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In 2010, Joyce et al. defined the leverage centrality of a graph as a means to
analyze connections within the brain. In this paper we investigate this property
from a mathematical perspective and determine the leverage centrality for knight’s
graphs, path powers, and Cartesian products.

1. Introduction

We recall that the degree of a vertex v is the number of edges incident to v and is
denoted deg v. Joyce, Laurienti, Burdette, and Hayasaka [Joyce et al. 2010] defined
the property of leverage centrality based on vertex degrees.

Definition 1. Leverage centrality is a measure of the relationship between the
degree of a given node v and the degree of each of its neighbors vi , averaged over
all neighbors of v, denoted Nv, and is defined as

l(v)=
1

deg v

∑
vi∈Nv

deg v− deg vi

deg v+ deg vi
.

This property was used by Joyce et al. [2010] in the analysis of functional
magnetic resonance imaging (fMRI) data and has been used to analyze real-world
networks including airline connections, electrical power grids, and coauthorship
collaborations [Li et al. 2015]. The leverage centralities of complete multipartite
graphs and the Cartesian product of paths were investigated by Sharma, Vargas,
Waldron, Flórez, and Narayan [Sharma et al. 2017]. Bounds on leverage centrality
were determined by Li, Li, Van Mieghem, Stanley, and Wang [Li et al. 2015]. We
restate one of their results as our first theorem.
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Figure 1. The 3×3, 4×4, 5×5 and 6×6 knight’s graphs.

Theorem 2. For any vertex v, we have |l(v)| ≤ 1− 2
n . Furthermore, these bounds

are tight in the cases of stars and complete graphs.

We note that the bounds are also tight for regular graphs with degree r > 1.

In this paper we investigate leverage centrality for various families of graphs
including the knight’s graphs, path powers, and the Cartesian products of graphs.

2. Leverage centrality of a knight’s graph

We define an n × n knight’s graph to be the graph with n2 vertices in which
every vertex represents a square in an n × n chessboard. The vertices on the
n× n chessboard can be placed in an n× n table where two vertices vi and v j are
adjacent if they are exactly four entries apart (including the entries of vi and v j )
and they form an “L” shape. We give examples of knight’s graphs of small order in
Figure 1, where in each graph all of the vertices of same degree are the same color.

We next state the leverage centrality of each vertex in the n× n knight’s graph.
We use t j to denote the j-th triangular number 1

2 j ( j + 1).

Theorem 3. Let Gn be the n× n knight’s graph.

(1) The leverage centrality of every vertex of G3 is zero.

(2) If n = 4, 6, or 8, then Gn has exactly tn/2 distinct leverage centralities.

(3) If n = 5 or 7, then Gn has exactly t(n+1)/2− 1 distinct leverage centralities.

(4) If n ≥ 9, then Gn has exactly 15 distinct leverage centralities.

Proof. We first find the degree of each vertex in the knight’s graph on an n × n
chessboard, where n ≥ 3. To describe the degree of each vertex in the graph Gn , we
will arrange the vertices of Gn in an n×n table. The vertices corresponding to entries
(1, 1), (1, n), (n, 1), and (n, n) have degree 2. Those corresponding to entries (1, 2),
(1, n− 1), (2, 1), (2, n), (n− 1, 1), (n, 2), (n− 1, n), and (n, n− 1) have degree 3.
Those corresponding to entries (2, 2), (2, n−1), (n−1, 2), (n−1, n−1) and (1, i),
(i, 1), (n, i), and (i, n), where i = 3, 4, . . . , n−2, have degree 4. Those correspond-
ing to entries (2, i), (i, 2), (n−1, i), and (i, n−1), where i = 3, 4, . . . , n−2, have
degree 6. Vertices corresponding to entries (i, j), where i = 3, 4, . . . , n− 3 and
j = 3, 4, . . . , n− 2, have degree 8; see, for example, Figure 2 (left).
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Figure 2. The 10×10 knight’s graph (left) and the 9×9 knight’s
graph (right).

If n is even we subdivide the knight’s graph’s vertical and horizontal axes and
the two diagonals to obtain eight regions. Each region forms a right triangle where
the legs have 1

2 n vertices; see, for example, Figure 2 (left). Using symmetry we can
calculate the leverage centrality of all vertices by only analyzing a single triangle.

