |1, 2, 5 |8), (−1 |1, 2, 6 |7), (0 |1, 3, 6 |8).

We now explain the significance of Ulrich partitions. Let X ⊂Pm be an arithmeti-
cally Cohen–Macaulay projective variety of dimension d . A vector bundle E on X
is called an Ulrich bundle if H i (X, E(−i))= 0 for i > 0 and H j (X, E(− j−1))= 0
for j < d (see [Herzog et al. 1991; Brennan et al. 1987; Eisenbud et al. 2003]).
These are the bundles whose Hilbert polynomials have d zeros at the first d negative
integers. They play a central role in singularity theory, liaison theory and Boij–
Söderberg theory. For example, if X admits an Ulrich bundle, then the cone of
cohomology tables of X coincides with that of Pm [Eisenbud and Schreyer 2011].
Thus, classifying Ulrich bundles on projective varieties is an important problem
in commutative algebra and algebraic geometry, as discussed by E. Coskun et al.
[2013], I. Coskun et al. [2017], and Faenzi [2008], who also give further references.
In particular, it is interesting to decide when representation theoretic bundles on
flag varieties are Ulrich.

Let 0 < k1 < k2 < n be three positive integers. Set k0 = 0 and k3 = n. Let V
be an n-dimensional vector space. The two-step partial flag variety F(k1, k2; n)
parameterizes partial flags W1 ⊂W2 ⊂ V, where Wi has dimension ki . The variety
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F(k1, k2; n) has a minimal embedding in projective space corresponding to the
ample line bundle with class the sum of the two Schubert divisors. We will always
consider F(k1, k2; n) in this embedding and O(1) will refer to the hyperplane
bundle in this embedding.

The variety F(k1, k2; n) has a collection of tautological bundles

0= T0 ⊂ T1 ⊂ T2 ⊂ T3 = V = V ⊗OF(k1,k2;n),

where V is the trivial bundle of rank n and Ti , for i = 1 or 2, is the subbundle of V of
rank ki which associates to a point [W1 ⊂W2] the subspace Wi . Let Ui = Ti/Ti−1.
Given λ = (λ1 | λ2 | λ3) a concatenation of partitions λi of length ki − ki−1, the
Schur bundle Eλ is defined by

Eλ = Sλ1U∗1 ⊗Sλ2U∗2 ⊗Sλ3U∗3 ,

where Sλ is the Schur functor of type λ.
Costa and Miró-Roig [2015] initiated the study of determining when Schur

bundles are Ulrich. They showed every Grassmannian admits Ulrich Schur bundles
and classified these bundles. Coskun et al. [2017] showed that Schur bundles on
flag varieties with three or more steps are never Ulrich for their minimal embedding.
They also constructed several infinite families of Ulrich Schur bundles on specific
two-step flag varieties and showed that many two-step flag varieties do not admit
Ulrich Schur bundles. They conjectured a complete classification of Ulrich Schur
bundles on two-step flag varieties.

Conjecture 1.3 [Coskun et al. 2017, Conjecture 5.9]. A two-step flag variety
F(k1, k2; n) does not admit an Ulrich Schur bundle with respect to O(1) if k2 ≥ 3
and n− k2 ≥ 3.

The Borel–Weil–Bott theorem computes the cohomology of Schur bundles and
allows one to determine whether a Schur bundle is Ulrich. There is a bijective
correspondence between equivalence classes of Ulrich partitions of type (n− k2,

k2− k1, k1) and Schur bundles Eλ on F(k1, k2; n) which are Ulrich [Coskun et al.
2017, Proposition 3.5]. Hence, classifying Ulrich Schur bundles is equivalent to
classifying Ulrich partitions. Consequently, as a corollary of Theorem 1.2, we
resolve the first case of Section 1.

Theorem 1.4. The flag variety F(k, k+3; n) does not admit an Ulrich Schur bundle
with respect to O(1) if n > 6 or k > 2.

