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Algorithms for finding knight’s tours on
Aztec diamonds

Samantha Davies, Chenxiao Xue and Carl R. Yerger

(Communicated by Ronald Gould)

A knight’s tour is a sequence of knight’s moves such that each square on the
board is visited exactly once. An Aztec diamond is a square board of size 2n
where triangular regions of side length n− 1 have been removed from all four
corners.

We show that the existence of knight’s tours on Aztec diamonds cannot be
proved inductively via smaller Aztec diamonds, and explain why a divide-and-
conquer approach is also not promising. We then describe two algorithms that
aim to efficiently find knight’s tours on Aztec diamonds. The first is based on
random walks, a straightforward but limited technique that yielded tours on Aztec
diamonds for all n 6= 22 apart from n = 17, 21. The second is a path-conversion
algorithm that finds a solution for all n ≤ 100. We then apply the path-conversion
algorithm to random graphs to test the robustness of our algorithm. Online
supplements provide source code, output and more details about these algorithms.

1. Introduction

The problem of finding a knight’s tour is one of many classes of chess-related
problems that have been studied for hundreds of years. An early instance of such a
tour was described by al-Adli ar-Rumi from Baghdad around the year 840 [Murray
1913]. Euler [1759; 1782] also studied the problem.

In chess, a knight’s move on a board moves the piece horizontally by one square
and vertically by two squares, or horizontally by two squares and vertically by one
square. For clarity, Figure 1 indicates the possible moves of a knight. A knight’s
tour is defined to be a sequence of knight’s moves on a board such that the sequence
hits every square on the board exactly once. In an open knight’s tour, there is no
restriction on the starting and ending squares, whereas in a closed knight’s tour, the
starting square has to be one knight’s move away from the ending square. We will
focus mainly on closed knight’s tours; if not stated otherwise, a knight’s tour will

MSC2010: primary 05C45; secondary 05C57, 97A20.
Keywords: knight’s tour, Aztec diamond, Hamiltonian, algorithm.
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Figure 1. Possible knight’s moves.

Figure 2. Aztec diamonds of radius 3 (left) and radius 4 (right).

refer to a closed knight’s tour. We use the term partial knight’s tour for a tour that
visits squares only once, but not necessarily all of them.

Conditions for boards on which a knight’s tour exists have been published for
rectangular boards and variations thereof such as cylindrical chessboards [Watkins
and Hoenigman 1997], toroidal chessboards [Watkins 2000], spherical (pillow)
chessboards [Cairns 2002], and boards with deleted squares [Bi et al. 2015; Demaio
and Hippchen 2009; Miller and Farnswort 2013]. Most proofs of the existence
of knight’s tours on these types of boards involve the expander method, made
popular by Schwenk [1991]. With this method, one can take an open knight’s tour
on a board, add small strips of squares to extend the tour, and then use rotation,
symmetries and induction to make a closed knight’s tour on a new board.

One board that cannot be constructed by identifying edges of a regular chessboard
is the Aztec diamond. We define an Aztec diamond of radius n as a lattice of squares
in the Z2 coordinate system, whose centers (x, y) satisfy |x |+|y| ≤ n (these centers
are composed of half-integral coordinates). Figure 2 shows Aztec diamonds of radii
3 and 4, with black dots representing the centers of those squares. These black dots
are included because each square of the Aztec diamond chessboard corresponds to a
vertex in the associated Aztec diamond graph. Two vertices in this associated graph
are adjacent if their corresponding squares can be reached via a single knight’s move.

In Section 2, we show that an Aztec diamond cannot be partitioned into smaller
Aztec diamonds, which suggests that an inductive approach to finding knight’s tours
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on an Aztec diamond is likely to fail. The symmetry of an Aztec diamond makes a
divide-and-conquer algorithm appealing but we find that it is extremely difficult
and sometimes impossible to divide an Aztec diamond. In Section 3, we introduce
two algorithms for computing knight’s tours (hamiltonian cycles): the random-
walk algorithm and the path-conversion algorithm. The random-walk algorithm is
deterministic, which means it will determine whether a knight’s tour exists or not
on a certain Aztec diamond upon completion. Our path-conversion algorithm is
nondeterministic and hence cannot be used to disprove the existence of knight’s
tours on an Aztec diamond. But for Aztec diamonds, this algorithm is much more
efficient than the random-walk algorithm in finding a knight’s tour. In Section 4, we
discuss some possible improvements on the path-conversion algorithm and several
open problems in finding knight’s tours on Aztec diamonds.

2. Theoretical results

Lemma 1. The length of any closed knight’s tour is even.

Proof. First, we color the board with two colors, say black and white. Two squares
are colored differently if they share a boundary. Hence, as shown via Figure 1, a
knight can only move to a square that has a different color from its current square.
In a closed knight’s tour, the last visited square must be adjacent to the starting
square, which means they are colored differently. Because the color alternates for
every move, the number of squares visited in a closed knight’s tour must be even. �

Lemma 2. An Aztec diamond cannot be dissected into several smaller Aztec dia-
monds.

Proof. We define the border of an Aztec diamond to be the set of squares that have
a boundary that is not shared by two squares. By observation, the degree of a vertex
on the border of any Aztec diamond can be 3, 4, 6 or 8. However, if we try to cover
a top square of an Aztec diamond with a smaller one, we will obtain a square s,
a degree 2 square, on the border of the remaining uncovered graph. Hence, this
square cannot be a part of an Aztec diamond, which means that no Aztec diamond
can be dissected into smaller Aztec diamonds. Figure 3 is a graphical representation
of the arguments made in this proof. �

A quadrant of an Aztec diamond consists of squares whose centers are in the
same quadrant of the coordinate system. For example, the first quadrant of an Aztec
diamond of radius 4 is shown in Figure 4.

Lemma 3. No knight’s tours can be found in a quadrant of an Aztec diamond. In
addition, an Aztec diamond of radius n cannot be dissected into four closed partial
knight’s tours of the same length, if n ≡ 1, 2 mod 4.
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S

Figure 3. Visual proof of Lemma 2.

Figure 4. First quadrant of an Aztec diamond of radius 4.

Proof. The analogue of the two shaded squares in Figure 4 in a quadrant of an
arbitrarily sized Aztec diamond have degree 1 and thus cannot be part of a closed
knight’s tour. Now suppose that n = 4k+1 or n = 4k+2 for some k ∈ Z. The total
number of squares in such an Aztec diamond is n · (n+ 1) · 2. If it can be dissected
into four closed partial knight’s tours of the same length, each tour is of length
1
2 n · (n+ 1), which can be expressed as (4k + 1) · (2k + 1) or (2k + 1) · (4k + 3),
in contradiction with the fact that a closed knight’s tour must be even in length by
Lemma 1. This completes the proof. �

3. The random-walk algorithm and its variants

Since finding a knight’s tour is essentially finding a hamiltonian cycle, we first
introduce a brute-force algorithm for finding hamiltonian cycles called the random-
walk algorithm. Again, these algorithms are run on the graphs associated with
knight’s tour moves on the Aztec diamond as described in Section 1. We present
this algorithm on a nondeterministic machine because it is more succinct than
the deterministic version. Whether a graph has a hamiltonian cycle or not can be
determined by the following nondeterministic machine:

N = On input 〈G〉, where G is a graph:

1. If G has only one vertex, accept. Else, proceed to Step 2.

2. Pick an arbitrary vertex v of G as the starting vertex. Mark v as visited.

3. Nondeterministically choose an unvisited vertex that is adjacent to the last
marked vertex and mark it as visited. If none can be marked, reject.
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4. If there exists an unvisited vertex, go to Step 2. Else, proceed to Step 5.

5. If the last marked vertex is adjacent to v, accept. Otherwise, reject.

To transform this algorithm into its deterministic form, we have to try every
possibility when picking a vertex as described in Step 3, and backtrack if the chosen
vertex fails to produce a hamiltonian cycle. In order to make this algorithm run
faster, we add the following rules:

1. If at any point the starting vertex has no unvisited neighbors but the graph still
has unvisited vertices, abort the current branch.

2. If a vertex v is adjacent to the last marked vertex and has only one unmarked
neighbor, choose v to be the next marked vertex (note: there is a chance that v

is the end of the tour, but this requires that v is adjacent to the starting vertex
and that this situation has not been encountered in the previous steps). If there
is more than one vertex that has this property, abort the current branch.

Although these improvements do not affect the asymptotic running time of this
algorithm, they do expedite the process significantly in practice. Unfortunately, since
the size of this problem grows exponentially as the radius increases, the running
time of completing this improved algorithm on a large graph is astronomical. Our
implementation of the random-walk algorithm runs for over one week on a Macbook
Pro (2GHz Intel Core i7, 4GB memory, 1333MHz DDR3) without completion
on an Aztec diamond of radius 5. However, we discovered that the choice of the
starting vertex in Step 2 will tremendously affect the time used to find a knight’s
tour. For example, if we start with a certain vertex on an Aztec diamond of radius 4,
the algorithm could run for more than ten hours without giving us a result, whereas
with the right choice of starting vertex, we might obtain a cycle in ten seconds. This
finding leads us to the next version of the random-walk algorithm.

To modify the existing algorithm, we simply run the algorithm with a given
starting vertex on a separate thread. If no result is obtained within a certain amount of
time, say ten seconds, we switch to the next starting vertex. The program halts if we
find a cycle or if all the vertices have been chosen. An obvious flaw of this algorithm
is that it is no longer deterministic because it does not exhaust all possible cycles.

When using this algorithm in practice, we are able to find knight’s tours on Aztec
diamonds of radius 22 or less except for those of radius 17 and 21, as shown in the
table supplement. We could theoretically prolong the search time of each thread
to increase the chance of obtaining a hamiltonian cycle, but given the size of our
graphs, even an extension of five seconds per thread would lead to an increase of
one hour in the total search time. We stop at radius 22 because the amount of time
used to complete a search exceeds three hours.

http://msp.org/involve/2017/10-5/involve-v10-n5-x01-Tables.zip
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4. The path-conversion algorithm

The idea of this algorithm springs from Parberry [1997]. In this paper, the author
divides a large rectangular board into smaller rectangular boards (usually into four
pieces), finds structured knight’s tours on those smaller boards, and uses these
special structures to connect all the disjoint partial tours together. The exact same
technique would fail to generate knight’s tours on the Aztec diamond because
an Aztec diamond cannot be dissected into Aztec diamonds of smaller radii by
Lemma 2. The attempt of cutting an Aztec diamond into four equally sized pieces
does not seem to be feasible based on our proof when n ≡ 1, 2 mod 4 in Lemma 3.

Now we present our new algorithm, and details about how each step is accom-
plished will follow in the subsequent paragraphs. The algorithm does the following
things:

1. Find an open knight’s tour on an Aztec diamond.

2. Cut this open knight’s tour into disjoint closed knight’s tours.

3. Connect these closed knight’s tours together.

4. If there exists a knight’s tour that cannot be connected to the rest of the knight’s
tours, reject. Otherwise, accept.

Step 1: Find an open knight’s tour on an Aztec diamond. In theory, finding an open
knight’s tour on an Aztec diamond is as hard as finding a closed one since both are
NP-complete [West 2001]. In practice, the time spent finding an open knight’s tour
is significantly less than the time spent finding a closed one because there are more
open knight’s tours than closed knight’s tours. We could still use the random-walk
algorithm described earlier without the final checking step (Step 5) to find an open
knight’s tour. But for the sake of efficiency, we decide to use Warnsdorff’s [1823]
heuristic rule (as used in [Ganzfried 2004]) to speed up the process. As Ganzfried
pointed out, Warnsdorff’s rule does not hold true for every open knight’s tour and it
fails more regularly when the size of the graphs increases. But for the scope of this
paper, Warnsdorff’s rule (with some slight modifications) proves to be successful.

Warnsdorff’s Rule [von Warnsdorff 1823]. In picking the next move, always pick
an adjacent, unvisited square that has the least number of unvisited neighbors.

There are different rules about tie-breaking if two unvisited squares have the
same amount of unvisited neighbors, but we simply use an ordering system of the
squares to break ties. We number vertices from top to bottom, moving from left
to right along each row (as shown in Figure 5) and pick the square with a smaller
number if a tie appears.

In order to present the following steps visually, we assume that an open tour
ABCDEFGH is obtained as shown in Figure 5.
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7 8 9 10 11 12

3 4 5 6

1 2

23 24

19 20 21 22

13 14 15 16 17 18

Figure 5. The ordering system to break ties in Warnsdorff’s rule.

Step 2: Cut this open knight’s tour into disjoint closed knight’s tours. Suppose
that we have obtained an open knight’s tour in the previous step and that the tour
starts at vertex v. Then label each vertex with a number indicating when it is visited.
For example, v is the 1st vertex and a neighbor of v is the 2nd vertex (note that
the labels in this step are different from the labels in Step 1, which are assigned
based upon positions and used only to break ties). If a neighbor of v is the n-th
vertex, then the vertices with numbers from 1 to n form a closed partial knight’s
tour because the piece can move back to v, so we add an edge between the starting
vertex and the n-th vertex and delete the edge between the n-th vertex and the
(n+1)-st vertex. Now we are left with a closed partial knight’s tour consisting of
vertices with numbers from 1 to n, and an open partial knight’s tour consisting
of vertices with numbers greater than n. We now let the (n+1)-st vertex be our
new starting vertex and find another closed knight’s tour using the above method.
Repeat until every vertex in the original open knight’s tour becomes a part of a
closed partial knight’s tour.

Since we eventually have to join these tours together, it is in our favor to make
the number of closed knight’s tours as small as possible. To achieve this goal, we
use a greedy approach: we always pick the neighbor of the starting vertex with the
greatest number to be the last vertex that closes the partial tour.

Figure 6 shows this procedure in action. On the left is an open tour; we first

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

Figure 6. Left: an open tour on eight vertices. Right: the open
tour cut into partial closed tours.
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A
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F
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H

Figure 7. Joining partial closed tours into one closed tour.

pick A as the starting vertex and choose the 4th vertex D to close the partial tour.
Then we pick the 5th vertex E as the next starting vertex and close the partial tour
with H . Now every vertex is a part of a closed partial knight’s tour and we move
on to the next step.

Step 3: Connect these closed knight’s tours together. Two knight’s tours are able
to connect to each other if a pair of adjacent squares in one tour is parallel to a
pair of adjacent squares in the other tour. That is, the four squares in two parallel
pairs must be able to form a closed partial knight’s tour. To join these two tours, we
delete the original edges between the four vertices and add the other pair of parallel
edges. For example, AB is parallel to CD, and DC is parallel to EF in Figure 6,
right. Hence, the partial tour ABCD can be joined to the partial tour EFGH as
shown in Figure 7. Notice that our edge switching procedure is dependent on the
fact that the knight’s tour graph on the Aztec diamond has regular symmetrical
structure, making easier switching opportunities.

In theory, the order in which we join these closed partial knight’s tours matters
because each time we join two tours, we change the direction of only two edges
in these tours. In practice, however, we conjecture that it is less important overall
and do not have a specific heuristic for joining tours. One ordering that may be
helpful is joining the shorter knight’s tours first before trying longer ones because
the probability of whether a tour can be joined depends on the length of the tour.
This ordering is hard to implement due to the data structure we use and thus ignored
in our case.

Step 4: If there exists a knight’s tour that cannot be connected to the rest of the
knight’s tours, reject. Otherwise, accept. This step checks whether all the closed
knight’s tours obtained in Step 2 are joined together. If so, then we have a complete
knight’s tour on the entire board. If not, we fail to construct a closed knight’s
tour with the given open knight’s tour in Step 1. Because it is fast to find an open
knight’s tour with Warnsdorff’s rule, we switch to a new open knight’s tour if a
closed knight’s tour cannot be constructed from the previous one.

Figure 8 is an example of the entire algorithm on an Aztec diamond of radius 5.
The left picture shows an open tour obtained in Step 1. The middle picture shows
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Figure 8. An example of the path-conversion algorithm on the
radius 5 diamond.

how Step 2 of our algorithm cuts this open tour into four closed partial tours, each
with a different color. The right picture shows how the Step 3 joins all the partial
tours together.

With this new algorithm, we are able to find knight’s tours on all Aztec diamonds
of radius 100 or less as well as boards of radius 102, 104, 105, 106, 108, 109 and
111. The performance of this algorithm seems to deteriorate after the radius of an
Aztec diamond exceeds 112 as we were only able to find an Aztec diamond of radius
125 via a search of boards having sizes between 112 and 140. This is probably due
to the application of Warnsdorff’s rule, which has a worse performance on large
graphs. Our algorithm finishes in four minutes for a board of radius 100 or less
and it grows polynomially as the radius increases because there is a one-to-one
correspondence between starting vertices and open tours obtained in Step 1 of the
algorithm (note that although the random walk algorithm can provide a knight’s
tour in 10 seconds, the algorithm takes a long time to finish even for an Aztec
diamond of radius 5).

This new algorithm not only works for Aztec diamonds but also any graph because
it is essentially an algorithm that transforms open knight’s tours (hamiltonian paths)
to closed knight’s tours (hamiltonian cycles).

5. Applications to random graphs

We applied the path conversion algorithm to random graphs to test its robustness.
Two questions were asked during this process:

(1) How many hamiltonian paths can be converted into hamiltonian cycles?

(2) Of all the graphs that have at least one hamiltonian path, how many have a
hamiltonian cycle?

Note that the answers obtained below are not true answers but ones provided by
our path conversion algorithm. Evidenced by the classic theorems of Dirac and Ore
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[West 2001], sufficient conditions for the existence of hamiltonian cycles often in-
volve degree constraints. By Ganzfried’s claim [2004], Warnsdorff’s rule fails more
regularly when the size of the graph increases. Hence, we controlled for the average
degree and the number of vertices when running our algorithm on random graphs.

5.1. Generating random graphs. Suppose we want to create a random graph with
n vertices and (expected) average degree d. The total number of edges is 1

2 dn.
Since a complete graph with n vertices has at most 1

2 n(n − 1) edges, we set the
probability of existence of any edge between two vertices to d/(n− 1) so that the
expected number of edges is 1

2 dn. Such a random graph, however, might not be
connected. A disconnected graph has no hamiltonian cycles. Therefore, we ignore
all disconnected graphs generated during this process.

5.2. Results on random graphs. To explore how average degree and number of
vertices affect the answers to the two questions proposed at the beginning of this
section, we conducted two sets of experiments. The first set fixed the number of
vertices to be 1000 and changed the average degree, while the second fixed the
average degree to be 8 and changed the number of vertices. The reason for choosing
1000 vertices for the first set is that it is a number small enough such that we could
collect a decent amount of data in a short period of time and large enough such
that a brute-force algorithm would take a long time to terminate. The reason for
choosing average degree to be 8 is that it gives a rough comparison between the
random graphs and the Aztec diamonds. Almost all vertices in an Aztec diamond
have a degree of 8 except for those in peripheral areas.

The results are summarized in Table 1 and Table 2. The first column is the
controlled variable, which could be either the average degree or the number of
vertices; the second column measures, of all hamiltonian paths found using Warns-
dorff’s rule, how many can be converted into hamiltonian cycles; the last column
shows how likely a graph contains a hamiltonian cycle if we know that at least one
hamiltonian path can be found using Warnsdorff’s rule. The statistics of each row
is obtained from performing the path-conversion algorithm on exactly 1000 graphs.
For convenience, we call the statistics in the second column the conversion rate
and those in the third column the success rate.

From Table 1 we conclude that as the average degree of a graph goes up, it is more
likely that a hamiltonian path can be converted into a hamiltonian cycle. In addition,
more hamiltonian paths in total can be found. Therefore, the chance of finding a
hamiltonian cycle rises significantly as the average degree increases. Similarly, if we
fix the average degree and increase the number of vertices in a graph, we see a drop
in the conversion rate. The number of found paths does not change monotonically. It
rises first when the number of vertices changes from 100 to 200 and then falls when
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degree cycles/paths cycles found/paths found

7 6.78%(4/59) 25.00%(1/4)

8 9.02%(1967/21804) 42.01%(92/219)

9 13.66%(19841/145207) 53.91%(338/627)

10 18.74%(75764/410166) 77.09%(700/908)

11 23.57%(141773/601410) 88.13%(861/977)

12 28.53%(212320/744178) 95.36%(946/992)

13 33.33%(272710/818283) 97.90%(979/1000)

14 37.96%(332630/876159) 99.30%(990/997)

15 42.40%(388014/915194) 99.90%(999/1000)

Table 1. Performance on random graphs with 1000 vertices.

vertices cycles/paths cycles found/paths found

100 69.67%(56676/81354) 87.73%(858/978)

200 50.47%(61280/121407) 76.29%(708/928)

300 37.44%(43992/117502) 64.90%(514/792)

400 28.34%(33034/116568) 60.03%(428/713)

500 21.87%(19129/87478) 48.58%(309/636)

600 18.27%(12085/66157) 44.18%(220/498)

700 14.14%(7323/51784) 46.55%(182/391)

800 12.42%(5068/40801) 44.03%(140/318)

900 10.35%(2868/27703) 37.96%(104/274)

Table 2. Performance on random graphs with expected average
degree 8.

the number of vertices is further increased. The success rate, however, changes
monotonically despite the oscillation in the number of paths found.

An Aztec diamond of radius 100 has 20200 vertices. According to these tables,
the probability for finding a hamiltonian cycle on such a huge graph should be
really small. Yet we were able to find hamiltonian cycles for all Aztec diamonds
up to radius 100. Therefore, we conjecture that the degree distribution also affects
how likely a graph has hamiltonian cycles. In the following subsections, we will
test the performance of our algorithm on random regular graphs. But first, let us
talk about how these graphs are generated.

5.3. Generating random regular graphs. To generate random regular graphs, we
utilized the following algorithm described by Kim and Vu [2003]. Let n be the
number of vertices in G and d be the degree of each vertex:
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degree cycles/paths cycles found/paths found

7 2.67%(142/5328) 13.66%(134/981)

8 4.13%(1118/28549) 67.20%(672/1000)

9 5.94%(4300/80293) 97.60%(976/1000)

10 8.24%(11087/151781) 99.90%(999/1000)

11 11.07%(23181/241791) 100%(1000/1000)

12 14.28%(39929/323588) 100%(1000/1000)

13 17.91%(60671/401756) 100%(1000/1000)

14 21.86%(85501470826) 100%(1000/1000)

15 25.83%(114657/534245) 100%(1000/1000)

Table 3. Performance on random regular graphs with 1000 vertices.

1. Create a graph G with n vertices. Label these n vertices with integers from 0
to n− 1. Create a list L with d copies of each integer.

2. Find two random integers i and j from L . While i = j or vertex i and vertex j
are already adjacent, choose another j . Connect vertex i and vertex j once i
and j are chosen. Remove i and j from L .

3. If L is not empty, repeat Step 2. Else, output G.

Note that G may not be connected. Again we ignore all disconnected graphs.
Furthermore, we can get stuck at Step 2 if we are unlucky. For example, L may
contain integers of the same value. To avoid getting trapped in infinite loops, we
restart our algorithm if no suitable pair of i and j can be found within a certain
number of iterations.

5.4. Results on random regular graphs. To make comparisons more direct, we
choose the same parameters. That is, all graphs generated during this experiment
have exactly 1000 vertices. As shown in Table 3, the conversion rate on random
regular graphs is much lower than that on random graphs. There are also fewer
hamiltonian paths found on random regular graphs when the degree is larger than 8.
However, random regular graphs have a better success rate than random graphs
with the same parameters except for degree 7 (the statistics on random graphs of
degree 7 are unreliable because the algorithm finds only 59 paths). One possible
explanation is that the found paths are distributed more evenly on random regular
graphs. Another possible explanation is that our algorithm works better for random
regular graphs. Although the obtained results are algorithm-specific, it is worth
asking whether degree distribution (instead of minimum degree) is related to the
probability of finding a hamiltonian cycle.
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6. Online supplement

Two supplementary files are provided online only. The code supplement contains
Java programs implementing the algorithms described in the paper. The table
supplement contains two Excel files: one shows all the results obtained from the
revised random-walk algorithm on Aztec diamonds of radii from 2 to 20, and the
other shows examples of knight’s tours on Aztec diamonds of radii 30, 40, 50, 60,
70, and 80. Both folders include documentation.

7. Future work

Although our algorithm has worse performance on larger graphs, it can be improved
in various ways. First, we can use better tie-breaking rules for Warnsdorff’s rule or
we can switch to another rule to find an open knight’s tour. This will increase the
likelihood of finding an open knight’s tour, which is essential to the construction of
a closed knight’s tour. Second, we can have a different heuristic for cutting an open
knight’s tour into several closed partial knight’s tours. A good cutting method will
minimize the number of partial tours and possibly the variance in the lengths of
these partial tours because it will reduce the probability of having a partial tour that
is not able to attach to other tours. Third, it is likely that there exists a better order
in which we join the closed partial tours.

Open Problem. Is there an Aztec diamond that has no open knight’s tour?

Open Problem. Is there an Aztec diamond that has an open knight’s tour but not a
closed knight’s tour?
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Optimal aggression in kleptoparasitic interactions
David G. Sykes and Jan Rychtář

(Communicated by Natalia Hritonenko)

We have created and analyzed a model for kleptoparasitic interactions when
individuals decide on the level of aggression in which they want to engage in the
contest over a resource item. The more aggressive each individual is relative to
an opponent, the higher are the chances of winning the item, but also the higher is
the cost of the interaction for that individual. We consider a general class of cost
functions and show that for any parameter values, i.e., for any maximal potential
level of aggression of the individuals, any value of the resource and any type of
the cost function, there is always a unique Nash equilibrium. We identify four
possible kinds of Nash equilibria and give precise conditions for when they occur.
We find that nonaggressive behavior is not a Nash equilibrium even when the cost
function is such that aggressive behavior yields lower payoffs than avoiding the
conflict altogether.

1. Introduction

Kleptoparasitism is the resource gathering behavior where one animal steals from
another. Possible contested resources include territory, mates, and food [Iyengar
2008]. This stealing behavior is exhibited by a wide variety of species, such as
seabirds [Spear et al. 1999; Steele and Hockey 1995; Triplet et al. 1999], insects
[Jeanne 1972], fish [Grimm and Klinge 1996] and mammals [Kruuk 1972]. Klep-
toparasitic interactions manifest in several varieties and are distinguished by the
energy invested by the kleptoparasite and the resource owner. Some kleptoparasites
display only minor levels of aggression and may be easily dissuaded by a highly
invested adversary (e.g., catbirds steal food provisions from digger wasps, but they
forgo this foraging strategy when sparrows are present because the prospect of
competition with sparrows dissuades them [Benttinen and Preisser 2009]), whereas
others are as aggressive as possible (e.g., male southern giant petrels will attack adult
king penguins for food despite having low success rates [Hunter 1991]). Similarly,
some resource owners are easily convinced to forfeit their resources (e.g., when
attacked by turkey vultures, adolescent great blue herons are known to weakly resist
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the attack by pecking, but if the pecking does not dissuade the vulture then they will
disgorge food [Brockmann and Barnard 1979]), whereas others engage in costly
attempts to defend their resources (e.g., lapwings will undergo extensive aerial
chases to avoid forfeiting food to assailing black-headed gulls [Källander 1977]).

Mathematical models of kleptoparasitism are quite common; see, for example,
[Giraldeau and Livoreil 1998; Broom and Ruxton 2003; Broom et al. 2004; 2008;
2010; Broom and Rychtář 2007; 2013; Hadjichrysanthou and Broom 2012; Kokko
2013]. With mathematical modeling, we can determine the conditions under which
the benefits of the various kleptoparasitic behaviors observed in nature outweigh the
costs. Mathematical modeling also allows us to predict which ecological conditions
make the occurrence of kleptoparasitism more likely.

Here we modify a game-theoretical “producer-scrounger” model developed in
[Broom et al. 2015]. Producer-scrounger models [Barnard and Sibly 1981; Barnard
1984; Vickery et al. 1991; Caraco and Giraldea 1991; Dubois and Giraldeau 2005]
describe interactions where after a kleptoparasite (i.e., the scrounger) encounters an
individual with resources (i.e., the producer), the scrounger invests some amount
of energy into stealing the resources while the producer attempts to defend them.
Many game-theoretical models of two-individual interactions have been developed
wherein the individuals have a discrete set of strategies available to them [Smith
and Price 1973; Dubois and Giraldeau 2005; Broom et al. 2013], but realistically,
individuals competing in kleptoparasitic interactions can invest amounts of energy
from a continuous range of possibilities. This possibility is incorporated in our
model, as it was in [Broom et al. 2015], where the producer-scrounger conflict is
modeled as an extensive form game where the scrounger chooses its strategy first
and the producer knows the scrounger’s choice before making its own. Here, we
present and analyze the simultaneous version of the game where both individuals
have to decide without knowing the opponent’s action.

The organization of our paper is as follows. In Section 2 we give a detailed
mathematical description of our model. In Section 3 we analyze our model mathe-
matically; in particular, we find best responses to opponent’s actions in Section 3.1
and give conditions for Nash equilibria in Section 3.2. The results of our analysis
are presented in Section 4. In Section 4.1 we show that (for the case α > 0) Nash
equilibria do not overlap and in Section 4.2 we show that the Nash equilibria exist
for any parameter combination. We end our paper in Section 5 where we compare
our model and its results to previous work, most notably to [Broom et al. 2015].

2. Model

One individual, a scrounger, is searching for resources and encounters another
individual, a producer, who has a resource item of value v. Simultaneously, and
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with no knowledge of the choice of the other, they both have to decide how aggressive
to be in the contest for the item. The more aggressive each individual is relative to
the opponent, the higher are the chances of winning the item, but also the higher is
the cost of the interaction for that individual. Let Pmax (or Smax) be the maximum
level of aggression that a producer (or scrounger, respectively) can display in a
fight, and by p ∈ [0, Pmax] (or s ∈ [0, Smax]) we will denote the actually displayed
level of aggression in a particular contest. The producer wins the fight (and the
resource) with a probability of p/(s+ p), while the scrounger wins with probability
s/(s+ p). If no individual fights (i.e., p = s = 0), then the producer is assumed to
win and will keep the resource.

We will adopt the model for the fight costs from [Broom et al. 2015]. When no
individual fights, the cost is 0. Otherwise, the cost to each individual is (s+ p)α.
Here, α is a tuning parameter that allows us to consider a broad range of scenarios.
If α < 1, then low aggression is costly relative to no aggression at all, but once
the aggression reaches a certain level, increasing the aggression is typically not
that costly in relative terms. On the contrary, when α > 1, low aggression levels
are relatively cheap, but escalating the fight (i.e., being a bit more aggressive) is
relatively expensive as the function xα is concave up. For the rest of the paper, we
will assume α > 0 except when we discuss the extreme case α = 0 (when the cost
of the fight is constant) separately in Section 4.3.

Assuming the scrounger plays s ∈ [0, Smax], the producer plays p ∈ [0, Pmax],
and the value of the resource is v, the payoffs to the producer and scrounger are
given by

Upr (s, p)=
{
v if s = p = 0,
p/(s+ p)v− (s+ p)α if s+ p > 0,

(1)

Usc(s, p)=
{

0 if s = p = 0,
s/(s+ p)v− (s+ p)α if s+ p > 0.

(2)

3. Analysis

3.1. Best responses. Here we will determine best responses for the scrounger and
producer. A best response is a strategy that maximizes an individual’s payoff given
that their adversary’s strategy is fixed, i.e., for a given s ∈ [0, Smax], we are looking
for pbr (s) ∈ [0, Pmax] such that

Upr (s, pbr (s))= max
p∈[0,Pmax]

{Upr (s, p)}, (3)

and, similarly, for a given p ∈ [0, Pmax] we are looking for sbr (p) ∈ [0, Smax] such
that

Usc(sbr (p), p)= max
s∈[0,Smax]

]{Usc(s, p)}. (4)
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When s = 0, it immediately follows from (1) that pbr (0)= 0. When s > 0, we
have

∂

∂p
Upr (s, p)=

sv−α(s+ p)α+1

(s+ p)2
for p >−s. (5)

Let us define
f (x)=

( xv
α

)1/(α+1)
− x . (6)

It follows from (5) that, for fixed s and variable p, the function Upr (s, p) is
increasing on (−s, f (s)] and decreasing on [ f (s),+∞). Therefore,

pbr (s)=


0 if s = 0, or s > 0 and f (s)≤ 0,
f (s) if s > 0 and 0≤ f (s)≤ Pmax,
Pmax if s > 0 and f (s)≥ Pmax.

(7)

We note that the conditions in (7) are formally not mutually exclusive, but whenever
two of the conditions coincide, so does the best response defined by them.

When p= 0, we have Usc(s, 0)= v− sα which increases to v > 0 as s decreases
to 0 while Usc(0, 0)= 0. Thus, there is no best response for the scrounger in this
case. When p > 0,

∂

∂s
Usc(s, p)=

pv−α(s+ p)α+1

(s+ p)2
for s >−p. (8)

Consequently, for a fixed p and variable s, the function Usc(s, p) is increasing on
(−p, f (p)] and decreasing on [ f (p),+∞). Hence,

sbr (p)=


does not exist if p = 0,
0 if p > 0 and f (p)≤ 0,
f (p) if 0< f (p)≤ Smax,
Smax if f (p)≥ Smax.

(9)

As with pbr , we note that the conditions in (9) are formally not mutually exclusive,
but whenever two of the conditions coincide, so does the best response defined by
them.

3.2. Nash equilibria. Here we will identify all Nash equilibria of our game. A
pair of strategies (s∗, p∗) is a Nash equilibrium if p∗ is the producer’s best response
to s∗ and s∗ is the scrounger’s best response to p∗.

By (7), we only need to consider cases when p∗= 0, p∗= f (s∗) and p∗= Pmax;
and by (9), for any of those cases we only need to consider s∗ = 0, s∗ = f (p∗)
and s∗ = Smax.

By (9), no pair (s∗, 0) is a Nash equilibrium. When s∗ = 0, by (7), we would
need p∗ = 0 and so no pair (0, p∗) is a Nash equilibrium either. We will now
investigate the remaining types separately. Table 1 summarizes the results.
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Nash equilibrium conditions

(Smax, Pmax) Pmax ≤ f (Smax), Smax ≤ f (Pmax)

(Smax, f (Smax)) 0< f (Smax) < Pmax, Smax ≤ f ( f (Smax))

( f (Pmax), Pmax) 0< f (Pmax) < Smax, Pmax ≤ f ( f (Pmax))( 1
2 (v/(2α))

1/α, 1
2 (v/(2α))

1/α
) 1

2 (v/(2α))
1/α <min(Pmax, Smax)

Table 1. Nash equilibria and the conditions for their existence. As
f (x) = (xv/α)1/(α+1)

− x , the conditions are given in terms of
Pmax, Smax, v and α.

3.2.1. Type (Smax, Pmax). By (7) and (9), (Smax, Pmax) is a Nash equilibrium if and
only if

Pmax ≤ f (Smax), (10a)

Smax ≤ f (Pmax). (10b)

3.2.2. Type (Smax, f (Smax)). By (7) and (9), (Smax, f (Smax)) is a Nash equilibrium
if and only if

0< f (Smax) < Pmax, (11a)

Smax ≤ f ( f (Smax)). (11b)

3.2.3. Type ( f (Pmax), Pmax). By (7) and (9), ( f (Pmax), Pmax) is a Nash equilib-
rium if and only if

0< f (Pmax) < Smax, (12a)

Pmax ≤ f ( f (Pmax)). (12b)

3.2.4. Type (p∗, s∗) where p∗ = f (s∗) and s∗ = f (p∗). Solving p∗ = f ( f (p∗))
yields a unique solution p∗ = 1

2(v/(2α))
1/α. Indeed, we have

x = f ( f (x)) (13)

=

( f (x)v
α

)1/(α+1)
− f (x) (14)

=

( f (x)v
α

)1/(α+1)
−

( xv
α

)1/(α+1)
+ x, (15)

which after simple algebra yields

x = f (x)=
( xv
α

)1/(α+1)
− x, (16)

and thus

x = 1
2

(
v

2α

)1/α
. (17)
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Consequently, the only candidate for such a type of a Nash equilibrium is(
1
2

(
v

2α

)1/α
,

1
2

(
v

2α

)1/α
)
.

By (7) and (9) it is indeed a Nash equilibrium if 0< f (p∗) < Smax and 0< f (s∗) <
Pmax, and since p∗= f (s∗), s∗= f (p∗), we get that

( 1
2(v/(2α))

1/α, 1
2(v/(2α))

1/α
)

is a Nash equilibrium if and only if

1
2

(
v

2α

)1/α
<min(Pmax, Smax). (18)

4. Results

We have seen that there are only four potential Nash equilibria in this game:

(1) (Smax, Pmax),

(2) (Smax, f (Smax)),

(3) ( f (Pmax), Pmax) and

(4)
( 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α
)
.

Here, we will show that under any parameter values v > 0, α > 0, Smax > 0,
Pmax > 0, there exists one and only one Nash equilibrium.

The conditions (10), (11), (12) and (18) for the equilibria are given in terms of
f (x)= (xv/α)1/(α+1)

− x . It is therefore crucial to understand the behavior of f.
The following two equivalencies for x ≥ 0 follow easily from simple algebra:

x S 1
2

(
v

2α

)1/α
if and only if x S f (x), (19)

and similarly,

x S 1
2

(
v

2α

)1/α
if and only if x S f ( f (x)), (20)

and they will be useful when determining the existence and uniqueness of Nash
equilibria.

4.1. Nash equilibria do not overlap. First, it follows from (20) that when (18)
holds, one has Pmax > f ( f (Pmax)) and Smax > f ( f (Smax)), i.e., neither (12b) nor
(11b) holds. Thus,

( 1
2(v/(2α))

1/α, 1
2(v/(2α))

1/α
)

cannot occur at the same time as
( f (Pmax), Pmax) or (Smax, f (Smax)). By (19), f (Smax)< Smax and f (Pmax)< Pmax.
Consequently, either f (Smax) < Smax ≤ Pmax or f (Pmax) < Pmax ≤ Smax, i.e.,( 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α
)

cannot occur at the same time as (Smax, Pmax).
Second, when (12) holds, then, by (20), Pmax ≤

1
2(v/(2α))

1/α and thus, by (19),
Pmax ≤ f (Pmax) and so Pmax < Smax. By a similar argument, when (11) holds,
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Smax < Pmax. Consequently, (Smax, f (Smax)) and ( f (Pmax), Pmax) are never Nash
equilibria at the same time.

Finally, it is evident that neither (12) nor (11) can hold when (10) does. Conse-
quently, there is always at most one Nash equilibria.

4.2. Nash equilibrium always exist. We show that for any v > 0, α> 0, Smax> 0,
Pmax > 0, there is a Nash equilibrium. Here we will assume Pmax < Smax, but when
Smax ≤ Pmax, the proofs are analogous.

If 1
2(v/(2α))

1/α < Pmax < Smax, then by (18),
( 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α
)

is
a Nash equilibrium.

If Pmax < Smax <
1
2(v/(2α))

1/α, then by (19), Pmax < Smax < f (Smax), i.e.,
(10a) holds. Also, by (20), Pmax < f ( f (Pmax)), i.e., (12b) holds. Consequently, if
f (Pmax) < Smax, then ( f (Pmax), Pmax) is a Nash equilibrium (because we assumed
Pmax <

1
2(v/(2α))

1/α and thus, by (19), 0< Pmax < f (Pmax), i.e., (12) holds); and,
similarly, if f (Pmax)≥ Smax, then (Smax, Pmax) is a Nash equilibrium.