If n is odd, as in Figure 2 (right), we do the same subdivision; however, in this
case two adjacent triangles will overlap — the legs of the right triangle will have
1
2(n+ 1) vertices.

We choose the triangle with vertices

v1 = (1, 1), v2 = (1, 2), v3 = (2, 2), v4 = (1, 3), v5 = (2, 3),

v6 = (3, 3), v7 = (1, 4), v8 = (2, 4), v9 = (3, 4), v10 = (4, 4),

v11 = (1, 5), v12 = (2, 5), v13 = (3, 5), v14 = (4, 5), v15 = (5, 5).

(2-1)

Note that if n < 10, we take triangles with vertices vi for i = 1, 2, . . . , k, where
k = 1

2 n if n = 2(k) or k = 1
2(n+ 1) if n = 2(k)− 1.

Proof of (1). Since G3 is regular, the leverage centrality of all of its vertices is 0.

Proof of (2). For case n = 4, it is easy to see that l(v1) = −
1
3 , l(v2) = −

1
21 , and

l(v3)=
5
21 .

Now consider the cases n = 6 and n = 8. From the above analysis we only need
to calculate the leverage centrality for a triangle with legs that have 1

2 n vertices (see
Figure 2 (left) for an example of those triangles). Thus, to calculate the leverage
centrality of these special cases, we consider the triangle with vertices v1, . . . , vti ,
where ti is the i-th triangular number where i = 1, 2, . . . , 1

2 n, and then use Tables 1
and 3, respectively.
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vertex vi deg vi AD(vi ) l(vi )

v1 2 6, 6 −1/2
v2 3 4, 6, 8 −215/693
v3 4 4, 4, 8, 8 −1/6
v4 4 3, 6, 4, 8 −41/420
v5 6 2, 3, 4, 6, 6, 8 187/1260
v6 8 3, 3, 4, 4, 4, 4, 6, 6 73/231

Table 1. Leverage centrality when n = 6. Here AD(vi ) denotes
the degrees of vertices adjacent to vi .

vertex vi deg vi AD(vi ) l(vi )

v1 2 6, 6 −1/2
v2 3 4, 6, 8 −215/693
v3 4 4, 4, 8, 8 −1/6
v4 4 3, 6, 6, 8 −31/210
v5 6 2, 4, 4, 6, 8, 8 43/420
v6 8 3, 3, 4, 4, 6, 6, 8, 8 215/924
v7 4 4, 4, 8, 8 −1/6
v8 6 3, 3, 6, 6, 8, 8 4/63
v9 8 4, 4, 4, 4, 6, 6, 8, 8 17/84
v10 8 6, 6, 6, 6, 6, 6, 6, 6 1/7

Table 2. Leverage centrality when n = 7. Here AD(vi ) denotes
the degrees of vertices adjacent to vi .

Proof of (3). First consider the case n= 5. From the above analysis we only need to
calculate the leverage centrality for a triangle with legs that have three vertices. It is
easy to see that l(v1)=−

1
2 , l(v2)=−

19
77 , l(v3)=−

1
35 , l(v4)=−

1
35 , l(v5)=

3
10 , and

l(v6)=
5
11 . This shows that there are only five distinct leverage centralities in G5.

Now consider the case n = 7. From the above analysis we only need to calculate
the leverage centrality for a triangle with legs that have four vertices. From Table 2
we can see that G7 has only nine distinct leverage centralities.

Proof of (4). For n= 8 and n= 10, the proof is similar to those of parts (2) and (3).
We now suppose n > 10. Consider the 15 vertices in the triangle given in (2-1)

and their relevant data, given in Table 3.
The analysis for the remaining vertices in the triangle is as follows. From the defi-

nition of the knight’s graph we know that if two vertices vi and v j are adjacent, then
they are four entries apart (including the entries of vi and v j ) and they form an “L”
shape. This implies that if n≥ 11 then the leverage centrality of every vertex located
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n vertex vi deg vi AD(vi ) l(vi )