In particular, the only two step flag varieties of the form F(k, k+3; n) that admit
Ulrich Schur bundles are F(1, 4; 5), F(1, 4; 6) and F(2, 5; 6). All the Ulrich Schur
bundles on these varieties have been classified in [Coskun et al. 2017]. There has
been work on classifying Ulrich Schur bundles on other homogeneous varieties
using the same strategy (see [Fonarev 2016]).
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2. The proof of the main theorem

Theorem 2.1. There are no Ulrich partitions (a1, . . . , ak | b1, b2, b3 | c1, . . . , cl)

with k+ l > 3.

We begin with the following simple observation, which is a special case of
[Coskun et al. 2017, Lemma 4.3].

Lemma 2.2. If P = (a1, . . . , al | b1, . . . , b j | c1, . . . , ck) is an Ulrich partition,
then all the entries in the sequences a• and c• are equal modulo 2.

Proof. If P is Ulrich, the ap and cq entries of P(tpq)must be equal at some time tpq .
From now on, we will express this by saying ap and cq collide at time t = tpq .
Hence ap+ tpq = cq− tpq or, equivalently, cq−ap = 2tpq . Consequently, ap and cq

are equal modulo 2. Since this holds for each 1≤ p≤ l and 1≤ q ≤ k, we conclude
that all the entries in the sequences a• and c• have the same parity. Furthermore,
their parities remain equal in P(t) for all t . �

Let P = (a1, . . . , ak | b1, b2, b3 | c1, . . . , cl) be an Ulrich partition. Recall that
we always assume k, l > 0. Up to symmetry and duality, there are three possibilities:

(1) The sequence b1, b2, b3 may be consecutive.

(2) Only the entries b1, b2 may be consecutive.

(3) Finally, no two of the entries in b• are consecutive.

We will analyze each of these cases separately.

The b• sequence is consecutive. In this case, we will see that k+ l ≤ 3 and up to
symmetry and duality the two possible partitions are (0 | 1, 2, 3 | 8) or (−8, 0 |
1, 2, 3 | 8). In fact, we can analyze sequences where the b• sequence is consecutive
more generally.

Proposition 2.3. Let P be an Ulrich partition of the form (a1, . . . , ak | 1, 2, . . . , r |
c1, . . . , cl), where the b• sequence consists of r consecutive integers. Assume that
r ≥ 3. Then k+ l ≤ 3.

Proof. Without loss of generality, we may assume that at t = 1, the collision is akb1.
Then for 1≤ t ≤ r , the collision is akbt . We claim that at t = r + 1, the collision
must be akc1. The collision must be either ak−1b1 or akc1. If r is odd, then it cannot
be ak−1b1 since otherwise ak−1 and ak would have different parities. If r is even
and the collision is ak−1b1, we obtain a contradiction as follows. Let t0 be the time
of the collision akc1. Until that time all the collisions must be between an entry
from a• and an entry from b•. We conclude that t0 = ir + 1 for some i . At time
t = t0+ 1, the collision cannot be akc2. Otherwise, we would have c2− c1 = 2 and
the collisions c1b1 and c2b3 would occur at the same time. If i > 1, the collision at
t = t0+ 1 cannot be br c1. Hence, at t = t0+ 1, the collision must be ak−i b1. This
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violates parity since ak is even while ak−i is odd. We conclude that at t = r + 1,
the collision is akc1.

Hence, for t = r + 1+ i with 1 ≤ i ≤ r , the collisions are br+1−i c1. If the
progression stops at time t = 2r +1, we obtain the Ulrich partition (0 | 1, 2, . . . , r |
2r + 2). Else, at time t = 2r + 2, the collision must be ak−1c1. Otherwise, the
collision would have to be akc2. At time t = 2r + 3, since the collision could not
be akc3, the collision would have to be ak−1c1. Then at time t = 3r + 3, the values
ak−1, br and c2 would collide simultaneously. This contradiction shows that the
collision at t = 2r+2 must be ak−1c1. Hence, for times t = 2r+2+i with 1≤ i ≤ r ,
the collisions must be ak−1bi . If the progression stops at t = 3r + 2, we obtain the
Ulrich partition (−2r − 2, 0 | 1, 2, . . . , r | 2r + 2).