If Pmax <
1
2(v/(2α))

1/α < Smax, then, by (20), Pmax < f ( f (Pmax)), i.e., (12b)
holds. Consequently,

(a) if f (Pmax) < Smax, then ( f (Pmax), Pmax) is a Nash equilibrium; and

(b) if f (Pmax) ≥ Smax and f (Smax) ≥ Pmax, then (Smax, Pmax) is a Nash equilib-
rium.

Since Pmax < Smax, one cannot have f (Pmax) ≥ Smax and also f (Smax) < Pmax.
Consequently, the above cases are the only two possible cases and thus there is
always a Nash equilibrium.
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Figure 1. Regions of existence of Nash equilibria as v = 1, Smax

and Pmax varies and (left) α = 2 and (right) α = 0.5. Note that the
regions do not overlap and the individuals are always aggressive
(the level of aggression increases with increasing v (when Smax

and Pmax are fixed).
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Figure 1 shows the Nash equilibria for fixed v and α and variable Smax and Pmax.
Figure 2 shows Nash equilibria and payoffs for fixed Smax, Pmax, α and variable v.
We see that for small v, individuals play 1

2(v/(2α))
1/α, 1

2(v/(2α))
1/α. For large

v, individuals play (Smax, Pmax). For medium v, individuals play ( f (Pmax), Pmax)

when Smax > Pmax and (Smax, f (Smax)) when Smax < Pmax. Note that as v in-
creases, so does the optimal aggression level; yet with increasing aggression, the
relative payoff may decrease, as seen in Figure 2a and c for equilibria of the form
(Smax, f (Smax)) and ( f (Pmax), Pmax). Also note that for α < 1 and small v, the
payoffs are negative for both players; see Figure 2b and d. As v grows, the payoffs
eventually become positive (it happens first for a more aggressive individuals).

4.3. Case α = 0. So far, we have considered only α > 0. When α = 0, the cost of
a fight is the constant 1 no matter what the exact aggression levels are (as long as at
least one individual is aggressive). Thus, for fixed s > 0, Upr (s, p) is increasing in
p and, for fixed p > 0, Usc(s, p) is increasing in s and the individuals effectively
choose between being not aggressive at all or being aggressive at their maximal
level. Hence, they play the following bimatrix game where the scrounger’s payoff is


S\P 0 Pmax

0 0 −1

Smax v− 1 Smax
Smax+Pmax

v− 1

, (21)

and the producer’s payoff is


S\P 0 Pmax

0 v v− 1

Smax −1 Pmax
Smax+Pmax

v− 1

. (22)

It turns out that this game is a variant of the stag hunt game [Skyrms 2004] for
v < 1 and the prisoner’s dilemma game for v > 1.

When the producer plays p = Pmax, the scrounger always prefers s = Smax over
s = 0. When the scrounger plays s = Smax, the producer always prefers p = Pmax

over p = 0. Consequently, (Smax, Pmax) is always a Nash equilibrium. When the
scrounger plays s = 0, the producer prefers p = 0. When the producer plays
p = 0, the scrounger prefers s = 0 when v < 1 and prefers s = Smax when v > 1.
Consequently, when v > 1, (Smax, Pmax) is the only Nash equilibrium, and when
v < 1, both (Smax, Pmax) and (0, 0) are Nash equilibria.

Note the paradoxical situation in the case when

1< v <
Smax+ Pmax

Smax
.
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Figure 2. Nash equilibria and payoffs relative to v (i.e., Usc(s∗, p∗)/v
for the scrounger and Upr (s∗, p∗)/v for the producer) when: (a)
Smax= 0.4, Pmax= 0.8, α= 2, (b) Smax= 0.4, Pmax= 0.8, α= 0.5;
(c) Smax = 0.8, Pmax = 0.4, α = 2; and (d) Smax = 0.8, Pmax = 0.4,
α = 0.5. The vertical lines show the switch between Nash equilibria.

In this case, as in the prisoner’s dilemma game, (Smax, Pmax) is a Nash equilibrium
but the scrounger is getting a negative payoff (and the producer is also getting
strictly less than v). Hence both individuals would prefer not to engage in an
aggressive conflict. Yet (0, 0) is not a Nash equilibrium because once either of the
individuals decides not to be aggressive, the other one will be better off by being as
aggressive as possible.
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5. Discussion

We have created and analyzed a model for kleptoparasitic interactions when individ-
uals decide on the level of aggression in which they want to engage in the contest
over a resource item. We show that for any parameter values, there is a unique
Nash equilibrium. We have provided explicit formulas for all of four possible types
of Nash equilibria and have also derived explicit conditions for their existence.

Our model extends the model of [Broom et al. 2015] where the authors considered
sequential decisions whereas we consider simultaneous decisions (or equivalently,
a situation when both individuals have to chose the action without knowing the
opponent’s action). The analysis in our model is more complicated because individ-
uals only know that the opponent will chose the optimal level of aggression, but
unlike in the setting of [Broom et al. 2015], what is optimal depends on individual’s
own action as well. Our results also differ from the sequential setting, as our game
does not admit multiple Nash equilibria (when α > 0) and it is also optimal to
express at least some level of aggression. When v is small (relative to the maximal
potential level of aggression of at least one of the individuals), the sequential model
allows individuals to avoid the actual conflict, while they still fight aggressively
in our simultaneous model. The difference between the two models is largest for
concave down cost functions (α < 1) when the individuals would be better off
without engaging in any fight (and this is indeed the Nash equilibrium for sequential
decisions) but they still end up being aggressive when the decisions need to be
made simultaneously. On the other hand, when v is large, then both the sequential
and simultaneous decision models yield the same Nash equilibria.

The fight cost function plays a critical role in the determination of the equilibrium
solutions. The fight cost functions that are considered in our model have the form
(s+ p)α, where 0≤ α. It would be possible to model the fight cost function with
greater complexity to increase the model’s realism (see, e.g., [Baye et al. 2005;
2012]), but we have worked with the present fight cost formulation because it
encompasses several possible fight cost functions without sacrificing the model’s
tractability. The appropriate setting for fight cost structure (i.e., for α) will of course
depend on the interactions being modeled. Circumstances that lead to different
settings of α are considered in [Broom et al. 2015]; in particular, α > 1 corresponds
to interactions for which the primary cost is risk of injury or lost energy whereas
α < 1 corresponds to interactions for which the primary cost is a time cost. Such
a time cost can be opportunity cost (i.e., lost time that can otherwise be spent
foraging) or it can be the predation risk incurred by prolonged exposure while
fighting for resources.

Similarly to [Broom et al. 2015], we assume that all individuals know the values
of all parameters; in particular the scrounger knows Pmax and the producer knows
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Smax and both individuals know the cost function and v. In [Broom and Rychtář
2009; 2016; Broom et al. 2013; 2014], the authors study the situation when v is
not known to one of the individuals. However, as shown in Figure 1, different
Pmax may not only yield different behavior of producer but may also yield different
behavior of the scrounger. Thus, not knowing the opponent’s maximum potential
level of aggression will potentially influence the choice of individual strategies.
Consequently, it would be interesting to model such a scenario.
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Domination with decay in
triangular matchstick arrangement graphs

Jill Cochran, Terry Henderson, Aaron Ostrander and Ron Taylor
(Communicated by Glenn Hurlbert)

We provide results for the exponential dominating numbers and total exponen-
tial dominating numbers of a family of triangular grid graphs. We then prove
inequalities for these numbers and compare them with inequalities that hold more
generally for exponential dominating numbers of graphs.

1. Introduction

A dominating set of a graph G is a set S⊆ V (G) such that every v ∈ V (G) is either
in S or is adjacent to a member of S. A total dominating set of a graph G is a set
S⊆ V (G) such that every v ∈ V (G) is adjacent to a member of S. The vertices in S
are called dominating vertices or dominators, and a vertex adjacent to a dominator
is said to be dominated by that dominator. In most kinds of domination a dominator
is considered to dominate itself, but this is not the case for total domination where
each dominator must be dominated by another dominator.

When considering domination at a distance, a k-dominating set of a graph G
is a set S ⊆ V (G) such that every v ∈ V (G) is either in S or is a distance of k or
less from any member of S. More examples of domination at a distance have been
investigated in [Erwin 2004; Slater 1976].

In [Dankelmann et al. 2009] the authors introduce exponential domination, a
variety of distance domination where the dominating power of a vertex decreases
exponentially with the distance from that vertex. In this paper, we consider expo-
nential domination and introduce a variation of exponential domination which we
call total exponential domination. In the rest of the paper we sometimes talk about
exponential domination or total exponential domination just in terms of domination
when the context is clear.

For a connected graph G and S ⊆ V (G) we denote by G[S] the subgraph of G
induced by S. For u ∈ S and v ∈ V (G)\ S we define dS(u, v) to be the distance
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between u and v in G[V (G)\(S \{u})]; i.e., minimum length paths do not include
other dominators.

For exponential domination we use the same weight function as in [Dankelmann
et al. 2009], given by

wS(v)=

{∑
u∈S 2−dS(u,v)+1, v /∈ S,

2, v ∈ S.

For total exponential domination we use a similar weight function given by

wt
S(v)=

{∑
u∈S 2−dS(u,v)+1, v /∈ S,∑
u∈S,u 6=v 2−dS(u,v)+1, v ∈ S.

Note that the only difference between these two weight functions is thatwS(u)=2
but wt

S(u) depends on the distribution of the other dominators for u ∈ S.
As in [Dankelmann et al. 2009], if for each v∈V (G) (or equivalently v∈V (G)\S)

we have that wS(v) ≥ 1, then S is an exponential dominating set of G. The
exponential dominating number of a graph G, denoted by γe(G), is the smallest
cardinality of an exponential dominating set of G. Similarly, if for each v ∈ V (G)
we have that wt

S(v)≥ 1, then S is a total exponential dominating set of G. The total
exponential dominating number of a graph G, denoted by γte(G), is the smallest
cardinality of a total exponential dominating set of G. For an arbitrary S and
arbitrary v ∈ V (G)\S, if wS(v)≥ 1 or wt

S(v)≥ 1 then v is exponentially dominated
or totally exponentially dominated by S.

We restrict ourselves to a particular family of triangular grid graphs. A triangular
grid graph is a graph G such that V (G) can be put in a correspondence with points
(x, y) =

(1
2a − b,

√
3

2 a
)
, where a, b ∈ Z; additionally, we require that in this

correspondence two vertices can be adjacent only if their corresponding points are
separated by unit distance (this is the same definition that is found in [Gordon et al.
2008]). We denote by Gn the graph whose vertices correspond with the points in{( 1

2a− b,
√

3
2 a
) ∣∣ a, b ∈ Z, 0≤ b ≤ a ≤ n

}
and which has as many edges as possible; Gn is called the triangular matchstick
arrangement graph of side n. This is the family of graphs which we consider in this
paper. The corners of Gn are those vertices corresponding to a= b= 0, a= b= n,
and a= n, b= 0. The perimeter of Gn is the set of vertices and edges that lie on
the minimal length paths between the corners. Any one of these minimal length
paths is a perimeter edge; note that each perimeter edge of Gn contains n edges.

In Section 2 we determine the exponential dominating numbers for Gn up to n=7.
In Section 3 we provide upper bounds for exponential dominating numbers for
arbitrary Gn . In Section 4 we determine the total exponential dominating numbers
for Gn up to n = 5. In Section 5 we use arguments similar to those from Section 3
to provide upper bounds for total exponential dominating numbers for arbitrary Gn .
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Figure 1. Graphs for Lemma 5.

2. Base cases for exponential domination

We use the following lemmas in proving Theorem 8.

Lemma 1. γe(Gn)≤ γe(Gn+1).

Lemma 2. If there exists an arrangement of dominators that dominates Gn where
a dominator is placed at a corner vertex, then the graph is also dominated by the
arrangement of dominators produced by moving the corner dominator to a vertex
adjacent to it and leaving the rest of the dominators in their original positions.

Lemma 3. γe(G1)= 1.

Lemma 4. γe(G2)= 2.

Proof. To see that γe(G2) ≤ 2, note that picking any two vertices of G2 to be
dominators suffices to dominate the graph.

Suppose γe(G2)= 1. For every vertex in V (G2) there is a second vertex that is a
distance of 2 away. Thus no matter where the dominator is placed there always is one
vertex with only a weight of 1

2 , so G2 is not dominated, which is a contradiction. �

Lemma 5. γe(G4)= 3.

Proof. The graphs Gi
4 referred to in this proof are contained in Figure 1. To see that

γe(G4)≤ 3, consider G1
4 or G2

4 (from now on all vertices appearing as bullet points
are dominators). If γe(G4) < 3 then we can dominate G4 with two dominators. We
obviously must dominate the corners of G4, and by Lemma 2 we can assume that
no dominator is in a corner.

Supposing that the two dominators are at a distance of 1 from two corners (to
ensure that at the least those corners are dominated), we produce graph G3

4, where
one of the circled vertices is also a dominator. The graph is not dominated in any
of these cases.

Supposing that the two dominators are each at a distance of 2 from a single
corner (to ensure that one corner is dominated), we produce G4

4, where one of the
circled vertices is also a dominator. G4 is not dominated in either case. This suffices
to prove the lemma. �

Lemma 6. γe(G6)= 4.
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Figure 2. Graphs for Lemma 6.

Proof. The graphs Gi
6 referred to in this proof are contained in Figure 2. To see

that γe(G6)≤ 4, consider G1
6.

If γe(G6) < 4 then we can dominate G6 with three dominators. We first consider
the case where each dominator is a distance of 1 from each corner. Doing so we
produce G2

6, where one of a or b and one of c or d is a dominator. In each of these
cases the circled vertex is not dominated.

Considering next the case where one of the corners has two dominators at a
distance of 2, we must place the third dominator on G3

6, where one of the circled
vertices is a dominator. We cannot place a third dominator in either of these cases
so that all of the corners are dominated.

We now consider placing two dominators at a distance of 3 from a corner and
the third dominator at a distance of 2 from the same corner. Doing so, we generate
G4

6 or G5
6, where two of the circled vertices are dominators. In any such graph only

one of the corners is dominated. This suffices to prove the lemma. �

Lemma 7. γe(G7)= 5.

Proof. The graphs Gi
7 referred to in this proof are contained in Figure 3. To see that

γe(G7)≤ 5, consider G1
7. If γe(G7) < 5, then four dominators suffice to dominate

the graph. We first try to dominate G7 by placing three dominators so that each lies
at a distance of 1 from each corner. Doing so, we produce G2

7 or G3
7.

Notice that the vertices a, b and c in G2
7 have domination of 17

32 due to the first
three dominators. So the fourth dominator must be placed at either of the circled
vertices so that a and b will both have domination greater than 1. However, doing
so, the domination of c is either 21

32 or 25
32 , so we cannot dominate G7 with four

dominators by starting with G2
7.
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Figure 3. Graphs for Lemma 7 and Theorem 8.

Note that the vertices a and b in G3
7 have domination 13

32 due to the first three
dominators. So the fourth dominator must be placed at the circled vertex in order for
both a and b to have domination greater than 1. However, doing so, the domination
of c is 25

32 , so we cannot dominate G7 with four dominators by starting with G3
7.

We next try to dominate G7 by placing two dominators a distance of 1 from two
corners and two other dominators a distance of 2 from the third corner. Doing so,
we produce G4

7, where one of a and b, one of c and d, and two of e, f , and g are
dominators. In each of these graphs one of the circled vertices fails to be dominated.
This exhausts all of the ways that we can ensure that all of the corners are dominated,
which suffices to prove the lemma. �

Theorem 8. The exponential domination numbers for G1 through G7 are

n 1 2 3 4 5 6 7

γe(Gn) 1 2 2 3 3 4 5

Proof. Lemmas 3–7 provide values for γe(Gn) for n ∈ {1, 2, 4, 6, 7}. To see that
γe(G3)≤ 2, consider G3 in Figure 3; by Lemmas 1 and 4, γe(G3)= 2. To see that
γe(G5)≤ 3, consider G5 in Figure 3; by Lemmas 1 and 5 we see that γe(G5)= 3. �

Theorem 9. The exponential domination numbers for G10 through G15 are bounded
as follows:

n 8 9 10 11 12 13 14 15

γe(Gn)≤ 6 6 7 9 10 11 12 13

Proof. Consult Figure 4 for graphs that satisfy these bounds. �
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Figure 4. Graphs for Theorem 9.
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3. Inequalities for exponential domination

We will now determine the total exponential dominating numbers for Gn up to n= 5.

Theorem 10 [Dankelmann et al. 2009]. If G is a connected graph of size n then

γe(G)≤ 2
5(n+ 2).

Applying this inequality to triangular grid graphs, we have the bound

γe(Gn)≤
2
5

((n+2
2

)
+ 2

)
=

1
5(n

2
+ 3n+ 6).

The theorem in [Dankelmann et al. 2009] that bounds γe(G) is established by
considering an exponentially dominated spanning tree of G and not G itself. In
establishing our bounds, we make use of the fact that Gn+1 can be constructed
from Gn by a set of elementary operations that are dependent on n. Our strongest
bounds arise from considering how we can construct a distribution of dominators
that dominates Gn+r based on a distribution of dominators that dominates Gn .

Lemma 11. Suppose G4n can be dominated by a set of m dominators where each of
the corners are dominated by two dominators placed on the perimeter at a distance
of 2 from each corner:

(1) If dominators are placed along the rest of the perimeter edge between those
two corners with a distance of 4 between each dominator, then G4n+4 can be
dominated in a similar manner with m+ n+ 3 dominators.

(2) If dominators are placed along two of the perimeter edges with a distance of 4
between each dominator, then G4n+8 can be dominated in a similar manner
by m+ 2n+ 6 dominators.

(3) If dominators are placed along the rest of the perimeter with a distance of 4
between each dominator, then G4n+12 can be dominated in a similar manner
by m+ 3n+ 9 dominators.

Proof. (1) Consider the labeled G4n+4 implied by Figure 5. A labeled G4n can be
seen by removing the lower four rows of vertices from the G4n+4 with the lower
perimeter of G4n , including the row of vertices labeled {1, 2, . . . , n}. Both G4n

and G4n+4 have dominators placed as described in the hypotheses of the lemma.
It can be confirmed that all of the vertices in the additional four rows of G4n+4

are dominated by this arrangement of dominators. If the G4n is dominated by
m dominators, then we have dominated G4n+4 by adding n+ 1 dominators along
the lower perimeter and two dominators on the other perimeters; thus we have
dominated G4n+4 with m+ n+ 3 dominators.

(2) Similarly, consider the labeled G4n+8 implied by Figure 5. If G4n is dominated
by m dominators then we have dominated G4n+8 by adding n+2 dominators along
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Figure 5. Graphs for Lemma 11.

two perimeter edges and two dominators on the other perimeter edge; thus we have
dominated G4n+8 with m+ 2n+ 6 dominators.

(3) Similarly, consider the labeled G4n+12 implied by Figure 5. If G4n is dominated
by m dominators then we have dominated G4n+12 by adding n+3 dominators along
each perimeter edge; thus we have dominated G4n+12 with m+3n+9 dominators. �

Lemma 12. If G15n can be dominated by m dominators where

(1) dominators are placed at two corners, and

(2) along the perimeter edge between those corners dominators are placed with a
distance of 3 between them,

then G15n+15 can be dominated in a similar manner by m+ 13+ 15n dominators.
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Figure 6. Graph for Lemma 12.

Proof. Consider the labeled G15n+15 implied by Figure 6. The lower perimeter
edge of a G15n is emboldened, as is part of the perimeter of a G15 dominated by
14 dominators. If dominators are placed in the lower 15 rows of G15n+15, outside
of the bold G15, as suggested by the placement of the labeled dominators, then
both G15n and G15n+15 have dominator distributions as described in the hypotheses
of the lemma. It can be confirmed that G15n+15 is dominated provided that G15n

is dominated. If G15n is dominated by m dominators then we have dominated
G15n+15 by placing 15n dominators in a regular pattern in the lower 15 rows
and 13 dominators in the remaining space; thus we have dominated G15n+15 with
m+ 13+ 15n dominators. �

Note that this lemma makes use of a G15 that is dominated using 14 dominators;
however, from Theorem 9 we see that the exponential dominating number is at
most 13. We use more dominators than necessary here in order to produce a
consistent pattern of dominators along the lower perimeter edge of each subsequently
constructed graph.

Theorem 13. The following inequalities hold for n ≥ 0:

(1) γe(G4n)≤
1
2(n(n+ 5)).

(2) γe(G4+8n)≤ 2n2
+ 6n+ 3.

(3) γe(G4+12n)≤
1
2(9n2

+ 15n+ 6).

(4) γe(G8+4n)≤
1
2(n

2
+ 9n+ 12).

(5) γe(G8n)≤ 2n(n+ 2).
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Figure 7. Graphs for Theorem 13.

(6) γe(G8+12n)≤
1
2(9n2

+ 21n+ 12).

(7) γe(G12+4n)≤
1
2(n

2
+ 11n+ 20).

(8) γe(G12+8n)≤ 2n2
+ 10n+ 10.

(9) γe(G12n)≤
1
2(9n2

+ 9n+ 2).

(10) γe(G15n)≤
1
2(15n2

+ 11n+ 2).

Proof. We will prove inequalities (1)–(3) and (10); inequalities (4)–(9) can be
proven by means similar to those used to prove (1)–(3) using the same lemmas.
The dominated G8 used for inequalities (4)–(6) and the dominated G12 used for
inequalities (7)–(9) can be found in Figure 4; the second G12 that appears in
Figure 4 is the one we use because it is the only one that satisfies the hypotheses of
Lemma 11.

From Figure 1 we see that G2
4 satisfies the hypotheses of Lemma 11. Lemma 5

also implies that γe(G4)≤ 3, so we see that inequality (1) holds for the case where
n = 1, and inequalities (2) and (3) hold for the case where n = 0.

Suppose that inequality (1) holds for all n up to some m; also suppose that G4m

can be dominated in agreement with the hypotheses of Lemma 11 by a number
of dominators less than or equal to the bound provided by inequality (1). Then
γe(G4m)≤

1
2(m

2
+5m), and by Lemma 11 we see that G4m+4 can be dominated by

1
2(m

2
+ 5m)+m+ 3= 1

2(m
2
+ 7m+ 6)= 1

2(m+ 1)(m+ 6)

dominators. Thus γe(G4(m+1))≤
1
2(m+1)((m+1)+5), which proves inequality (1).
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Suppose that inequality (2) holds for all n up to some m; also suppose that
G4+8m can be dominated in agreement with the hypotheses of Lemma 11 by a
number of dominators less than or equal to the bound provided by inequality (2).
Then γe(G4+8m)= γe(G4(1+2m))≤ 2m2

+ 6m+ 3, and by Lemma 11 we see that
G4(1+2m)+8 can be dominated by

(2m2
+ 6m+ 3)+ 2(1+ 2m)+ 6= 2m2

+ 10m+ 11= 2(m+ 1)2+ 6(m+ 1)+ 3

dominators. Thus

γe(G4(1+2m)+8)= γe(G4+8(m+1))≤ 2(m+ 1)2+ 6(m+ 1)+ 3,

which proves inequality (2).
Suppose that inequality (3) holds for all n up to some m; also suppose that

G4+12m can be dominated in agreement with the hypotheses of Lemma 11 by a
number of dominators less than or equal to the bound provided by inequality (3).
Then γe(G4+12m)= γe(G4(1+3m))≤

1
2(9m2

+ 15m+ 6), and by Lemma 11 we see
that G4(1+3m)+12 can be dominated by

1
2(9m2

+15m+6)+3(1+3m)+9= 1
2(9m2

+33m+30)= 1
2

(
9(m+1)2+15(m+1)+6

)
dominators. Thus

γe(G4(1+3m)+12)= γe(G4+12(m+1))≤
1
2

(
9(m+ 1)2+ 15(m+ 1)+ 6

)
,

which proves inequality (3).
From Figure 6 we see that G15 can be dominated by 14 dominators in a way that

satisfies the hypotheses of Lemma 12. This implies that γe(G15)≤ 14, so we see
inequality 10 holds for the case where n = 1. Suppose that inequality (10) holds for
all n up to some m; also suppose that G15m can be dominated in agreement with
the hypotheses of Lemma 12 by a number of dominators less than or equal to the
bound provided by inequality (10). Then γe(G15m)≤

1
2(15m2

+ 11m+ 2), and by
Lemma 12 we see that G15(m+1) can be dominated by

1
2(15m2

+11m+2)+13+15m= 1
2(15m2

+41m+28)= 1
2

(
15(m+1)2+11(m+1)+2

)
dominators. Thus,

γe(G15(m+1))≤
1
2

(
15(m+ 1)2+ 11(m+ 1)+ 2

)
,

which proves inequality (10). �

This provides us with the following corollary.

Corollary 14. The following inequalities hold for n ∈ Z+ as specified:

(1) γe(Gn)≤
1

32(n
2
+ 12n+ 32), where n mod 4= 0.

(2) γe(Gn)≤
1

30(n
2
+ 11n+ 30), where n mod 15= 0.
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The first inequality here is implied by inequalities (3), (6), and (9) in Theorem 13,
and the second inequality is implied by inequality (10). The other inequalities from
Theorem 13 do not provide bounds that are as good as these.

4. Base cases for total exponential domination

The following lemma is the analogue of Lemma 1 for total exponential domination.

Lemma 15. γte(Gn)≤ γte(Gn+1).

Lemma 16. γte(G1)= 2.

Proof. To see that γte(G1) ≤ 2, note that picking any two vertices as dominators
suffices to dominate G1. To see that γte(G1) 6= 1, note that a single dominator can
never dominate an entire graph. �

Lemma 17. γte(G3)= 3.

Proof. To see that γte(G3)≤ 3, consider the first graph in Figure 8. Suppose that
γte(G3) < 3. Then the graph is dominated with two dominators. In a graph with
only two dominators, the dominators must be adjacent since otherwise both of them
will not have weight greater than 1. Any G3 with two adjacent dominators will be
one of the graphs shown in Figure 8, none of which is dominated. �

Lemma 18. γte(G5)= 5.

Proof. The graphs referred to in this proof appear in Figure 9. To see that γte(G5)≤5,
consider the graph G5. Supposing that γte(G5) < 5, we can dominate the graph
with four dominators. Since each corner must have a weight greater than or equal
to 1, we organize this proof according to the ways that corners can be dominated
by the fewest number of dominators. Note that 1 can be written as a sum of four or
fewer powers of 1

2 (not necessarily unique) with numerators of 1 in the following
five ways: 1, 2

( 1
2

)
, 1

2+2
( 1

4

)
, 1

2+
1
4+2

( 1
8

)
, 4
( 1

4

)
. We consider each of these possible

combinations of weights separately.

1: One way for all of the corners to have weight at least 1 is to place dominators at
a distance of 1 from each of the corners. Doing so, we produce either G1

5 or G2
5. In

these graphs each dominator has weight less than 1
2 , so in order for the dominators

to be dominated we must place another dominator no more than a distance of 1
away from each. It is not possible to do this with a single dominator, so there is

•

•

•

• • • • •

•

•

•

Figure 8. Graphs for Lemma 17.
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Figure 9. Graphs for Lemma 18.

not a configuration of dominators that dominates the graph where each corner is
adjacent to a dominator.

2
(1

2
)
: Another method to dominate all of the corners is to place two dominators

a distance of 2 away from one corner and to place the other dominators adjacent
to the other corners. Doing this we produce G3

5, where two of a, b, and c are
dominators, one of d and e is a dominator, and one of f and g is a dominator. It
can be confirmed that in each of these cases the graph fails to be dominated.
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The next way to consider having corners dominated is to place two dominators
at a distance of 2 from one corner, and to do the same for a second corner. Doing
so we produce G4

5, where two of a, b, and c are dominators and two of d, e, and f
are dominators. It can be confirmed that in each of these cases the graph fails to be
dominated.
1
2 + 2

( 1
4
)
: The third case involves dominating a single corner by placing one

dominator at a distance of 2 and two dominators at a distance of 3 in such a way
that the dominators don’t interfere with one another. If we begin by doing this for
the top corner, we make one of the graphs from G5

5 to G11
5 . In those graphs with

vertices labeled a, each labeled vertex has domination less than 1
2 , so a dominator

must be placed adjacent to it. It is easy to confirm that doing so will never suffice to
dominate the graph by considering the lower corner vertex opposite to the labeled
vertex. In those graphs with vertices labeled b, the weight of each labeled vertex is
at least 1

2 but less than 3
4 , so a dominator must be placed at distance of 2 or closer.

Since the labeled vertices are a distance of 5 apart this is not possible.
1
2 +

1
4 + 2

( 1
8
)
: The only other cases that need to be considered are those in which all

four dominators are used to dominate a single corner. This can be achieved by plac-
ing dominators in a configuration with one dominator at a distance of 2, one domina-
tor at a distance of 3, and two dominators at a distance of 4 (using dS(u, v)). Doing
so, we produce one graph from G12

5 to G16
5 , where two of the vertices labeled by

letters are dominators. It can be confirmed that in each case the graph fails to be dom-
inated (this can be easily done by considering domination of the other two corners).

4
(1

4
)
: If we try to dominate G5 using four dominators all at a distance of 3 from

one of the corners then we produce G17
5 , which is not dominated. �

Theorem 19. The total exponential domination numbers for G1 through G5 are

n 1 2 3 4 5

γte(Gn) 2 2 3 3 5

Proof. Lemmas 16–18 provide γte(Gn) for n ∈ {1, 3, 5}. To see that γte(G2)≤ 2,
consider the graph in Figure 10; by Lemmas 15 and 16 we see that γte(G2) = 2.
To see that γte(G4)≤ 3, consider the graph in Figure 10; by Lemmas 15 and 17 we
see that γte(G4)= 3. �

•

•

G2
•

• •

G4

Figure 10. Graphs for Theorem 19.
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Theorem 20. The total exponential domination numbers for G6 through G9 are
bounded as follows:

n 6 7 8 9

γte(Gn)≤ 6 6 6 8

Proof. Consult Figure 7 for graphs that satisfy these bounds. �

5. Inequalities for total exponential domination

Lemma 21. If G2n+1 can be dominated by a set of m dominators so that there
exists a subgraph of G2n+1 isomorphic to G2n that contains all of the dominators
and such that

(1) two of the corners of the G2n subgraph are adjacent to two dominators, and

(2) dominators are placed along the rest of perimeter edge between those two
corners with a distance of 2 between each dominator,

then G2n+7 can be dominated in a similar way by m+ n+ 5 dominators.

Proof. Consider the labeled G2n+7 implied by Figure 11. The lower perimeter
edge of a G2n+1 has been emboldened. The lower perimeter edge of a G2n+6

subgraph corresponds with the second-lowest set of edges and vertices, including
the vertices labeled by {1, 2, . . . , n+ 2, n+ 3}; this graph has dominators placed
as described above. A labeled G2n can be produced by removing the lower seven
rows of vertices from the G2n+7; this G2n has dominators placed as described
above and is a subgraph of the G2n+1 whose lower perimeter edge is bold. It
can be confirmed that all of the vertices in the lower six rows are dominated by
an arrangement of dominators like the one depicted in Figure 11. If G2n+1 is
dominated by m dominators then we have dominated G2n+7 by adding a total of
n+ 5 dominators, thereby dominating G2n+7 with m+ n+ 5 dominators. �
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Figure 11. Graph for Lemma 21.
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Figure 12. Graph for Lemma 22.

Lemma 22. If G5n+2 can be dominated by a set of m dominators so that there
exists a subgraph of G5n+2 isomorphic to G5n+1 that contains all of the dominators
and such that

(1) two of the corners of the subgraph are dominators,

(2) along the perimeter edge of the subgraph between those dominators there are
two dominators adjacent to each of the above-mentioned dominators, and

(3) along the rest of the perimeter there occur pairs of adjacent dominators with a
distance of 4 between each pair,

then G5n+7 can be dominated in a similar way by m+ 4+ 2n dominators.

Proof. Consider the labeled G5n+7 implied by Figure 12. The lower perimeter edge
of a G5n+2 subgraph has been emboldened. The lower perimeter edge of a G5n+6

subgraph corresponds with the second-lowest set of edges and vertices, including
the vertices labeled by {1, 2, . . . , n, n + 1}; this graph has dominators placed as
described above. A labeled G5n+1 can be produced by removing the lower six rows
of vertices from the G5n+7; this graph has dominators placed as described above
and is a subgraph of the G5n+2 whose lower perimeter edge has been emboldened.
It can be confirmed that all of the vertices in the lower five rows are dominated by
an arrangement of dominators like the one depicted in Figure 12. If the G5n+2 is
dominated by m dominators then we have dominated G5n+7 by adding a total of
2n+ 4 dominators, thereby dominating G5n+7 with m+ 4+ 2n dominators. �

Theorem 23. The following inequalities hold for n ≥ 0:

(1) γte(G5+6n)≤
1
2(3n2

+ 11n+ 10).

(2) γte(G7+6n)≤
1
2(3n2

+ 13n+ 14).

(3) γte(G9+6n)≤
1
2(3n2

+ 15n+ 18).

(4) γte(G2+5n)≤ (n+ 1)(n+ 2).

Proof. We will prove inequalities (1) and (4). The proofs for inequalities (2) and
(3) are similar to the proof of inequality (1). The dominated G7 and G9 used to
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prove inequalities (2) and (3) can be found in Figure 7; we use the second G7 and
second G9 that appear because they are the only ones that satisfy the hypotheses of
Lemma 21.

From Figure 9 we see that G5 can be dominated by five dominators in a way that
satisfies the hypotheses of Lemma 21. This implies that γte(G5)≤ 5, so we see that
inequality (1) is satisfied for the case where n= 0. Suppose that inequality (1) holds
for all n up to some m; also suppose that G5+6m can be dominated in agreement
with the hypotheses of Lemma 21 by a number of dominators less than or equal
to the bound provided by inequality (1). Then γte(G5+6m) = γte(G2(3m+2)+1) ≤
1
2(3m2

+11m+10), and by Lemma 21 we see that G5+6(m+1) can be dominated by

1
2(3m2

+ 11m+ 10)+ (3m+ 2)+ 5= 1
2(3m2

+ 17m+ 24)

=
1
2

(
3(m+ 1)2+ 11(m+ 1)+ 10

)
dominators. Thus

γte(G5+6(m+1))≤
1
2

(
3(m+ 1)2+ 11(m+ 1)+ 10

)
,

which proves inequality (1).
From Figure 10 we see that G2 can be dominated in a way that satisfies the

hypotheses of Lemma 22. This implies that γte(G2)≤2, so we see that inequality (4)
holds in the case where n=0. For some m>0 suppose that G2+5m can be dominated
in agreement with the hypotheses of Lemma 22 by a number of dominators less than
or equal to the bound provided by inequality (4). Then γte(G2+5m)≤m2

+ 3m+ 2,
and by Lemma 22, G7+5m can be dominated by

(m2
+ 3m+ 2)+ 4+ 2m = m2

+ 5m+ 6= (m+ 1)2+ 3(m+ 1)+ 2

dominators. Thus

γte(G7+5m)= γte(G2+5(m+1))≤ (m+ 1)2+ 3(m+ 1)+ 2,

which proves inequality (4). �

Corollary 24. The following inequalities hold for n as specified:

(1) γte(Gn)≤
1

24(n
2
+ 12n+ 35), where n is odd and n ≥ 5.

(2) γte(Gn)≤
1

25(n
2
+ 11n+ 24), where n mod 5= 2.

6. Conclusion

In this paper we have proven the values of γe(Gn) for n ≤ 7 and γte(Gn) for
n ≤ 5. We also provided bounds on γe(Gn) for n ≤ 15 and γte(Gn) for n ≤ 9. We
made use of the regular structure of triangular matchstick arrangement graphs to
establish bounds on γe(Gn) and γte(Gn) for arbitrary n. The constructive methods
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we used produced inequalities that are significantly tighter than those found in
[Dankelmann et al. 2009]. These techniques are particularly promising since the
family of triangular grid graphs is just one family of graphs where Gn+1 can be
constructed from Gn by adding edges and vertices in a regularly defined manner.
Similar methods could be used with recursively constructible families of graphs
(studied in [Noy and Ribó 2004]) and regular n-gon grid graphs, such as square
grid graphs, as in [Gonçalves et al. 2011].
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Given a graph G, the tree cover number of the graph, denoted T .G/, is the
minimum number of vertex disjoint simple trees occurring as induced subgraphs
that cover all the vertices of G. This graph parameter was introduced in 2011 as a
tool for studying the maximum positive semidefinite nullity of a graph, and little
is known about it. It is conjectured that the tree cover number of a graph is at
most the maximum positive semidefinite nullity of the graph.

In this paper, we establish bounds on the tree cover number of a graph, charac-
terize when an edge is required to be in some tree of a minimum tree cover, and
show that the tree cover number of the d -dimensional hypercube is 2 for all d � 2.

1. Introduction

A simple graph is a pair G D .V;E/, where V D f1; 2; : : : ; ng is the vertex set,
and E, the edge set, is a set of 2-element subsets (edges) of the vertices. A
multigraph is a pair G D .V;E/, where V D f1; 2; : : : ; ng, and E is a multiset
of 2-element subsets of the vertices. That is, a multigraph allows multiple edges
between a pair of vertices (note that all simple graphs are multigraphs). Two
vertices u; v 2 V .G/ are said to be adjacent if fu; vg 2E.G/. We say that the edge
fu; vg 2 E.G/ is a simple edge if fu; vg appears in E.G/ exactly once. If fu; vg
appears in E.G/ more than once, then it is a multiedge. All graphs in this paper
are considered to be multigraphs unless otherwise stated.

For a multigraph G, S.G/ denotes the set of real valued symmetric n�n matrices
.ai;j / satisfying:

(1) ai;j D 0 if i ¤ j and i; j are nonadjacent,

(2) ai;j ¤ 0 if i ¤ j and i; j are adjacent via one edge, and

(3) ai;j 2 R if i D j or i; j are adjacent via multiple edges.
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The maximum nullity of a multigraph G is defined to be

M.G/Dmaxfnull.A/ WA 2 S.G/g:

The maximum nullity of a simple graph G is equivalent to the maximum multiplicity
of an eigenvalue among all matrices in S.G/. This graph parameter has connections
to many other concepts in linear algebra (as can be seen in [Fallat and Hogben
2007; 2014]), and has been given a significant amount of consideration as it is very
difficult to compute.

A related and equally important parameter is the maximum positive semidefinite
nullity of a graph. A symmetric n�n real matrix A is said to be positive semidefinite
if xT Ax � 0 for all x 2 Rn. The maximum positive semidefinite nullity of a
multigraph G is defined to be

MC.G/Dmaxfnull.A/ WA 2 SC.G/g;

where SC.G/DfA2S.G/ WA is positive semidefiniteg. It follows that for a multi-
graph G, MC.G/�M.G/. In some cases, one can use tools such as orthogonal
representations (see [Fallat and Hogben 2014]) to compute MC.G/, obtaining a
lower bound for M.G/.

The tree cover number of a graph was introduced in [Barioli et al. 2011] as another
tool for studying the maximum positive semidefinite nullity of a multigraph.

The (simple) path on n vertices, denoted Pn, is the graph with vertex set V .Pn/D

f1; : : : ; ng and edge set E.Pn/ D ffi; i C 1g j i 2 1; : : : ; n� 1g. A simple graph
G D .V;E/ is said to be a tree if for every u; v 2 V .G/, there is exactly one path
from u to v.