8, 9, 10 v1 2 6, 6 −1/2
8, 9, 10 v2 3 4, 6, 8 −215/693
8, 9, 10 v3 4 4, 4, 8, 8 −1/6
8, 9, 10 v4 4 3, 6, 6, 8 −31/210
8, 9, 10 v5 6 2, 4, 4, 6, 8, 8 43/420
8, 9, 10 v6 8 3, 3, 4, 4, 6, 6, 8, 8 215/924
8, 9, 10 v7 4 4, 6, 8, 8 −13/60
8, 9, 10 v8 6 3, 4, 6, 8, 8, 8 11/630
8, 9, 10 v9 8 4, 4, 4, 6, 6, 8, 8, 8 9/56
8, 9, 10 v10 8 6, 6, 6, 6, 8, 8, 8, 8 1/14
9, 10 v11 4 6, 6, 8, 8 −4/45
9, 10 v12 6 4, 4, 8, 8, 8, 8 −1/35
9, 10 v13 8 4, 4, 6, 6, 8, 8, 8, 8 5/42
9, 10 v14 8 6, 6, 8, 8, 8, 8, 8, 8 1/28
9, 10 v15 8 8, 8, 8, 8, 8, 8, 8, 8 0

Table 3. Leverage centrality with n = 8, 9, 10. Here AD(vi ) de-
notes the degrees of vertices adjacent to vi .

in entries (r, t) is zero for r =5, 6, . . . , k and t=5, 6, . . . , k, where k= 1
2 n if n=2k

or k = 1
2(n+1) if n = 2k−1. Moreover, every vertex located in position (i, j) will

have the same leverage centrality as the vertices located in entries (i, 6), where i =
1, 2, . . . , k and j =7, . . . , k, where k= 1

2 n if n=2k or k= 1
2(n+1) if n=2k−1. �

3. Leverage centralities of P k
n

Let Pk
n be the graph with vertices v1, v2, . . . , vn and edges (vi , v j )when 1≤|i− j |≤

k≤ n−1. In this paper we will assume n> 1. This family contains both paths (when
k = 1) and complete graphs (when k = n−1). Note that deg vi =min{i+k−1, 2k}.
The neighbors of vi are vi−1, vi−2, . . . , vi−s and vi+1, vi+2, . . . , vi+t , where s =
min{k, i − 1} and t =min{k, n− i}. The above conditions can be combined in the
next lemma to give the leverage centrality of any vertex in Pk

n .

Lemma 4. Suppose the vertex vi ∈ V (Pk
n ) has neighbors vi−1, vi−2, . . . , vi−s and

vi+1, vi+2, . . . , vi+t , where s =min{k, i − 1} and t =min{k, n− i}. Then

l(vi )=
1
δi

∑
i−s≤ j≤i+t

δi − δ j

δi + δ j
,

where δx =min{x + k− 1, 2k} for x = i, j .

We begin by determining the leverage centrality of vertices in a path Pn , where
n ≥ 2. We note that by symmetry l(vi ) = l(vn+1−i ) for all 1 ≤ i ≤ n. We start
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with small values of n. When n = 2, both vertices have a leverage centrality of
zero. When n = 3, the two vertices of degree 1 have leverage centrality 1−2

1+2 =−
1
3

and the vertex of degree 2 has leverage centrality 2−1
1+2 =

1
3 . When n = 4, the two

vertices of degree 1 have leverage centrality 1−2
1+2 = −

1
3 and the two vertices of

degree 2 have leverage centrality 1
2

( 2−1
1+2 +

2−2
2+2

)
=

1
6 .

Next, we use the operation of edge subdivision to handle cases where n ≥ 5.
Recall that in an edge subdivision an edge u − v is replaced by a path on three
vertices u−w− v. We note that if we extend the length of a path by subdividing
the edge between vertices c and d , the new vertices will have a leverage centrality
of zero. Further subdivision of an edge connecting two vertices with degree 2 will
include a new vertex with leverage centrality zero. Hence, there will be exactly three
distinct leverage centralities in any path with five or more vertices. The general
result follows.

Theorem 5. Let Pn be a path where n ≥ 5. Then l(v1) = l(vn) = −
1
3 , l(v2) =

l(vn−1)=
1
6 , and for all 3≤ i ≤ n− 2, we have l(vi )= 0.

3.1. Leverage centralities of P2
n . We now calculate the leverage centralities for

paths P2
n . Again by symmetry, we have l(vi )= l(vn+1−i ) for all 1≤ i ≤ n.

• n = 3: For 1≤ i ≤ 3, we have l(vi )= 0.

• n = 4: l(v1)=−
4

15 and l(v2)=
2

15 .