Otherwise, at time t = 3r + 3, the collision must either be akc2 or ak−2c1. Then
at time t = 3r + 4, the only possible collisions are ak−2c1 or akc2, respectively,
since the distance between consecutive entries in a• or c• has to be at least r > 2. If
the order is akc2 and ak−2c1, then at time t = 3r +4 the entry c2 is 3r +2 and ak−2

is −r − 2. The entries ak−2, br and c2 collide simultaneously at time t = 5r + 5.
Hence, the order of collisions must be ak−2c1 at time t = 3r + 3 and akc2 at time
3r+4. If r ≥ 5, then at time t = 3r+5, there cannot be any collisions. If 3≤ r ≤ 4,
the only possible collision at time t = 3r + 5 is ak−3c1. But then ak−3, br and c2

collide simultaneously at time t = 5r + 8. This is a contradiction. Hence, the time
evolution must stop at time t = 3r + 2 and we conclude the proposition. �

In particular, we conclude that up to equivalence and symmetries, the only Ulrich
partitions where the b• sequence consists of three or more consecutive integers are
(0 | 1, 2, . . . , r | 2r + 2) and (−2r − 2, 0 | 1, 2, . . . , r | 2r + 2).

Exactly two of the b• entries are consecutive. Up to symmetry and duality, we
may assume that b1 and b2 are consecutive.

Lemma 2.4. Assume that b1 and b2 are the only two consecutive entries in the b• se-
quence and P = (a1, . . . , ak | b1, b2, b3 | c1, . . . , cl) is Ulrich. Then the b• sequence
up to equivalence and symmetry must be 1, 2, 5 or 1, 2, 6. In the first case, at time
t = 1 the collision is akb1. In the second case, at time t = 1 the collision is b3c1.

Proof. At time t = 1, the collision is either akb1 or b3c1. First, assume that at
time t = 1 the collision is b3c1. Since b2 and b3 are not consecutive, the collision
at time t = 2 cannot be c1b2. By parity, the collision cannot be b3c2. Consequently,
at time t = 2 the collision must be akb1. Hence, at time t = 3, the collision is akb2.
If at time t = 4 the collision is akc1, then the b• sequence is 1, 2, 6. Otherwise, the
only possible collision is ak−1b1 since akb3 or b2c1 cannot occur before akc1 and
b3c2 is excluded by parity. Moreover, | b3− b2 |≥ 8 and ak − ak−1 = 2.

The last collision at time t = N is either a1b3 or b1cl . If it is b1cl , then the
collisions at time t = N−1 and t = N−2 must be b2cl and alb3, respectively. Note
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that at time t = N − 2, the collision cannot be b1cl−1. Otherwise, cl − cl−1 = 2
and cl would collide with ak at the same time as cl−1 collides with ak−1. Then at
time t = N−3, the collision cannot be ak−1b3 or cl−1b1 by parity. Since b3−b2≥ 8,
the collision cannot be a1cl . We conclude that at t = N − 3 there are no possible
collisions. This is a contradiction.

If the last collision is a1b3, then the two previous collisions must be b1cl and b2cl

by parity. At time t = N − 3, the collision cannot be b1cl−1 since cl − cl−1 cannot
be 2. The collision cannot be a2b3 by parity. It cannot be a1cl since b3− b2 ≥ 8.
We obtain a contradiction. We conclude that if at t = 1 the collision is b3c1, then at
t = 4 the collision must be akc1 and the b• sequence is up to equivalence 1, 2, 6.