Given a graph G D .V;E/, a subgraph G0 D .V 0;E0/ is a graph such that
V .G0/� V .G/ and E.G0/�E.G/, i.e., a subgraph of a graph G can be obtained
by deleting edges and vertices (and edges incident to the deleted vertices) of G. A
subgraph G0 D .V 0;E0/ of G is said to be an induced subgraph of G if for each
edge uv 2 E.G/ with u; v 2 V .G0/, it follows that uv 2 E.G0/, i.e., an induced
subgraph of G can be obtained by only deleting vertices (and any edges incident
to the deleted vertices). For a subset S � V .G/, the graph induced by S , denoted
GŒS �, is the induced subgraph of G with vertex set S .

A tree cover is a set of vertex disjoint simple trees occurring as induced subgraphs
that cover all the vertices of the graph. The tree cover number of a graph G, denoted
T .G/, is defined as

T .G/DminfjTj W T is a tree cover of Gg:

Conjecture 1 [Barioli et al. 2011]. T .G/�MC.G/.

This bound has been proven to be true for several families of graphs, including
outerplanar graphs and chordal graphs [Barioli et al. 2011]. In fact, in the previous
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work, the authors showed that equality holds for outerplanar graphs (and in fact for
all graphs of tree-width at most 2, as observed in [Ekstrand et al. 2012]).

In Section 2 we give bounds on the tree cover number, provide an example in
which the tree cover number behaves like the maximum positive semidefinite nullity,
and provide an example in which the tree cover number does not behave like the
maximum positive semidefinite nullity; see [Barioli et al. 2011; Ekstrand et al. 2012]
for definitions of outerplanar and tree-width. In Section 3, we characterize when an
edge is required to be in some tree of a minimum tree cover. In Section 4, we prove
that the tree cover number of the d�dimensional hypercube is 2 for all d � 2.

1.1. More notation and terminology. The cycle on n vertices, denoted Cn, is the
graph with vertex set V .Cn/D f1; : : : ; ng and edge set

E.Cn/D ffi; i C 1g j i 2 1; : : : ; n� 1g[ f1; ng:

The star K1;n is the graph with vertex set f1; : : : ; ng and edge set ff1; j g j j 2
f2; : : : ; ngg. The complete graph, denoted Kn, is the graph on n vertices such that
there is an edge between any two vertices.

A graph is said to be connected if there is a path from any vertex to any other
vertex. If G is not connected, then it is said to be disconnected. Given a graph
G D .V;E/, a connected component of G is a subgraph C , where C is connected
and no vertex in C is adjacent to any vertex of V .G/ nV .C /. A graph is said to be
a forest if each of its connected components is a tree.

If vertices u and v are adjacent, we say that they are neighbors. The neighborhood
of a vertex v, denoted N.v/, is the set of neighbors of v. The degree of v is given
by deg.v/D jN.v/j.

For a graph GD .V;E/, a cover of G is a partition of V .G/. An independent set S

is a subset of V .G/ such that no two vertices in S are adjacent. The independence
number of G, denoted ˛.G/, is defined by

˛.G/DmaxfjS j W S is an independent set in Gg:

Given two simple graphs G and H , the cartesian product of G and H , denoted
G �H , is the graph whose vertex set is the cartesian product V .G/�V .H /, and
any two vertices .u;u0/ and .v; v0/ are adjacent in G�H if and only if either uD v

and u0 is adjacent to v0 in H , or u0 D v0 and u is adjacent to v in G. The union of
G and H , denoted G [H , is the graph with vertex set V .G/[V .H / and edge set
E.G/[E.H /.

Throughout this paper, we often denote an edge fu; vg by uv. An edge uv is
called a bridge of G if C � uv is disconnected, where C is the component of G

with uv 2E.C / and C �uv denotes the subgraph obtained from C by deleting the
edge uv. Note that if e D uv is a bridge, then e D uv is a simple edge.
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2. Some bounds for the tree cover number

In this section, we give an upper bound on the tree cover number of a graph using
the size of an independent set in the graph. We also provide upper and lower bounds
on the tree cover number of a subgraph of G obtained by deleting an edge from G.
In addition, we observe that subdividing an edge of a graph does not change the
tree cover number.

The following proposition shows that, for a connected simple graph, we are able
to bound the tree cover number by the difference between the order of the graph
and the size of an independent set of vertices of the graph.

Proposition 2. Let G D .V;E/ be a connected simple graph, and let S � V .G/ be
an independent set. Then, T .G/ � jGj � jS j. In particular, T .G/ � jGj � ˛.G/,
where ˛.G/ is the independence number of G. Furthermore, this bound is tight.

Proof. Let V .G/ D fv1; v2; : : : ; vng and suppose that S D fv1; : : : ; vkg is an
independent set. We construct a tree cover of size n� k by the following iterative
process: for i D kC 1, let Tvi

be the tree induced by the set of vertices fvkC1g[

fN.vkC1/\Sg. For i D kC2 to n, let Tvi
be the tree induced by the set of vertices

in fvig[ fN.vi/\Sg that do not belong to V .Tvj
/ for kC 1� j < i . Since G is

connected, each s 2 S has at least one neighbor in fvkC1; : : : ; vng, so this process
produces a tree cover of G (where all components are stars) of size n� k. Thus,
T .G/� n�k. In particular, T .G/� n�˛.G/. The star K1;n shows that the bound
T .G/� jGj �˛.G/ is tight. �

In connection with the conjecture that T.G/�MC.G/, we show that for some
bounds on MC.G/, analogous bounds hold for T.G/.

For a graph G D .V;E/ and e 2 E.G/, let G � e denoted the graph obtained
from G be deleting the edge e. In [Booth et al. 2011], it was shown that

MC.G/� 1�MC.G � e/�MC.G/C 1;

when G is a simple graph. We show that an analogous bound holds for the tree
cover number of a multigraph G.

Theorem 3. For a graph G D .V;E/ and e 2E.G/,

T.G/� 1� T.G � e/� T .G/C 1:

Proof. Let u; v 2 V .G/ such that e D uv. Consider the graph G � e obtained
from G by deleting e (note that e could be a multiedge). Let T be a minimum
tree cover of G � e. If u and v are in disjoint trees in T, then T is a tree cover
of G. So, T .G/� T .G � e/. If u and v are in the same tree in T, denoted by Tuv ,
then the graph induced by the vertices of Tuv contains a cycle in G, so T is not
a tree cover of G. However, we may partition the vertices of Tuv into two sets
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A and B, such that the tree induced by the vertices in A contains u and the tree
induced by the vertices in B contains v. Denote these trees by TA and TB . Then,
.T nTuv/[TA [TB is a tree cover of G of size T .G � e/C 1. This shows that
T.G/� 1� T.G � e/.

We now show that T .G � e/ � T .G/C 1. Suppose there is a minimum tree
cover T of G such that u and v are in separate trees. Then T is a tree cover of
G � e, so T .G � e/� T .G/. Otherwise, let T be a minimum tree cover of G that
uses the edge e (so e is a simple edge by the definition of a tree cover), and let Te

be the tree in T that contains e. By deleting e from Te , we produce a tree cover of
G � e of size T .G/C 1. This shows that T .G � e/� T .G/C 1, which completes
the proof. �

The next theorem gives a bound that holds for the positive semidefinite maximum
nullity of a graph, but the example that follows demonstrates that the analogous
bound for the tree cover number fails.

A 2-separation of a graph G D .V;E/ is a pair of subgraphs .G1;G2/ such
that V .G1/ [ V .G2/ D V , jV .G1/ \ V .G2/j D 2, E.G1/ [E.G2/ D E, and
E.G1/\E.G2/D∅.

Theorem 4 [van der Holst 2009, Theorem 2.8]. Let .G1;G2/ be a 2-separation
of a graph G D .V;E/, and let H1 and H2 be obtained from G1 D .V1;E1/

and G2 D .V2;E2/, respectively, by adding an edge between the vertices of RD

fr1; r2g D V1\V2. Then

MC.G/DmaxfMC.G1/CMC.G2/� 2;MC.H1/CMC.H2/� 2g:

The analogous bound does not hold for the tree cover number. The next example
provides a counterexample.

Example 5. For the graphs G;G1;G2;H1;H2 given in Figure 1, we have that
MC.Gi/ D 2, MC.Hi/ D 3, and T .Gi/ D T .Hi/ D 2 for i 2 f1; 2g. So by
Theorem 4, MC.G/D 4. However,

3D T.G/ >maxfT.G1/CT.G2/� 2;T.H1/CT.H2/� 2g D 2:

3. Characterizing edges required in a minimum tree cover

Proposition 6. Let G D .V;E/ be a graph such that uv 2E.G/ is a bridge. Then
uv is in a tree in every minimum tree cover of G.

Proof. Note that there is no path from u to v that does not include uv. Therefore, for
any tree cover that does not include uv, it must be the case that u and v are in separate
trees. These two trees can be consolidated into one tree by adding the edge uv. �

We then ask the question: if an edge is required in every minimum tree cover,
must it be a bridge? Figure 2 shows that such an edge is not necessarily a bridge.
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Figure 1. Graphs of G (top left), G1 (top middle), G2 (top right),
H1 (bottom left), and H2 (bottom right).
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Figure 2. Graph for Example 7.

Example 7. Figure 2 gives a graph whose tree cover number is 2. However,
although uv is not a bridge, any tree cover that does not include uv is of size at least 3.

The next lemma gives us a way to determine if an edge is required in every mini-
mum tree cover, given that we are able to compute the necessary tree cover numbers.

Lemma 8. Let G be a graph, u; v 2 V .G/, and uv is a simple edge in E.G/. Let
H be the graph obtained from G by adding a vertex such that V .H /D V .G/[fwg

and E.H /DE.G/[fuw; vwg, where uw and vw are simple edges. Then, uv is
required in every minimum tree cover of G if and only if T.H /D T.G/C 1.

Proof. First observe that T .H / � T .G/C 1 since any tree cover of G together
with fwg is a tree cover for H . Let T D fT1;T2; : : : ;Tkg be a minimum tree
cover of H such that w 2 Ti for some i . Since w, u, and v cannot all be in
the same tree, then either w is a leaf in Ti or Ti D fwg. If w is a leaf in Ti ,
then T1;T2; : : : ;Ti �w;TiC1; : : : ;Tk is a tree cover of G, so T .G/ � T .H /. If
Ti D fwg, then TnTi is a tree cover for G, so T .G/� T .H /�1. This shows that
T .H /D T .G/ or T .H /D T .G/C 1.
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Figure 3. Graphs of G, H , and yH for Example 9.

Suppose that uv is required in every minimum tree cover of G. If w is a leaf
in Ti , then T1;T2; : : : ;Ti �w;TiC1; : : : ;Tk is a tree cover of G with u and v in
separate trees, so it follows that T .H /D T .G/C1. If Ti D fwg, then we also have
that T .H /D T .G/C 1.

Suppose that there exists a minimum tree cover TD fT1;T2; : : : ;Tkg of G such
that u and v are in different trees. If u 2 Ti , we can create a tree cover of H of
size k by adding the edge uw to E.Ti/. In this case, T .G/D T .H /. �

One might think that if H is a graph obtained from G by adding the edge uv,
and uv is required in every minimum tree cover of H , then T .G/ D T .H /C 1.
However, this is not true. Example 9 provides a counterexample.

Example 9. It is easy to see that T .G/DT .H /D 2 (for H , take the set f1;u; v; 5g
and f2; 3; 4g for example). It can also be verified that T . yH /D 3. By Lemma 8, it
follows that the edge uv is required in every minimum tree cover of H .

4. Tree cover number of the hypercube

The d-dimensional hypercube, denoted Qd , is the simple graph with vertex set
f0; 1gd where two vertices are adjacent if and only if they differ in exactly one
position. For example, the 2-dimensional hypercube is a square (see left figure
below) and the 3-dimensional hypercube is a cube (right figure). Equivalently,

00

01

10

11

000

001 010

011

100

101 110

111

hypercubes can be inductively defined as the cartesian product of d copies of the
complete graph K2. Hypercubes are a particular case of a larger family of graphs
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called Hamming graphs. The d -dimensional Hamming graph, denoted H.d; q/, is
the graph with vertex set f0; : : : ; n� 1gd where two vertices are adjacent if and
only if they differ in exactly one position. Hamming graphs are of use in many
areas including error-correcting codes, modeling heat diffusion, and association
schemes in statistics. In this section, we show that the tree cover number of the
d -dimensional hypercube is 2 for all d � 2.

Theorem 10. Let Qd be the d-dimensional hypercube graph. For all d � 2,
T .Qd /D 2.

Proof. We first list explicit sets which induce a tree cover of size 2 for Qd , for
d 2 f2; 3; 4; 5g:

T12
Df.00/; .01/g; T22

Df.11/; .10/g:

T13
Df.010/; .000/; .001/; .110/g; T23

Df.111/; .011/; .100/; .101/g:

T14
Df.0011/; .0010/; .0000/; .0110/; .1111/; .1011/; .1100/; .1101/g;

T24
Df.0001/; .0111/; .0100/; .0101/; .1010/; .1000/; .1001/; .1110/g:

T15
Df.00100/; .00011/; .00000/; .00110/; .01111/; .01011/; .01100/; .01101/;

.10001/; .10111/; .10100/; .10101/; .11010/; .11000/; .11001/; .11110/g;

T25
Df.00010/; .00001/; .00111/; .00101/; .01010/; .01000/; .01001/; .01110/;

.10011/; .10010/; .10000/; .10110/; .11111/; .11011/; .11100/; .11101/g:

Other values of d are handled by induction. Throughout the proof, the sets yT1j

and yT2j
are covers that will be used as preliminary steps to obtain the sets T1j

and T2j
that will induce a tree cover of size two for Qj . The proof proceeds as

follows: first we give a cover and a tree cover of size two for Q6; due to the volume
of data this information is presented in an online-only supplement. Then, using
this tree cover, we construct a cover and a tree cover of size two for Q7, which
again appears in the supplement. We then inductively show that for d � 8 we can
systematically construct a tree cover of size two using the covers and tree covers
constructed for Qd�1 and Qd�2.

Consider the sets yT16
and yT26

given in the supplement. Note that f yT16
; yT26
g

is a cover for Q6, and that Q6Œ yT16
� and Q6Œ yT17

� are both forests, each consisting
of two disjoint trees. Let x16

D .001101/, x26
D .110010/, y16

D .001001/,
y26
D .110100/. Then x16

and x26
are in yT16

, and they are not in the same tree
in Q6Œ yT16

�. Similarly, y16
and y26

are in yT26
, and they are not in the same tree in

Q6Œ yT26
�. By swapping x16

and y16
, the resulting sets T16

and T26
(listed in the

supplement) induce a tree cover for Q6 of size two.
To obtain a tree cover of size two for Q7, we begin by adding a 0 to the beginning

of each element in T16
, and a 1 to the beginning of each element in T26

. Denote

http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
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these sets by T16;0 and T26;1, respectively, and let yT17
WD T16;0[T26;1. Similarly,

we construct the sets T16;1 and T26;0, and let yT27
WDT16;1[T26;0 (see supplement).

Then, both Q7Œ yT17
� and Q7Œ yT27

� are forests consisting of two disjoint trees. By
swapping 0x26

and 0y26
, the resulting sets T17

and T27
(given in supplement)

induce a tree cover of size two for Q7.
We proceed by induction to prove the claim for Qd with d � 8. Suppose that we

have constructed the sets yT1d�2
D fx1;x2; : : : ;xng and yT2d�2

D fy1;y2; : : : ;yng

such that f yT1d�2
; yT2d�2

g gives a cover for Qd�2 satisfying the following conditions:

(1) Qd�2Œ yT1d�2
� and Qd�2Œ yT2d�2

� are forests composed of two disjoint trees.

(2) Swapping x1 and y1 results in sets

T1d�2
D fy1;x2; : : : ;xng; T2d�2

D fx1;y2; : : : ;yng;

that induce a tree cover of Qd�2 of size two.

(3) For the cover

yT1d�1
DT1d�2;0

[T2d�2;1
D f0y1; 0x2; 0x3; : : : ; 0xn; 1x1; 1y2; : : : ; 1yng;

yT2d�1
DT2d�2;0

[T1d�2;1
D f0x1; 0y2; 0y3; : : : ; 0yn; 1y1; 1x2; : : : ; 1xng;

of Qd�1, swapping 0x2 2
yT1d�1

and 0y2 2
yT2d�1

results in sets

T1d�1
D f0y1; 0y2; 0x3; : : : ; 0xn; 1x1; 1y2; : : : ; 1yng;

T2d�1
D f0x1; 0x2; 0y3; : : : ; 0yn; 1y1; 1x2; : : : ; 1xng;

for Qd�1 that induced a tree cover of Qd�1 of size two.

(4) x1 and x2 are not in the same induced tree in yT1d�2
.

(5) y1 and y2 are not in the same induced tree in yT2d�2
.

We are also assuming that xi ¤ xj , yi ¤ yj for i ¤ j , and xi ¤ yj for all i; j .
Then we can construct a cover for Qd such that swapping two of the elements in

the cover will result in a tree cover of size two for Qd . Furthermore, we show that
the constructed cover and tree cover for Qd , together with the constructed cover
and tree cover for Qd�1, still satisfy the above hypotheses, which proves the claim
for all d � 8.

We first construct a cover f yT1d
; yT2d
g for Qd in the following way:

yT1d
D T1d�1;0

[T2d�1;1

D f00y1; 00y2; 00x3; : : : ; 00xn; 01x1; 01y2; 01y3; : : : ; 01yn;

10x1; 10x2; 10y3; : : : ; 10yn; 11y1; 11x2; 11x3; : : : ; 11xng:

http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
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yT2d
D T2d�1;0

[T1d�1;1

D f00x1; 00x2; 00y3; : : : ; 00yn; 01y1; 01x2; 01x3; : : : ; 01xn;

10y1; 10y2; 10x3; : : : ; 10xn; 11x1; 11y2; 11y3; : : : ; 11yng:

Note that since Qd�1ŒT1d�1
� and Qd�1ŒT2d�1

� are two disjoint trees, it follows that
Qd Œ yT1d

� is a forest consisting of two disjoint trees. Similarly, Qd Œ yT2d
� is a forest

consisting of two disjoint trees. By swapping 01x1 and 01y1, we obtain the sets

T1d
D f00y1; 00y2; 00x3; : : : ; 00xn; 01y1; 01y2; 01y3; : : : ; 01yn;

10x1; 10x2; 10y3; : : : ; 10yn; 11y1; 11x2; 11x3; : : : ; 11xng;

T2d
D f00x1; 00x2; 00y3; : : : ; 00yn; 01x1; 01x2; 01x3; : : : ; 01xn;

10y1; 10y2; 10x3; : : : ; 10xn; 11x1; 11y2; 11y3; : : : ; 11yng:

We now show that fQd ŒT1d
�;Qd ŒT2d

�g is a tree cover for Qd of size two by
showing:

(1) Qd ŒT1d
� and Qd ŒT2d

� are forests (i.e., there are no cycles in each of Qd ŒT1d
�

and Qd ŒT2d
�).

(2) Both Qd ŒT1d
� and Qd ŒT2d

� are connected graphs.

We show that Qd ŒT1d
� is a forest (a similar argument shows that Qd ŒT2d

� is a
forest). From our construction Qd Œ yT1d

� is a forest composed of 2 trees, denoted
Qd Œ yA� and Qd ŒB�, where

yA WD f00y1; 00y2; 00x3; : : : ; 00xn; 01x1; 01y2; 01y3; : : : ; 01yng;

B WD f10x1; 10x2; 10y3; : : : ; 10yn; 11y1; 11x2; 11x3; : : : ; 11xng:

By definition T1d
D . yT1d

n f01x1g/[f01y1g. By removing 01x1 from yT1d
, B is

not affected, and Qd Œ yAnf01x1g� is now the union of deg.01x1/ disjoint trees. We
now show that by adding 01y1 to yT1d

n f01x1g, no cycles are created in Qd Œ T1d
].

Define A D f00y1; 00y2; 00x3; : : : ; 00xn; 01y1; 01y2; 01y3; : : : ; 01yng (note that
T1d
D A[B). Between A and B, the only vertices that are adjacent are 01y1

and 11y1 (everything else differs in more than one position). Hence, if there is
a cycle in Qd ŒT1d

�, it must be in Qd ŒA�. Since Qd ŒA n f01y1g� (which equals
Qd ŒÂnf01x1g�) is a forest composed of deg.01x1/ trees, if there is a cycle in
Qd ŒA� it must involve 01y1. We will now show that it is not possible to have a
cycle involving 01y1, hence no cycle is possible in Qd ŒT1d

�.
Note that there is an edge between 00y1 and 01y1, and that there are no edges

between 01y1 and any of 00y2; 00x3; : : : ; 00xn. Thus, the neighbors of 01y1 in
Qd ŒA� are 00y1 and a subset of f01y3; 01y4; : : : ; 01yng (since y1 is not adjacent to
y2 by condition (5) above, then 01y1 is not adjacent to 01y2). Let 01yi and 01yj ,
i ¤ j , be arbitrary neighbors of 01y1. We show that:
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(a) There is no path from 01yi to 01yj in Qd ŒA� for i; j 2 f3; 4; : : : ; ng that does
not include 01y1.

(b) There is no path from 00y1 to 01yi in Qd ŒA� that does not include 01y1.

To see (a), note that from condition (1), Qd�2Œfy1; : : : ;yng� is a forest of two
disjoint trees. This implies that Qd Œf01y1; : : : ; 01yng� is a forest of two disjoint
trees. Then, within Qd Œf01y1; : : : ; 01yng� there is no path from 01yi to 01yj that
does not include 01y1. Note that vertices of f01y3; 01y4; : : : ; 01yng are not adjacent
to any vertices in A except for possibly each other and 01y1 and 01y2. Thus, any
path from 01yi to 01yj not including 01y1 must include 01y2. By condition (1),
y1 and y2 are not in the same induced tree of Qd�2Œfy1; : : : ;yng�, so 01y1 and
01y2 are not in the same induced tree of Qd Œf01y1; : : : ; 01yng�. Since 01yi and
01yj are neighbors of 01y1, and 01y1 is not in the same induced tree as 01y2 in
Qd Œf01y1; : : : ; 01yng�, then 01yi and 01yj are not in the same induced tree as 01y2.
Thus, the only path from 01yi to 01yj is .01yi ; 01y1; 01yj /.

For (b), we have that the vertices in the set f01y3; 01y4; : : : ; 01yng are not
connected in Qd ŒA� to any vertices in A except for possibly each other and 01y1.
We also have that 01yi is not adjacent to 00y1 in Qd ŒA�. So any path from 01yi

to 00y1 must include 01y1.
Next we show that Qd ŒT1d

� is connected (a similar argument shows that Qd ŒT2d
�

is connected). Recall from the hypotheses that

Qd�2Œ yT2d�2
�DQd�2Œfy1;y2; : : : ;yng�

is a forest consisting of two disjoint trees, and

Qd�2ŒT2d�2
�DQd�2Œfx1;y2; : : : ;yng�

is a tree. This implies that y1 has exactly one fewer neighbor among y2; : : : ;yn

than x1. To see this, note that Qd�2Œ yT2d�2
n fy1g� is composed of 1C deg.y1/

trees. Since
Qd�2ŒT2d�2

�DQd�2Œ. yT2d�2
n fy1g/[fx1g�

is a tree, we must have deg.x1/D 1Cdeg.y1/. Therefore, 01y1 must have one less
neighbor than 01x1 among 01y2; : : : ; 01yn. Hence, 01y1 and 01x1 have the same
number of neighbors in A, and thus 01y1 has one more neighbor than 01x1 in T1d

.
We will now show that this last statement implies that Qd ŒT1d

� is connected.
Since the graphs induced by T1d�1

and T2d�1
are trees, then

Qd ŒT1d
�DQd ŒT1d�1;0

[T2d�1;1
�

is a forest consisting of two disjoint trees. Hence, Qd Œ yT1d
n f01x1g� is a forest

consisting of 1C deg.01x1/ trees. Since deg.01y1/ D 1C deg.01x1/, and since
Qd ŒT1d

� has no cycles, we have that each of the edges of 01y1 must be connected
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to a different component of the forest. Therefore, Qd ŒT1d
� is a tree. An analogous

argument shows that Qd ŒT2d
� is a tree. Thus, fQd ŒT1d

�;Qd ŒT2d
�g is a tree cover

of size two of Qd .
We now show that the covers and tree covers constructed for Qd�1 and Qd

satisfy the induction hypotheses. Note that since Qd�2ŒT1d�2
� and Qd�2ŒT2d�2

� are
two disjoint trees, it follows from construction that Qd Œ yT1d�1

� is a forest consisting
of two disjoint trees. Similarly, Qd Œ yT2d�1

� is a forest consisting of two disjoint
trees, satisfying condition (1). For clarity, we relabel the vertices of yT1d�1

and
yT2d�1

such that yT1d�1
Dfw1; : : : ; wmg and yT2d�1

Dfz1; : : : ; zmgwherew1D0x2,
w2 D 1x1, z1 D 0y2, and z2 D 1y1. Then by condition (3), swapping w1 and z1

results in sets T1d�1
Dfz1; w2; : : : ; wmg and T2d�1

Dfw1; z2; : : : ; zmg that induce
a tree cover of Qd�1 of size two, which shows that condition (2) is satisfied. Note
that with this relabeling, the sets yT1d

and yT2d
become

yT1d
D T1d�1;0

[T2d�1;1
D f0z1; 0w2; 0w3; : : : ; 0wm; 1w1; 1z; : : : ; 1zmg

yT2d
D T2d�1;0

[T1d�1;1
D f0w1; 0z2; 0y3; : : : ; 0zm; 1z1; 1w2; : : : ; 1wmg;

and we have shown above that swapping 0w2 D 01x1 and 0z2 D 01y1 results in
the sets T1d

and T2d
which induce a tree cover of size two for Qd , satisfying

condition (3). Furthermore, since w1D 0x2 2 T1d�2;0
and w2D 1x1 2 T2d�2;1

, we
have that w1 and w2 are not in the same induced tree in Qd�1Œ yT1d�1

�. Similarly,
z1 D 0y2 2 T2d�2;0

and z2 D 1y1 2 T1d�2;1
, so z1 and z2 are not in the same

induced tree in Qd�1Œ yT2d�1
�, showing that conditions (4) and (5) are satisfied.

Since the hypotheses still hold with the constructed covers and tree covers of
Qd�1 and Qd , then it follows, by inductively applying the above argument, that
T.Qd /D 2 for all d . �

One may wonder why the base case of the proof starts with Q6 and Q7. We
would like to note that starting as early as d D 2, we were able to use a tree cover
of Qd to produce a cover for QdC1 such that there exists two vertices that could
be swapped in order to produce a tree cover for QdC1. In fact, this is how we
constructed the tree covers for Q3;Q4;Q5 given at the start of the proof. However,
there is a choice to be made when switching vertices, and the point at which the
above constructive pattern holds is dependent upon the initial choice of vertices
that are swapped. For example, we experimented with using a different initial swap
and found that the pattern did not hold until d D 11 or later. It may also be the case
that there is an initial swap that allows the pattern to begin sooner than d D 8. This
is a very interesting phenomenon that is worth further exploration.

We also investigated the idea of generalizing the above proof to all Hamming
graphs. For H.2; 3/, we found that T .H.2; 3// D 3, and evidence suggests that
T .H.d; q//D q.
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Conjecture 11. T .H.d; q//D q, for H.d; q/ the Hamming graph of dimension d .
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Matrix completions for linear matrix equations
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A matrix completion problem asks whether a partial matrix composed of speci-
fied and unspecified entries can be completed to satisfy a given property. This
work focuses on determining which patterns of specified and unspecified entries
correspond to partial matrices that can be completed to solve three different
matrix equations. We approach this problem with two techniques: converting
the matrix equations into linear equations and examining bases for the solution
spaces of the matrix equations. We determine whether a particular pattern can
be written as a linear combination of the basis elements. This work classifies
patterns as admissible or inadmissible based on the ability of their corresponding
partial matrices to be completed to satisfy the matrix equation. Our results present
a partial or complete characterization of the admissibility of patterns for three
homogeneous linear matrix equations.

1. Introduction

A matrix completion problem asks whether a partial matrix, one with some entries
given and others freely chosen, can be completed to satisfy a desired property. In
this work, we classify patterns for entries in a partial matrix so that the partial
matrix can almost always be completed to satisfy certain linear matrix equations.
We establish limits on the number of specified entries in patterns and on the locations
of specified and unspecified entries.

Examples of matrix completion problems include determining completions for
M-matrices and inverse M-matrices where the desired property is that a nonnegative
partial matrix pattern of any order has an inverse M-matrix [Johnson and Smith
1996], where M-matrices are Z -matrices such that each eigenvalue of the matrix
has positive real parts. A Z -matrix is one whose off-diagonal entries are less than
or equal to zero. The inverse M-matrix completion problem can also be evaluated
using a graph theoretic approach [Hogben 1998; 2000]. Other classical matrix
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completion problems involve completing partial Hermitian matrices and positive
definite matrices to determine which partial positive definite matrices have a positive
definite completion [Grone et al. 1984], while others look at completing TP or TN
matrices with the goal of preserving low-rank [Johnson and Wei 2013]. A TP, or
totally positive, matrix is a square matrix such that the determinant of each square
submatrix (including minors) is positive. Equivalently, each of the eigenvalues of
such a matrix is nonnegative. TN matrices are totally nonnegative matrices.

Another matrix completion problem is the titled completion problem, which
asks if, given a conventional partial matrix, there exist values for the unspecified
entries resulting in a conventional matrix that is either doubly nonnegative (DN) or
completely positive (CP) [Drew et al. 2000]. Additionally, for partial matrices that
are symmetric and have specified entries along the diagonal, it is known there is a P-
matrix completion if and only if every given principal submatrix has a positive deter-
minant [Johnson and Kroschel 1996]. Any 4×4 pattern also has a P-completion if it
contains eight or fewer off-diagonal positions [DeAlba and Hogben 2000]. A graph
theoretic approach can also be used to evaluate the P-completion problem [Hogben
2001]. There are also results for matrix completions involving the Euclidean distance.
For example, for every partial distance matrix in Rk such that the graph of specified
entries is chordal, there exists a completion to a distance matrix in Rk [Bakonyi and
Johnson 1995]. These classic matrix completion problems determine the condition
under which a partial matrix can be completed, so that the resulting matrix has a cer-
tain property. Only one matrix is involved in these problems, the partial matrix itself.

In this work, we determine if a partial matrix can be completed to satisfy certain
matrix equations. In this case the admissibility of a pattern is relative to other
matrices in the matrix equation. We focus on determining which patterns of specified
and unspecified entries for partial matrices can almost always be completed to satisfy
the following matrix equations: the skew-symmetric equation AX − AT X = 0, the
commutativity equation AX − X A = 0, and the skew-Lyapunov equation AX −
X AT

= 0. It is not possible to, in general, solve these matrix completion problems
for all matrices A. So, we look to solve the completion for almost all matrices A.
That is, we assume A has a certain property that almost all matrices satisfy, and we
show that any partial matrix can be completed for almost all of these “generic” A.
In this work, we assume either A has distinct eigenvalues or is nonderogatory.

We use two approaches to classify patterns. The column space approach converts
the matrix equations to linear equations and uses linearly independent columns
to determine unspecified entry locations. The nullspace approach uses a basis of
the solution space of a homogeneous matrix equation to determine specified entry
locations. We classify patterns as admissible or inadmissible based on the ability
or inability of corresponding partial matrices to be completed to satisfy the matrix
equation for a “generic” matrix A.
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We discuss the important ideas and definitions relevant to completions of matrix
equations in Section 2. Sections 3 and 4 explain the two principle methods used
for classifying partial matrix patterns: the column space and nullspace approaches.
We apply the column space and nullspace approaches to the skew-symmetric,
commutativity, and skew-Lyapunov equations in Section 5 to classify patterns for
these equations.

2. Preliminaries

In this section, we define a partial matrix pattern, a partial matrix, a partial matrix
completion, and the admissibility or inadmissibility of matrix patterns. We include
relevant definitions and theorems from linear algebra, including the Kronecker
product and the vec function.

Definition 2.1. An n× n partial matrix pattern

α = {(it , jt) | 1≤ it , jt ≤ n, t = 1, . . . , n}

is a set of specified entry locations in an n×n matrix. For a partial matrix pattern α,
the n× n rectangular array X = [xi j ] is an α-partial matrix if the only specified
entries correspond to the locations in α.

A pattern describes locations in a matrix as specified or unspecified. A pattern
becomes a partial matrix when the specified entry locations have values assigned.

Definition 2.2. A completion of an α-partial matrix X = [xi j ] is a matrix X̂ =
[x̂i j ] ∈ Mn(R) in which x̂i j = xi j whenever (i, j) ∈ α.

Throughout this paper, X will represent a partial matrix, and X̂ will represent
a completion of X . For example, consider a 3 × 3 pattern α = {(1, 1), (1, 3),
(2, 2), (3, 2), (3, 3)}. The following are the pattern α, an α-partial matrix X , and a
completion X̂ :

α =

# � #
� # �
� # #

 , X =

 1 x12 4
x21 5 x23

x31 9 11

 , X̂ =

 1 15 4
13 5 19
2 9 11

 .
Definition 2.3. An n × n partial matrix pattern α is admissible for the matrix
equation

A1 X B1+ A2 X B2+ · · ·+ Ak X Bk = C

if for all α-partial matrices X there exists a completion X̂ such that

A1X̂ B1+ A2X̂ B2+ · · ·+ AkX̂ Bk = C,

where A1, A2, . . . , Ak, B1, B2, . . . , Bk,C ∈ Mn(R).
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Because the admissibility of a pattern, in this work, depends on the fully specified
matrices in the matrix equation, the problem of classifying admissible patterns
becomes unwieldy without some restrictions on these matrices. In this paper, we
restrict our attention to two large categories of matrices: nonderogatory matrices
and matrices with distinct eigenvalues. These restrictions are necessary in order to
calculate the maximum number of specified entry locations for the matrix equations
we examine. Both nonderogatory and distinct eigenvalues are “generic” matrix
properties in the sense that almost all matrices satisfy these properties.

There may be some versions of matrix equations for which a given partial matrix
may not be completed to satisfy the particular instance of the matrix equation. For
example with the 2×2 pattern α = {(1, 2), (2, 2)}, not all α-partial matrices can be
completed to commute with a diagonal matrix with distinct eigenvalues. However,
the only matrices A for which not all of these α-partial matrices can be completed
to commute with A are those matrices A with a 0 in the (1, 2) position. The set
of such matrices is a set of measure zero. So we say that α is admissible for the
commutativity equation in general, which is to say that α is admissible for the matrix
equation AX − X A = 0 for almost all “generic” A, which we show in Section 5.

In Sections 3 and 4, we construct conditions for the admissibility of patterns given
matrices A1, A2, . . . , Ak, B1, B2, . . . , Bk,C . For the matrix equations in Section 5,
there is only one matrix A that is fully specified, so admissibility of a pattern for
the general form of a matrix equation means any partial matrix can be completed
for almost all “generic” A. Admissibility depends on the matrix equation as well; a
pattern may be admissible for AX−AT X = 0 but not admissible for AX−X AT

= 0.
The matrix equation for which a pattern is admissible or inadmissible should be
clear from context.

Definition 2.4. An admissible pattern α is maximally admissible if and only if
|β| ≤ |α| for every admissible pattern β.

In Section 4 we show the dimension of the solution space of the matrix equations
gives the size of the maximally admissible patterns

Definition 2.5. The Kronecker product of A = [ai j ] ∈ Mm,n(R) and B = [bi j ] ∈

Mp,q(R) is denoted by A⊗ B and is defined to be the block matrix

A⊗ B ≡

a11 B · · · a1n B
...

. . .
...

am1 B · · · amn B

 ∈ Mmp,nq(R).

Definition 2.6. Given A = [ai j ] ∈ Mm,n(R), the function vec : Mm,n(R)→ Rmn is
defined as

vec(A)= [a11 · · · am1 a12 · · · am2 · · · a1n · · · amn]
T .
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The following theorem describes how to use the vec function and Kronecker
product to transform linear matrix equations into linear equations.

Theorem 2.7 [Neudecker 1969]. If A, B, I ∈Mn(R), where I is the identity matrix,
then

vec(AB)= (I ⊗ A) vec(B)= (BT
⊗ I ) vec(A).

The following notation describes the submatrices corresponding to certain rows
or columns.

Definition 2.8. If A ∈ Mm,n(R) and ε ⊆ {1, . . . ,m}, then A[ε] is defined as the
submatrix of A lying in the rows ε. The notation A[s] may also be used to indicate
the s-th row in A.

Definition 2.9. If A ∈ Mm,n(R) and ε ⊆ {1, . . . , n}, then A(ε) is defined as the
submatrix of A lying in the columns ε. The notation A(s) may also be used to
indicate the s-th column in A.

For example, let A ∈ M3(R) and let ε = {1, 3}. If we have

A =

35 24 19
39 76 14
12 7 20

 , then A[ε] =
[

35 24 19
12 7 20

]
and A(ε)=

35 19
39 14
12 20

 .
3. The column space approach

The vec function is a vector space isomorphism which is used to convert linear
matrix equations into linear equations. In this section, we show that unspecified
entry locations in maximally admissible patterns correspond to full rank submatrices
of a certain matrix.

Let A1, . . . , Ak, B1, . . . , Bk,C be n× n real matrices. Applying Theorem 2.7
to the matrix equation A1 X B1+ · · ·+ Ak X Bk = C yields the linear equation

(BT
1 ⊗ A1+ · · ·+ BT

k ⊗ Ak) vec(X)= vec(C).

The solution space of A1 X B1+ A2 X B2+ · · · + Ak X Bk = 0 is isomorphic to the
nullspace of B1

T
⊗ A1+ B2

T
⊗ A2+· · ·+ Bk

T
⊗ Ak . Throughout this section, we

denote this n2
× n2 matrix BT

1 ⊗ A1+ · · ·+ BT
k ⊗ Ak as K .

Lemma 3.1. Let A1, . . . , Ak , B1, . . . , Bk,C ∈ Mn(R) and α be an n × n partial
matrix pattern. There exists a completion X̂ of the α-partial matrix X satisfying
A1X̂ B1+ · · ·+ AkX̂ Bk = C if and only if

vec(C)−
∑
(i, j)∈α

xi j K (i + ( j − 1)n) ∈ span{K (i + ( j − 1)n) | (i, j) /∈ α}.
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Proof. The matrix equation A1X B1+· · ·+AkX Bk =C is equivalent to the equation
(BT

1 ⊗A1+· · ·+BT
k ⊗Ak) vec(X )= vec(C) where X has specified and unspecified

entries. As above, let K = BT
1 ⊗ A1+· · ·+ BT

k ⊗ Ak . Separating the specified and
unspecified entries of X we rewrite this equation as∑

(i, j) 6∈α

xi j K (i + ( j − 1)n)+
∑
(i, j)∈α

xi j K (i + ( j − 1)n)= vec(C),

where xi j are the entries in the partial matrix X . In the first sum, the entries are
unspecified while in the second sum, the entries xi j are specified. Moving the
specified entries to the right-hand side yields the linear equation∑

(i, j)/∈α

xi j K (i + ( j − 1)n)= vec(C)−
∑
(i, j)∈α

xi j K (i + ( j − 1)n).