• n = 5: l(v1)=−
4

15 , l(v2)=
2

105 and l(v3)=
5
21 .

• n = 6: l(v1)=−
4

15 , l(v2)=−
1
35 and l(v3)=

13
84 .

• n = 7: l(v1)=−
4

15 , l(v2)=−
1
35 l(v3)=

5
42 and l(v4)=

3
28 .

• n = 8: l(v1)=−
4

15 , l(v2)=−
1
35 , l(v3)=

5
42 and l(v4)=

1
28 .

• n≥9: l(v1)=−
4

15 , l(v2)=−
1

35 , l(v3)=
5

42 l(v4)=
1
28 and for all 5≤ i≤n−4,

l(vi )= 0.

It is clear that to calculate the leverage centralities of all vertices in Pk
n for all k

in this manner would require lengthy computation. However by noticing that the
leverage centralities become fixed when n becomes large enough (n ≥ 4k+ 1), we
can compute the leverage centralities in a more formal manner.

First we give an elementary result with the leverage centralities for the first vertex
in any path power.

Proposition 6. If v1 ∈ V (Pk
n ), then

l(v1)=

k∑
i=1

−i
2k+ i

.
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Proof. The vertex v1 has k neighbors, with degrees k+ 1, k+ 2, . . . , 2k. Then

l(v1)=
1
k

(
k

k∑
i=1

−i
2k+ i

)
=

k∑
i=1

−i
2k+ i

. �

We continue with three lemmas which will help us determine the relationships
between the leverage centralities of different vertices in Pk

n .

Lemma 7. If i is an integer and 1< 1
2a ≤ i < a then we have

1
a

(
a− i
a+ i

)
>

1
a− 1

(
a− 1− i
a− 1+ i

)
.

Proof. Let 1
2a ≤ i < a. This implies

2ia− a2
+ (a− i) > 0⇒−a2

+ a+ 2ia− 1− i > 0

⇒ a3
− 2a2

+ (2+ i)a− 1− i > a3
− a2
+ (1− i)a

⇒ (a− i)(a− 1)(a− 1+ i) > a(a+ i)(a− 1− i)

⇒
1
a

(
a− i
a+ i

)
>

1
a− 1

(
a− 1− i
a− 1+ i

)
. �

Lemma 8. For all 1≤ a ≤ 2k, we have

1
a

(
−1

2a+ 1

)
>
−1

(a− 1)a
.

Proof. We first note that when a = 2k,

1
a

(
a− (a+ 1)
a+ a+ 1

)
>

1
a− 1

(
a− 1− (a+ 1)
a− 1+ a+ 1

)
is clear since the left side is positive and the right side is negative.

Let 1≤ a. Then

2a2
+ a > a2

+ 1⇒
−1

2a2+ a
>
−1

a2+ 1

⇒
1
a

(
−1

2a+ 1

)
>

1
a+ 1

(
−2
2a

)
⇒

1
a

(
a− (a+ 1)
a+ a+ 1

)
>

1
a− 1

(
a− 1− (a+ 1)
a− 1+ a+ 1

)
⇒

1
a

(
−1

a+ a+ 1

)
>

1
a− 1

(
−2

a− 1+ a+ 1

)
. �

Lemma 9. Let 2≤ i ≤ k− 1. Then

1
k+ 1

(
1− i

2k+ 1+ i

)
>

1
k

(
−i

2k+ i

)
.
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Proof. Note that

0>
1− i

2k+ i + 1
>

−i
2k+ i + 1

>
−i

2k+ i
.

Hence
0>

k+ 1− (k+ i)
k+ 1+ k+ i

>
k− (k+ i)
k+ k+ i

.

Since 1
k+1 <

1
k , we have

0>
1

k+ 1

(
1− i

k+ 1+ k+ i

)
>

1
k

(
−i

k+ k+ i

)
. �

Proposition 6 and Lemmas 7, 8, and 9 can be combined as follows.

Proposition 10. Let G = Pk
n , where n ≥ 4k+ 1. Then:

(i) l(vi )= l(vn+1−i ).

(ii) For all 0≤ j ≤ k− 1,

l(vk+ j+1)=
1

2k

( 2k−1∑
i=k+ j

2k− i
2k+ i

)
.