Next assume that the collision at t = 1 is akb1. Let t = 2 j + 1 be the first odd
time when the collision is not of the form ai b1. If j = 1, since the entries in b• are
not consecutive, at time t = 3 the collision must be b3c1. Then at time t = 4, by
parity, the only possible collision is akc1. Therefore, the b• sequence is 1, 2, 5. If
j > 1, then ak−ak−1= 2. The collision at time t = 2 j+1 must be b3c1. Otherwise,
the collision would have to be akb3. Then at time t = 2 j+2, by parity the collision
would have to be akc1. Then the collisions ak−1b3 and b3c1 would happen at the
same time at t = 2 j + 3. We conclude that at time t = 2 j + 1 the collision is b3c1.
At time t = 2 j + 2, by parity we cannot have a collision of the form ai b1 or b3cl−1.
We conclude that the collision must be akc1. If j > 1, then at time r = 2 j + 2 the
collisions ak−1c1 and akb3 occur at the same time leading to a contradiction. We
conclude that j = 1 and the b• sequence is 1, 2, 5. �

We thus obtain two standard Ulrich partitions of type (1, 3, 1) given by (0 |
1, 2, 5 | 8) and (−1 | 1, 2, 6 | 7). To conclude the analysis in this case, we argue that
these Ulrich partitions cannot be extended to longer Ulrich partitions.

Lemma 2.5. The only Ulrich partition of the form

(a1, . . . , ak−1, ak = 0 | b1 = 1, b2 = 2, b3 = 5 | c1 = 8, c2, . . . , cl)

is (0 | 1, 2, 5 | 8). The only Ulrich partition of the form

(a1, . . . , ak−1, ak =−1 | b1 = 1, b2 = 2, b3 = 6 | c1 = 7, c2, . . . , cl)

is (−1 | 1, 2, 6 | 7).

Proof. Suppose there exists an Ulrich partition of the form

(a1, . . . , ak−1, 0 | 1, 2, 5 | 8, c2, . . . , cl)

with k or l bigger than 1. Then the last collision at time t = N must be either a1b3

or b1cl . If the collision is a1b3, then by parity the collision at time t = N − 1 must
be b1cl . Then a1 and cl have different parities and can never collide. We obtain
a contradiction. We conclude that at t = N the collision must be b1cl . Hence, at
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time t = N − 1 the collision is b2cl . If the collision at t = N − 2 is a1b3, then the
distance between a1 and ak (which is equal to N−7) is equal to the distance between
c1 and cl . Hence, these pairs collide simultaneously leading to a contradiction. We
conclude that at time t = N − 2, the collision must be b1cl−1. Hence the collisions
at times t = N − 3, N − 4 must be b2cl−1 and b3cl , respectively. However, at
time t = N − 5 there are no possible collisions. The collision cannot be b1cl−2 by
parity. There are no collisions between cl−1, cl and any entries in the b• sequence.
On the other hand, if a1 collides with cl , then at time t = N − 4 the a1b3 collision
coincides with the b2cl−1 collision. This contradiction shows that k = l = 1.

Suppose there exists an Ulrich partition of the form

(a1, . . . , ak−1,−1 | 1, 2, 6 | 7, c2, . . . , cl)

with k or l bigger than 1. The argument is almost identical to the previous case.
The last collision at time t = N cannot be a1b3. Otherwise, at time t = N − 1 the
collision would have to be b1cl and the distance between a1 and ak would be equal
to the distance between c1 and cl . We conclude that the collision at time t = N
is b1cl . Hence, at time t = N − 1 the collision is b2cl . At time t = N − 2, the
collision cannot be a1b3, otherwise at that time cl would be at position 3 and would
have different parity from a1. We conclude that at time t = N − 2 the collision
must be b1cl−1. This determines the collisions at t = N − 3, N − 4 which must be
b2cl−1 and b3cl . Then, as in the previous case, at time t = N − 5, there cannot be
any collisions leading to a contradiction. This shows that k = l = 1. �

None of the b• entries are consecutive. In this case, we have the following lemma.

Lemma 2.6. Let (a1, . . . , ak | b1, b2, b3 | c1, . . . , cl) be an Ulrich partition with
k, l > 0 and such that no entries in the b• sequence are consecutive. Then up to
equivalence and symmetry the b• sequence is 1, 3, 6.