This is solvable if and only if the vector on the right-hand side lies in span{K (i +
( j − 1)n | (i, j) /∈ α}. �

This lemma tells us precisely when a partial matrix can be completed to satisfy
a linear matrix equation and describes the linear system that must be solvable in
order to complete a partial matrix. If C is the zero matrix, then the condition for
the existence of a completion simplifies to∑

(i, j)∈α

xi j K (i + ( j − 1)n) ∈ span{K (i + ( j − 1)n) | (i, j) /∈ α},

which can be answered by determining which sets of columns of K have rank equal
to the rank of K . With some abuse of notation, let K (α) denote the submatrix of
columns of K corresponding to specified entries and K (ᾱ) denote the submatrix of
columns of K corresponding to unspecified entries.

Theorem 3.2. Let A1, . . . , Ak, B1, . . . , Bk,C ∈ Mn(R), α be an n × n partial
matrix pattern, and K = BT

1 ⊗ A1+· · ·+ BT
k ⊗ Ak . Then, the following statements

are equivalent:

(1) For a given α-partial matrix X and any C ∈ Mn(R) such that vec(C) ∈
span{K (1), . . . , K (n2)}, there exists a completion X̂ of X such that A1X̂ B1+

· · ·+ AkX̂ Bk = C.

(2) rank(K )= rank(K (ᾱ)).

Proof. Assuming (1), by Lemma 3.1 vec(C)−
∑

(i, j)∈α xi j K (i + ( j − 1)n) is in
the span of {K (i + ( j − 1)n) | (i, j) /∈ α} for all vec(C) in the span of the columns
of K . Since it is possible to choose C so that it is any vector in the column space
of K , it follows that the column space of K is contained in the column space of
K (ᾱ), and rank(K )= rank(K (ᾱ)), proving the second statement.
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Assuming (2), for any vec(C) in the column space of K (ᾱ) and any α-partial
matrix X , the column space K (ᾱ) is the column space of K , since K (ᾱ) is contained
in the column space of K and both matrices have the same rank. In particular, the
column space of K (α) is contained in the column space of K (ᾱ). Then for any
vec(C) in the column space of K , vec(C) lies in the column space of K (ᾱ), and
by Lemma 3.1 there exists a completion X̂ of the α-partial matrix X such that
A1X̂ B1+ · · ·+ AkX̂ Bk = C , establishing the first statement. �

In this paper, the specific matrix equations of interest are homogeneous. The
following corollary gives the condition that we use to classify patterns for this
column space approach: the rank of the columns of K corresponding to unspecified
entries must equal the rank of K . That is, the sets of columns of K with full rank
correspond to unspecified entry locations in admissible patterns.

Corollary 3.3. Let A1, . . . , Ak, B1, . . . , Bk ∈Mn(R), α be an n×n matrix pattern,
and K = BT

1 ⊗ A1+ · · ·+ BT
k ⊗ Ak . Then, the following statements are equivalent:

(1) The matrix pattern α is admissible for the matrix equation A1 X B1 + · · · +

Ak X Bk = 0.

(2) rank(K )= rank(K (ᾱ)).

Proof. This follows from the definition of admissibility, Theorem 3.2, and the fact
that 0 is in the span of the columns of K . �

Corollary 3.3 gives the size of a maximally admissible pattern, namely n2
−

rank(K ).

Corollary 3.4. Let A1, . . . , Ak , B1, . . . , Bk ∈ Mn(R) and K = BT
1 ⊗ A1 + · · · +

BT
k ⊗ Ak . If α is an admissible n× n partial matrix pattern for the matrix equation

A1 X B1+ · · ·+ Ak X Bk = 0,

|α| ≤ n2
− rank(K ).

Proof. If |α| > n2
− rank(K ), then the number of columns corresponding to

unspecified entries is strictly less than the rank(K ) and condition (2) of Corollary 3.3
can never be satisfied. �

Given a linear matrix equation, the patterns α that are admissible are exactly the
patterns that set unspecified entries against a set of columns of K whose span is
equal to the span of all the columns of K . With the column space approach we
think of the specified entries of X as removing certain columns from K . We then
look at the submatrix formed by the remaining columns of K and determine its rank.
An α-partial pattern is admissible if the rank of the columns of K corresponding to
unspecified entries is equal to the rank of K .
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The following lemmas establish two basic properties of matrix patterns: subpat-
terns of admissible patterns are admissible and patterns that contain inadmissible
patterns are inadmissible.

Lemma 3.5. Let α and β be partial matrix patterns such that α is admissible for
the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0, where A1, . . . , Ak, B1, . . . , Bk ∈

Mn(R), and let K = BT
1 ⊗ A1+ · · ·+ BT

k ⊗ Ak . If β ⊆ α, then β is admissible for
the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0.

Proof. By Corollary 3.3, α is admissible if and only if rank(K (ᾱ)) = rank(K ).
Since β ⊆ α, rank(K (ᾱ))≤ rank(K (β)). This forces rank(K (β))= rank(K ), and
β is admissible for the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0. �

Lemma 3.6. Let α and β be partial matrix patterns such that α is inadmissible for
the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0, where A1, . . . , Ak, B1, . . . , Bk ∈

Mn(R), and let K = BT
1 ⊗ A1+· · ·+BT

k ⊗ Ak . If α⊆β, then β is also inadmissible
for the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0.

Proof. By Corollary 3.3, α is admissible if and only if rank(K (ᾱ))= rank(K ). Since
α is inadmissible, rank(K (ᾱ))< rank(K ). Since α⊆β, rank(K (β))≤ rank(K (ᾱ)).
This forces rank(K (β)) < rank(K ), and β is also inadmissible for the matrix
equation A1 X B1+ · · ·+ Ak X Bk = 0. �

4. The nullspace approach

In this section we develop a second criterion for admissible patterns for the ho-
mogeneous matrix equation A1 X B1 + · · · + Ak X Bk = 0. We show that if the
specified entry locations of a pattern correspond to full rank submatrices of a matrix
constructed from a basis of the solution space of the homogeneous matrix equation,
the pattern is admissible. We also construct a basis for the solution space of two
special cases of this matrix equation

Nullspace criterion. Given a partial matrix, we need to determine if the specified
entries of the partial matrix can be written as a linear combination of basis elements
for the solution space of A1 X B1 + · · · + Ak X Bk = 0. Let {V1, V2, . . . , Vn} be a
basis for the solution space, then {vec(V1), vec(V2), . . . , vec(Vn)} is a basis for the
nullspace of BT

1 ⊗ A1+· · ·+BT
k ⊗ Ak . Throughout this paper we denote this matrix

[vec(V1) vec(V2) · · · vec(Vn)] as N .
The partial matrix has a completion if there exist scalars c1, . . . , cn such that the

specified entries of X satisfy

X = c1V1+ c2V2+ · · ·+ cnVn.

Applying the vec function to this equation yields

vec(X )= [vec(V1) vec(V2) · · · vec(Vn)]c= N c,
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where c = [c1 c2 · · · cn]
T . Only the rows in vec(X ) which are specified are of

interest because the unspecified entries can be freely chosen. Let ε= {i+ ( j−1)n |
(i, j) ∈ α}, the set of integer values corresponding to the rows of vec(X ) which
contain specified entries. Solving the equation

vec(X )[ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
= N [ε]c

is equivalent to determining if the specified entries of X can be written as a linear
combination of basis elements to the solution space of our linear equation.

The following theorem describes the nullspace condition for admissibility: the
submatrix of rows of N corresponding to specified entries must have rank at least
equal to the number of specified entries in X

Theorem 4.1. Let α be an n×n partial matrix pattern and {V1, V2, . . . , V`} be a ba-
sis for the solution space of the matrix equation A1 X B1+· · ·+Ak X Bk = 0. The ma-
trix pattern α is admissible for this matrix equation if and only if rank(N [ε])≥ |α|,
where ε = {i + ( j − 1)n | (i, j) ∈ α} and

N [ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(V`)[ε]

]
.

Proof. The matrix completion problem is equivalent to determining if there exists a
solution to the linear equation vec(X)[ε] = N [ε]c. N [ε] is an n× |α| matrix, so
this equation is solvable for all vec(X)[ε] if and only if rank(N [ε]) ≥ |α|. If so,
there exists a completion X̂ for any X satisfying A1X̂ B1+ · · ·+ AkX̂ Bk = 0.

If rank(N [ε]) < |α|, then vec(X)[ε] = N [ε]c has a solution if vec(X)[ε] lies
in the span of the columns of N [ε]. Since rank(N [ε]) < |α| and vec(X)[ε] is an
|α|-dimensional vector, there exists an α-partial matrix X such that vec(X)[ε] does
not lie in the span of the columns of N [ε]. Hence for this α-partial matrix X there
does not exist a completion of A1 X B1+ · · ·+ Ak X Bk = 0. Since this α does not
have a completion for all α-partial matrices, α is inadmissible. �

For maximal patterns, the condition for admissibility is that the number of
specified entries in X must equal the rank of N [ε].

Corollary 4.2. Let α be an n × n partial matrix pattern for the matrix equation
A1 X B1 + · · · + Ak X Bk = 0 and let {V1, V2, . . . , V`} be a basis for the solution
space of the given matrix equation. An admissible pattern α is maximal if and only
if |α| = `.

Proof. First assume that the admissible pattern is maximally admissible to show
that the number of specified entries equals the dimension of the solution space. For
the pattern to be admissible, the rank of N [ε] must be greater than |α|, but also
must not exceed the number of columns in N [ε]. Then, the greatest possible value
for the rank of N [ε] is `, namely the dimension of the solution space.
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We next assume that the number of specified entries equals the dimension of
the solution space to show that the admissible pattern is maximal. Then, since the
dimension of the solution space is `, |α| = `. Since N [ε] has ` columns and by
Theorem 4.1, |α| ≤ rank(N [ε]) ≤ `, the rank of N [ε] must equal `. Therefore, α
is maximally admissible because the dimension of α is as large as possible while
maintaining admissibility. �

Construction of bases for the nullspace. We construct a basis for the solution
space of the matrix equation AX + X B = 0 using eigenvectors of the matrices A
and B. This basis is used to classify patterns for the commutativity equation
AX − X A = 0 and the skew-Lyapunov equation AX − X AT

= 0 in Section 5.

Theorem 4.3 [Horn and Johnson 1991]. Let A ∈ Mn(R) and B ∈ Mm(R) be given.
If λ is an eigenvalue of A and x ∈Cn is a corresponding eigenvector of A, and if µ
is an eigenvalue of B and y∈Cm is a corresponding eigenvector of B, then λ+µ is
an eigenvalue of (Im⊗A)+(B⊗In), and y⊗x∈Cnm is a corresponding eigenvector.
Every eigenvalue of (Im ⊗ A)+ (B ⊗ In) arises as such a sum of eigenvalues of
A and B, and Im ⊗ A commutes with B⊗ In . If the set of eigenvalues of A equals
{λ1, λ2, . . . , λn} and the set of eigenvalues of B equals {µ1, µ2, . . . , µn}, then the
set of eigenvalues of (Im⊗A)+(B⊗In) equals {λi+µj | i=1, . . . , n, j=1, . . . ,m}
(including algebraic multiplicities in all three cases).

We use the lemma below to construct bases for I⊗A−AT
⊗ I and I⊗A−A⊗ I .

Lemma 4.4. If {x1, x2, . . . , xn
} and { y1, y2, . . . , yn

} are each linearly indepen-
dent sets of nonzero vectors, then { y1

⊗ x1, y2
⊗ x2, . . . , yn

⊗ xn
} is linearly

independent.

Proof. Let
xi
= [x i

1 x i
2 · · · x i

n]
T and yi

= [yi
1 yi

2 · · · yi
n]

T .

By the definition of the Kronecker product,

yi
⊗ xi
= [yi

1xi yi
2xi
· · · yi

n xi
]
T .

We want to show that

a1( y1
⊗x1)+a2( y2

⊗x2)+· · ·+an( yn
⊗xn)=0 only when a1=a2=· · ·=an=0.

Using the Kronecker product definition, this can be rewritten as

(a1 y1
1)x

1
+ (a2 y2

1)x
2
+ · · ·+ (an yn

1 )x
n
= 0,

(a1 y1
2)x

1
+ (a2 y2

2)x
2
+ · · ·+ (an yn

2 )x
n
= 0,

...

(a1 y1
n)x

1
+ (a2 y2

n)x
2
+ · · ·+ (an yn

n )x
n
= 0.
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Since x1, x2, . . . , xn are linearly independent,

a1 y1
= 0, a2 y2

= 0, . . . , an yn
= 0.

Since y1, y2, . . . , yn are nonzero vectors, there exists at least one nonzero entry
in each vector. This implies that a1 = a2 = · · · = an = 0. Therefore { y1

⊗ x1,

y2
⊗ x2, . . . , yn

⊗ xn
} is linearly independent. �

Remark 4.5. If we further assume that A has distinct eigenvalues, then the nullities
of (I ⊗ A)− (AT

⊗ I ) and (I ⊗ A)− (A⊗ I ) are both n (see Section 5). This and
Lemma 4.4 imply that { y1

⊗x1, y2
⊗x2, . . . , yn

⊗xn
} is a basis for the nullspace of

(I⊗A)−(AT
⊗ I ), where {x1, . . . xn} is a basis of eigenvectors for A corresponding

to eigenvalues λ1, . . . , λn and { y1, . . . yn} is a basis of eigenvectors for −AT corre-
sponding to eigenvalues −λ1, . . . ,−λn . Similarly {x1

⊗ x1, x2
⊗ x2, . . . , xn

⊗ xn
}

is a basis for the nullspace of (I ⊗ A)− (A⊗ I ).

5. Admissible patterns for certain matrix equations

In this section, we apply the column space and nullspace approaches to three matrix
equations: the skew-symmetric equation, the commutativity equation, and the skew-
Lyapunov equation. For the skew-symmetric equation, we completely characterize
admissible patterns. For the other two matrix equations we classify certain patterns
as admissible or inadmissible.

For the skew-symmetric equation, AX − AT X = 0, Theorem 5.2 states that
a maximal pattern is admissible if and only if it contains one specified entry in
each column of an α-partial matrix X . We also show all admissible patterns are
subpatterns of maximal patterns.

For the commutativity equation, AX−X A= 0, Theorem 5.8 states that maximal
patterns with no diagonal entries specified are inadmissible. Theorem 5.9 states
that patterns in which all of the specified entries are in the same row or in the same
column are admissible.

For the skew-Lyapunov equation, AX − X AT
= 0, Theorem 5.12 states that a

pattern is admissible if all of the specified entries reside in the i-th row or column
without (i, j) and ( j, i) both being in the pattern for any j . Corollary 5.15 states
that if any pattern contains two specified entries which are located across the main
diagonal from each other, then the pattern is inadmissible.

Patterns for the skew-symmetric equation. Applying the vec function to AX −
AT X = 0 yields the linear equation

(I ⊗ (A− AT )) vec(X)= 0.

The matrix A − AT is skew-symmetric, so (I ⊗ (A − AT )) is a block diagonal
matrix and is skew-symmetric. We denote I ⊗ (A− AT ) as SA.
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Since A− AT is skew-symmetric, it is also diagonalizable and its eigenvalues
are purely imaginary or zero [Rukmangadachari 2010]. The rank of A− AT is
dependent upon whether n is odd or even.

In this section, we assume that A−AT has maximum rank. So rank(A−AT )= n
if n is even, and rank(A− AT ) = n − 1 if n is odd. The set of matrices A with
which rank(A − AT ) is strictly less that the maximum possible rank is a set of
measure zero. So in this section our “generic” property of A is that rank(A− AT )

is maximal.
Since SA is a block-diagonal matrix consisting of the matrix A − AT down

the main diagonal, rank(SA) = n · rank(A − AT ). By Corollary 4.2 maximally
admissible patterns for SA contain n specified entries for n odd. Since the nullity
of SA is zero when n is even, only the empty pattern, the pattern with no specified
entries is admissible.

From this point forward, we only consider the case when n is odd. We first
construct a basis for the nullspace of SA in order to apply the nullspace approach.

Lemma 5.1. Let A ∈ Mn(R) with n odd and rank(A− AT )= n− 1, and let {v} be
a basis for the nullspace of A− AT . If n is odd, then

B =
{
[v 0 · · · 0], [0 v 0 · · · 0], . . . , [0 · · · 0 v]

}
is a basis for the solution space of AX − AT X = 0.

Proof. Each element of B is a solution to AX − AT X = 0. The matrices in B
are clearly linearly independent. The dimension of the solution space of AX −
AT X = 0 is n, and B contains n elements. So B is a basis for the solution space of
AX − AT X = 0. �

We now consider maximally admissible patterns for the skew-symmetric equation,
and determine whether they are admissible or inadmissible.

Theorem 5.2. Let α be an n × n partial matrix pattern with |α| = n, and let n
be odd. The matrix pattern α is maximally admissible for the matrix equation
AX − AT X = 0 for almost all A with rank(A− AT ) = n − 1 if and only if α =
{(i1, 1), (i2, 2), . . . , (in, n)}, where 1≤ ik ≤ n.

Proof. We first show that if α is admissible, then α = {(i1, 1), (i2, 2), . . . , (in, n)},
where 1≤ ik ≤ n. We proceed by contraposition, assuming that

α 6= {(i1, 1), (i2, 2), . . . , (in, n)}

to show that α is inadmissible. By Lemma 5.1, a basis for the solution space of
(A−AT )X=0 is {V1, . . . , Vn}where the i-th column of Vi is v and all other columns
only contain zeros. Following the nullspace approach, the matrix completion
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problem is equivalent to solving

vec(X )[ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
c,

where c= [c1 c2 · · · cn]
T and ε = {i + ( j − 1)n | (i, j) ∈ α}. Let N be the matrix

containing the column vectors of the basis elements, so

N [ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
.

From our assumption, there exists at least one column in X that does not have
a specified entry. Without loss of generality, assume that the k-th column in X
does not have a specified entry. Any row in vec(Vk) that contains an element of
v will be excluded when vec(Vk) is restricted to vec(Vi )[ε]. We have, then, that
vec(Vk)[ε] = 0. The rank of N [ε] is therefore strictly less than |α|, and therefore α
is inadmissible.

We next show that if α = {(i1, 1), (i2, 2), . . . , (in, n)}, where 1≤ ik ≤ n, then α
is admissible. Following the nullspace approach as above, this completion problem
is equivalent to

vec(X)[ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
c

=


vi1 0 . . . 0

0 vi2

. . .
...

...
. . .

. . . 0
0 . . . 0 vin




c1

c2
...

cn

 ,
where vi` are entries in v. For almost all A, vi` 6= 0 for all 1≤ `≤ n, and the rank
of N [ε] is n. This means that the columns of N [ε] spans Rn , and therefore any
values that can be specified for X are in the span of the columns of N [ε]. So any
α-partial matrix for the α pattern can be completed to satisfy the skew-symmetric
equation, and α = {(i1, 1), (i2, 2), . . . , (in, n)} is admissible. �

This tells us that α is maximally admissible if and only if α contains exactly
one specified entry in each column. Again “almost all” is used to say that these
patterns are admissible for the given matrix equation, with A satisfying the given
conditions, except for a set of matrices A of measure zero. In this case, we can
be more specific. The set of matrices that these patterns are not admissible for are
those matrices A for which the vector v has zero entries, where v is the basis for
the nullspace of A− AT. The following theorem shows that admissible patterns
appear as subpatterns of maximal patterns.

Theorem 5.3. Let A ∈Mn(R) be nonderogatory with n odd. A pattern β is admissi-
ble for the matrix equation AX−AT X=0 for almost all A with rank(A−AT )=n−1
if and only if β ⊆ {(i1, 1), (i2, 2), . . . , (in, n)} with 1≤ ik ≤ n.
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Proof. By Theorem 5.2, α = {(i1, 1), (i2, 2), . . . , (in, n)} is admissible. If β ⊆ α
then by Lemma 3.5 β is also admissible.

If β * {(i1, 1), (i2, 2), . . . , (in, n)} then {(i, k), ( j, k)} ⊆ β for some i 6= j . Then
ε = {i + (k− 1)n, j + (k− 1)n} and[

vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]
]
=

[
0 · · · 0 vi 0 · · · 0
0 · · · 0 vj 0 · · · 0

]
.

This matrix does not have full rank, so the pattern {(i, k), ( j, k)} is inadmissible by
the nullspace criterion. Since {(i, k), ( j, k)} ⊆ β, β is inadmissible by Lemma 3.6.

�

Finally we give formulas for the number of maximally admissible and admissible
patterns.

Corollary 5.4. For A ∈ Mn(R) where n is odd and rank(A − AT ) = n − 1, the
number of maximally admissible patterns for the skew-symmetric equation is nn.

Proof. From Theorem 5.2, if α is admissible for the skew-symmetric equation, each
column in X has one specified entry. Each of the n columns has n possible locations
where an entry can be specified, so the total number of admissible patterns is nn. �

Corollary 5.5. For A ∈ Mn(R) where n is odd and rank(A − AT ) = n − 1, the
number of admissible patterns for the skew-symmetric equation is (1+ n)n .

Proof. We have by Theorem 5.3 that if β⊆α, where α={(i1, 1), (i2, 2), . . . , (in, n)}
and 1≤ ik ≤ n, then β is admissible for the skew-symmetric equation.

Suppose β has i specified entries, there are
( n

i

)
choices for columns and n choices

within each column. Summing over i and using the binomial theorem, the total
number of admissible patterns is

n∑
i=0

(n
i

)
ni
= (1+ n)n. �

Patterns for the commutativity equation. We next classify patterns for the com-
mutativity equation, AX − X A = 0. The conditions under which two matrices
commute are well known, but there still are interesting questions that can be asked
about matrix commutativity with regard to partial matrix completions [Horn and
Johnson 1991]. We are interested in finding answers to the following: if given a
partial matrix pattern α and a matrix A, what are the conditions on the specific
entries in an α-partial matrix X so that X has a completion that commutes with A?
Which patterns α allow any α-partial matrix X to be completed to commute with
almost all A ∈ Mn(R)?

We use the column space approach to convert the matrix equation into a linear
equation. The vec function applied to the commutativity equation yields [(I ⊗ A)−
(AT
⊗ I )] vec(X)= 0. We denote (I ⊗ A)− (AT

⊗ I ) as �A.
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Lemma 5.6 [Horn and Johnson 1991]. If A ∈ Mn(R) has k eigenvalues {λ1, λ2,

. . . , λk}, then the dimension of the nullspace of �A is
k∑

i=1

ma(λi )mg(λi ),

where ma(λ), mg(λ) are the algebraic and geometric multiplicities of λ respectively.

Lemma 5.7 [Horn and Johnson 1991]. For A ∈ Mn(R), the dimension of the
commutant of A is at least n, and the dimension of the commutant is equal to n if
and only if A is nonderogatory.

Because the solutions to the commutativity equation are exactly the elements of
the commutant, the rank of �A is n2

−n if and only if A is nonderogatory. Maximal
patterns for the commutativity equation contain at most n specified entries for A
nonderogatory.

We use two different bases for the nullspace of �A to classify admissible and
inadmissible patterns. If A is nonderogatory, then only polynomials in A commute
with A [Horn and Johnson 1985]. So one basis for the null space of �A is

{vec(I ), vec(A), vec(A2), . . . , vec(An−1)}.

By Remark 4.5 if A has distinct eigenvalues then { y1
⊗x1, y2

⊗x2, . . . , yn
⊗xn
} is

also a second basis for the nullspace where {x1, x2, . . . , xn
} is a set of eigenvectors

for A and { y1, y2, . . . , yn
} is a set of eigenvectors for −AT corresponding to

eigenvalues {λ1, λ2, . . . , λn} and {−λ1,−λ2, . . . ,−λn} respectively.
We first show maximally admissible patterns must have a diagonal entry specified.

Theorem 5.8. Let α be an n×n partial matrix pattern with |α| = n and A ∈Mn(R)

be nonderogatory. If (i, i) /∈ α for all 1 ≤ i ≤ n, then any α-partial matrix X is
inadmissible for the matrix equation AX − X A = 0.

Proof. Using the nullspace approach and the basis {vec(I ), vec(A), . . . , vec(An−1)},
the partial matrix completion problem for the commutativity equation is equivalent
to solving

vec(X )[ε] = [vec(I )[ε] vec(A)[ε] vec(A2)[ε] . . . vec(An−1)[ε]]c,

where ε = {i + ( j − 1)n | (i, j) ∈ α}.
From our assumption, we have that (i, i) /∈ α for all 1≤ i ≤ n. That is, no entries

along the main diagonal are specified. Then, any row in vec(I ) that contains a 1
will be excluded in vec(I )[ε], so vec(I )[ε] = 0.

This means that rank(N [ε]) < n = |α|. By Theorem 4.1, α is inadmissible. �

We now partially classify maximally admissible patterns for the commutativity
equation.
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Theorem 5.9. Let α be an n × n partial matrix pattern with |α| = n. If α =
{(i, 1), (i, 2), . . . , (i, n)} or α= {(1, j), (2, j), . . . , (n, j)} where 1≤ i, j ≤ n, then
α is maximally admissible for the commutativity equation AX − X A= 0 for almost
all A, where all A have distinct eigenvalues.

Proof. By Remark 4.5, { y1
⊗ x1, y2

⊗ x2, . . . , yn
⊗ xn
} is a basis for the nullspace

of �A where {x1, x2, . . . , xn
} is a set of eigenvectors for A and { y1, y2, . . . , yn

}

is a set of eigenvectors for −AT.
Following the nullspace approach, the commutativity matrix completion problem

is equivalent to solving

vec(X )[ε] = [vec( y1
⊗ x1)[ε] vec( y2

⊗ x2)[ε] . . . vec( yn
⊗ xn)[ε]]c

= [x1
i y1 x2

i y2 . . . xn
i yn
]c,

where c= [c1 c2 . . . cn]
T and ε = {i + ( j − 1)n | (i, j) ∈ α}.

Since { y1, y2, . . . , yn
} is linearly independent, {x1

i y1, x2
i y2, . . . , xn

i yn
} is lin-

early independent because its elements are scalar multiples of the elements in the
linearly independent set { y1, y2, . . . , yn

} and for almost all A, we have x i
j 6= 0,

because for almost all A, it follows that x i
j 6= 0. As a result, the columns of N [ε]

span Rn . As such, any vec(X )[ε] lies in the span of the columns of N [ε]. Therefore
α is admissible.

The proof that α = {(1, j), (2, j), . . . , (n, j)}, where 1≤ j ≤ n, is admissible is
similar. �

This shows that patterns including an entire row or entire column of specified
entries is maximally admissible. For specific n, we can show that there exist other
admissible patterns, and we conjecture that a pattern with n specified entries is
admissible if and only if it has at least one diagonal entry specified. The following
corollary describes a subset of admissible patterns.

Corollary 5.10. If

β ⊆ {(i, 1), (i, 2), . . . , (i, n)} or β ⊆ {(1, j), (2, j), . . . , (n, j)},

where 1≤ i, j ≤ n, then β is admissible.

Proof. This follows by Theorem 5.9 and Lemma 3.5. �

Patterns for the skew-Lyapunov equation. Lastly we classify patterns for the skew-
Lyapunov equation, AX − X AT

= 0. Applying the vec function to AX − X AT
= 0

yields the linear equation [(I⊗A)−(A⊗I )] vec(X)=0. We denote (I⊗A)−(A⊗I )
as 9A. The rank of 9A determines the maximum number of specified entries in
an admissible pattern. In this section, we assume A has distinct eigenvalues, and
consider the rank of 9A under this condition. The following result gives us an
upper bound for the nullity of 9A.
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Lemma 5.11 [Morris 2015]. Let A ∈ Mn(R) and B ∈ Mn(R) be similar matrices
with eigenvalues {λ1, λ2, . . . , λk}, then

nullity(In ⊗ A+ (−BT )⊗ In)≤

k∑
i=1

ai
2

and

n2
−

k∑
i=1

ma(λi )
2
≤ rank(In ⊗ A+ (−BT )⊗ In)≤ n2.

For A ∈ Mn(R) with distinct eigenvalues, the maximum nullity of 9A is n, and
we can construct n linearly independent vectors in the nullspace.

Since the nullity of 9A is n, maximally admissible patterns for AX − X AT
= 0

will have n specified entries. We proceed by determining a basis for the solution
space of the skew-Lyapunov equation. This is equivalent to finding a basis for the
nullspace of 9A.

The following theorem partially classifies maximally admissible patterns for
the skew-Lyapunov equation. Maximally admissible patterns contain n specified
entries by Corollary 3.4. We first show that if the same numbered column and row
have a total of n specified entries, then the pattern is admissible.

Theorem 5.12. Let A ∈ Mn(R) with distinct eigenvalues and α be an n× n partial
matrix pattern. Given k ∈ {1, . . . , n}, if exactly one of (k, i) or (i, k) is in α for all
1≤ i ≤ n, then α is maximally admissible for the matrix equation AX − X AT

= 0
for almost all A, where all A have distinct eigenvalues.

Proof. Noting that the rows of N corresponding to the (i, j) and ( j, i) entries are
equal, this theorem is a special case of Theorem 5.9 with {x1

⊗ x1, x2
⊗ x2, . . . ,

xn
⊗ xn
} as a basis for the solution space. �

Corollary 5.13. For A∈Mn(R)with distinct eigenvalues, if β⊆{(1, k), . . . ,(n, k)}
or β⊆{(k, 1), . . . , (k, n)} then β is admissible for the matrix equation AX−X AT

=

0 for almost all A, where all A have distinct eigenvalues.

Proof. This follows by Theorem 5.12 and Lemma 3.5. �

We next classify patterns as inadmissible. If α is admissible, then there are no
pairs of specified entries which reside opposite the main diagonal from each other.
Equivalently, if there exists a pair of specified entries such that they are across the
main diagonal from each other, then the pattern will be inadmissible.

Theorem 5.14. For A ∈ Mn(R), if α = {(i, j), ( j, i)} such that i 6= j and 1 ≤
i, j ≤ n, then α is inadmissible for the skew-Lyapunov equation AX − X AT

= 0.

Proof. By Remark 4.5, {x1
⊗ x1, x2

⊗ x2, . . . , xn
⊗ xn
} is a basis for the nullspace

of 9A where {x1, . . . , xn
} is a basis of eigenvectors for A. Following the nullspace
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approach, we form N [ε] where ε = {i + j (n− 1) | (i, j) ∈ α}. So,

N [ε] =
[

x1 j x1i x2 j x2i . . . xnj xni

x1 j x1i x2 j x2i . . . xnj xni

]
and we have that rank(N [ε])= 1 which is strictly less than the size of this pattern, 2.
So by Theorem 4.1 the pattern (i, j), ( j, i) with i 6= j is inadmissible for the matrix
equation AX − X AT

= 0. �

Corollary 5.15. If α = {(i, j), ( j, i)} ⊆ β where i 6= j then β is inadmissible for
the matrix equation AX − X AT

= 0.

Proof. This follows by Theorem 5.14 and Lemma 3.6. �

Acknowledgments

The California State University Channel Islands Mathematics Research Experience
for Undergraduates (REU) is funded through NSF grant DMS-1359165, HDR-
0802628, and CI-LSAMP. Special thanks to all of the research mentors affiliated with
REU for their support, guidance, and wisdom. Finally, the undergraduate authors
would like to thank the individuals at their home institutions for their mentoring, sup-
port, and letters of recommendation which enabled them to participate in the REU.

References

[Bakonyi and Johnson 1995] M. Bakonyi and C. R. Johnson, “The Euclidean distance matrix comple-
tion problem”, SIAM J. Matrix Anal. Appl. 16:2 (1995), 646–654. MR Zbl

[DeAlba and Hogben 2000] L. M. DeAlba and L. Hogben, “Completions of P-matrix patterns”,
Linear Algebra Appl. 319:1–3 (2000), 83–102. MR Zbl

[Drew et al. 2000] J. H. Drew, C. R. Johnson, S. J. Kilner, and A. M. McKay, “The cycle completable
graphs for the completely positive and doubly nonnegative completion problems”, Linear Algebra
Appl. 313:1–3 (2000), 141–154. MR Zbl

[Grone et al. 1984] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, “Positive definite
completions of partial Hermitian matrices”, Linear Algebra Appl. 58 (1984), 109–124. MR Zbl

[Hogben 1998] L. Hogben, “Completions of inverse M-matrix patterns”, Linear Algebra Appl.
282:1–3 (1998), 145–160. MR Zbl

[Hogben 2000] L. Hogben, “Inverse M-matrix completions of patterns omitting some diagonal
positions”, Linear Algebra Appl. 313:1–3 (2000), 173–192. MR Zbl

[Hogben 2001] L. Hogben, “Graph theoretic methods for matrix completion problems”, Linear
Algebra Appl. 328:1–3 (2001), 161–202. MR Zbl

[Horn and Johnson 1985] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University
Press, 1985. Reprinted in 1994. MR Zbl

[Horn and Johnson 1991] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge
University Press, 1991. Reprinted in 1994. MR Zbl

[Johnson and Kroschel 1996] C. R. Johnson and B. K. Kroschel, “The combinatorially symmetric
P-matrix completion problem”, Electron. J. Linear Algebra 1 (1996), 59–63. MR Zbl

http://dx.doi.org/10.1137/S0895479893249757
http://dx.doi.org/10.1137/S0895479893249757
http://msp.org/idx/mr/1321802
http://msp.org/idx/zbl/0823.15012
http://dx.doi.org/10.1016/S0024-3795(00)00167-1
http://msp.org/idx/mr/1799625
http://msp.org/idx/zbl/0976.15011
http://dx.doi.org/10.1016/S0024-3795(00)00110-5
http://dx.doi.org/10.1016/S0024-3795(00)00110-5
http://msp.org/idx/mr/1770363
http://msp.org/idx/zbl/0960.15011
http://dx.doi.org/10.1016/0024-3795(84)90207-6
http://dx.doi.org/10.1016/0024-3795(84)90207-6
http://msp.org/idx/mr/739282
http://msp.org/idx/zbl/0547.15011
http://dx.doi.org/10.1016/S0024-3795(98)10054-X
http://msp.org/idx/mr/1648320
http://msp.org/idx/zbl/0938.15009
http://dx.doi.org/10.1016/S0024-3795(00)00122-1
http://dx.doi.org/10.1016/S0024-3795(00)00122-1
http://msp.org/idx/mr/1770366
http://msp.org/idx/zbl/0958.15010
http://dx.doi.org/10.1016/S0024-3795(00)00299-8
http://msp.org/idx/mr/1823516
http://msp.org/idx/zbl/0996.15011
http://dx.doi.org/10.1017/CBO9780511810817
http://msp.org/idx/mr/1084815
http://msp.org/idx/zbl/0704.15002
http://dx.doi.org/10.1017/CBO9780511840371
http://msp.org/idx/mr/1288752
http://msp.org/idx/zbl/0801.15001
http://dx.doi.org/10.13001/1081-3810.1004
http://dx.doi.org/10.13001/1081-3810.1004
http://msp.org/idx/mr/1418954
http://msp.org/idx/zbl/0889.15007


MATRIX COMPLETIONS FOR LINEAR MATRIX EQUATIONS 799

[Johnson and Smith 1996] C. R. Johnson and R. L. Smith, “The completion problem for M-matrices
and inverse M-matrices”, Linear Algebra Appl. 241–243 (1996), 655–667. MR Zbl

[Johnson and Wei 2013] C. R. Johnson and Z. Wei, “Asymmetric TP and TN completion problems”,
Linear Algebra Appl. 438:5 (2013), 2127–2135. MR Zbl

[Morris 2015] K. Morris, “On the rank of a Kronecker sum of similar matrices”, capstone project,
Georgia College & State University, 2015.

[Neudecker 1969] H. Neudecker, “A note on Kronecker matrix products and matrix equation systems”,
SIAM J. Appl. Math. 17:3 (1969), 603–606. MR Zbl

[Rukmangadachari 2010] E. Rukmangadachari, Mathematical methods, Dorling Kindersley, New
Delhi, 2010.

Received: 2015-11-22 Revised: 2016-06-14 Accepted: 2016-10-06

geoffrey.buhl@csuci.edu Department of Mathematics, CA State Univ Channel Islands,
1 University Dr., Camarillo, CA 93012, United States

ecronk1@ithaca.edu Department of Mathematics, Ithaca College, 953 Danby Rd.,
Ithaca, NY 14850, United States

rosa.moreno544@myci.csuci.edu Department of Mathematics,
California State University Channel Islands, 1 University Dr.,
Camarillo, CA 93012, United States

kirsten.morris25@uga.edu Department of Mathematics, The University of Georgia,
University of Georgia, Athens, GA 30602, United States

pedrozad@ripon.edu Department of Mathematics, Ripon College, 300 Seward St.,
Ripon, WI 54971, United States

jryan23@vols.utk.edu Department of Mathematics, The University of Tennessee
Knoxville, 1403 Circle Dr., Knoxville, TN 37996, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/0024-3795(95)00429-7
http://dx.doi.org/10.1016/0024-3795(95)00429-7
http://msp.org/idx/mr/1400458
http://msp.org/idx/zbl/0979.15009
http://dx.doi.org/10.1016/j.laa.2012.11.008
http://msp.org/idx/mr/3005280
http://msp.org/idx/zbl/1261.15035
http://dx.doi.org/10.1137/0117057
http://msp.org/idx/mr/0248160
http://msp.org/idx/zbl/0185.08204
mailto:geoffrey.buhl@csuci.edu
mailto:ecronk1@ithaca.edu
mailto:rosa.moreno544@myci.csuci.edu
mailto:kirsten.morris25@uga.edu
mailto:pedrozad@ripon.edu
mailto:jryan23@vols.utk.edu
http://msp.org




msp
INVOLVE 10:5 (2017)

dx.doi.org/10.2140/involve.2017.10.801

The Hamiltonian problem and
t-path traceable graphs

Kashif Bari and Michael E. O’Sullivan

(Communicated by Ronald Gould)

The problem of characterizing maximal non-Hamiltonian graphs may be naturally
extended to characterizing graphs that are maximal with respect to nontraceability
and beyond that to t-path traceability. We show how t-path traceability behaves
with respect to disjoint union of graphs and the join with a complete graph. Our
main result is a decomposition theorem that reduces the problem of characterizing
maximal t-path traceable graphs to characterizing those that have no universal
vertex. We generalize a construction of maximal nontraceable graphs by Zelinka
to t-path traceable graphs.

1. Introduction

The motivating problem for this article is the characterization of maximal non-
Hamiltonian (MNH) graphs. The first broad family of MNH graphs was given in
[Skupień 1979], and all MNH graphs with ten or fewer vertices were described
in [Jamrozik et al. 1982], a paper where Skupień and his coauthors gave three
constructions, called types A1, A2, A3, with a similar structure. Zelinka [1998]
gave two constructions of graphs that are maximal nontraceable; that is, they have
no Hamiltonian path, but the addition of any edge gives a Hamiltonian path. The
join of such a graph with a single vertex gives an MNH graph. Zelinka’s first
family produces, under the join with K1, the original MNH graphs of Skupień.
Zelinka’s second family is a broad generalization of the type A1, A2, and A3
graphs of [Jamrozik et al. 1982]. Further examples of infinite families of maximal
nontraceable graphs appeared in [Bullock et al. 2008].

In this article, we work with two closely related invariants of a graph G, µ̌(G) and
µ(G). The µ-invariant, introduced by Ore [1961] and also used by Noorvash [1975],
is the minimal number of paths in G required to cover the vertex set of G. We define
µ̌(G) to be the smallest integer ` such that the join of K` with G is Hamiltonian.
We show that µ̌(G)= µ(G) unless G is Hamiltonian, when µ̌(G)= 0. Maximal

MSC2010: 05C45.
Keywords: maximal non-hamiltonian, hamiltonian, graph theory, t-path traceable.
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non-Hamiltonian graphs are maximal with respect to µ̌(G) = 1, and maximal
nontraceable graphs are maximal with respect to µ̌(G)= 2. It is useful to broaden
the perspective to study, for arbitrary t , graphs that are maximal with respect to
µ̌(G)= t , which we call t-path traceable graphs.