(iii) For all 0≤ j ≤ k− 1,

l(vk− j )=
1

2k− j − 1

2k−1∑
i=k

2k− j − i
2k− j + i

+
k− j

2k− 1− j

(
2k− j − 1− 2k
2k− j − 1+ 2k

)
.

(iv) For all 2k+ 1≤ j ≤ n− 2k, we have l(v j )= 0.

This leads to the following theorem.

Theorem 11. Let G = Pk
n , where n ≥ 4k + 1. Then the vertex with the largest

leverage centrality in G is vk+1, and furthermore l(vk+1) > l(vk) > · · ·> l(v1) and
l(vk+1) > l(vk+2) > · · ·> l(v2k+1).

Proof. For the first part, we recall that

l(vk+1)=
1

2k

2k−1∑
i=k

(
2k− i
2k+ i

)
+

k
2k

(
2k− 2k
2k+ 2k

)
,

and for 0≤ j ≤ k− 1,

l(vk− j )=
1

2k− j − 1

2k−1∑
i=k

2k− j − i
2k− j + i

+
k− j

2k− 1− j

(
2k− j − 1− 2k
2k− j − 1+ 2k

)
.

We seek to show that l(vk+1) > l(vk) > · · ·> l(v1). When comparing terms from
l(vr ) with l(vr−1) for a fixed i , five cases are needed to show that the i-th term of
l(vr ) is larger than the i-th term of l(vr−1).
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Case (i): 2k− j − i > 1. Use Lemma 7.

Case (ii): 2k − j − i = 1. In the i-th term, the numerator is positive for the j-th
term and the numerator is zero for ( j + 1)-th term.

Case (iii): 2k− j − i = 0. In the i-th term, the numerator is zero for the j-th term
and the numerator is negative for ( j + 1)-th term.

Case (iv): 2k− j − i < 0. Use Lemma 8.

Case (v):

k− j
2k− 1− j

(
2k− j − 1− 2k
2k− j − 1+ 2k

)
>

k− ( j + 1)
2k− 1− ( j + 1)

(
2k− ( j + 1)− 1− 2k
2k− ( j + 1)− 1+ 2k

)
.

Use Lemma 8.
The combination of these five cases yields l(vk+1) > l(vk) > · · · > l(v1). For

the second part we note that for 0 ≤ r ≤ k − 1, we have l(vk+r ) > l(vk+r+1) as
terms with positive value are replaced by zeros in each successive case. Hence,
l(vk+1) > l(vk+2) > · · · > l(v2k+1). We note that we have not obtained a linear
ordering, but two separate linear orderings both starting with the largest leverage
centrality l(vk+1). �

4. Cartesian product of graphs

In this next section we give some general results about the leverage centrality of
the Cartesian product of graphs. These build upon results by Sharma et al. [2017].

Definition 12. Given a graph F with vertex set V (F) and edge set E(F), and a
graph H with vertex set V (H) and edge set E(H), we let G define the Cartesian
product of F and H to be the graph G = F × H , which is defined as

V (G)= {(u, v) | u ∈ V (F) and v ∈ V (H)},

E(G)=
{
(u1, v1), (u2, v2)

∣∣ u1 = u2 and (v1, v2) ∈ E(H),
or v1 = v2 and (u1, u2) ∈ E(F)

}
.

We next present an elementary result from graph theory.

Lemma 13. If G = F×H , then the degree of a vertex (u, v) in G is the sum of the
degrees of vertices u and v, where u ∈ V (F) and v ∈ V (H).

Theorem 14. Let G be a graph and let RGr be a regular graph where each vertex
has degree r. Let u ∈ V (RGr ) and let vi and v j be vertices in G with degrees ki

and k j respectively. For each vertex (u, vi ) ∈ V (RGr ×G) we have

l(u, vi )=
1

r + ki

∑
j 6=i

ki − k j

2r + ki + k j
.
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Proof. Consider a vertex (u, vi ) ∈ V (RGr ×G). We note that

deg(u, vi )= deg u+ deg vi = r + ki .

Then
l(u, vi )=

1
r + ki

∑
j 6=i

ki − k j

2r + ki + k j
. �

We conclude by posing the following problem where the graphs may not be
regular.

Problem 15. Given graphs F and H where the leverage centralities are known for
all vertices in F and H, determine the leverage centralities for all vertices in F×H.
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