Proof. Without loss of generality, we may assume that at t = 1 the collision is akb1.
By parity and the fact that b2 − b1 > 1, we conclude that at t = 2 the collision
must be b3c1. Similarly, by parity and the fact that b3 − b2 > 1, at time t = 3
the collision is either akb2 or ak−1b1. If the collision is akb2, then the collision at
t = 4 has to be akc1. By parity, it cannot be ak−1b1. It cannot be b3c2, otherwise
the collisions b1c1 and b2c2 would occur at the same time. We conclude that at
time t = 0 the b• sequence must be 1, 3, 6 and ak = 0 and c1 = 8.

If the collision at time t = 3 is ak−1b1, then by parity the collision at t = 4
may only be one of akb2, b2c1 or b3c2. It cannot be b2c1, otherwise akb3 and
ak−1b2 would occur at the same time since both ak−1, ak and b2, b3 would be 2
apart. Similarly, it cannot be b3c2, otherwise akc2 and ak−1c1 would occur at the
same time. We conclude that at t = 4, the collision is akb2. At time t = 5, the
collision cannot be b3c2 by parity. Hence, it is either ak−2b1 or akc1. It cannot
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be akc1, otherwise at time t = 6 all three ak−1, b2 and c1 collide. Hence, at t = 5
the collision is ak−2b1. In this case, we have b3− b2 ≥ 5. Now consider the last
two collisions at t = N and N − 1. They are either a1b3 at t = N and b1cl at
t = N − 1, or b1cl at t = N and a1b3 at t = N − 1. Notice that it cannot be the
latter. Otherwise, the distance between a1 and ak would be equal to the distance
between c1 and cl and the pair would collide simultaneously. We conclude that
the collisions at t = N and N − 1 must be a1b3 and b1cl , respectively. Then at
time t = N − 3, the collision cannot be a2b3 by parity. It cannot be a1b2 or b2cl

because of the distances between the entries in the b• sequence. Finally, it cannot
be b1cl−1 since otherwise the distance between cl and cl−1 would be 2 and they
would collide with the pair ak and ak−1 simultaneously. We conclude that this case
is not possible. This concludes the proof of the lemma. �

We thus get the standard Ulrich partition of type (1, 3, 1) given by (0 | 1, 3, 6 | 8).
To conclude the analysis in this case, we argue that this Ulrich partition cannot be
extended to longer Ulrich partitions.

Lemma 2.7. The only Ulrich partition of the form

(a1, . . . , ak−1, ak = 0 | b1 = 1, b2 = 3, b3 = 6 | c1 = 8, c2, . . . , cl)

is (0 | 1, 3, 6 | 8).

Proof. Suppose there were a longer Ulrich partition. Then the last two collisions
at times t = N and t = N − 1 must be a1b3 and b1cl , respectively. Otherwise, as
in the previous cases, the distance between a1 and ak would equal the distance
between c1 and cl . But then at time t = N − 2 there cannot be any collisions. The
entries cl and ak do not collide with any entries in the b• sequence or with each
other by the distribution of the b• sequence. The collision cannot be b1cl−1 and it
cannot be ak−1b3. Otherwise, the distance between ak and ak−1 would be 2 and the
collisions akb1 and ak−1b2 would be at the same time. This contradiction concludes
the proof. �

Proof of Theorem 1.2. Let P = (a1, . . . , ak | b1, b2, b3 |, c1, . . . , cl) be an Ulrich
partition. If the b• sequence is consecutive, then by Proposition 2.3, up to symmetry,
duality and equivalence, P= (−8, 0 |1, 2, 3 |8) or (0 |1, 2, 3 |8). If only two entries
in the b• sequence are consecutive, then by Lemmas 2.4 and 2.5, P = (0 | 1, 2, 5 | 8)
or P = (−1 | 1, 2, 6 | 7). Finally, if none of the entries in the b• sequence are
consecutive, then by Lemmas 2.6 and 2.7, P = (0 | 1, 3, 6 | 8). In all cases we have
k+ l ≤ 3. �
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