In Section 2 we show how the µ̌ and µ invariants behave with respect to disjoint
union of graphs and the join with a complete graph. Section 3 derives the main
result, a decomposition theorem that reduces the problem of characterizing maximal
t-path traceable graphs to characterizing those that have no universal vertex, which
we call trim. Section 4 presents a generalization of the Zelinka construction to
t-path traceable graphs.

2. Traceability and Hamiltonicity

It will be notationally convenient to say that the complete graphs K1 and K2 are
Hamiltonian. As justification for this view, consider an undirected graph as a
directed graph with each edge having a conjugate edge in the reverse direction.
This perspective does not affect the Hamiltonicity of a graph with more than three
vertices, but it does give K2 a Hamiltonian cycle. Similarly, adding loops to any
graph with more than two vertices does not alter the Hamiltonicity of the graph,
but K1, with an added loop, has a Hamiltonian cycle.

Let G be a graph. A vertex, v ∈ V (G), is called a universal vertex if deg(v)=
|V (G)|−1. A universal vertex is also known as a dominating vertex. Let G denote
the graph complement of G, having vertex set V (G) and edge set E(Kn) \ E(G).
We will use the disjoint union of two graphs, G t H and the join of two graphs
G ∗H . The latter is GtH together with the edges {vw | v ∈ V (G) and w ∈ V (H)}.

Definition 1. A set of s disjoint paths in a graph G that includes every vertex in G
is an s-path covering of G. We define the following invariants:

µ(G) :=min{ s ∈ N | there exists an s-path covering of G},

µ̌(G) :=min{ l ∈ N0 | Kl ∗G is Hamiltonian},

iH (G) :=
{

1 if G is Hamiltonian,
0 otherwise.

We will say G is t-path traceable when µ(G)= t . A set of t disjoint paths that
covers a t-path traceable graph G is a minimal path covering.

Note that Kr ∗ (Ks ∗G)= Kr+s ∗G. If G is Hamiltonian then so is Kr ∗G for
r ≥ 0 (in particular, this is true for G = K1 and G = K2).

We now present a series of lemmas that leads to the main result of this section,
which is a formula showing how the µ-invariant and µ̌-invariant behave with respect
to the disjoint union and the join with a complete graph.
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Lemma 2. µ̌(G)=min{ l ∈ N0 | K l ∗G is Hamiltonian}.

Proof. Since K l ∗G is a subgraph of Kl ∗G, a Hamiltonian cycle in K l ∗G would
also be one in Kl ∗G.

Let µ̌(G) = a. Suppose C is a Hamiltonian cycle in Ka ∗ G and write C as
v∼ P1∼Q1∼· · ·∼ Ps∼Qs∼v, where v is a vertex in G and the paths Pi in G and
Qi in Ka . If any Qi contains two vertices or more, say u andw1, . . . , wk with k≥ 1,
then we may simply remove all the vertices, except u, and end up with a Hamiltonian
graph on Ka−k . This contradicts the minimality of a = µ̌(G). Therefore, C must
not contain any paths of length greater than two in the subgraph Ka , and any
Hamiltonian cycle on Ka ∗G is also a Hamiltonian cycle on K a ∗G. �

Lemma 3. µ̌(G)= µ(G)− iH (G).

Proof. If G is Hamiltonian (including K1 and K2) then µ̌(G) = 0, µ(G) = 1
so the equality holds. Suppose G is non-Hamiltonian with µ(G) = t and t-path
covering P1, . . . , Pt . Let Kt have vertices u1, . . . , ut . In the graph Kt ∗G, there is a
Hamiltonian cycle: v1∼ P1∼ v2∼ P2∼· · ·∼ vt ∼ Pt ∼ v1. Thus µ̌(G)≤ t =µ(G).

Let µ̌(G)= a, so there is a Hamiltonian cycle in Ka ∗G. Removing the vertices
of Ka breaks the cycle into at most a disjoint paths covering G. Thus µ(G)≤ µ̌(G).

�

Lemma 4. µ(G t H)= µ(G)+µ(H) and

µ̌(G t H)= µ̌(G)+ µ̌(H)+ iH (G)+ iH (H).

Proof. A path covering of G may be combined with a path covering of H to create
one for GtH so µ(GtH)≤µ(G)+µ(H). Conversely, paths in a t-path covering
of G t H can be partitioned into those contained in G and those contained in H ,
giving a path covering of G and one of H . Consequently, µ(GtH)≥µ(G)+µ(H).

Since G t H is not Hamiltonian we have

µ̌(G t H)= µ(G t H)+ iH (G t H)

= µ(G)+µ(H)

= µ̌(G)+ iH (G)+ µ̌(H)+ iH (H). �

Lemma 5. For any graph G,

µ(Ks ∗G)=max{1, µ(G)− s},

µ̌(Ks ∗G)=max{0, µ̌(G)− s}.

In particular, if Ks ∗G is Hamiltonian then µ(Ks ∗G) = 1 and µ̌(Ks ∗G) = 0;
otherwise, µ(Ks ∗G)= µ(G)− s and µ̌(Ks ∗G)= µ̌(G)− s.

Proof. The formula for µ̌ is immediate when G is Hamiltonian since we have
observed that this forces Ks ∗ G to be Hamiltonian. Otherwise, it follows from
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Kr ∗ (Ks ∗G)= Kr+s ∗G: if µ̌(G)= a, then Kr ∗ (Ks ∗G) is Hamiltonian if and
only if r + s ≥ a.

The formula for µ may be derived from the result for µ̌ using Lemma 3. �

The main result of this section is the following two formulas for the µ and µ̌
invariants of the disjoint union of graphs, and the join with a complete graph.

Proposition 6. Let {G j }
m
j=1 be graphs. Then

µ

( m⊔
j=1

G j

)
=

m∑
j=1

µ(G j ),

µ̌

( m⊔
j=1

G j

)
=

m∑
j=1

µ̌(G j )+

m∑
j=1

iH (G j ).

Furthermore,

µ̌

(( m⊔
j=1

G j

)
∗ Kr

)
=max

{
0,

m∑
j=1

µ̌(G j )+

m∑
j=1

iH (G j )− r
}
.

Proof. We proceed by induction. The base case k = 2 is exactly Lemma 4. Assume
the formula holds for k graphs; we will prove it for k+ 1 graphs.

µ

( k+1⊔
j=1

G j

)
= µ

(( k⊔
j=1

G j

)
tGk+1

)
= µ

( k⊔
j=1

G j

)
+µ(Gk+1)

=

k∑
j=1

µ(G j )+µ(Gk+1)=

k+1∑
j=1

µ(G j ).

By Lemma 3 and the fact that disjoint graphs are not Hamiltonian, we have

µ̌

( m⊔
j=1

G j

)
= µ

( m⊔
j=1

G j

)
+ iH

( m⊔
j=1

G j

)

=

m∑
j=1

(
µ̌(G j )+ iH (G j )

)
=

m∑
j=1

µ̌(G j )+

m∑
j=1

iH (G j ).

Therefore, we have by Lemma 5,

µ̌

(( m⊔
j=1

G j

)
∗ Kr

)
=max

{
0, µ̌

( m⊔
j=1

G j

)
−r
}

=max
{

0,
m∑

j=1

µ̌(G j )+

m∑
j=1

iH (G j )− r
}
. �
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The following lemma will be useful in the next section. To express it succinctly,
we introduce the following Boolean condition. For a graph G and vertex v ∈ V (G),
T (v,G) is true if and only if v is a terminal vertex in some minimal path covering
of G.

Lemma 7. Let v ∈ V (G) and w ∈ V (H). Then we have

µ((G t H)+ vw)=
{
µ(G t H)− 1 if T (v,G) and T (w, H),
µ(G t H) otherwise.

Proof. Let µ(G)= c, µ(H)= d and µ((G t H)+ vw)= t . Clearly, t ≤ c+ d.
Let R1, . . . , Rt be a minimal path cover of (G t H)+ vw. If no Ri contains vw

then this is also a minimal path cover of (GtH) so t = c+d . Suppose R1 contains
vw and note that R1 is the only path with vertices in both G and H . Removing vw
gives two paths P ⊆ G and Q ⊆ H . Paths P and Q along with R2, . . . , Rt cover
G t H , so t + 1≥ c+ d. Thus, t can either be c+ d or c+ d − 1.

If t = c+d−1, then we have the minimal (t+1)-path covering P, Q, R2, . . . , Rt

of G t H , as above. We note that v must be a terminal point of P and w must be a
terminal point of Q, by construction. This path covering may be partitioned into a
c-path covering of G containing P and a d-path covering of H containing Q. Thus,
T (v,G) and T (w,G) hold.

Conversely, suppose T (u,G) and T (w, H) both hold. Let P1, . . . , Pc be a
minimal path of G with v a terminal vertex of P1 and let Q1, . . . , Qd be a minimal
path cover of H with w a terminal vertex of Q1. The edge vw knits P1 and Q1

into a single path and P1 ∼ Q1, P1, . . . , Pc, Q1, . . . , Qd is a c+ d − 1 cover of
(G t H)+ vw. Consequently, t ≤ c+ d − 1.

Thus, T (u,G) and T (w, H) both hold if and only if t = c+ d − 1. Otherwise,
t = c+ d . �

Corollary 8. Let v ∈ V (G) and w ∈ V (H). Then we have

µ̌((G t H)+ vw)=


µ̌(G t H)− 2 if G = H = K1,

µ̌(G t H)− 1 if T (v,G) and T (w, H),
µ̌(G t H) otherwise.

Proof. Let δ = 1 if T (v,G) and T (w, H) are both true and δ = 0 otherwise. Then

µ̌((G t H)+ vw)= µ((G t H)+ vw)− iH ((G t H)+ vw)

= µ((G t H)− δ− iH ((G t H)+ vw).

The final term is −1 if and only if G = H = K1. �
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3. Decomposing maximal t-path traceable graphs

In this section we prove our main result, a maximal t-path traceable graph may be
uniquely written as the join of a complete graph and a disjoint union of graphs that
are also maximal with respect to traceability, but which are also either complete or
have no universal vertex. We work with the families of graphs Mt for t ≥ 0 and Nt

for t ≥ 1:

Mt :=
{
G | µ̌(G)= t and µ̌(G+ e) < t, ∀e ∈ E(G)

}
,

Nt :=
{
G ∈Mt | G is connected and has no universal vertex

}
.

The set M0 is the set of complete graphs. The set M1 is the set of graphs with
a Hamiltonian path but no Hamiltonian cycle, that is, maximal non-Hamiltonian
graphs. For t >1, Mt is also the set of graphs G such µ(G)= t and µ(G+e)= t−1
for any e ∈ E(G). We will call these maximal t-path traceable graphs. A graph in
Nt will be called trim.

Proposition 9. For 0≤ r < t , G ∈Mt if and only if Kr ∗G ∈Mt−r .

Proof. We have µ̌(Kr ∗G)= µ̌(G)− r , by Lemma 5, so we just need to show that
Kr ∗G is maximal if and only if G is maximal. The only edges that can be added
to Kr ∗G are those between vertices of G, that is, E(Kr ∗G)= E(G). For such
an edge e,

µ̌((Kr ∗G)+ e)= µ̌(Kr ∗ (G+ e))= µ̌(G+ e)− r. (1)

Thus, µ̌(G+ e)= µ̌(G)− 1 if and only if µ̌((Kr ∗G)+ e)= µ̌(Kr ∗G)− 1. �

Note that the proposition is false for r = t > 0 since Kr ∗G will not be a complete
graph and M0 is the set of complete graphs. The proof breaks down in (1).

As a key step before the main theorem, the next lemma shows that in a maximal
graph, each vertex is either universal or it is a terminal vertex in a minimal path
covering (but not both).

Lemma 10. Let c ≥ 1 and G ∈Mc. For any two nonadjacent vertices v,w in G,
there is a c-path covering of G in which both v and w are terminal points of paths.
Moreover, a vertex v ∈ V (G) is a terminal point in some c-path covering if and
only if v is not universal.

Proof. Suppose c > 1 and let v,w be nonadjacent in G. Since G is maximal,
G+vw has a (c−1)-path covering, P1, . . . , Pc−1. The edge vw must be contained
in some Pi because G has no (c− 1)-path covering. Removing that edge gives a
c-path covering of G with v and w as terminal vertices. The special case c = 1 is
well known, adding the edge vw gives a Hamiltonian cycle, and removing it leaves
a path with endpoints v and w. A consequence is that any nonuniversal vertex is
the terminal point of some path in a c-path covering.
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Suppose P1, . . . , Pc is a c-path covering of G ∈Mc with v a terminal point of Pi .
Then v is not adjacent to any of the terminal points of Pj for j 6= i , for otherwise
two paths could be combined into a single one. In the case c = 1, v cannot be
adjacent to the other terminal point of P1, otherwise G would have a Hamiltonian
cycle. Consequently, a universal vertex is not a terminal point in a c-path covering
of G. �

Proposition 11. Let G ∈Mc and H ∈Md . The following are equivalent:

(1) G t H ∈Mc+d+iH (G)+iH (H).

(2) Each of G and H is either complete or has no universal vertex.

Proof. We have already shown that µ̌(G t H)= c+ d + iH (G)+ iH (H). We have
to consider whether adding an edge to G t H reduces the µ̌-invariant. There are
three cases to consider: the extra edge may be in E(G) or E(H) or it may join
a vertex in G to one in H . Since G is maximal, adding an edge to G is either
impossible, when G is complete, or it reduces the µ̌-invariant of G. This edge
would also reduce the µ̌-invariant of G t H by Lemma 4. The case for adding an
edge of H is the same. Consider the edge vw for v ∈ V (G) and w ∈ V (H). By
Corollary 8 the µ̌-invariant will drop if and only if v is the terminal point of a path
in a minimal path covering of G and similarly for w in H , that is, T (v,G) and
T (w, H). Clearly this holds for all vertices in a complete graph. Lemma 10 shows
that T (v,G) holds for G ∈Mc with c > 0 if and only if v is not a universal vertex
in G. Thus, in order for G t H to be maximal, G must either be complete or be
maximal itself and have no universal vertex, and similarly for H . �

Theorem 12. For any G ∈Mt , t > 0, G may be uniquely decomposed as

Kr ∗ (G1 t . . .tGm),

where r is the number of universal vertices of G, and each G j is either complete or
G j ∈ Nt j for some t j > 0. Furthermore t =

∑m
j=1 t j +

∑m
j=1 iH (G j )− r .

Proof. Suppose G ∈ Mt and let r be the number of universal vertices of G. Let
m be the number of components in the graph obtained by removing the universal
vertices from G, let G1, . . .Gm be the components and let µ̌(G j ) = t j . Then
G = Kr ∗ (G1 t . . .tGm).

Proposition 6 shows that t =
∑m

j=1 t j +
∑m

j=1 iH (G j )−r . By Proposition 9, we
have that G ∈Mt if and only if G1 t . . .tGm ∈Mt+r . Each Gi must be maximal,
otherwise the disjoint union would not be maximal (add an appropriate edge to a
Gi in Proposition 6). Inductively applying Proposition 11 to G1 t . . .tGm ∈Mt+r ,
where t + r =

∑m
j=1 t j +

∑m
j=1 iH (G j ), we have that each G j is complete or is

trim (G j ∈ Nt j for t j > 0). �
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4. Trim maximal t-path traceable graphs

Skupień [1979] discovered the first family of maximal non-Hamiltonian graphs,
that is, graphs in M1. These graphs are formed by taking the join of Kr with the
disjoint union of r +1 complete graphs [Marczyk and Skupień 1991]. The smallest
graph in N2 is shown in Figure 1. Chvátal [1973] identified its join with K1 as the
smallest maximal non-Hamiltonian graph that is not 1-tough, that is, not one of the
Skupień family. Jamrozik, Kalinowski and Skupień [1982] generalized this example
to three different families. Family A1 replaces each edge uivi in Figure 1 with an
arbitrary complete graph containing ui and replaces the K3 formed by the ui with
an arbitrary complete graph. The result — a type A1 graph — has four cliques, the
first three disjoint from each other but each intersecting the fourth clique in a single
vertex. An A1 graph is in N2 and its join with K1 gives a maximal non-Hamiltonian
graph. Family A2 is formed by taking the join with K2 of the disjoint union of a
complete graph and an A1 graph. Theorem 12 shows that the resulting graph is in
M1. Family A3 is a modification of the A1 family based on the graph in Figure 2,
which is in N2.

More than two decades later, Bullock, Frick, Singleton and van Aardt [2008]
recognized that two constructions of Zelinka [1998] give maximal nontraceable
graphs, that is, elements of M2. Zelinka’s first construction is like the Skupień
family: formed from r + 1 complete graphs followed by the join with Kr−1. The
Zelinka type II family contains graphs in N2 that are a significant generalization of
the graphs in Figures 1 and 2. In this section we generalize this family further to
get graphs in Nt for arbitrary t . Our starting point is the graph in Figure 3, which
is in N3.

Example 13. Consider Km with m = 2t −1 and vertices u1, . . . , um . Let G be the
graph containing Km along with vertices v1, . . . , v2t−1 and edges uivi . The case
with t = 3 and m = 5= 2t − 1 is Figure 3. We claim G ∈ Nt .

One can readily check that this graph is t-path covered using v2i−1 ∼ u2i−1 ∼

u2i ∼ v2i for i = 1, . . . , t − 1 and v2t−1 ∼ u2t−1 ∼ u2t ∼ · · · ∼ um . We check that
G is maximal. By the symmetry of the graph, we need only consider the addition

v1

v2

v3

u1

u2

u3

Figure 1. Smallest graph in N2.
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v1

u1

v2

u2

u3

u4

v3

v4

Figure 2. The join of this graph with K1 is the smallest graph in
the A3 family.

u1

u2

u3u4

u5

v1

v2

v3v4

v5

Figure 3. Whirligig in N3.

of the edge v1um or v1u2 or v1v2. In each case, the last and the first paths listed
above may be combined into one, either

v2t−1 ∼ u2t−1 ∼ · · · ∼ um ∼ v1 ∼ u1 ∼ u2 ∼ v2, or

v2t−1 ∼ u2t−1 ∼ · · · ∼ um ∼ u1 ∼ v1 ∼ u2 ∼ v2, or

v2t−1 ∼ u2t−1 ∼ · · · ∼ um ∼ u1 ∼ v1 ∼ v2 ∼ u2.

Thus, adding an edge creates a (t − 1)-path covered graph, proving maximality.

The next proposition shows that the previous example is the only way to have a
trim maximal t-path covered graph with 2t −1 degree-one vertices. We start with a
technical lemma.

Lemma 14. Let G be a connected graph and u1, v1, v2, v3∈V (G) with deg(vi )=1,
and u adjacent to v1 and v2 but not v3. Then µ(G)= µ(G+ uv3).

Proof. Let P1, . . . , Pr be a minimal path covering of G + uv3; it is enough to
show that there are r-paths covering G. If the covering doesn’t include uv3, then
P1, . . . , Pr also give a minimal path covering of G, establishing the claim of the
lemma. Otherwise, suppose uv3 is an edge of P1. We consider two cases.
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Suppose P1 contains the edge uv1 (or similarly uv2). Then P1 has v1 as a
terminal point and one of the other paths, say P2, must be a length-0 path containing
simply v2. Let Q be obtained by removing uv1 and uv3 from P1. Then v1 ∼ u ∼
v2, Q, P3, . . . , Pr , gives an r -path covering of G.

Suppose P1 contains neither uv1 nor uv2. Then each of v1 and v2 must be on a
length-0 path in the covering, say P2 and P3 are these paths. Furthermore u must
not be a terminal point of P1; if it were, the path could be extended to include v1 or
v2, reducing the number of paths required to cover G. Removing u from P1 yields
two paths, Q1, Q2. Then v1 ∼ u ∼ v2, Q1, Q2, P4, . . . , Pr gives an r-path cover
of G. This proves the lemma. �

Proposition 15. Let G ∈ Nt . The number of degree-one vertices in G is at most
2t − 1. This occurs if and only if the 2t − 1 vertices of degree-one have distinct
neighbors and removing the degree-one vertices leaves a complete graph.

Proof. Each degree-one vertex must be a terminal point in a path covering. So any
graph G covered by t paths can have at most 2t degree-one vertices. Aside from
the case t = 1 and G = K2, we can see that a graph with 2t degree-one vertices
cannot be maximal t-path traceable as follows. It is easy to check that a 2t star is
not t-path traceable (it is also not trim). A t-path traceable graph with 2t degree-one
vertices must therefore have an interior vertex w that is not connected to at least
one of the degree-one vertices v. Such a graph is not maximal because the edge
vw can be added leaving 2t − 1 degree-one vertices. This resulting graph cannot
be (t − 1)-path covered.

Suppose that G ∈ Nt with 2t − 1 degree-one vertices, v1, . . . , v2t−1. Lemma 14
shows that no two of the vi can be adjacent to the same vertex, for that would
violate maximality of G. So, the vi have distinct neighbors. Furthermore, all the
vertices except the vi can be connected to each other and a path covering will still
require at least t paths since there remain 2t − 1 degree-one vertices. This proves
the necessity of the structure claimed in the proposition. The previous example
showed that the graph is indeed in Nt . �

We can now generalize the Zelinka family.

Construction 16. Let U0,U1, . . . ,U2t−1 be disjoint sets of vertices and

U =
2t−1⊔
i=0

Ui .

Let mi = |Ui | and assume that for i > 0 the Ui are nonempty, so mi > 0. For
i = 1, . . . , 2t − 1 (but not i = 0) and j = 1, . . . ,mi , let Vi j be nonempty sets
of vertices disjoint from each other and from U . Form the graph W with vertex
set U t

(⊔2t−1
i=1

(⊔mi
j=1 Vi j

))
and edges uu′ for u, u′ ∈ U and uv for any u ∈ Ui
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U0

U1

U2

. .
.

U2t−3

U2t−2

U2t−1

V1,1 . . . V1,m1 V2t−3,1 . . . V2t−3,m2t−3

V2,1 . . . V2,m2 V2t−2,1 . . . V2t−2,m2t−2

V2t−1,1

...

V2t−1,m2t−1

Figure 4. Generalization of the whirligig, W .

and v ∈ Vi j with i = 1, . . . , 2t − 1 and j = 1, . . . ,mi and all edges within each
set Vi j . The cliques of this graph are KU and KUitVi j for each i = 1, . . . , 2t − 1
and j = 1, . . . ,mi .

The graph in Figure 2 has m0 = 0, m1 = m2 = 1 and m3 = 2, and the graph in
Figure 4 indicates the general construction.

Theorem 17. The graph W in Construction 16 is a trim, maximal t-path traceable
graph.

Proof. We must show that W is t-path covered and not (t − 1)-path covered, and
that the addition of any edge yields a (t − 1)-path covered graph. The argument is
analogous to the one in Example 13.

Let R be a Hamiltonian path in U0. For each i = 1, . . . , 2t−1 and j = 1, . . . ,mi ,
let Qi j be a Hamiltonian path in KVi j . Let Pi be the path

Pi : Qi1 ∼ ui1 ∼ Qi2 ∼ ui2 ∼ · · · ∼ Qimi ∼ uimi ,

and let
←−
Pi be the reversal of Pi .

Since there is an edge uimi u jm j there is a path Pi ∼
←−
P j for any i 6= j ∈

{1, . . . , 2t − 1}. Therefore the graph W has a t-path covering P2i−1 ∼
←−
P 2i for

i = 1, . . . , (t − 1), along with P2t−1 ∼ R. We leave to the reader the argument that
there is no (t − 1)-path cover.

To show W is maximal we show that after adding an edge e, we can join two
paths in the t-path cover above, with a bit of rearrangement. There are three types
of edges to consider, the edge e might join Vi j to Ui ′ for i 6= i ′; or Vi j to Vi j ′ for
j 6= j ′; or Vi j to Vi ′ j ′ for i 6= i ′. Because of the symmetry of W , we may assume
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i = 1 and j = 1 and that the vertex chosen from Vi j = V1,1 is the initial vertex of
Q1,1. Other simplifications due to symmetry will be evident in what follows.

In the first case there are two subcases — determined by i ′ ≥ 2t or not — and
after permutation, we may consider the edge e from the initial vertex of Q1,1 to the
terminal vertex of R, or to the terminal vertex of P2t−1. We can then join two paths
in the t-path cover: either P2t−1 ∼ R

e
∼ P1 ∼

←−
P 2 or P2t−1

e
∼ P1 ∼ R ∼

←−
P 2.

Suppose next that we join the initial vertex of Q11 with the terminal vertex of
Q12. We then rearrange P1 and join two paths in the t-path cover to get

P2t−1 ∼ R ∼ u1,1 ∼ Q1,1
e
∼ Q1,2 ∼ u1,2 ∼ · · · ∼ Q1m1 ∼ u1m1 ∼

←−
P 2.

Finally, suppose that we join the initial vertex of Q1,1 with the initial vertex of
Q2t−1,1. Then we rearrange to

←−
R ∼
←−
P 2t−1

e
∼ P1 ∼

←−
P 2. �
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non-Hamiltonian graphs”, Discrete Math. 39:2 (1982), 229–234. MR Zbl
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Relations between the conditions
of admitting cycles in

Boolean and ODE network systems
Yunjiao Wang, Bamidele Omidiran,

Franklin Kigwe and Kiran Chilakamarri

(Communicated by Richard Rebarber)

This paper is dedicated to our dear friend Professor Kiran Chilakamarri who passed away due to a
sudden illness in 2015.

Boolean (BL) systems and coupled ordinary differential equations (ODEs) are
popular models for studying biological networks. BL systems can be set up
without detailed reaction mechanisms and rate constants and provide qualitatively
useful information, but they cannot capture the continuous dynamics of biological
systems. On the other hand, ODEs are able to capture the continuous dynamic
features of biological networks and provide more information on how the activities
of components depend on other components and parameter values. However,
a useful coupled ODE model requires details about interactions and parameter
values. The introduction of the relationships between the two types of models will
enable us to leverage their advantages and better understand the target network
systems. In this paper, we investigate the relations between the conditions of
the existence of limit cycles in ODE networks and their homologous discrete
systems. We prove that for a single feedback loop, as long as the corresponding
governing functions of the homologous continuous and discrete systems have
the same upper and lower asymptotes, the limit cycle borne via Hopf bifurcation
corresponds to the cycle of the discrete system. However, for some coupled
feedback loops, besides having the same upper and lower asymptotes, parameters
such as the decay rates also play crucial roles.

1. Introduction

Since the end of twentieth century, due to dramatic advances in technology, bio-
logical networks such as gene regulatory networks, protein interaction networks,
biochemical reaction networks and neuronal networks have attracted attention from
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many different research fields. Mathematical models have shown to be indispensable
tools for investigating mechanisms behind biological phenomena. Network systems
are often represented by directed graphs, wherein components are represented by
nodes and interactions by arrows. Among various modeling frameworks, coupled
differential equations (ODEs) and Boolean (BL) networks are popular for modeling
regulatory networks.

An n-node BL network is a discrete dynamical system with the form

xi.t C 1/D fi.x1.t/;x2.t/; : : : ;xn.t//; (1.1)

where xi is the state variable of the i -th node and fi is a BL function with the value
being either 0 or 1. Since the seminal work of Kauffman [1969], BL networks have
been widely used to model biological regulatory networks [Campbell et al. 2011;
Thakar et al. 2012; Li et al. 2006; Saez-Rodriguez et al. 2007; Sánchez and Thieffry
2001; Albert and Othmer 2003; Espinosa-Soto et al. 2004; Albert and Wang 2009;
Abou-Jaoudé et al. 2009; Glass and Kauffman 1973]. They can be set up in situations
where the detailed kinetic characterization of interaction is not available and provide
valuable insights [Saadatpour et al. 2013; Glass and Kauffman 1973; Snoussi 1989;
Thomas and D’Ari 1990; Edwards and Glass 2000; Edwards et al. 2001; Veliz-Cuba
et al. 2014]. However, BL systems cannot faithfully represent the dynamics of
biological networks that evolve continuously in time [Tyson and Novák 2010].

An n-node ODE network has the form

Pxi D Fi.x1;x2 : : : ;xn/; i D 1; 2; : : : ; n;

where xi is the state variable of the i-th node and Fi describes how xi depends
on other variables. Many researchers have used the ODE framework to study
biological network systems [Tyson et al. 2001; 2003; Mogilner et al. 2006; Aldridge
et al. 2006; Turner et al. 2010]. Compared with BL models, ODE systems are able
to capture the continuous dynamic feature of biological networks and provide more
information on how the activities of components depend on other components and
parameter values. However, it requires detailed information on interactions and
parameter values to set up a useful model.

Often, main dynamical features can be captured by both ODE and BL mod-
els [Davidich and Bornholdt 2008; Wittmann et al. 2009; Veliz-Cuba et al. 2014;
Abou-Jaoudé et al. 2009; Ouattara et al. 2010]. Given a network, the two different
types of models are subject to the same set of constraints resulting from the network
structure. This leads to the expectation that their dynamics are closely related as
shown in many instances [Abou-Jaoudé et al. 2009; Ouattara et al. 2010; Glass
and Kauffman 1973; Veliz-Cuba et al. 2012; 2014; Wittmann et al. 2009; Mendoza
and Xenarios 2006; Snoussi 1989]. It was proved under certain conditions that if a
continuous network model is monotonic, has distinct upper and lower asymptotes
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and has appropriate parameter values corresponding to its discrete homologue, then
they may have the same set of stable steady-states, or at least a stable steady-state
in the BL network implies a stable steady-state in the homologous continuous one
[Glass and Kauffman 1973; Veliz-Cuba et al. 2012; Wittmann et al. 2009; Mendoza
and Xenarios 2006; Snoussi 1989]. Glass and Kauffman [1973] also showed that
when each node received only one input from other nodes, then a stable limit cycle
gives a stable cycle in the BL system. However, the relations between the cycles of
ODEs and BL models are still not clear.

To address this issue, we study the relations between the conditions needed to
have a cycle in BL networks and those in their homologous ODE networks. Instead
of depending on specific reaction mechanisms and rate constants, the ODE systems
we consider here are rather qualitative. In this way, we can focus on the differences
of the dynamics due to the contrast between discreteness and continuity. More
specifically, the ODE network systems we are interested in are in the form

Pxi D i

�
1

1C e��i .aiC
P

j vij xj /
�xi

�
; (1.2)

where i 2 f1; : : : ; ng, i , �i and ai are constants, as well as vij D ˛ij � ˇij

(˛ij � 0; ˇij � 0). Here ˛ij is the activating coupling from node j to node i , and
ˇij is the inhibitory coupling from node j to node i . If the coupling from node j
to node i is positive then vij D ˛ij and if the coupling is negative, then vij D�ˇij .
Throughout this paper, we assume that there is no self-regulation, i.e., we assume
that viiD0. This type of ODE system was first used by Reinitz et al. [1991] to model
gene regulatory networks and then employed by Tyson et al. [2010] to study func-
tional motifs in biochemical reaction networks. So we assume that using the ODE
systems in (1.2) to represent biological networks are acceptable. We analytically
compare the conditions for supporting a stable limit cycle and find that for a single
feedback loop, as long as the corresponding governing functions of the homologous
continuous and discrete systems have the same upper and lower asymptotes, a branch
of limit cycle borne via Hopf bifurcation corresponds to the cycle of its discrete
homologue. However, for coupled feedback loops, besides having the same upper
and lower asymptotes, parameters such as the decay rates also play a crucial role.

This paper is constructed as follows. In Section 2, we express the Jacobian
matrix as the function of equilibrium, which will facilitate the computation in the
later sections. In Section 3, we prove that a negative feedback loop with more
than 2 nodes can have stable oscillations borne from Hopf bifurcation. We show in
Section 4 that a negative feedback loop of a BL network supports a cycle if and
only if each node that has an inhibitor has a background activation (i.e., high basal
production rate). Comparing the results from Sections 3 and 4, we conclude that
with the same upper and lower asymptotes, a cycle in a BL feedback loop gives a
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stable limit cycle in the homologous continuous system. In Section 5, we show that
the conditions of Hopf bifurcation occurring in an ODE network, which consists of
coupled positive and negative feedback loops, include a restriction on the relations
between the decay rates which cannot be implied from the BL network.

2. Preliminary: Jacobian matrix at equilibrium

In this section, we give a form of the Jacobian matrix at equilibrium, which will be
needed for the computation in the following sections.

Lemma 2.1. Let X0 D .x1;x2; : : : ;xn/ (where n � 2) be an equilibrium to the
system (1.2). Then the Jacobian matrix at the equilibrium is0BBB@

�1 f12 � � � f1;n�1 f1n

f21 �2 � � � f2;n�2 f2n
:::

:::
: : :

:::
:::

fn1 fn2 � � � fn;n�1 �n

1CCCA ;
where

fij D ixi.1�xi/�ivij :

Proof. Denote the right-hand side of (1.2) by fi . Then

dfi

dxi
D�i ;

and when j ¤ i ,

dfi

dxj
.X0/D i

1

.1C e��i .aiC
P

j vij xj //2
e��i .aiC

P
j vij xj /�ivij

D ix
2
i

1�xi

xi
�ivij D ixi.1�xi/�ivij ;

where the second equality is due to the fact that at the equilibrium,

1

1C e��i .aiC
P

j vij xj /
D xi :

Hence the Jacobian matrix at the equilibrium X0 is0BBB@
�1 f12 � � � f1;n�1 f1n

f21 �2 � � � f2;n�2 f2n
:::

:::
: : :

:::
:::

fn1 fn2 � � � fn;n�1 �n

1CCCA ;
where

fij D ixi.1�xi/�ivij : �
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1

2 3

4

5n

Figure 1. A feedback loop with n nodes.

3. Dynamics of negative feedback loop with ODE equations

In this section, we focus on the dynamics of feedback loops with n nodes, where
the arrows can be either inhibiting or activating. If there are an odd number of
inhibitory arrows, then the network is a negative feedback loop; otherwise, it is a
positive feedback loop.

The equations associated to the loop in Figure 1 are8̂̂<̂
:̂
Px1 D 1

�
1

1C e��1.a1Cv1;nxn/
�x1

�
;

Pxi D i

�
1

1C e��i .aiCvi;i�1xi�1/
�xi

�
;

(3.3)

where i 2 f2; : : : ; ng and vi;j D ˛ij �ˇij (˛ij > 0; ˇij > 0).
Next we show a result that has been proved in a couple of papers including [Leite

and Wang 2010]. Since it is a simple proof, we reproduce it for our system as follows.

Lemma 3.1. Suppose the network associated to system (3.3) is a negative feedback
loop. Then the system has a unique equilibrium.

Proof. An equilibrium X0 D .x1;x2; : : : ;xn/ of system (3.3) satisfies8̂̂<̂
:̂

1

1C e��1.a1Cv1;nxn/
D x1;

1

1C e��i .aiCvi;i�1xi�1/
D xi ;

(3.4)

where i 2 f2; : : : ; ng.
Let

hi.x/D
1

1C e��i .aiCvi;i�1x/

for i 2 f1; : : : ; ng. Then hi are obviously strictly monotonic functions.
Since the coordinates of the equilibrium satisfy (3.4), we have

x1 D h1.xn/D h1 ı hn.xn�1/ � � �

D h1 ı hn ı hn�1.xn�2/ � � �D h1 ı hn ı hn�1 ı � � � ı h2.x1/: (3.5)
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Note that the composition of two monotonic functions is monotonic. Since it
is a negative feedback loop, h1 ı hn ı hn�1 ı � � � ı h2 is a strictly monotonically
decreasing. Hence there is at most one solution to (3.5).

Now consider the existence of the equilibrium. Note that 0 � x1 � 1. When
x1 D 0, we know h1 ı hn ı hn�1 ı � � � ı h2.x1/ > 0 since hi.x/ > 0 for any value
of x. That is,

h1 ı hn ı hn�1 ı � � � ı h2.0/ > 0:

On the other hand, hi.x/ < 1 for any value of x. It follows that

h1 ı hn ı hn�1 ı � � � ı h2.1/ < 1:

Now if we let
p.x/D h1 ı hn ı hn�1 ı � � � ı h2.x/�x;

then p.0/ > 0 and p.1/ < 0. By the intermediate value theorem, there is a value
of x, say x�, such that p.x�/D 0. That is, there exists a x� such that

h1 ı hn ı hn�1 ı � � � ı h2.x
�/D x�:

So we prove the existence. Therefore, there is a unique equilibrium for any negative
feedback loop whose equations have the form of (3.3). �
Theorem 3.2. Let X0 D .x1;x2; : : : ;xn/ be an equilibrium of an n-node negative
feedback loop with associated equations in the form of (3.3). Suppose i D  > 0.
Then:

(1) The eigenvalues of the Jacobian matrix at the equilibrium are

�k D� C

ˇ̌̌̌ nY
iD1

xi.1�xi/�ivi;i�1

ˇ̌̌̌1=n

ei.�=nC2k�=n/; (3.6)

where k D 0; 1; : : : ; n� 1.

(2) When nD 2, the unique equilibrium is always stable.

(3) When n� 3 and ai D�
1
2
vi;i�1, a branch of periodic solutions can bifurcate

from equilibrium with xi D 0:5 by varying one of the parameters �i and fixing
remaining other parameter values.

Proof. Without loss of generality, we assume  D 1 (otherwise, we can always
rescale the time so that  D 1). By Lemma 2.1, the Jacobian matrix of the sys-
tem (3.3) has the form 0BBB@

�1 0 � � � 0 f1n

f21 �1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � fn;n�1 �1

1CCCA :
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So the characteristic equation of the Jacobian matrix at the equilibrium is

0D .�C 1/n�f1nf21 : : : fn;n�1 D .�C 1/n�

nY
iD1

xi.1�xi/�ivi;i�1:

Hence,

.�C 1/n D

nY
iD1

xi.1�xi/�ivi;i�1: (3.7)

Note that when the feedback loop is negative,
Qn

iD1 vi;i�1 is negative. So is the
right-hand side of (3.7). Let � D

Qn
iD1 xi.1� xi/�ivi;i�1, then � D j�jei�. It

follows that
�D�1Cj�j1=nei.�=nC2k�=n/

for 0� k � n� 1.
Note that when nD 2,

�1 D�1Cj�j1=2ei.�=2/
D�1C ij�j1=2

and
�2 D�1Cj�j1=2ei.�=2C�/

D�1� ij�j1=2:

It follows that Re.�k/D�1 for k 2 f1; 2g. Hence, a negative feedback loop with
only two nodes must only have a stable equilibrium.

When n � 3, the pair of conjugate roots �1C j�j.cos�=n˙ i sin�=n/ have
the largest real part: �1Cj�j cos�=nD�1C

ˇ̌Qn
iD1 xi.1�xi/�ivi;i�1

ˇ̌
cos�=n.

Note that when ai D �
1
2
vi;i�1, it is straightforward to show that

˚
xi D

1
2

	
is an

equilibrium. Since the expression of eigenvalues is independent of ai , we can
vary �i so that the real part changes from negative to positive and leaves the other
eigenvalues with negative real parts. Therefore, a branch of limit cycles can be
borne through Hopf bifurcation. �
Remark 3.3. The theorem states that when aiD�

1
2
vi;i�1, by varying the parameter

of steepness �i a limit cycle can be obtained via Hopf bifurcation. Note that vi;i�1

is either equal to the activating coupling parameter ˛i;i�1 or equal to the inhibitory
coupling parameter �ˇi;i�1 in the feedback loop. Note that 1=.1C e��i ai / is the
basal production rate. That is, when node i has inhibitory input, its basal production
rate has to be relatively high since ai > 0.

Also with the parameter setting ai D�
1
2
vi;i�1, we have

1

1C e��i .aiCvi;i�1xi�1/

ˇ̌̌̌
xi�1D1

D
1

1C e�1=2�ivi;i�1

and
1

1C e��i .aiCvi;i�1xi�1/

ˇ̌̌̌
xi�1D0

D
1

1C e1=2�ivi;i�1
:
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1 2S 1

2

3S 1

2

3S

Figure 2. Two- and three-node negative feedback loops with a con-
stant signal to node 1, as in [Tyson and Novák 2010]. The dynamics
of the corresponding ODEs are equivalent to those without the signal.

We consider the values of xi 2 Œ0; 1�. So if vi;i�1 D ˛i;i�1 > 0 (i.e., node i has
an activating input from node i � 1), the sigmoidal has maximum value .1 C
e�1=2�i ai;i�1/�1 at xi;i�1 D 1 that goes towards 1 as �i !1 and has minimum
value .1Ce1=2�i ai;i�1/�1 at xi;i D 0 that goes towards 0 as �i!1. On the other
hand, if vi;i�1 D�ˇi;i�1 < 0 (i.e., node i has an inhibitory input from node i � 1),
the sigmoidal has maximum value .1C e1=2�iˇi;i�1/�1 at xi;i�1 D 0 that goes
towards 1 as �i !1 and has minimum value .1C e�1=2�iˇi;i�1/�1 at xi;i�1 D 1

that goes towards 0 as �i!1.

Remark 3.4. We recall dynamics of some networks studied by Tyson et al. [2010]
(reproduced in Figure 2). It was assumed that node 1 has a constant basal production
that is indicated by S . The equations to the network in Figure 2 are in the form8̂̂<̂

:̂
Px1 D 1

�
1

1C e��1.SCa1Cv1;nxn/
�x1

�
;

Pxi D i

�
1

1C e��i .aiCvi;i�1xi�1/
�xi

�
;

(3.8)

where i D 2 or i 2 f2; 3g and vi;j D ˛i;j �ˇi;j .
Note that both S and a1 are constants. We can relabel S Ca1 by a�

1
. Then (3.8)

is again in the form of the feedback loop without signal as (3.3). So the dynamics
are the same as we discussed in Section 3.

4. Dynamics of negative feedback loop with Boolean functions

With a given interaction network, there are many ways to choose BL functions for
the nodes. Here we adopt the well-cited assumptions for the associated BL functions
proposed by Albert and Othmer [2003]. We make the following assumptions, which
we will refer to as axioms:

(1) The effects of activators and inhibitors are never additive, but rather, inhibitors
are dominant.

(2) The activity of a node will be “on” in the next time step if at least one of its
activators is “on” and all inhibitors are “off”.
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1 2S

.x1;x2/ F.x1;x2/

.0; 0/ .1; 0/

.1; 0/ .1; 1/

.1; 1/ .0; 1/

.0; 1/ .0; 0/

(0,0) (1,0)

(1,1)(0,1)

Figure 3. Left: two-node negative feedback loop that admits a
cycle; middle: BL map; right: transition graph.

(3) The activity of a node will be “off” in the next time step if none of its activators
are “on”.

(4) If a node has a background activation, then we assume that the node has an
activator that is permanently “on”.

Let I.i/ be the set of inhibitors and A.i/ be the set of activators of the i-th node.
Then we can express the axioms by the following logic function:

xi.tC1/

D

8̂̂̂̂
<̂
ˆ̂̂:

�
:

W
j2I.i/

xj .t/
�
^

W
k2A.i/

xk.t/ when node i has no background activation,

:
W

j2I.i/

xj .t/ when node i has a background activation.

For example, for the network in Figure 3, node 1 receives two inputs: one inhibitor
and another one is a background activator, and node 2 receives one activator from
node 1. So if x1 D 0 and x2 D 1, then in the next time step, x1 remains 0 since its
inhibitor node 2 is on and x2D 0 since its only activator is off. It is straightforward
to check that the BL function associated to the network must be the one listed in
the table in Figure 3. The dynamics of the two-node network in Figure 2 can be
described by the transition graph in Figure 3. Note that this network admits a cycle.

Three-node negative feedback loop. Next we consider a network of three-node
negative feedback loops. We assume one of the nodes has a background activation.
Then there are three cases as shown in Figure 4.

Case I. Assume node 1 has the background activator shown in Figure 5, left. Then
following the axioms, the BL functions associated to the network is the one in
Figure 5, middle, and the transition diagram is as in Figure 5, right. We can see
that .1; 1; 0/ is a fixed point and all other points will converge to the fixed point
over the time. As a result, no cycle exists.
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1

2

3S 1

2

3

S

1

2

3 S

Figure 4. Three different background activation locations.

1

2

3S

.x1;x2;x3/ f .x1;x2;x3/

.0; 0; 0/ .1; 0; 0/

.1; 0; 0/ .1; 1; 0/

.1; 1; 0/ .1; 1; 0/

.1; 0; 1/ .1; 1; 0/

.0; 1; 1/ .1; 0; 0/

.0; 1; 0/ .1; 0; 0/

.0; 0; 1/ .1; 0; 0/

.1; 1; 1/ .1; 1; 0/

(0,0,0)(010) (0,1,1)

(1,0,0)

(1,1,0) (1,1,1)

(1,0,1)(0,0,1)

Figure 5. Case I, left: background signal is on node 1; middle:
BL map; right: transition graph.

1

2

3

S

.x1;x2;x3/ f .x1;x2;x3/

.0; 0; 0/ .0; 1; 0/

.1; 0; 0/ .0; 1; 0/

.1; 1; 0/ .0; 1; 0/

.1; 0; 1/ .1; 1; 0/

.0; 1; 1/ .1; 1; 0/

.0; 1; 0/ .0; 1; 0/

.0; 0; 1/ .0; 1; 0/

.1; 1; 1/ .0; 1; 0/

(1,1,0)(0,0,1) (0,0,0)

(0,1,1) (1,0,1)(1,1,1)

(0,1,0) (1,0,0)

Figure 6. Case II, left: background signal is on node 2; middle:
BL map; right: transition graph.

Case II. Assume node 2 has the background activation as Figure 6, left. Then
the corresponding BL function and transition graph are Figure 6, middle, and
Figure 6, right, respectively. Again, we can see that the system has only a stable
fixed point .1; 1; 0/. As a result, no cycle exists.

Case III. Assume node 3 has the background activation. Similarly, we can deter-
mine its associated BL function and transition graph as in Figure 7. Different from
the other two cases, there exists a cycle with length 6.
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1

2

3 S

.x1;x2;x3/ f .x1;x2;x3/

.0; 0; 0/ .0; 0; 1/

.0; 0; 1/ .1; 0; 1/

.1; 0; 1/ .1; 1; 1/

.1; 1; 1/ .1; 1; 0/

.1; 1; 0/ .0; 1; 0/

.0; 1; 0/ .0; 0; 0/

.1; 0; 0/ .0; 1; 1/

.0; 1; 1/ .1; 0; 0/

(0,0,0) (001)

(1,0,1)

(1,1,1)(1,1,0)

(0,1,0) (1,0,0)

(0,1,1)

Figure 7. Case III, left: background signal is on node 3; middle:
BL map; right: transition graph.

1

2

3 S

S

S

(0,0,0) (111)

(0,1,0) (1,1,0) (1,0,0)

(1,0,1)(0,0,1)(0,1,1)

Figure 8. BL network that admits cycles.

Similarly, we can show for the three-node network in Figure 8, the network
admits cycle only if each node receives a background activation.

Dynamics of n-node negative feedback loop in Figure 2, right. The analysis of
BL three-node negative feedback networks discussed in the previous section shows
that a network admits cycles only if each node that receives inhibitory input has
background activation. This observation can be generalized to any n-node negative
feedback loop.

Let xm
i be the value of the state variable of node i at the m-th time step. Then

the BL system of the feedback loop in Figure 1 has the form(
xmC1

1
D f1.x

m
n /;

xmC1
i D fi.x

m
i�1
/:

(4.9)

Lemma 4.1. Let G be an n-node feedback loop with associated BL system having
the form of (4.9). Then for any m> n,

xmC1
1
D f1 ıfn ıfn�1 ı � � � ıf2.x

mC1�n
1

/:

Proof. It follows straightforwardly from (4.9). �
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Lemma 4.2. Let G be a feedback loop with the associated BL system satisfying the
axioms. Suppose each node with an inhibitory input from some other node has a
background activation. Then

(1) if node i receives a negative input, then the associated BL function is fi.0/D 1

and fi.1/D 0;

(2) if node i receives a positive input, then the associated BL function is fi.0/D 0

and fi.1/D 1;

and the compositions of fi are bijections.

Proof. Items (1) and (2) follow straightforwardly from the axioms. So all fi are
bijections. It then follows that the compositions of fi are bijections. �

Lemma 4.3. Let C be a node of an n-node feedback loop G. Suppose the value of
the state variable of C stays constant after a finite number of time steps. Then the
associated BL system does not have nontrivial cycles.

Proof. Without loss of generality, we relabel the nodes of G so that C is node 1 and
the rest of the nodes are relabeled as in Figure 1. Let xm

i be the value of the state
variable of node i at the m-th time step. Then the BL system has the form of (4.9).

Since this is a deterministic system, when the value x1 is fixed after a finite
series of steps, say M, then by Lemma 4.1, the values of all other xi will be fixed
after M C n time steps. So the system only has fixed points and does not admit
nontrivial cycles. �

Theorem 4.4. Let G be a negative feedback loop with the associated BL system
satisfying the axioms. Then G admits cycles if and only if each node with a negative
input from some other node has a background activation.

Proof. We first prove by contradiction that if one of the nodes with negative inputs
from other nodes has no background activation, then the system does not admit
cycle. Suppose node C of the negative feedback loop G has a negative input from
the other node and has no background excitation. Note that if the initial state value
of C is zero, then the value of C stays zero forever; if the initial state value of C
is 1, then because C has no excitation input, the value of C becomes zero in the next
time step and remains zero forever. By Lemma 4.3, the negative feedback does not
have a cycle.

Next we prove that if all suppressed nodes have background activation, then a
cycle exists. It is sufficient to show that the value of each state variable changes
over time. By Lemma 4.1, for any m> n,

xmC1
1
D f1 ıfn ıfn�1 ı � � � ıf2.x

mC1�n
1

/:
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Since G is a negative feedback loop,

f1 ıfn ıfn�1 ı � � � ıf2.0/D 1 and f1 ıfn ıfn�1 ı � � � ıf2.1/D 0:

So the value of the state variable of node 1 changes every n steps. Because fi are
bijections, the values of other node states also change over time. �
Comparison. Theorem 4.4 states that a BL feedback loop admits a cycle only if
every node with an inhibitory input has a background activation. In the other words,
the governing BL function of a node i with an inhibitory (negative) input must be
fi.x/D 1�x.

Compared with the results for the discrete homologue, the conditions for the
continuous system are essentially the same. As discussed in Remark 3.3, each node
with an inhibitory input must have a relatively high basal production rate, and as
the steepness parameter �i goes to1, the governing function is the same as the
BL system.

5. Networks with two or more feedback loops

Dynamics of the network in Figure 9. The first network we examine is the one
in Figure 9, which was studied by Tyson et al. [2010]. The authors showed that
without the positive input from node 3 to node 2 (i.e., ˛23 D 0), the network of
ODEs demonstrates oscillations in a certain range of the parameter value S (with
other parameter values fixed). The oscillating range of S shrinks as the coupling
parameter ˛23 increases and it disappears when ˛23 increases to a certain value. We
show next that the effect of the parameter ˛23 can be captured by two BL systems:

(1) Besides functions based on the axioms, the governing function of node 2 which
has two inputs, f2.x1;x3/, satisfies

f2.1;�/D 1 and f2.0;�/D 0;

i.e., the activity of node 2 is dominated by the activity of node 1 and the effect
of node 3 is negligible. For this setting, the dynamics of the network is the
same as the three-node network feedback loop in Figure 7 and it has a stable
cycle. This BL system can capture the dynamics of the corresponding ODE
system with ˛23 D 0 or relatively small.

2

3

1 S

Figure 9. A network consists of two feedback loops.
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(000)

(001)

(100) (110) (111)

(010)(101)

(011)

Figure 10. Transitions of the network in Figure 9 with the governing
function for node 2 is node 2 is on if either node 1 or node 2 is on.

(2) Besides functions based on axioms, the governing function of node 2,f2.x1;x3/,
satisfies

f2.1;�/D 1; f2.�; 1/D 1; and f2.0; 0/D 0;

i.e., node 2 is on if either node 1 or node 3 is on.

This transition diagram of the system is shown in Figure 10. It is clear that the
system only has a fixed point which captures the case when ˛23 is sufficiently large.

Remark 5.1. From this example, we can observe that ODE systems can be viewed
as “organizing centers” of BL systems.

Boolean system of the network in Figure 11. Suppose the network in Figure 11
receives a signal through one of the nodes. The possible networks are as in Figure 12.

It is rather straightforward to check that when the signal goes to node 1 or 2,
the corresponding BL network can only have a stable steady-state, and when the
signal goes through node 3, then it has a stable cycle: .000/! .001/! .111/!

.110/! .000/.

2 13

Figure 11. Another network consisting of two feedback loops.

2 13

S

2 13 S

2 13S

Figure 12. Three possible signal input places.
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Dynamics of the ODE systems of the network in Figure 11. By Lemma 2.1, the
Jacobian matrix of an ODE system associated to the network in Figure 11 at an
equilibrium has the form 0@ �1 0 f13

0 �2 f23

f31 f32 �3

1A ;
where fij D ixi.1�xi/�ivij .

Therefore, the characteristic polynomial equation of the matrix is

j�I�J jD .�C1/.�C2/.�C3/�.�C2/f31f13�.�C1/f32f23

D�3
C.1C2C3/�

2
C.12C23C13�f13f31�f23f32/�

C123�2f13f31�1f23f32:

(5.10)

Theorem 5.2. The condition 2 > 1 is necessary for Hopf bifurcation to occur.

Proof. Let us label the coefficient of �2 as c1, the coefficient of � as c2 and the
constant term as c3. Then the conditions for having a pair of pure imaginary
eigenvalues are:

� c1 D 1C 2C 3 > 0: (5.11)

� c2 D 12C 23C 13�f13f31�f23f32 > 0. It follows that

12C 23C 13�f13f31 > f23f32: (5.12)

� c3� c1c2 D 0, i.e.,

123� 2f13f31� 1f23f32

� .1C 2C 3/.12C 23C 13�f13f31�f23f32/D 0: (5.13)

It follows that

.2C 3/f23f32� 
2
1 .2C 3/� 

2
2 .1C 3/

�  2
3 .1C 2/� 2123C .1C 3/f13f31 D 0: (5.14)

Inequality (5.12) and equation (5.14) imply that

.2C 3/.12C 23C 13�f13f31/

>  2
1 .2C 3/C 

2
2 .1C 3/C 

2
3 .1C 2/

C 2123� .1C 3/f13f31: (5.15)

Simplifying (5.15), we have

�.2� 1/f13f31 > 
2
1 .2C 3/: (5.16)

By the condition of the network, f13f31<0, so inequality (5.16) implies 2>1. �
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X
1

�

Figure 13. Bifurcation diagram at the parameter values �1D �3D

�2D � , 1D 3D 1 and 2D 1:5, ˛13D ˇ31D ˛23D ˛32D 1,
a1 D a2 D �0:5 and a3 D 0, and with the rest of the parameters
being zero. Here the gray curve represents a branch of stable limit
cycle, the solid black line represents a branch of stable equilibria
and the black dashed line a branch of unstable equilibria.

How can we choose parameter values so that we will observe sustained os-
cillations that close to the Hopf bifurcation point? Suppose the bifurcation is
supercritical; then near the bifurcation point, c3� c1c2 � 0 while c1 and c2 remain
positive. Now by substituting fij by ixi.1�xi/�ivij in inequalities (5.16), (5.12)
and c3� c1c2 � 0, we obtain

.2� 1/13x1x3.1�x1/.1�x3/�1�3ˇ31˛13 > 
2
1 .2C 3/; (5.17)

12C 23C 13C 13x1x3.1�x1/.1�x3/�1�3ˇ31˛13

> 23x2x3.1�x2/.1�x3/�2�3˛32˛23 (5.18)

and

 2
1 .2C 3/C 

2
2 .1C 3/C 

2
3 .1C 2/C 2123

C .1C 3/13x1x3.1�x1/.1�x3/�1�3ˇ31˛13

� .2C 3/23x2x3.1�x2/.1�x3/�2�3˛32˛23: (5.19)

Focusing on the equilibria with xi D 0:5, we can find a range of parameter values
that satisfy conditions (5.16), (5.18) and (5.19). For example, �1 D �3 D �2 D � ,
1 D 3 D 1 and 2 D 1:5, ˛13 D ˇ31 D ˛23 D ˛32 D 1, a1 D a2 D �0:5 and
a3 D 0. By setting the rest of the parameters to zero and varying the value � , we
can find a branch of limit cycle occuring through Hopf bifurcation; see Figure 13.

Comparison of discrete and continuous homologues. Now we compare the con-
ditions for the homologous systems of the network in Figure 11. The BL system
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requires that node 3 has a background activation, which is reflected in the choices
of parameter values associated to basal production rates in the ODE system:
a1 D a2 D �0:5 and a3 D 0, where a3 is actually the summation of the two
parameters a3 and signal S with a3 D �0:5 and S D 0:5. In order to realize
oscillations in the continuous system, we need to find suitable values for other
parameters as well. For example, we need to impose a restriction on the relation of
decay rates 2 >1 in order to observe stable oscillations. Such requirements in the
parameter values of ODE systems do not have correspondence in the BL systems.

6. Discussion

Glass and Kauffman [1973] showed that a stable limit cycle of a continuous network
gives a cycle in its discrete homologue under the condition that each node has only
one input from other nodes. In this work, we compared the conditions for each
type possessing a stable cycle for the case where each node has one input and also
examined two cases when some nodes have two inputs. Our strategy of focusing on
the type of ODE systems in a rather abstract form enables us to perform analytical
examinations and to possibly extract essential dynamical differences between the
two types of network models. The strategy has the potential to be used for more
extensive study of the relations as to provide more efficient algorithms for converting
between continuous and discrete network systems.
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Weak and strong solutions
to the inverse-square brachistochrone problem

on circular and annular domains
Christopher Grimm and John A. Gemmer

(Communicated by John Baxley)

In this paper we study the brachistochrone problem in an inverse-square gravita-
tional field on the unit disk. We show that the time-optimal solutions consist of
either smooth strong solutions to the Euler–Lagrange equation or weak solutions
formed by appropriately patched together strong solutions. This combination of
weak and strong solutions completely foliates the unit disk. We also consider
the problem on annular domains and show that the time-optimal paths foliate the
annulus. These foliations on the annular domains converge to the foliation on the
unit disk in the limit of vanishing inner radius.

1. Introduction

In 1696 Johann Bernoulli posed the following problem: given two points A, B,
find a curve connecting A and B such that a particle traveling from A to B under
the influence of a uniform gravitational field takes the minimum time. This is
called the brachistochrone problem, from the Greek terms brachistos for shortest
and chronos for time. It was solved the following year by Leibniz, L’Hospital,
Newton, and others [Dunham 1990]. While the solution to the brachistochrone
problem has limited applications, the techniques from calculus used to solve it were
novel at the time. Namely, rudimentary techniques from what would later be called
the calculus of variations were developed. Euler and Lagrange later formalized
these initial approaches into their celebrated necessary conditions for optimality,
what we now call the Euler–Lagrange equations. For certain types of functionals,
this approach reduces the optimization problem to solving a differential equation,
i.e., the Euler–Lagrange equation, corresponding to the functional. Indeed, the
reduction of an optimization problem to that of solving a differential equation can be
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Keywords: brachistochrone problem, calculus of variations of one independent variable, eikonal

equation, geometric optics.
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directly applied to many classical optimization problems such as the isoperimetric
problem [Blåsjö 2005], determining the shape of a minimal surface [Sagan 1969;
Oprea 2000] and calculating the path of a geodesic on a surface [McCleary 2013].
Moreover, in classical mechanics the dynamics of a system can be derived using
the Euler–Lagrange equations to extremize the so-called “action” of the system
[Goldstein et al. 2014]. This approach to classical mechanics is equivalent to
Newtonian mechanics but leads to deeper insights which are critical to our current
mathematical understanding of quantum mechanics, general relativity, and other
branches of physics.

While the Euler–Lagrange equations have been very successfully applied to many
problems in engineering and physics, they do not provide the complete picture.
In particular, as necessary conditions for optimality, their derivation implicitly
assumes existence and smoothness of a minimum. In modern mathematics and
applications these assumptions are naive. For instance, many problems in continuum
mechanics have minimizers which lack enough regularity to be classical solutions
to the Euler–Lagrange equations [Müller 1999]. The existence of these nonstandard
solutions is not simply a mathematical curiosity but can be realized in practice as
the blister and herringbone patterns in compressed thin sheets [Ortiz and Gioia
1994; Song et al. 2008], branched domain structures in ferromagnets [DeSimone
et al. 2000], self-similar patterns in shape memory alloys [Bhattacharya 2003],
the network of ridges in crumpled paper [Witten 2007], and even the fractal-like
patterns in leaves and torn elastic sheets [Audoly and Boudaoud 2003; Sharon
et al. 2007; Gemmer et al. 2016]. To understand such systems, local solutions of
the Euler–Lagrange equations must be “patched together” along singularities in a
manner that is consistent with the overall variational structure of the problem; see
[Kohn 2007] for an introduction to this approach.

In this paper our focus is more modest. Namely, we study the problem of
determining brachistochrone solutions for particles falling in an inverse-square
gravitational field. This problem has been studied in [Parnovsky 1998; Tee 1999;
Gemmer et al. 2011] using standard techniques from the calculus of variations.
However, in these works they only considered “strong” solutions to the Euler–
Lagrange equations, which limits the scope of the optimal paths considered. In
particular, in [Parnovsky 1998; Tee 1999; Gemmer et al. 2011] it was shown that
there is a “forbidden” region through which strong solutions to the Euler–Lagrange
equations do not penetrate. In this paper, we show that by considering appropriate
“weak” solutions constructed from strong solutions patched together at the singular
origin of the gravitational field, the full space of optimal paths is more robust. In
particular, these solutions enter the forbidden region and are characteristics for the
Hamilton–Jacobi equation. This lends credence to the notion that our solutions are
the natural extensions of the strong solutions that penetrate the forbidden region
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and are optimal. Moreover, we also consider the inverse-square problem on an
annular domain. Using variational inequalities, we show that our weak solutions
are obtained in the limit as the inner radius of the annulus vanishes.

The paper is organized as follows. In Section 2 we outline the general framework
of brachistochrone problems, present the strong and weak versions of the Euler–
Lagrange equations, and draw a connection to geometric optics using results from
optimal control theory. In Section 3 we restrict our focus to the case of the inverse-
square gravitational field. We first briefly reproduce the results in [Parnovsky
1998; Tee 1999], namely that there exists a forbidden region through which strong
solutions cannot penetrate. Next we present our construction of weak solutions that
penetrate into this region. In Section 4 we take a pragmatic approach and consider
the problem on an annular domain that excises the singularity at the origin. In
doing so, we prove that under the assumption that the strong solutions are global
minimizers outside of the forbidden region, our weak solutions are time-optimal.
We conclude with a discussion section.

2. Mathematical framework and governing equations

2.1. Mathematical framework. In this section we summarize the essential defini-
tions and equations which we use to study brachistochrone problems in generic
settings. First, let V : Rn

→ R be the potential for a gravitational field; i.e., V is
a smooth function except possibly at isolated singularities. Suppose A, B ∈ Rn

satisfy V (A) > V (B) and there exists a smooth curve α : [0, 1] → Rn satisfying
α(0)= A, α(1)= B and V (α(s)) ≤ V (A) for all 0 ≤ s ≤ 1. Now, for a particle
released in the gravitational field and constrained to fall along α, it follows that if
friction is neglected, mechanical energy is conserved along the path

|α′(s)|2
(

ds
dt

)2

+ V (α(s))= V (A), (1)

where t denotes time traveled on α and we have absorbed the standard factor of 1/2
in the kinetic energy into the potential. The total time of flight to B can then be
directly computed:

T [α] =
∫ 1

0

|α′(s)|
√

V (A)− V (α(s))
ds. (2)

This time of flight is still well defined if instead of smooth functions we consider
absolutely continuous functions for which V (α)≤ V (A).1 That is, we define the

1The space of absolutely continuous functions from [0, 1] into Rn consists of all functions for
which there exists a Lebesgue measurable function β : [0, 1]→Rn satisfying α(s)=α(0)+

∫ s
0 β(s̄) ds̄

and is denoted by AC([0, 1];Rn) [Leoni 2009]. For α ∈ AC([0, 1];Rn) the (weak) notion of the first
derivative is defined by α′(s)= β(s).
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admissible set A by

A=
{
α ∈ AC([0, 1];Rn) : α(0)= A, α(1)= B and V (α(s))≤ V (A)

}
(3)

and define the functional T : A→ R by (2). The generalized brachistochrone
problem for the potential V is to find a curve α∗∈ A that minimizes the time of
flight to B. We call such curves brachistochrone solutions for the potential V.

The contours, i.e., the equipotential curves, of V naturally partition Rn into
domains

U (A)= {x ∈ Rn
: V (A)− V (x)≥ 0}

that contain points that (possibly) can be reached by brachistochrone solutions.
For example, for the uniform gravitational potential V : R2

→ R, defined by
V (x, y)=−y, a particle released at the point A= (0, 0) can only reach points in the
set U (A)= {(x, y) ∈R2

: y ≤ 0}. To completely solve the brachistochrone problem
for this potential, one is naturally led to the question of finding all brachistochrone
solutions that foliate U (A).

2.2. Euler–Lagrange equations for brachistochrone problems. We now follow
classical techniques presented in [Sagan 1969] to derive the Euler–Lagrange equa-
tions for (2). First, suppose infα∈A T [α] < ∞ and α∗ ∈ A satisfies T [α∗] =
infα∈A T [α], i.e., α∗ is a minimizer. Since α∗ ∈ AC([0, 1];Rn) and T [α∗] <∞,
the set of points in [0, 1] for which V (α∗(s)) = A has Lebesgue measure zero.
Consequently, if we further assume that V (α∗(s))=V (A) only at s=0 and possibly
at s=1 if the terminal point satisfies V (B)=V (A), then for all η∈C∞0 ([0, 1];Rn)2

there exists h̄ > 0 such that |h| < h̄ implies α∗ + hη ∈ A. Define the function
f : [−h̄, h̄] → R by f (x) = T [α∗+ hη]. From the regularity assumptions on V
and α∗, it follows that f is differentiable in h and consequently, since α∗ minimizes
T , it follows that f ′(0)= 0. Therefore, we have the following necessary condition
for optimality:

f ′(0)=
∫ 1

0

α∗′(s)
|α∗′(s)|

√
V (A)− V (α∗(s))

· η′(s) ds

+
1
2

∫ 1

0

|α∗′(s)|
(V (A)− V (α∗(s)))3/2

∇V (α∗(s)) · η ds, (4)

which must be satisfied for all η ∈ C∞0 ([0, 1];Rn) [Evans 1998]. Equation (4) is
known as the weak formulation of the Euler–Lagrange equations for the brachis-
tochrone problem. If we further assume that the minimizing curve α∗ is twice

2 C∞0 ([0, 1];Rn) denotes the space of smooth functions from [0, 1] into Rn with compact support
[Royden and Fitzpatrick 2010].
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differentiable then (4) can be integrated by parts to yield

0=
∫ 1

0

(
1
2

|α∗′(s)|
(V (A)− V (α∗(s)))3/2

∇V (α∗(s))

−
d
ds

(
α∗′(s)

|α∗′(s)|
√

V (A)− V (α∗(s))

))
· η ds. (5)

By the so-called “fundamental theorem of the calculus of variations”, since η was
arbitrary the necessary condition satisfied by a twice differentiable curve α∗ is the
following differential equation [Sagan 1969]:

0=
1
2

|α∗′(s)|
(V (A)−V (α∗(s)))3/2

∇V (α∗(s))−
d
ds

(
α∗′(s)

|α∗′(s)|
√

V (A)−V (α∗(s))

)
. (6)

Equation (6) is known as the strong formulation of the Euler–Lagrange equations
for the brachistochrone problem.

Note, however, that in deriving the strong formulation of the Euler–Lagrange
equations we made the additional assumption that α∗ is twice differentiable. In
many applications this assumption is too restrictive. For example, the functional
J : AC([−1, 1];R)→ R defined by J [y] =

∫ 1
−1(1− y′(s)2)2 ds with boundary

conditions y(−1) = y(1) = 1 is minimized by y(x) = |x |. In this example the
two strong solutions y = x and y = −x are joined together at x = 0. However
simply gluing together two strong solutions does not guarantee that the resulting
combination is a weak solution. If α∗ is twice differentiable everywhere except at
a point c ∈ (0, 1) and satisfies (6) away from c, we can integrate (4) by parts to
obtain the necessary condition

lim
s→c−

(
α∗′(s)

|α∗′(s)|
√

V (A)− V (α(s))

)
= lim

s→c+

(
α∗′(s)

|α∗′(s)|
√

V (A)− V (α(s))

)
. (7)

Equation (7) is commonly called the Weierstrass–Erdmann corner condition [Sagan
1969] and must be satisfied by piecewise smooth solutions of (6).

We now make some additional comments about the Weierstrass–Erdmann corner
conditions which will be relevant to the discussion in later sections. First, away
from a singularity in the potential V, i.e., if we assume that (V (A)−V (c))−1/2

6= 0,
(7) corresponds to continuity of the tangent vector α′(s) at c. Moreover, away
from singularities, this condition physically corresponds to conservation of classical
momentum at c. However, if (V (A)− V (c))−1/2

= 0, this necessary condition is
trivially satisfied. That is, at a singularity in the gravitational field, a minimizer
could violate conservation of momentum. This result should not be surprising since
at a singularity V (c)=∞, implying that the instantaneous speed, as well as the ac-
celeration of the particle, is infinite. This fact will be critical in our later construction
of weak brachistochrone solutions in an inverse-square gravitational field.
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2.3. Connection with geometrical optics through control theory. While directly
solving the Euler–Lagrange equations given by (6) will solve the brachistochrone
problem, there is another approach, originally taken by Johann Bernoulli. Namely,
Bernoulli realized that the brachistochrone problem is equivalent to finding the path
traced out by a ray of light in a medium with index of refraction n(x)= (V (A)−
V (x))−1/2. His solution method was prescient in that it applied Snell’s law of refrac-
tion to what would now be called a finite element approximation to the problem with
a piecewise linear basis [Erlichson 1999; Sussmann and Willems 1997]. The connec-
tion to geometrical optics was later exploited by Hamilton and finalized by Jacobi
to derive what we now call the Hamilton–Jacobi equations for a variational problem
[Broer 2014; Sussmann and Willems 1997; Nakane and Fraser 2002]. Specifically,
the Hamilton–Jacobi equation is a quasilinear partial differential equation whose
characteristic equations are precisely the Euler–Lagrange equations for the system
[Evans 1998]. In particular, the Hamilton–Jacobi equation governs the dynamics of
wave-fronts propagating in a medium with index of refraction n(x) and the Euler–
Lagrange equations are the evolution equations for the normals to the wave-fronts.

We will now show how the geometric optics interpretation of the brachistochrone
problem can be directly derived using modern optimal control theory. To reinterpret
the brachistochrone problem as a control problem we follow [Sussmann and Willems
1997] and first define the set of admissible controls by

U =
{
u : [0,R)→ Rn

: u is piecewise smooth and |u| = 1
}
, (8)

and to satisfy (1) we constrain the dynamics of the system by

α̇ =
√

V (A)− V (x) u. (9)

We define the trajectory of a control to be the curve α defined by (9) and also
define TB : U → R ∪ {+∞} to be the first time a trajectory corresponding to a
control u reaches the point B. The optimal control problem corresponding to the
brachistochrone problem is to find u∗ ∈ U that steers a trajectory α(t) to a point
B ∈U (A) in the minimal amount of time. That is, find u∗ ∈ U such that TB[u∗] =
infu∈U TB[u]. Clearly, this optimal control problem is equivalent to our previous
formulation of the brachistochrone problem and infu∈U TB[u] = infα∈A T [α].

One technique for solving such an optimal control problem is to apply Bellman’s
technique of dynamic programming [Bertsekas 1995]. Namely, if we define the
value function V :U (A)→ R by

V(x)= inf
u∈U

Tx[u] (10)

then the dynamic programming principle states that for 1t > 0 sufficiently small

V(x)= min
u∈U

0<s<1t

{V(ᾱ(1t))+1t}, (11)
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where ᾱ corresponds to the time-reversed solution of (9) with initial condition
ᾱ(0) = x and control u. If we assume that V is smooth, we can formally Taylor
expand:

V(x)= min
|u(0)|=1

{
V(x)+∇V(x)

√
V (A)− V (x) u(0)1t +1t +O(1t2)

}
.

Consequently, taking the limit as 1t→ 0, we obtain

−1= min
|u(0)|=1

∇V(x)
√

V (A)− V (x) u(0).

Finally, this minimum is obtained by u(0) = −∇V(x)/|V(x)| and hence we can
conclude that the value function V satisfies the partial differential equation

|∇V|2 =
1

V (A)− V (x)
= n2(x). (12)

In geometrical optics, (12) is an eikonal equation for a medium with index of
refraction n(x). That is, the level sets of solutions to (12) correspond to wave fronts
for light traveling through the medium and the light rays correspond to curves that
are everywhere tangent to the normals of the level sets of V . Consequently, if we
let β(s) be an arc-length parametrization of such a light ray, it follows that

∇V(β(s))= n(β(s))
dβ
ds
. (13)

Differentiating with respect to ds and switching the order of differentiation,

∇

(
∇V(β(s)) ·

dβ
ds

)
=

d
ds

(
n(β(s))

dβ
ds

)
.

Therefore, by (12) and (13), the governing equation for the rays is

∇n(β)=
d
ds

(
n(β(s))

dβ
ds

)
. (14)

Finally, it follows immediately that (14) is simply a version of (6) that is parametrized
by arc-length. That is, to solve the brachistochrone problem we could, in principle,
solve the eikonal equation (12) and use (13) to reconstruct the brachistochrone
solution. More importantly, we could solve the brachistochrone problem directly
by solving the Euler–Lagrange equations (6) and compute the time of flight along
these solution curves to compute the solution to the eikonal equation (12).

3. Brachistochrone problem in an inverse-square gravitational field

3.1. Framework. Consider two points A, B ∈ R2 with |B| ≤ |A|. For an inverse-
square field, the potential V : R2

→ R is defined by V (x)=−|x |−2. The inverse-
square brachistochrone problem is to construct a curve connecting A and B such
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that a particle traversing the curve from A to B under the influence a gravitational
field centered at the origin with potential V has the least time of flight. In this case
the admissible set A0 is defined by

A0=
{
α∈ AC([0,1];R2) :α(0)= A, α(1)= B and ∀t ∈[0,1], |α(t)|≤ |A|

}
(15)

and the time of flight T :A0→ R+ is given by

T [α] =
∫ 1

0

|α′(s)|√
|α(s)|−2− |A|−2

ds. (16)

Again, this functional arises from classical conservation of mechanical energy and
the constraint |α(s)| ≤ |A|— a necessary condition for this functional to be well
defined — is equivalent to the condition that the particle cannot gain mechanical
energy.

To study minimizers of (16) it is natural to work in a polar-coordinate represen-
tation of the form

α(s)=
(
r(s) cos(θ(s)), r(s) sin(θ(s))

)
, (17)

where r : [0, 1] → [0, |A|] and θ : [0, 1] → [−π, π] are (weakly) differentiable
functions satisfying r(0) = |A|, r(1) = |B|, θ(0) = θ0, θ(1) = θ f , with θ0, θ f

the angular coordinates of A, B respectively; see Figure 1 (left). By rotational
symmetry and radial invariance we can assume without loss of generality that
A = (1, 0); see Figure 1 (right). In this representation, (16) becomes

T [r, θ] =
∫ 1

0

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds =

∫ 1

0
L2
(
r(s), r ′(s), θ ′(s)

)
ds, (18)

where L2 : R
3
→ R denotes the Lagrangian for this functional. To reduce encum-

bering notation we write (r(s), θ(s)) ∈A0 as a proxy for the statement that there
exists α ∈ A0 with corresponding radial and angular components r(s) and θ(s)
respectively.

We now deduce geometric properties of minimizers using the structure of the
Lagrangian. We first show that if (r∗, θ∗) ∈ A0 minimizes T then θ∗ must be a
monotone function. This property prevents a minimizer from “turning back” to its
starting point. The idea of the proof is to construct for all (r, θ) ∈ A0 a modified
curve (r, θ̄ ) ∈A with θ̄ monotone in s and show T [r, θ̄ ] ≤ T [r, θ].

Proposition 1. If (r∗(s), θ∗(s)) ∈A0 minimizes T then θ∗ is monotone in s.

Proof. Let (r(s), θ(s)) ∈A0 terminate at the point (r f cos θ f , r f sin θ f ) and assume
θ f ≥ 0. Define θ̄ : [0, 1]→ [0, 2π ] by θ̄ (s)=min

{
θ f , sup{θ(t) : 0≤ t ≤ s}

}
. From

the absolute continuity of θ , it follows that θ̄ is absolutely continuous, monotone
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A=(r0 cos θ0, r0 sin θ0)

α(s)

O

B=(r f cos θ f , r f sin θ f )

B

O

α(s) A=(1, 0)

Figure 1. Left: Plot of a curve α : [0, 1] → R2 connecting
A= (r0 cos θ0, r0 sin θ0) to B = (r f cos θ f , r f sin θ f ) in an inverse-
square gravitational field centered at the origin O. The circle of
radius r0 is an equipotential for the inverse-square gravitational field.
For a particle falling along this curve, conservation of mechanical
energy requires that |α(s)| ≤ r0. Right: By rotational and radial
scale invariance of this problem, we can assume without loss of
generality that A = (1, 0).

increasing and satisfies θ̄ (1)= θ f . Moreover, there exists a closed set I on which
θ̄ = θ and an open set I = [0, 1] \ I on which d θ̄/ds = 0. Therefore,

T [r, θ̄ ] =
∫

I

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds+

∫
I

√
r ′(s)2

r(s)−1− 1
ds

≤

∫
I

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds+

∫
I

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds = T [r, θ],

with equality if and only if θ is monotone increasing. Thus, if (r∗(s), θ∗(s)) ∈A0

minimizes T then θ∗ is monotone increasing in s. A similar argument proves that
θ∗ must be monotone decreasing if θ f < 0. �

We now prove that without loss of generality we can assume minimizers are sym-
metric about the angle θ f /2. Specifically, if in polar coordinates (r∗(s),θ∗(s))∈A0

minimizes T and terminates at the final point (rf =1,θ f ) then the image of (r(s),θ(s))
is symmetric about the line θ = θ f /2. Similar to the previous proof, the idea is
to modify a curve α ∈A0 by constructing symmetric versions and comparing the
times of flight.

Proposition 2. If (r∗(s),θ∗(s))∈A0 minimizes T with terminal point (r(1),θ(1))=
(1,θ f ) then there exists a version of (r∗(s), θ∗(s)) in R2 that is symmetric about the
line θ = θ f /2 that also minimizes T.
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Proof. Let (r(s), θ(s))∈A0 and t (s) be a reparameterization in which θ(1/2)=θ f /2
and if t > 1/2 then θ(t) > θ f /2. Define the two possible reflections of (r(t), θ(t))
about the line θ = θ f /2 by

r1(t)=
{

r(t), 0≤ t ≤ 1
2 ,

r(1− t), 1
2 < t ≤ 1,

and θ1(t)=
{
θ(t), 0≤ t ≤ 1

2 ,

θ f − θ(1− t), 1
2 < t ≤ 1,

r2(t)=
{

r(1− t), 0≤ t ≤ 1
2 ,

r(t), 1
2 < t ≤ 1,

and θ2(t)=
{
θ(1− t)− θ f , 0≤ t ≤ 1

2 ,

θ(t), 1
2 < t ≤ 1.

By construction, the images of the curves (r1(t), θ1(t)) and (r2(t), θ2(t)) in R2 are
symmetric about the line θ = θ f /2. It follows from symmetry that

T [r1, θ1] = 2
∫ 1/2

0

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds,

T [r2, θ2] = 2
∫ 1

1/2

√
r ′(s)2+ r(s)2θ ′(s)2

r(s)−1− 1
ds.

Therefore, T [r1, θ1] + T [r2, θ2] = 2T [r, θ] from which it follows that

min
{
T [r1, θ1], T [r2, θ2]

}
≤ T [r, θ].

Thus if (r∗(s), θ∗(s)) ∈A0 minimizes T then either (r1(s), θ1(s)) or (r2(s), θ2(s))
must also minimize T. �

3.2. Strong solutions to Euler–Lagrange equations. In this subsection we review
the construction of smooth minimizers to T that was originally presented in
[Parnovsky 1998; Tee 1999]. The classic method for finding time-minimizing curves
is to derive the Euler–Lagrange equations for T and solve the resulting boundary
value problem. Specifically, if we assume there exists a twice differentiable curve
α∗(s)∈A0 with angular component θ∗(s) and radial component r∗(s) that (locally)
minimizes T then the resulting boundary value problem is

(
∂L
∂r
−

d
ds
∂L
∂r ′

)∣∣∣∣
(r∗(s),θ∗(s))

= 0,

d
ds
∂L
∂θ ′

∣∣∣∣
(r∗(s),θ∗(s))

= 0,

r∗(0)= 1, r∗(1)= |B|, θ∗(0)= 0, θ(1)= θ f .

(19)

If we make the assumption that θ∗ is a function of r∗, i.e., we assume the ansatz
r∗(s)= (|B| − 1)s+ 1, then (19) reduces to the differential equation

d
dt
∂L
∂θ ′
= 0. (20)



SOLUTIONS TO THE INVERSE-SQUARE BRACHISTOCHRONE PROBLEM 843

Formally, (20) can be integrated to yield a separable differential equation with
solution

θ∗(r∗)=±
∫ r∗

1

√
2(1/u− 1)D

u4− u2(2(1/u− 1))D
du, (21)

where D > 0 is a constant of integration which can be determined from the
boundary conditions. The assumption that θ∗ is globally a function of r∗ is
valid if (dθ∗/dr∗)−1

6= 0 for all r∗ ∈ (0, 1). It follows from (21) that for fixed
D > 0 this condition is equivalent to the nonexistence of solutions to the equation
r3
+ 2Dr − 2D = 0 for r ∈ (0, 1]. The following proposition makes this statement

precise and identifies the critical radius rc in terms of the integration constant D.

Proposition 3. For fixed D > 0, there exists a unique rc(D) ∈ [0, 1] such that
θ∗(r∗) defined by (21) satisfies

lim
r→rc(D)+

dθ∗

dr∗

∣∣∣∣
r
=∞.

Moreover, the mapping D→ rc(D) is a bijection from (0,∞) into (0, 1).

Proof. Fix D > 0 and define g : (0, 1)→ R by g(r) = r3
+ 2Dr − 2D. Since

g(0)=−2D, g(1)= 1, and g′(r) > 0, by the intermediate value theorem there
exists unique rc(D) ∈ (0, 1) such that g(rc(D))= 0. Consequently, it follows from
(21) that

lim
r→rc(D)+

∂θ∗

∂r∗

∣∣∣∣
r
=∞.

The bijection is proved by noting that the inverse mapping from rc(D) to D given
by D(rc)= (r3

c /2)(1− rc) satisfies limrc→0+ D(rc)= 0, limrc→1− D(rc)=∞ and
is monotone increasing in rc. �

To extend smooth solutions beyond the point where θ∗ is no longer a function
of r∗ it follows from Proposition 2 that it is necessary to reflect the solutions
across the line θ = θ f /2. Specifically, for D ∈ (0,∞) if we define rc(D) as
in Proposition 3 then we obtain the following family of solutions expressed in
parametric form α(s)=

(
r S

D(s) cos(θ S
D(s)), r

S
D(s) sin(θ S

D(s))
)

with

r S
D(s)=

{
2(rc(D)− 1)s+ 1, 0≤ s ≤ 1

2 ,

2(1− rc(D))(s− 1)+ 1, 1
2 < s ≤ 1,

(22)

θ S
D(s)=


±

∫ r S
D(s)

1

√
2(1− u)D

u5− 2u2 D(1− u)
du, 0≤ s ≤ 1

2 ,

∓

∫ r S
D(s)

rc(D)

√
2(1− u)D

u5− 2u2 D(1− u)
du± θ S

D
( 1

2

)
, 1

2 ≤ s ≤ 1,

(23)
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Y

X

Figure 2. Plot of 16 smooth strong solution curves α(s) defined
by (22) and (23) with the final angular coordinate θ S

D(1) uniformly
spaced from −2π/3 to 2π/3. The value of D was found by the
bisection method, i.e., the shooting method, applied to (23). The
points indicate the critical radius rc(D) where dθ S

D/dr S
D = ±∞

and the curve begins receding away from the origin.

where we are using the superscript “S” to denote that these are strong solutions to
the Euler–Lagrange equations. Note, that while the individual functions r S

D(s) and
θ S

D(s) are not smooth, the curve α itself is a smooth function from [0, 1] into R2.
Interestingly, as D ranges over values in (0,∞) the curves defined by (22) and

(23) do not foliate the unit disk x2
+ y2
≤ 1; see Figure 2. Indeed, if we define the

sector S by

S = {θ : −π ≤ θ <−2π/3} ∪ {θ : 2π/3< θ < π}, (24)

it was shown in [Tee 1999; Gemmer et al. 2011] that these curves do not enter S.
This is made precise by the following proposition whose proof we adapt from
[Gemmer et al. 2011].

Proposition 4. For all s ∈ [0, 1] and D ∈ (0,∞) the curves α(s) with radial and
angular components r S

D(s) and θ S
D(s) defined by (22) and (23) satisfy θ S

D(s) /∈ S.

Proof. For D > 0 let α(s) =
(
r S

D(s) cos(θ S
D(s)), r

S
D(s) sin(θ S

D(s))
)

be defined by
(22) and (23) with the “−” branch. Differentiating,

dθ S
D

ds
=

dθ S
D

dr S
D

dr S
D

ds
= 2rc(D)

√
2(1− r S

D)D

(r S
D)

5− 2(r S
D)

2 D(1− r S
D)
> 0

with equality only at r S
D = 1. Hence, dθ S

D/ds is monotone increasing in s with the
maximum angular coordinate θ̄ (D) satisfying

θ̄ (D)= max
0≤s≤1

θ S
D(s)= 2

∫ 1

rc(D)

√
2(1− u)D

u5− 2u2 D(1− u)
du.
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Since limD→∞ rc(D)= 1, it follows that limD→∞ θ̄ (D)= 0. Now, from uniqueness
of solutions to (20) we can deduce that θ̄ (D) must be monotone decreasing in D
and hence has a limit as D→ 0. By making the change of variables x = rc(D)/u3/2,
we obtain

1
2

lim
D→0

θ̄ (D)= lim
D→0

2
3

∫ 1

rc(D)

√
1−rc(D)x−2/3

(1−rc(D))−(1−rc(D)x−2/3)x2 dx

= lim
D→0

2
3

∫ 1

0

√
1

(1−rc(D))/(1−rc(D)x−2/3)−x2 I{x > rc(D)3/2}dx,

where I denotes the standard indicator function. Now, observing that the integrand
of the above equation forms a sequence of functions bounded by (1− x2)−1/2, it
follows from Lebesgue’s dominated convergence theorem that

lim
D→0

θ̄ (D)=
∫ 1

0

4
3

√
1

1− x2 dx = 4
3
(arcsin(1)− arcsin(0))= 2π

3
.

The exact same arguments hold if we consider the “+” branch in (22) and (23)
except the limiting angle is −2π/3. Consequently we can conclude for all s ∈ [0, 1]
and D ∈ (0,∞) that θ S

D(s) given by (23) satisfies

−
2π
3
≤ θ S

D(s)≤
2π
3
. �

The following proposition immediately follows from Propositions 3 and 4.

Proposition 5. For all θ f ∈ (0, 2π/3) there exists D ∈ (0,∞) such that the solution
curve with angular and radial coordinates (θ S

D(s), r
S
D(s)) as defined by (22) and

(23) satisfies θ S
D(0) = 0, and θ S

D(1) = θ f . Moreover, the mapping θ f → D is a
bijection.

Remark. It follows from Propositions 3 and 4 that θ f , rc and D characterize a
unique solution curve of the form defined by (22) and (23).

3.3. Weak solutions to the Euler–Lagrange equations. One family of weak solu-
tions to (16) is given by the parametrization

r W (s)=
{

1− 2s, 0≤ s ≤ 1
2 ,

2s− 1, 1
2 < s ≤ 1,

(25)

θW
θ f
(s)=

{
0, 0≤ s ≤ 1

2 ,

θ f ,
1
2 ≤ s ≤ 1,

(26)

where the superscript “W ” is used to denote that these are weak solutions to
the Euler–Lagrange equations. This parametrization indeed satisfies the corner
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Figure 3. Left: Plot of weak solution curves defined by (25) and
(26) with final angular coordinate θ f spaced evenly from −π to π .
Right: Foliation of the unit disk by weak solution curves in S and
classic solutions outside of S. Beneath the solution curves is a
contour plot of the time of flight calculated along the solution curves.
The contours correspond to level sets of the value V satisfying the
eikonal equation defined by (12).

condition given by (7):

lim
s→c−

(
α∗′(s)

|α∗′(s)|
√

V (A)−V (α(s))

)
− lim

s→c+

(
α∗′(s)

|α∗′(s)|
√

V (A)−V (α(s))

)
= (1,0) lim

s→1/2+

(√
r W (s)

r W (s)−1

)
+(cosθ f ,sinθ f ) lim

s→1/2−

(√
r W (s)

r W (s)−1

)
= (0,0).

It is important to note that as it is defined, θW
θ f
(s) is not weakly differentiable.

Specifically, θW
θ f
(s) is only differentiable in the distributional sense with a derivative

given by a delta mass centered at s = 1/2. However, this is only an artifact of the
r = 0 coordinate singularity for polar coordinates and the curve αW (s) itself is
weakly differentiable. Moreover, for s < 1/2 this curve is simply the solution curve
given by (22) and (23) with D = 0 and the weak solution is constructed by joining
appropriately rotated copies of this strong solution at the origin.

The family of solutions to the Euler–Lagrange equations defined by (25) and (26)
completely foliate the unit disk; see Figure 3 (left). Hence these solution curves are
natural candidates for time minimizers that enter the sector S. In Figure 3 (right)
we plot the unit disk foliated by a combination of strong and weak solutions to
the Euler–Lagrange equations. More specifically, for a given θ f we use (22) and
(23) or (25) and (26) depending on whether |θ f |> 2π/3. The contour beneath the
curves in corresponds to the time of flight computed along the solution curves and



SOLUTIONS TO THE INVERSE-SQUARE BRACHISTOCHRONE PROBLEM 847

confirms our intuition that the classic solutions have shorter time of flight outside
of S. Notice that the contours in Figure 3 (right) are smooth and intersect the strong
and weak solution curves orthogonally as expected from (13). Moreover, the value
function V defined in Section 2 is a solution to the eikonal equation defined by (12).

4. Constrained inverse-square brachistochrone problem

4.1. Variational inequality. In the previous section we solved the inverse-square
brachistochrone problem using a combination of weak and strong extremizers.
However, the solutions are impractical in that, as a consequence of the singular
gravitational field, a particle following along an extremizer will experience infinite
acceleration at the origin. To alleviate this problem we now consider a modified
version of the inverse-square brachistochrone problem that restricts the radial
coordinate to remain bounded away from the origin. Specifically, for ε > 0 we
define the annulus Oε = {(x, y) ∈ R2

:
√

x2+ y2 ≥ ε} and consider the problem of
minimizing T over the admissible set Aε ⊂A0 defined by

Aε=
{
(r(s),θ(s))∈A0 :

(
r(s)cos(θ(s)),r(s)sin(θ(s))

)
∈Oε for s ∈[0,1]

}
. (27)

This formulation of the problem is equivalent to an “obstacle problem” with the
obstacle being the circle of radius ε centered at the origin.

To derive necessary conditions satisfied by minimizers of T over Aε we follow
[Evans 1998, Chapter 8, Section 4] and derive a variational inequality that plays
the role of the Euler–Lagrange equations. First, suppose α∗(s) ∈Aε is the global
minimizer of T over Aε with radial and angular components r∗(s) and θ∗(s)
respectively. Letting β(s) ∈Aε with radial and angular components q(s) and θ∗(s)
respectively, it follows from the convexity of Aε that for all λ∈ [0, 1] the curve γ (s)
with radial component r∗(s)+ λ(q(s)− r∗(s)) and angular component θ∗(s) also
satisfies γ (s) ∈Aε . Consequently

T
[
r∗(s)+ λ(q(s)− r∗(s)), θ∗(s)

]
− T [r∗(s), θ∗(s)] ≥ 0 (28)

and thus taking the limit λ→ 0 we obtain the following necessary condition satisfied
by a minimizer:∫ 1

0

(
(q(s)− r∗(s))

∂L
∂r

∣∣∣∣
r∗(s),θ∗(s)

+ (q ′(s)− r∗′(s))
∂L
∂r ′

∣∣∣∣
r∗(s),θ∗(s)

)
ds ≥ 0. (29)

Since we can perturb θ∗(s) by any smooth function ξ compactly supported on [0, 1],
we again obtain the weak Euler–Lagrange equation∫ 1

0
ξ ′(s)

∂L
∂θ ′

∣∣∣∣
r∗(s),θ∗(s)

ds = 0. (30)
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We now illustrate how (29) and (30) can be used to derive further necessary
conditions satisfied by a minimizer (r∗(s), θ∗(s))∈Aε . Suppose (r∗(s), θ∗(s))∈Aε
minimizes T over Aε and define the sets

U = (r∗)−1
{ε}, (31)

U c
= [0, 1] \U. (32)

Since r∗(s) is continuous, U is a closed subset of [0, 1]. On U it follows that (29)
is automatically satisfied since∫

U

(
(q(s)− r∗(s))

∂L
∂r

∣∣∣∣
r∗(s),θ∗(s)

+ (q ′(s)− r∗′(s))
∂L
∂r ′

∣∣∣∣
r∗(s),θ∗(s)

)
ds

=

∫
U
(q(s)− ε)

|θ∗′(s)|
1− ε

3− 2ε
2

ds ≥ 0.

On U c consider the perturbation q(s) = τv(s)+ r∗(s), where v is any smooth
function compactly supported on V and τ ∈ R is small enough in magnitude that
q(s) ∈Aε . Substituting into (29) yields

τ

∫
U c

(
v(s)

∂L
∂r

∣∣∣∣
r∗(s),θ∗(s)

+ v′(s)
∂L
∂r ′

∣∣∣∣
r∗(s),θ∗(s)

ds
)
≥ 0. (33)

Since τ is of arbitrary sign, the above inequality is actually an equality. That is, for
s ∈U c we recover the weak Euler–Lagrange equations for r∗(s).

Remark. Taken together, the above necessary conditions imply that potential min-
imizers of T over Aε consist of the family of curves satisfying the Euler–Lagrange
equations away from the constraint. That is, potential minimizers consist of piece-
wise smooth curves satisfying (22) and (23), joined with circular arcs of radius ε.

4.2. Piecewise smooth minimum. As in the case with no constraint, i.e., ε = 0,
we now foliate Oε by curves that minimize the time of flight. By symmetry we only
foliate the upper half-annulus O+ε = {(x, y)∈Oε : y ≥ 0}. To construct the foliation
we examine the behavior of potential minimizers with terminal coordinates (rt , θ f )

satisfying (r f , θ f ) ∈ ∂O+ε (the boundary of O+ε ) which can be naturally divided into
four regions:

R1 = {(r, θ) ∈ ∂O+ε : θ = 0}, R2 = {(r, θ) ∈ ∂O+ε : r = 1},

R3 = {(r, θ) ∈ ∂O+ε : θ = π}, R4 = {(r, θ) ∈ ∂O+ε : r = ε}.

Each of these regions is considered as separate cases below.

4.2.1. Minimizers terminating on R1. It follows from (22) and (23) that if D = 0,
the strong solution to the Euler–Lagrange equation is a straight line connecting
(1, 0) to the origin. In particular this implies that if (r f , θ f ) ∈ R1 then straight lines
are the natural candidate minimizers.
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4.3. Minimizers terminating on R2. Suppose (r f , θ f ) ∈ R2. For θ f sufficiently
small we expect the minimizers to consist of the smooth strong solution curves
defined by (22) and (23). However, if θ f > π/3, the strong solutions to the Euler–
Lagrange equations will necessarily intersect the obstacle. Note that from the
convexity of the strong solutions there exists a unique critical angle θ εc ∈ (0, π/3)
in which the strong solutions intersect the obstacle tangentially. Specifically, θ εc is
defined by

(
r S

D(ε)(1/2), θ
S
D(ε)

( 1
2

))
= (ε, θ εc ) and

dr S
D(ε)

ds

∣∣∣∣
1/2
= 0. (34)

The critical angle θ εc serves as a boundary in the sense that if the final angular
coordinate θ f satisfies θ f /2> θ εc then it is necessary to consider piecewise-defined
curves as candidate minimizers. This is made precise by the following proposition.

Proposition 6. Suppose that the smooth solution curves given by (22) and (23)
are global minimizers of T over A0. For ε > 0, if θ f /2 < θ εc then there exists
a D ≥ D(ε) > 0 such that (r S

D(s), θ
S
D(s)) ∈ Aε minimizes T over curves in Aε

terminating at the angular coordinate θ f .

Proof. Let θ f ∈ (0, 2π/3) satisfy θ f /2 < θ εc and (r S
D(s), θ

S
D(s)) parametrize

the smooth solutions given by (22) and (23) terminating at (cos θ f , sin θ f ). By
Propositions 4 and 5, θ f and rc are monotonically decreasing and increasing in D
respectively, and thus rc(D(θ f )) ≥ ε. Furthermore, since r S

D(s) is convex in s, it
follows that r S

D(s) ≥ ε and thus (r S
D(s), θ

S
D(s)) ∈ Aε . Finally, since Aε ⊂ A0 and

(r S
D(s), θ

S
D(s)) is assumed to minimize T over curves in A0 which terminate at

(cos θ f , sin θ f ), it follows that (r S
D(s), θ

S
D(s)) also minimizes T over curves in Aε

which terminate at (cos θ f , sin θ f ). �

For a strong solution given by (22) and (23) satisfying θ f /2> θ εc , let

sεD =min{(r S
D)
−1
{ε}},

i.e., the first point of intersection with the obstacle. The natural generalizations
of Propositions 1 and 2 can be shown to hold for Aε and consequently we know,
without loss of generality, that minimizers consist of curves symmetric about the
angle θ f /2 that are smooth solutions given by (22) and (23) away from the constraint,
ride along it for a finite amount of time, and then rejoin a rotated and reflected
version of the latter half of the same smooth solution; see Figure 4. This family of
minimizers is

F ε
D,θ f

(s)=


(
r S

D(h(s)) cos(h(s)), r S
D(h(s)) sin(θ S

D(h(s)))
)
, s ∈

[
0, 1

3

)
,(

ε cos(t (s)), ε sin(t (s))
)

s ∈
[ 1

3 ,
2
3

]
,(

r S
D(s) cos(l(s)), r S

D(s) sin(l(s))
)

s ∈
( 2

3 , 1
]
,

(35)
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Figure 4. Plots of curves F ε
D,θ f

(s) defined by (35) with ε = 0.5.
Left: a curve F ε

D,θ f
(s) with θ f = 2π/3, D = 0.0204 and θc = π/4

which reaches the obstacle and rides along it; (middle) a curve
F ε

D,θ f
(s) with θ f = π/3, D = 0.2300 and θc = π/6 which does

not reach the obstacle (sε = 0.5); (right) a curve F ε
D,θ f

(s) with
θ f = 2π/3, D = 0.1250 and θc = 0.5981 which approaches the
obstacle at a tangent and rides along it.

where r S
D(s), θ

S
D(s) are given by (22) and (23) with θ f (D) satisfying θ f (D)/2≥ θ εc ,

h(s)= s/(3sεD), l(s)= θ S
D( jD,ε(s))+ θ f − θ

S
D(1),

j (s)= 3sεDs+ 1− 3sεD, t (s)= 3(θ f − 2θ S(sεD))s+ θ f − θ
S(sεD).

The following proposition characterizes the minimum of T over the family of
curves given by (35); namely they consist of the curves defined by (35) that meet
the constraint at a tangent.

Proposition 7. Suppose that the smooth solution curves given by (22) and (23) are
global minimizers in A0. For ε > 0, if θ f /2 ≥ θ εc then the unique minimizer of T
over the family of curves defined by (35) intersects the constraint tangentially.

Proof. Let θ f ∈ (0, π) satisfy θ f /2≥ θ εc . Let F ε
D(ε),θ f

(s) be the unique curve which
intersects the constraint at a tangent and terminates at angular coordinate θ f . Let
F ε

D,θ f
(s) be another curve with D < D(ε) that terminates at angular coordinate θ f .

By Propositions 4 and 5, θ f and rc are monotonically decreasing and increasing
in D respectively; hence rc(D) ≤ ε and θc(D) ≥ θ εc . Moreover, it follows from
the monotonicity of θ S

D(s) in s that F ε
D,θ f

(s) intersects the constraint at some
angular coordinate θ0 < θ εc and intersects F ε

D(ε),θ f
(s) at angular coordinate θ εc .

Since F ε
D(ε),θ f

(s) is of the form (r S
D(ε)(s), θ

S
D(ε)(s)) for s < sεD(ε), it follows from

our assumption that smooth solutions given by (22) and (23) minimize T that
F ε

D(ε),θ f
(s) minimizes the time of flight to angular coordinate θ εc . Moreover, both

curves have the same time of flight along the constraint from angular coordinates θ εc
to θ f − θ

ε
c , and consequently T [F ε

D(ε),θ f
(s)]< T [F ε

D,θ f
(s)]. �

4.3.1. Minimizers terminating on R3. Let (r, π) ∈ R3. We know from our prior
analysis in R2 that all minimizers must ride along the obstacle until at least angular
coordinate π − θ εc . Hence, to minimize over curves terminating at (r, π), we
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need only minimize T over curves from (ε, π − θ εc ) to (r, π). Note that from the
convexity of strong solutions given by (22) and (23), there exists a unique angle
φεc ≥ π − θ

ε
c such that the smooth solution comes off the obstacle tangentially at φεc

and intersects (r, π). It can be further shown that this curve minimizes the time of
flight T between coordinates (ε, π − θ εc ) and (r, π). This is made precise by the
following proposition.

Proposition 8. Suppose that the smooth solution curves given by (22) and (23) are
global minimizers in A0. For ε > 0 and (r, π) ∈ R3, a minimizer of T over Aε that
terminates at (r, π) leaves the obstacle at a tangent.

Proof. Let α∗ ∈ Aε denote the candidate minimizer that leaves the obstacle at a
tangent from the angular coordinate φεc and terminates at the polar coordinate (r, π).
From the convexity of smooth solutions, we know that any other candidate minimizer
α ∈ Aε terminating at the polar coordinate (r, π) must come off the obstacle at
some angular coordinate φ0 > φ

ε
c . Since the piece of the curve α∗ that connects

the polar coordinates (ε, φεc ) to (r, π) is a smooth solution curve given by (22)
and (23), it follows from our assumption that it minimizes the time of flight from
polar coordinates (ε, φεc ) to (r, π). Consequently, the time of flight from polar
coordinates (ε, φεc ) to (r, π) along α is larger.

Using the same method as in the proof of Proposition 7, it can be shown that it
follows from our assumption that smooth solutions are given by (22) and (23), that
a candidate minimizer coming off the obstacle at angular coordinate φ0 has greater
time of flight than one coming off at angular coordinate φεc . �

4.3.2. Minimizers terminating on R4. Let (ε, θ) ∈ R4. If θ < θ εc , there is a smooth
solution given by (22) and (23) that, by assumption, minimizes the time of flight to
(ε, θ). If θ ∈ (θ εc , π − θ

ε
c ), there exists a curve in the family (35) that minimizes

the time of flight to (ε, θ). If θ > θ εc , it follows from Proposition 8 that there is a
curve minimizing the time of flight that approaches the obstacle at a tangent and
rides along until angular coordinate θ .

Remark. The solution curves connected to the boundary foliate the domain. Specif-
ically, there are three distinct areas A1, A2 and A3 satisfying Oε = A1 ∪ A2 ∪ A3

that are foliated by curves connected to the boundary in R2, R3 and R4 respectively.
This is illustrated in Figure 5.

4.4. Convergence to weak solutions. In the previous section, Propositions 6 and 7
describe the behavior of a family of curves that minimizes T to terminal polar
coordinates (1, θ f ) ∈ R2. For a given value of ε ∈ (0, 1) and θ f ∈ (0, π), we denote
this family as

αεθ f
(s)=

{(
r S

D(θ f )
(s)cos(θ S

D(θ f )
(s)),r S

D(θ f )
(s)sin(θ S

D(θ f )
(s))

)
if θ f /2≤ θ εc ,

F ε
D(ε),θ f

(s) if θ f /2>θ εc ,
(36)
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Figure 5. Left: The annulus Oε with A1 shaded in. A1 consists
of the set of points which lie on solution curves terminating on R2.
Overlaid on A1 are evenly spaced solution curves terminating on
R2 given by (35). Right: The annulus Oε with A2, A3 shaded in.
A2 and A3 consist of the sets of points which lie on solution curves
terminating on R3 and R4 respectively. Overlaid on A2 and A3 are
evenly spaced solution curves terminating in R3 and R4.

where (r S
D(θ f )

(s), θ S
D(θ f )

(s)) are the radial and angular coordinates of the unique
smooth solution given by (22) and (23), and F ε

D(ε),θ f
(s) is a member of the family

described by (35). Moreover, as ε approaches 0, this family converges to the natural
foliation of the unit disk described in Figure 3 (right) and given by

αθ f (s)=
{(

r S
D(θ f )

(s)cos(θ S
D(θ f )

(s)),r S
D(θ f )

(s)sin(θ S
D(θ f )

(s))
)

if θ f < 2π/3,(
r W(s)cos(θW(s)),r W(s)sin(θW(s))

)
if θ f ≥ 2π/3,

(37)

where r W(s), θW(s) are the radial and angular coordinates of the unique smooth
solution given by (25) and (26) with |B| = 1 and θ f . This is made precise in the
following proposition.

Proposition 9. For θ f ∈ (0, π),

lim
ε→0

d(αεθ f
, αθ f )= 0,

where
d(αθ f , αθ f )= sup

0≤s≤1
inf

0≤t≤1
|αεθ f

(s)−αθ f (t)|

is the natural distance between the images of curves in the uniform norm.

Proof. Let θ f ∈ (0, π) and define the sequence of functions αεθ f
(s) by (36).

(1) If θ f < 2π/3, there exists some D(θ f ) > 0 such that the smooth solution
(r S

D(θ f )
(s), θ S

D(θ f )
(s)) given by (22) and (23) terminates at (1, θ f ). By Proposition 5,

lim
ε→0

θ εc = π/3≥ θ f /2.

Therefore, there exists ε∗ such that ε<ε∗ =⇒ αεθ f
=αθ f . Thus, for θ f < 2π/3,

lim
ε→0

d(αεθ f
, αθ f )= 0.
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Figure 6. A foliation of the annuli O0.75, O0.5, O0.25, O0.1 by
evenly spaced solution curves terminating on the boundary of the
annulus. Beneath the solution curves of each subfigure is a contour
plot of the time of flight from (1, 0) to each point on the annulus
by solution curves of the form given by (36).

(2) If θ f ≥ 2π/3, then αεθ f
approaches the obstacle tangentially at (r, εεc ) along the

path of a smooth solution for s ∈ [0, 1/3]. It follows from the convexity of smooth
solutions that αεθ f

([0, 1/3]) is contained in the rectangular region

Rε =
{
(x, y) ∈ R2

: x ∈ [ε cos(θ εc ), 1], y ∈ [0, ε sin(θ εc )]
}
.

As ε→ 0, the region Rε limits to the line {(x, y)∈R2
: x ∈ [0, 1], y= 0}. Moreover,

αεθ f
([1/3, 2/3]) is on the obstacle and consequently limits to the origin as ε→ 0. It

follows immediately from radial symmetry that a rotated rectangular region can be
constructed around αεθ f

([2/3, 1]) that limits to the line θ = θ f . Hence each point on
αεθ f

limits to a point along the weak solution
(
r W(s) cos(θW(s)), r W(s) sin(θW(s))

)
and thus for θ f > 2π/3,

lim
ε→0

d(αεθ f
, αθ f )= 0. �
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The solution curves depicted in Figure 6 again intersect the level sets of the
value function orthogonally. This is consistent with (13); i.e., V satisfies the eikonal
equation defined by (12) on an annular domain.

5. Discussion and conclusion

In this paper we solved the brachistochrone problem in the inverse-square gravi-
tational field. Namely, we constructed solutions that enter the so-called forbidden
region first mentioned in [Parnovsky 1998; Tee 1999; Gemmer et al. 2011]. Further-
more we considered the constrained problem where solutions are restricted to lie out-
side of a ball around the origin. This restricted problem is more physically relevant
since it avoids the particle experiencing infinite acceleration at the origin. Moreover,
the solutions in the annular domain recover our prior solutions on the disk in the
limit of vanishing inner radius. Consequently these solutions on the annular domain
correspond to “regularized” brachistochrone solutions that avoid the singularity.

In the future, this work could be extended to problems with multiple singularities.
That is, a natural extension of this work is to consider brachistochrone problems
with multiple point sources of gravity. Natural questions to consider would be what
role if any does the existence of a forbidden region play in the selection of strong
or weak solutions. If weak solutions do exist, we conjecture that they would form
a network of strong solutions patched together at singularities of the gravitational
field. We expect that many of our results would hold locally near a singularity.
However, by adding multiple singularities we break the radial invariance which we
exploited to explicitly construct global solutions.

We also should mention that we have only considered necessary conditions for
optimality. Specifically, this problem is not completely solved in the modern sense
without a proof of the existence of a minimizer. This is not a trivial task since the
functional is not coercive and is not convex at the singular origin and hence the
direct method of the calculus of variations cannot be applied. We conjecture that
the general results for noncoercive integrals presented in [Botteron and Marcellini
1991] or the technique of convex rearrangement presented in [Greco 2012] can be
adapted to prove existence on the annular domain. Consequently, we expect that
we could prove an existence result on the entire disk by considering the limit of
vanishing inner radius.
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Numerical existence and stability
of solutions to the distributed

spruce budworm model
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This paper presents the steady-state solutions and traveling wave solutions for
a spatially distributed PDE version of the spruce budworm model. The ODE
(undistributed) model has been used in practical scenarios to model the outbreaks
of the spruce budworm in forest environments, alongside the study of concepts
involving fixed points and bifurcations in introductory differential equations
courses. This study represents the spread of an outbreak from one end of a forest
to the other. Numerical simulations are conducted using spectral methods.

1. Introduction

In the early 1900s, regions of eastern Canada began to see periodic outbreaks in the
spruce budworm population, occurring approximately forty years apart [Williams
and Birdsey 2003]. These outbreaks caused severe forest devastation, particularly
in conifer tree species that are preferred by the budworms. In response to these
population explosions, researchers at the University of British Columbia sought to
explain and predict the outbreaks using mathematical models. The spruce budworm
model, introduced in [Ludwig et al. 1978], is a modified logistic growth equation
with an additional term, p(N ), to account for budworm mortality due to predation.
Specifically,

dN
dτ
= rB N

(
1− N

K B

)
− p(N ) with p(N )=

B N 2

A2+ N 2 , (1)

where N represents the spruce budworm population, rB represents the intrinsic
growth rate and K B is the carrying capacity of the budworm population. The
predation term p(N ) is determined by the switching value A and the predation
efficiency B. The switching value for predation refers to the minimum budworm
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population required to cause birds to take interest in them as a source of food.
Predation efficiency refers to the degree of accuracy exhibited by predatory birds in
the capture of budworms.

Equation (1) contains variables of varying dimensions, making numerical analysis
a challenge. To simplify (1), we seek to remove physical dimension from the
variables. Substituting

u = N/A, r = ArB/B, q = K B/A, and t = Bτ/A

into (1), we find the nondimensionalized spruce budworm model

du
dt
= ru

(
1− u

q

)
− h(u) with h(u)=

u2

1+ u2 , (2)

where u represents the budworm population density and t represents time. As with
the logistic growth model, r and q correspond with the natural growth rate and the
carrying capacity of the population respectively.

The traditional spruce budworm model simulates a stationary population over
time. It does not account for the spatial layout of the budworm habitat or the diffusion
of the population across this habitat. In order to make the spruce budworm model
mimic a diffusive insect population, the addition of a diffusion term is necessary.
The fundamental differential equation of diffusion in one spatial dimension x is
given by

Ct = aCxx ,

where C is the concentration of the diffusing substance, t is the time variable, x is
the spatial variable and a is the diffusion coefficient. The term Ct represents the
change in the concentration of the diffusing substance with respect to time, and
the term Cxx accounts for the diffusing substance changing over space, or along
the x axis. Making use of Fick’s second law of diffusion, we can deduce that the
diffusion of the spruce bud worm population u across a linear habitat defined by x
can be modeled by the second derivative of u in respect to x . The addition of the
diffusion term auxx to (2) leaves us with the distributed spruce budworm model

ut = auxx + ru
(

1− u
q

)
−

u2

1+ u2 , (3)

which simulates a migratory population that is both time and space-dependent.
In this paper, we study the numerical existence of the steady-state and the traveling

wave solutions of (3). First we use the shooting method to determine the steady-state
solutions at various diffusion rates (a) and identify bifurcation values that produce
additional steady-state solutions. Then we vary the carrying capacity values (q) and
determine the growth rate (r) where the traveling solutions travel to the right, to
the left or stay there without a movement, and numerically estimate the velocities
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for various combinations of r and q. Finally, we study the relation between the
carrying capacity and the growth rate for various values of traveling velocities.

2. Numerical methods and the region of exploration

2.1. Numerical methods. We use numerical methods to compute and simulate the
steady-state and traveling wave solutions of (3). We discretize in the spatial (x)
direction, and use a spectral differentiation matrix Dxx as in [Trefethen 2000] to
approximate uxx as Dxx u. This turns the PDE into a system of ODEs. We then
use the shooting method along with the Matlab fsolve command to identify the
steady states. Spectral differentiation matrices were paired with Matlab’s built
in ODE solver ode45 to form a PDE solver that we used to verify steady-state
solutions found from the shooting method and fsolve, and to simulate traveling
wave solutions. The spatial range is chosen to be −1≤ x ≤ 1.

2.2. Parameter ranges of exploration. As the carrying capacity value q, growth
rate r and diffusion constant a vary, the number of steady states and traveling waves
of (3) changes. First we find the steady-state solutions (fixed point solutions) of the
undistributed system (2) which satisfy the equation

ru
(

1− u
q

)
=

u2

1+ u2 . (4)

Since (4) can be written as a quartic equation, we expect a maximum of four
solutions. Our interest is the case where four fixed solutions exist. In order to find
these solutions, we look for the intersection points of the two functions

y1 = ru
(

1− u
q

)
and y2 =

u2

1+ u2 .

In Figure 1, upper left, we present the intersection points of these two function
curves when r = 0.5 and q = 10. Clearly u = 0 is a solution, so we have divided
both y1 and y2 by u and graphed both functions to visualize the other three inter-
section points. For these values, the corresponding fixed point solutions are u = 0,
u = 0.6834, u = 2.0000 and u = 7.3166. In Figure 1, upper right, for these q and r
values, we show the corresponding direction field of (2). As shown in this direction
field, u = 0.6834 and u = 7.3166 are stable solutions, while u = 0 and u = 2.0000
are unstable solutions. In Figure 1, lower left and lower right, we present q and r
values (on different scales) that gives us four intersection points of the two curves
y1 and y2, i.e., the four fixed solutions of (2).

When there are four solutions to (4), the solution u = 0 will always be one of
them, and it will be unstable. The smallest nonzero solution we will refer to as the
“refuge level” and the largest nonzero solution as the “outbreak level”, which are



860 H. AL-KHALIL, C. BRENNAN, R. DECKER, A. DEMIRKAYA AND J. NAGODE

both stable. Between these two stable equilibria is an unstable one that we will
refer to as “intermediate”.

As the carrying capacity q gets larger, the range of r values that provide four
intersection points approaches 0< r < 0.5. To show this, consider (4) and then let
q→∞. This results in a cubic equation in u, with u = 0 being one of the roots.
The discriminant of the resulting quadratic equation (after u = 0 is factored out)
is −4r2

+ 1, and hence to get three solutions (the fourth has gone to infinity) we
require 0< r < 0.5, assuming positive r . The smallest value of q for which there
are four intersection points is about q = 5.

Until now we only considered the fixed point solutions of the nondistributed
model (2) and found q and r values that give us the maximum number of fixed point
solutions (and hence two stable equilibria). We might expect that these q and r
values would also give us two stable steady-state solutions (refuge and outbreak)
to the distributed model and perhaps the maximum number of steady states of the
distributed model (3). In fact we will see that as a, the diffusion constant, gets
smaller, the number of steady states gets bigger. Also, the existence of the refuge
and outbreak steady states are a dependent.

Finally, we use a values in the range 0.0005< a < 0.1. This range includes a
values appropriate to both steady-state and traveling wave solutions that illustrate
our findings.

3. Steady state solutions

In this section we will present the numerical steady-state solutions of (3) with the
boundary conditions

u(−1, t)= 0, u(1, t)= 0. (5)

As we discussed in Section 2.2, we are interested in q and r values that will provide
us the maximum number of steady-state solutions for the nondistributed case. For
this purpose we now illustrate our results for r = 0.5 and q = 10.

Steady state solutions u(x, t)= φ(x) to (3) do not change over time, i.e., φt = 0.
Thus φ satisfies the following ordinary differential equation:

0= aφ′′+ rφ
(

1− φ
q

)
−

φ2

1+φ2 , (6)

with φ(−1)=0 and φ(1)=0. We can change this second-order differential equation
into a first-order system by defining y1 = φ and y2 = φ

′. Then we get the system

y′1 = y2, y′2 =
−r y1

a

(
1−

y1

q

)
+

y2
1

a(1+ y2
1)
. (7)
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Figure 1. Upper left: the nonzero intersections of y1 and y2 occurs
at u = 0, u = 0.6834, u = 2.0000 and u = 7.3166 when r = 0.5
and q = 10. Upper right: the direction field of the nondistributed
model (2) when r = 0.5 and q = 10. Lower left and lower right: r
vs. q values that gives exactly four fixed point solutions to (2).

A phase portrait of the system of equations (7) is shown in Figure 2, for r = 0.5,
q = 10 and a = 0.1. Other a values give a similar phase portrait (with a different
scale on the y axis). In the phase portrait, one can see the four fixed points for the
undistributed model, now as centers and saddles. The first (a center) is at the origin,
the second (a saddle) is at φ = 0.6834, the third (a center) is at φ = 2 and the fourth
(a saddle) is at φ = 7.3166.

3.1. The shooting method. The shooting method is a numerical technique for
solving two-point boundary value problems (BVP’s) by reformulating them as
initial value problems (IVP’s). The objective of this method is to determine initial
conditions for the corresponding IVP that produce solutions that satisfy the original
BVP. Solutions are found by fixing the left boundary point of the solution and
guessing the initial slope until the right-hand boundary condition is satisfied.

Several sample solutions to (6) on [−1, 1] with initial conditions φ(−1) = 0
and φ′(−1)= ω are plotted in Figure 3. The value of ω, or the initial slope of the
solution, is varied until the right endpoint of the solution, φ(1), meets the desired
boundary value at zero.



862 H. AL-KHALIL, C. BRENNAN, R. DECKER, A. DEMIRKAYA AND J. NAGODE

y 2

y1

Figure 2. Phase portrait of (7) when a = 0.1, r = 0.5 and q = 10.

Figure 3. Solutions to the IVP (bottom to top) ω = 0.44, 0.48,
0.52, 0.56, 0.60 and 0.64 and for r = 0.5, q = 10 and a = 0.1.

ω = 0.52
u(1)= 0

φ
(1
)

ω

Figure 4. The solution φ(1) as a function of ω for r = 0.5, q = 10
and a = 0.1.

A plot of the right endpoints φ(1) versus the initial slope values ω can be used
to determine the appropriate initial conditions to produce a solution to (6); see
Figure 4. When the φ(1) vs. ω curve intersects the ω axis, φ(1)= 0 and the right
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boundary condition is met. Each value of ω that causes φ(1) = 0 represents a
steady-state solution. Similar results apply to other a values.

3.2. Steady states for various a values. In Figure 5 we show all nonzero steady-
state solutions superimposed for a few a values. Solid lines represent stable steady-
states, and dashed, dotted or dash-dot lines represent unstable ones.

The steady states for each diffusion rate, or a value, were determined using both
the shooting method and the phase portrait of (7), which is shown in Figure 2. Within
the shooting method plots, we expect a new steady-state solution to emerge each
time the ω axis is intersected. Furthermore, the ω value at the point of intersection
corresponds with the initial slope of the equilibrium solution. The phase portrait
helps to make sure that no steady-state solutions are missed; each steady-state
solution must start on the φ′ axis and end on the φ′ axis ensuring that φ = 0 at
x =−1 and x = 1, as required by the boundary value problem.

At a = 0.05, there are two positive initial conditions that force the boundary
condition at φ(1) to meet zero: ω ≈ 0.19 and ω ≈ 0.97. In Figure 6, left, we see
these values as points where the shooting plot crosses the ω axis, and in Figure 6,
right, we see these values as the starting values of the phase plots of the steady-state
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a = 0.02 a = 0.0125

Figure 5. Nonzero steady-state solutions for several a values and
for r = 0.5 and q = 10.
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Figure 6. Steady-state solutions for a = 0.05, r = 0.5 and q = 10.
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Figure 7. Solutions for a = 0.0225, r = 0.5 and q = 10.

solutions. For the smaller ω-value, the phase plots overlap themselves and thus
appear to form a closed loop. Finally, if the initial slope is ω ≈ −0.19, we get
another steady-state solution, and the phase plot is indistinguishable from the one
for which ω ≈ 0.19.

Looking back to Figure 5, upper left, we again see the three (nontrivial) steady-
state solutions. The one with the larger positive initial slope (ω≈ 0.97) is stable and
corresponds to the refuge level of the undistributed model. The unstable solution
with the smaller positive initial slope corresponds to the unstable (dashed) solution
that goes from slightly positive (on the left) to slightly negative (on the right). The
third unstable solution has initial slope ω≈−0.19 and is a mirror image (left-right)
of the other unstable solution.

We now look at what happens when a is lowered to a = 0.0225. In Figure 7,
right, we find two new solutions whose phase plots wrap around the saddle at
φ = 0.6834 and the center at φ = 2.000. This indicates the appearance of a stable
outbreak equilibrium solution, and a slightly smaller unstable intermediate steady-
state solution, as shown in Figure 5, upper right. At this point we have steady-state
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Figure 8. Solutions for a = 0.02, r = 0.5 and q = 10.

solutions corresponding to each of the four fixed points of the nondistributed model,
and with similar stability types.

If you look closely at Figure 7, left, it appears that there will be six nonzero
equilibrium solutions. There are a pair of positive solutions near ω=1.5 and another
pair of positive solutions near ω = 6.65 (outbreak and intermediate solutions). In
addition there are negative solutions near ω =−1.5 and ω =−0.75. Close to zero
the situation is not so clear, but upon closer inspection we find another positive
solution near ω = 0.0055 (as well as the trivial zero solution).

Three solution types. The solution types can be broken into three groups using
phase plots. We define group I as steady-state solutions that start on the positive φ′

axis and end on the negative φ′ axis, and form exactly one-half of a loop. These
are the solutions that correspond directly to the fixed-points of the nondistributed
model, and represent physically realistic solutions. We define group II as solutions
that loop around both centers and the smaller saddle one or more times (including
half loops such as 1.5 or 2.5 loops). We will also refer to these as “big loops”, and
they appear as “big waves” in the φ vs. x plots of Figure 2. Because these solutions
have negative φ values, they are not physically realistic. Group III then consists
of solutions that loop around only the origin one or more times (“small loops” in
the phase plane or “small waves” in the φ vs. x plots). These solutions are not
physically realistic.

Thus as a changes from 0.05 to 0.0225 there are two bifurcations; there are two
new group I steady-state solutions, and two new group III solutions. The group III
solutions are 1.5 loop solutions around the origin (one with positive initial slope
and one with equal and opposite negative initial slope).

As a is further reduced to 0.02 (Figure 8), the two larger steady-state solutions
(stable outbreak and unstable intermediate half loops) grow more distinct and easily
perceivable. Also, the shooting plot now shows that the small positive solution,
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Figure 9. Solutions for a = 0.0125, r = 0.5 and q = 10.

which could not be distinguished for a = 0.0225, is now clearly visible, and shows
up as a loop in the phase plot and a small wave in Figure 2. Thus no bifurcations
occur between the a values 0.0225 and 0.02.

Note finally that the two 1-loop inner solutions (one for positive initial slope and
one for equal and opposite initial slope) coincide in the phase plane and so cannot
be distinguished from each other there. On the other hand, the two 1.5-loop inner
solutions (initial slopes positive and negative but not equal and opposite), which are
closer to the origin than the 1-loop solutions, are distinguishable in the phase plane.

Finally, when a is lowered again from 0.02 to 0.0125 (see Figure 9), we see two
new group II solutions (“big loops” that wrap around once) as well as two group III
solutions (“small loops” that wrap around two times). The two small loop solutions
have equal and opposite initial slopes, and hence are indistinguishable in the phase
plane. Thus two more bifurcations have occurred.

3.3. Determination of bifurcation values. [Aron et al. 2014, Theorem 3.4] states
that the eigenvalues of the linear boundary value problem

φ′′+ λ2φ = 0, φ(−1)= 0, φ(1)= 0, (8)

correspond to the bifurcation values of the nonlinear boundary value problem

φ′′+ λ2(φ−φ3)= 0, φ(−1)= 0, φ(1)= 0. (9)

The proof is based on the property that close to the origin, the solution curves of the
nonlinear problem approach those of the linear one, and that as the solution curves
move clockwise around the origin, the ones corresponding to the nonlinear problem
move slower (in the sense of the angle in polar coordinates), and are farther from
the origin (in the sense of the radius in polar coordinates), than those of the linear
problem.
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Figure 10. Linear (blue) vs. nonlinear (red) system near the origin.

The spruce budworm BVP (see (6)) can be written as

φ′′+
r
a
φ(1−φ)−

φ2

a(1+φ2)
= 0, φ(−1)= 0, φ(1)= 0. (10)

This equation can also be linearized, giving

φ′′+
r
a
φ = 0, φ(−1)= 0, φ(1)= 0, (11)

which with the identification λ2
= r/a is again (8). We hypothesize that this will

give us some of the bifurcation values for the spruce budworm BVP of (10). Solving
for a, we have a = r/λ2. When λn =

1
2 nπ (eigenvalues from (8)) is substituted into

this equation, we find some of the expected bifurcation values of (3) in terms of a:

an =
r( 1

2 nπ
)2 for n = 1, 2, 3, 4 . . . (12)

The bifurcations calculated from (12) correspond to the emergence of a new
small half loop (for n = 1) and new small loops (for n > 1) in the terminology of
the previous section. That these can be calculated analytically is a result of the
linearization of the problem for solution curves near the origin. For bifurcation
values corresponding to the emergence of new big loop solutions (group II) we
have estimated the bifurcation values using numerical exploration.

Finally, there are bifurcations that lead to new small loop solutions that are not
given by (12). This is a result of the lack of left-right symmetry in the vector field
for the nonlinear spruce budworm BVP, which leads to the property that solution
curves in the phase plane travel faster around the origin (in terms of angle in polar
coordinates), and closer to it (in terms of the radius in polar coordinates) than
those of the linearized equation for x < 0, but slower around the origin (and farther
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from it) than those of the linearized equation for x > 0, as long as the solution
curves are sufficiently close to the origin (see Figure 10).

This allows new solutions to the BVP that start on the negative y axis and end on
the positive y axis (1.5 loop, 2.5 loop, etc.) to occur for a values slightly larger than
the predicted bifurcations values of (12). Only solutions that start on the negative y
axis and end on the positive y axis can “outrun” the corresponding linear solution
(since they spend more time in the fast region x < 0). Thus a values corresponding
to the appearance of these types of solutions are the only inner loop bifurcations
that must be calculated using numerical experimentation.

In Figure 11, left, we demonstrate a numerically calculated bifurcation of this
type at approximately a = 0.0230814. To do this we show the endpoints only
(with connecting lines for readability) of solution curves for a = 0.0230830 and
a = 0.0230800, corresponding to several initial conditions along the negative
y = φ′ axis. The initial conditions used are labeled in the figure. These endpoints
correspond to solutions that wrap around the origin about 1.5 times.

One sees that for a = 0.0230830 the solution curves do not reach the y axis, and
hence they are not solutions to the BVP. For a = 0.0230800 the longer curves pass
the y axis and the shorter ones fall short of it, showing that there are exactly two
new solutions to the BVP. At some point in between these two cases there must be
an a value for which the longest solution curve just touches the y axis (this value is
about a = 0.0230814).

This type of bifurcation is similar to a saddle-node bifurcation for a first-order
ordinary differential equation, where at the bifurcation point a single fixed point
appears where there was previously none, then this single fixed point splits into two
fixed points which grow farther apart. This is also how new big-loop steady-state
solutions are created; they must also be estimated using numerical exploration.

Figure 11, right and bottom, shows the two other types of bifurcation that occur to
create new steady-state solutions. Figure 11, right, illustrates the type of bifurcation
that occurs at a bifurcation point calculated by (12) when new solutions with a
fractional number of loops are created (which corresponds to n odd in (12)). For
a just larger than the bifurcation value, one observes a solution with negative
initial condition and the zero solution. At the bifurcation value there is just the
zero solution, and for a just smaller than the bifurcation value there is the zero
solution and solution with positive initial condition. This is somewhat similar to a
transcritical bifurcation for first-order ODE’s.

Bifurcations of this type occur for a slightly smaller than the type shown in
Figure 11, left. Thus as a gets smaller, first two new small loop solutions are
created which have negative initial conditions (Figure 11, left), and then shortly
after that the negative solution that is closest to zero switches over to become
positive (Figure 11, right). The net result is one new solution with negative initial
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Figure 11. Bifurcation types for r = 0.5 and q = 10.

condition and one with positive initial condition (in addition to the zero solution)
after both bifurcations.

Finally, Figure 11, bottom, shows the type of bifurcation that occurs when new
inner loop solutions are created for n even in (12) (nonfractional number of loops).
This type of bifurcation can be compared to the pitchfork bifurcation of first-order
ODEs; as a is reduced, the zero solution gives rise to two new solutions, one with
positive initial condition and one with negative initial condition (the zero solution
continues). Note that the end of result of the two bifurcations in Figures 11, left,
and 11, right, is similar to the bifurcation in Figure 11, bottom, in that including
the zero solution, the number of solutions goes from one to three, corresponding to
one new solution with positive initial condition and one negative. The difference
is that for the case of even n the initial conditions that correspond to steady-state
solutions have equal and opposite sign, but not for the case of odd n.
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bifurcation type bifurcation values in terms of a

small loop from an = r/( 1
2 nπ)2(n > 1) 0.05066, 0.02252, 0.01267, 0.00811

small loop estimated numerically 0.023081
small half loop from an = r/( 1

2 nπ)2 (n = 1) 0.20264
big loop estimated numerically 0.0225578, 0.015, 0.0106, 0.0045

Table 1. Bifurcations values for r = 0.5 and q = 10.

In Table 1 we show all bifurcations that occur for 0.00811≤ α ≤ 0.20264. From
that table we see that the bifurcation just described at a = 0.023814 occurs just
before (as a gets smaller) the one calculated by (12) at a = 0.02252.

3.4. Stability analysis. Our numerical simulations have shown that some of the
equilibrium solutions found in Section 3.2 are stable and some are unstable. This
has motivated us to check the eigenvalues of the linearized operator of (3) about
the steady-state solution φ.

Let v be a small perturbation and u = φ + v the solution to (3), then if we
substitute it into (3), we get

(φ+ v)t = a(φ+ v)xx + r(φ+ v)
(

1− φ+v
q

)
−

(φ+ v)2

1+ (φ+ v)2
. (13)

Since φ is a steady-state solution, we have aφxx + rφ(1−φ/q)−φ2/(1+φ2)= 0.
If we linearize the nonlinear terms about the steady-state φ, we get

vt = avxx + f (φ)v,
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Figure 12. Stable and unstable solutions with color-coded eigen-
value spectrum for a = 0.05, r = 0.05 and q = 10.
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Figure 13. Left: stable solutions with spectrum for a = 0.002,
r = 0.5 and q = 10. Right: unstable solutions with spectrum for
a = 0.002, r = 0.5 and q = 10.

where

f (φ)= r − 2rφ
q
−

2φ
(1+φ2)2

.

Then the corresponding linear system is

vt =Hv, where H= a
d2

dx2 + f (φ). (14)

Our interest is the sign of the real part of the largest eigenvalue of H for each steady
state φ. If that value is negative, we expect the perturbation from the steady state to
shrink until the perturbed solution conforms to the steady state.

In Figures 12, 13 and 14 we show graphs of the steady-state solutions and the
corresponding eigenvalues of H for the α values 0.05, 0.002 and 0.00125.

In Figure 15 we show snapshots of an animation of a perturbed initial condition
and how it converges to a stable steady state. Notice that variations in the initial
condition and large deviations from the original steady state do not affect the long
term behavior of the solutions. This is typical of the outbreak and refuge solutions,
for which all eigenvalues are negative.

Conversely, if the largest eigenvalue has a positive real part, we will expect the
perturbation to grow, distancing the perturbed solution from the original steady
state; see Figures 16 and 17. Equilibria with positive eigenvalues are unstable and
achieved only under specific initial conditions [Seydel 2010]. Subtle changes to an
initial condition in the neighborhood of an unstable equilibrium will alter the long
term behavior of the solution. Figure 16 shows a small loop solution and Figure 17
shows an intermediate half-loop solution (between outbreak and refuge levels)

In some cases, the perturbed solution will rest near the steady state for a period
of time, then slowly gravitate to a new, distinct resting place. This sort of behavior
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Figure 14. Left: stable solutions with spectrum for a = 0.00125,
r = 0.5 and q = 10. Right: unstable solutions with spectrum for
a = 0.00125, r = 0.5 and q = 10.

is typical of equilibria that are “almost stable” in the sense that there is only one
positive eigenvalue and it is very small.

4. Traveling wave solutions

We study the traveling wave solutions of (3) that are in the form u(x, t)=φ(x−vt),
where v is the speed of the wave with the boundary conditions

u(−1, t)= h, and u(1, t)= k

and the initial condition

u(x, 0)= h+ 2(k−h)
π

tan−1 eCx . (15)
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Figure 15. A stable equilibrium solution (printed in black) and a
perturbed solution (printed in blue) are plotted each at t = 0, t = 2
and t = 10. The perturbation from the steady state is amplified to
highlight insensitivity to changes in the initial condition.
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Figure 16. An unstable equilibrium solution (black) and a per-
turbed solution (blue).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

x

φ
(x

)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

x

φ
(x

)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

x

φ
(x

)

t = 0 t = 2 t = 10

Figure 17. An unstable equilibrium solution (black) and a per-
turbed solution (blue).

With these boundary and initial conditions (and appropriately chosen C), the so-
lutions are close in shape to traveling wavefronts, and thus quickly converge to
traveling wavefronts and end in steady-state solutions. These waves represent
growth/decay of the population as a function of the spatial dimension.

4.1. Choosing boundary conditions. We pick the boundary conditions as

u(−1, t)= h and u(1, t)= k,

where h and k are the fixed point solutions to the nondistributed model (2). As
explained in Section 2.2, we consider q and r values that give us the four fixed point
solutions to (2). Two of these solutions are stable and the other two are unstable.
One of the unstable fixed solutions is the zero solution and if us1 and us2 are stable
and uu is the unstable solution, we have the following inequality:

0< us1 < uu < us2 . (16)

We are interested in the traveling waves that converge to stable fixed point solutions
at ±1, i.e., h = us1 and k = us2 .

4.2. Results.
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4.2.1. The movement of the wavefront. Traveling wavefronts move according to
the boundary conditions, growth constant r and carrying constant q . Fixing q and
varying r , a critical r = r∗ was found at different q values such that:

• for r < r∗, the wave travels to the right, and the population dies out;

• for r > r∗, the wave travels to the left, and infestation occurs;

• for r = r∗, the wave does not travel, and no population growth or decay occurs.

The behavior of the wave movement was observed after incrementally selecting the
values of q from [9, 15]with the increment 1 while r values were varied continuously
within an interval for which both the refuge and outbreak levels existed. The effect
of changing r and q over a selected range, with a = 0.001 fixed, is recorded in
Table 2. When the wave moves to the right, it means that the wave favors moving to
the refuge solution and the population decreases. On the other hand, the wave favors
outbreak and an increase in population when it moves to the left. This behavior is
presented in Figure 18 for a = 0.001 and q = 14.5, with r changing in value from
its lowest to highest value within the range of r specified within the four solutions
case for (2) as shown Figure 1, lower left. In Figure 18 the wave is plotted at the
critical r value where the wave does not move and the thus the population does not
change in time.

Note that for a wavefront that starts at the outbreak level on the left and ends
at the refuge level on the right, the movement of the wavefront would be in the
opposite direction of that just described.

It can be shown that for a = 1 that there is an integral condition [Murray 2005]
that determines the value of r∗ for fixed q for which the velocity is zero. The
condition is ∫ us2

us1

ru
(

1− u
q

)
−

u2

u2+ 1
du = 0. (17)

In fact, by inspecting the proof in the reference just given, it is clear that this
condition works for all positive a values. This condition was checked against the
numerically calculated values in Table 2, and the results were consistent. This

q 9 10 11 12 13 14 15

r∗ 0.4605 0.4258 0.3956 0.3692 0.3459 0.3252 0.3067

Table 2. Critical r∗ that represents zero velocity wavefronts for
different q values, calculated numerically for a = 0.001, but valid
for other a values. Larger r means wavefront moves left (outbreak
level increasing) and for smaller r wavefront moves right (outbreak
level decreasing).
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Figure 18. The plots captured at t = 0 (blue curve), t = 5 (red
curve) and t = 10 (green curve) with a = 0.001 and q = 14.5.
Top: r = 0.3165, h = 0.345918 and k = 9.93485. Left: r = 0.28,
h = 0.2987 and k = 8.47012. Right: r = 0.538, h = 1.03008 and
k = 12.3281.

means that even though the values given in Table 2 were calculated with a = 0.001,
they are valid for other a values.

4.2.2. Velocity as a function of r and q, with a fixed. We have studied how the
velocity of a traveling wave depends on r and q . Figure 19 shows that relation for a
few different values of a. For these charts, the speed was calculated via simulation
of the PDE for various r and q values, and then a contour plot of the data was
created using Matlab.

These charts can be used to estimate the speed at which an outbreak spreads
within the parameter ranges shown.

4.2.3. The approximately linear relation between v and r, with q and a fixed. For
a fixed q value, by utilizing the ranges of velocities for each q and range of r ,
we observed an approximately linear relation between r and v. Thus, for a fixed
carrying capacity, we can estimate the velocity of the budworm wave as a function
of the growth rate of the insect. Figure 20 shows this relation for different values
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Figure 19. The speed contour plots.

of q when a = 0.0005 and when a = 0.001. These equations are consistent with
Figure 19.

5. How outbreaks spread

In this section we demonstrate one possible way for an outbreak of budworms
localized in space can spread to the entire forest (the region −1 ≤ x ≤ 1). We
choose r = 0.5 and q = 10 again, so that we are in the r −q region where there are
four fixed points. We also choose a = 0.0005 which makes sure that the outbreak
and subsistence levels occur in the distributed model as well.

We show how a large enough perturbation of the steady-state solution that
represents the subsistence level of budworms can create a traveling wavefront of the
type studied in the last section, and end in the steady-state solution that represents
the outbreak level. The speed of the wave can be estimated using the charts and
equations from that last section as well.
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Figure 21. Initial Gaussian increase in budworm population from
subsistence level spreads to outbreak.

In Figure 21 we show the effect of imposing a Gaussian bump, representing a
small normally distributed increase in the budworm population, on top of a steady-
state subsistence solution. In that figure we see snapshots of an animation every 20
time units, starting at t = 0 (blue dots). Also highlighted are the times t = 80 (cyan
dots), t = 160 (dark green dots) and t = 260 (red dots). The snapshot at t = 80
represents the point at which the initial disturbance to the subsistence level has
grown so that the top has reached the outbreak level. At this point there are two
wavefronts of the type described in Section 4 (one moving left and one moving
right) as well as two regions that conform to the steady-state subsistence level
(−1≤ x ≤−0.2 and 0.8≤ x ≤ 1) as described in Section 3.
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At t = 160 there are three regions; for −0.25≤ x ≤ 1 we observe the population
conforming to the steady-state outbreak level of Section 3, for −0.75≤ x ≤−0.25
we have a traveling wavefront as in Section 4, and for−1≤ x≤−0.75 the population
conforms to the steady-state subsistence level of Section 3. Finally at t = 260 the
population has completely reached the steady-state outbreak level.

Finally, from Figure 19 we can estimate the speed of the wavefront to be slightly
larger than −0.006 (for the left-moving front); the equation from Figure 20, right,
gives−0.0067. In the 80 time units that separate the snapshots at t = 80 and t = 160
we would expect the wavefront to move about −0.5 units to the left, which is what
is seen in Figure 21.

6. Conclusion

The original spruce budworm model is an ordinary differential equation and it
models the outbreaks of the spruce budworm in forest environments. By adding the
diffusion term auxx to the original equation, we got the distributed model, which is
a partial differential equation. By using spectral numerical methods in the spatial
direction, and Matlab’s ode45 solver in the time direction, we studied the numerical
existence of steady-state and traveling wave solutions of the equation.

In particular, we found bifurcations values in terms of the diffusion parameter a
for which new steady-state solutions emerge, and we determined the stability of
each steady-state solution found. We were able to numerically estimate the speed of
a traveling wave solution given the values of the growth rate and carrying capacity
parameters. Finally we showed how a small Gaussian perturbation of the refuge level
can lead to the steady-state outbreak level, and estimate how quickly that can happen.
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Integer solutions to x2Cy2 D z2� k for
a fixed integer value k

Wanda Boyer, Gary MacGillivray, Laura Morrison,
C. M. (Kieka) Mynhardt and Shahla Nasserasr

(Communicated by Chi-Kwong Li)

For a given integer k, general necessary and sufficient conditions for the existence
of integer solutions to an equation of the form x2C y2 D z2 � k are given. It
is shown that when there is a solution, there are infinitely many solutions. An
elementary method for finding the solutions, when they exist, is described.

1. Introduction

Finding solutions to quadratic Diophantine equations in three or more variables
has been of interest since ancient times. One example is Pythagoras’ equation
x2 C y2 D z2, which was studied at least 3500 years ago by the Babylonians.
Another example is its generalization x2Cy2Cw2 D z2, which was completely
solved by Catalan [1885] (also see [Ayoub 1984]). A further generalization is
the equation x2 C y2 D z2 � k for a given integer k ¤ 0. Frink [1987] gave
a complete solution to the equations of the form x2 C y2 D z2 C 1. Moreover,
solutions to the equation x2Cy2 D z2� k with k D 1; 2 were crucial in finding
the minimum number of arcs in primitive digraphs with smallest large exponent;
see [MacGillivray et al. 2008]. When k is a perfect square, the solution set can
be found using Catalan’s method. In the previous reference, the solution set is
described when k D 1; 2.

We study the equation x2Cy2 D z2� k for any fixed integer value of k. It is
advantageous to write zD xC t for some integer t . Hence we seek solutions x;y; t

to the Diophantine equation

x2
Cy2

D .xC t/2� k: (1)

We give conditions on k and t for which the equation has no solution, and describe
an elementary method for finding all solutions to the equation in the cases when
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they exist. If t D 0 then (1) becomes y2 D�k, which has a solution if and only if
�k is a perfect square. Thus in the sequel we consider only nonzero integers t .

2. Background

In an attempt to make this article self-contained, we review some relevant back-
ground from elementary number theory. The results and proofs in this section
can be found in standard number theory books; for example, see [Apostol 1976;
Kumanduri and Romero 1998].

We shall make use of quadratic congruences, that is, congruences of the form
x2� a .mod m/, for integers a and m. The integer a is a quadratic residue modulo
m if the congruence x2 � a .mod m/ has a solution, and a quadratic nonresidue
modulo m otherwise.

Suppose p is an odd prime and p does not divide a. The Legendre symbol,
denoted by .a=p/, is defined by�

a

p

�
D

�
1 if a is a quadratic residue modulo p,
�1 if a is a quadratic nonresidue modulo p.

Theorem 1 [Kumanduri and Romero 1998, p. 216]. Suppose p is an odd prime
which divides neither a nor b. Then:

(1)
�

a2

p

�
D 1.

(2)
�

ab

p

�
D

�
a

p

��
b

p

�
.

(3) Euler’s criterion: a.p�1/=2
�

�
a

p

�
.mod p/.

Proposition 2 [Apostol 1976, p. 181; Kumanduri and Romero 1998, p. 414].
Suppose p is an odd prime with p ¤ 3. Then�

�1

p

�
D

�
1 if p � 1 .mod 4/,
�1 if p � 3 .mod 4/,

(2)

�
2

p

�
D

�
1 if p � 1; 7 .mod 8/,
�1 if p � 3; 5 .mod 8/,

(3)

�
3

p

�
D

�
1 if p � 1; 11 .mod 12/,
�1 if p � 5; 7 .mod 12/.

(4)

Proposition 3 [Kumanduri and Romero 1998, p. 428]. For every odd prime p ¤ 5,�
5

p

�
D

�
1 if p � 1; 4 .mod 5/,
�1 if p � 2; 3 .mod 5/.

We use the notation .a; b/ to denote the greatest common divisor of integers a

and b.
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Proposition 4. Suppose a; b 2 N and p is a prime, and assume k D k1pb with
.k1;p/D 1. Consider the congruence

y2
��k .mod pa/: (5)

(1) If b < a, then the congruence (5) has an integer solution if and only if b is
even and �k1 is a quadratic residue modulo pa�b .

(2) If b � a, then the congruence (5) always has a solution.

Proof. (1) The congruence y2 ��k .mod pa/ has a solution if and only if there
exists an integer m such that m2 D �k C paq D pb.�k1 C pa�bq/. Since p

does not divide �k1 C pa�bq, we have pb jm2 but pbC1 does not divide m2,
thus b is even. Now, divide both sides of m2 D pb.�k1Cpa�bq/ by pb . Then
m2

1
D�k1Cpa�bq, for some integer m1, which implies x2 ��k1 .mod pa�b/

has a solution. The converse is trivial.

(2) If b � a, then y2 ��k .mod pa/ has a solution if and only if there exists an
integer m such that m2D�kCpaqDpa.�k1pb�aCq/. If a is even, say aD2ˇ for
some integer ˇ, then for any integer u, any number of the form mD˙upˇ satisfies
m2 D .˙pˇ/2.�k1pb�aC u2C k1pb�a/. So any such m with 0 �m � pa � 1

is a solution to the congruence y2 � �k .mod pa/. If a D 2ˇC 1 is odd, then
by a similar argument m D ˙upˇC1, with 0 � m � pa � 1, is a solution to the
congruence y2 ��k .mod pa/. �

For any integer n> 1, and given congruence f .x/� 0 .mod n/, let N.n/ denote
the number of solutions to the congruence f .x/� 0 .mod n/.

Lemma 5 [Apostol 1976, p. 118]. Suppose f .x/ is a polynomial with integer
coefficients. Let t D p

e1

1
p

e2

2
: : :p

er
r be the prime factorization of t .

(1) The congruence f .x/ � 0 .mod t/ has a solution if and only if each of the
congruences f .x/� 0 .mod p

ei

i /, i D 1; 2; : : : ; r , has a solution.

(2) N.t/D
Qr

i N.p
ei

i /.

The following results will also be used in solving (1).

Lemma 6 [Apostol 1976, p. 178]. If p is an odd prime and p does not divide k,
then y2 ��k .mod p/ has either exactly two distinct solutions or no solution.

Lemma 7 [Nasserasr 2007, p. 38]. If p is an odd prime and .k;p/D 1, then every
solution to the congruence y2 ��k .mod pe/, e � 2, generates a solution to the
congruence y2 ��k .mod p/ and conversely.

If the modulus in Lemma 6 is a composite number, we have the following result.

Lemma 8. If t D p
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes,

r; ei 2 N, and .k; t/D 1, then y2 ��k .mod t/ has 2r distinct solutions y if �k
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is a quadratic residue modulo pi for each pi , i D 1; 2; : : : ; r , and no solution
otherwise.

Proof. Suppose for each pi , iD1; 2; : : : ; r there is a solution to y2��k .mod pi/.
Using Lemma 6, there are exactly two solutions for each congruence. Lemma 5
implies that s2 � �k .mod t/ has exactly 2r distinct solutions. If one of the
congruences s2��k .mod pi/, i D 1; 2; : : : ; r , has no solution, then by Lemma 5,
the congruence y2 ��k .mod t/ has no solution. �

The following is a special case of y2 ��k .mod p/ when k is a perfect square.

Lemma 9. Let p be an odd prime, and a be an integer such that p does not
divide a. Then the congruence y2��a2 .mod p/ has exactly two distinct solutions
if p � 1 .mod 4/ and no solution otherwise.

Proof. The congruence y2��a2 .mod p/ has exactly two distinct solutions if and
only if �

�a2

p

�
D

�
�1

p

��
a2

p

�
D 1: (6)

Since .a2=p/D1, (6) holds if and only if .�1=p/D1D .�1/.p�1/=2 (using Euler’s
criterion). The last equation holds if and only if p � 1 .mod 4/. �

3. General results

We give solutions to the equation

x2
Cy2

D .xC t/2� k:

First, we show that it is possible to remove common divisors of k and t .

Proposition 10. Suppose t has prime factorization of the form tD
Qr

iD1 p
ei

i and let
kDk1p

fi0
i0

, where 1� i0� r and pi0
−k1. Then the equation x2Cy2D .xCt/2�k

is equivalent to x2
1
Cy2

1
D .x1C t1/

2� k1, where p2
i0
−.k1; t1/.

Proof. We prove the statement for the case fi0
� ei0

. The case fi0
> ei0

is similar.
Depending on whether fi0

is even or odd we have fi0
D 2˛C ˇ with ˇ D 0; 1.

Since p2˛
i0
j .k; t/, if the equation has a solution, then p2˛

i0
jy2. Thus, dividing both

sides of the equation y2 D 2xt C t2� k by p2˛
i0

implies�
y

p˛i0

�2

D 2

�
x

p˛i0

��
t

p˛i0

�
C

�
t

p˛i0

�2

�

�
k

p2˛
i0

�
:

This is equivalent to x2
1
Cy2

1
D .x1C t1/

2� k1p
ˇ
i0

, and the result follows. �

In Proposition 10, if ˛ D 1, in solving the equation we can consider k=p2
i0

and
t=pi0

instead of k and t , respectively. By repeating this process on each common
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prime factor p of k and t such that p2 j k and p j t , we arrive to an equation of the
form x2Cy2D x2C2xtC t2�k with a few possibilities for common divisors of
k and t listed below.

Lemma 11. For every common prime factor p of k and t , (1) can be reduced to an
equation of a similar form where k and t satisfy one of the following conditions:

(1) .k; t/D 1.

(2) .k; t/D sp where p does not divide s, p2 does not divide k and p2 j t .

(3) .k; t/D sp where p does not divide s, p2 does not divide k, and p2 does not
divide t .

Therefore, without loss of generality, in solving (1) we may assume that k and t

satisfy one of the conditions in Lemma 11.
We consider the cases for t odd and t even separately.

3.1. Solutions to x2C y2 D .xC t/2 � k when t is odd. If t is odd and y is a
variable, the solutions to y2 � t2� k .mod 2t/ and y2 ��k .mod t/ are related.

Lemma 12. Suppose t is odd and k is an even integer. Then m is a solution to
y2 � t2� k .mod 2t/ if and only if it is an odd solution to y2 ��k .mod t/.

Proof. If m is a solution to y2 � t2 � k .mod 2t/, then there exists q 2 Z such
that m2 D �k C t.2q C t/. Since t is odd and k is even, m is an odd solution
to y2 ��k .mod t/. For the converse, note that if m is an odd solution to y2 �

�k .mod t/, then m is a solution to y2 � t2 � k .mod t/. Since m2 � t2C k is
even and t is odd, m is a solution to y2 � t2� k .mod 2t/. �

In this case, if all solutions to y2 ��k .mod t/ are odd, then they all generate
distinct solutions to y2 � t2� k .mod 2t/. However, if y2 ��k .mod t/ has an
even solution v, then vC t is an odd solution to y2 � �k .mod t/ and thus it is
a solution to y2 � t2 � k .mod t/. That is, for t D

Qr
iD1 p

ei

i , we can choose 2r

distinct solutions to the congruence y2 � �k .mod t/ to be odd, and they will
generate 2r distinct solutions to the congruence y2 � t2� k .mod 2t/.

Lemma 13. Suppose t and k are odd integers. Then m is a solution to y2 �

t2� k .mod 2t/ if and only if it is an even solution to y2 ��k .mod t/.

Proof. If m is a solution to y2 � t2� k .mod 2t/, then m is even and there exists
q 2 Z such that m2D�kC t.2qC t/. Since t and k are odd, m is an even solution
to y2 � �k .mod t/. If m is an even solution to y2 � �k .mod t/, then m is a
solution to y2 � t2� k .mod t/. Now, m2� t2C k is even and t is odd, so m is a
solution to y2 � t2� k .mod 2t/. �

Similarly, in this case, if all solutions to y2��k .mod t/ are even, then they all
generate distinct solutions to y2� t2�k .mod 2t/. However, if y2� t2�k .mod t/
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has an odd solution v, then vC t is an even solution to y2 ��k .mod t/ and thus
is a solution to y2� t2�k .mod 2t/. Similar to the previous case, we can generate
2r distinct solutions to the congruence y2 � t2� k .mod 2t/ by choosing enough
even solutions to y2 ��k .mod t/.

Therefore, when t is odd, solving the congruence y2 ��k .mod t/ is critical in
solving (1). We study the cases of .k; t/¤ 1 and .k; t/D 1 separately.

Lemma 14. Let tD
Qr

iD1 p
ei

i be the prime factorization of t . Consider the equation
x2Cy2 D .xC t/2� k:

(1) If .k; t/D sp and p does not divide s, p2 does not divide k, and p2 j t , for
some common prime factor p of k and t , then the equation has no solution.

(2) If the above case does not hold for any common prime factor of k and t , and
there exists a prime p such that .k; t/D sp, p does not divide s, p2 does not
divide k, and p2 does not divide t , then the equation has a solution if and only
if every congruence y2 � �k .mod p

ei

i / with pi ¤ p has a solution of the
form y � 0 .mod p/.

Proof. (1) In this case, one of the congruences obtained from the congruence
y2��k .mod t/ is equivalent to y2��k1p .mod p2/, where .k1;p/D 1. Using
Proposition 4, this congruence has no solution, which implies that (1) has no solution.

(2) In this case, one of the congruences obtained from the congruence y2 ��k

.mod t/ is equivalent to y2��k1p .mod p/. Using Proposition 4, this congruence
always has a solution, namely y � 0 .mod p/. Since y2 � �k .mod t/ has a
solution if and only if each of the congruences y2 ��k .mod p

ei

i / with pi ¤ p

for all other prime divisors of t has a solution, the result follows. �
Now consider the case where .k; t/D 1 and t is odd.
Using Lemma 5, if t D

Qr
iD1 p

ei

i is an odd integer, then the congruence y2 �

�k .mod t/ is equivalent to the system of congruences

y2
��k .mod p

e1

1
/;

y2
��k .mod p

e2

2
/;

:::

y2
��k .mod per

r /:

That is, if one of the above congruences does not have a solution, then the
congruence y2��k .mod t/ has no solution. Now, if all of the above congruences
have solutions, then each congruence can be replaced by a linear congruence, and
the resulting system of congruences can be solved using the Chinese remainder
theorem.

The following is a consequence of Lemmas 8, 12, and 13.
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Corollary 15. If t D p
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes

and r; ei 2 N, then y2 � t2� k .mod 2t/ has 2r distinct solutions for y if �k is a
quadratic residue modulo pi for each pi , i D 1;2; : : : ; r , and no solution otherwise.

Theorem 16. Suppose t is odd and k is an integer with .k; t/D 1. The equation
x2Cy2D .xC t/2�k has integer solutions x, y, t if and only if �k is a quadratic
residue modulo pi for every prime divisor pi of t . For any such t , there are infinitely
many solutions.

Proof. Suppose x2 C y2 D .x C t/2 � k has integer solutions x, y, t . Then,
y2 � t2�k .mod 2t/, so by Corollary 15, �k is a quadratic residue modulo every
prime divisor of t .

Now, suppose t D p
e1

1
p

e2

2
: : :p

er
r where �k is a quadratic residue of every pi .

By Corollary 15, y2 � t2� k .mod 2t/ has 2r distinct solutions. Let m be such a
solution that is also a least residue of y modulo 2t . Now, x, y, t with y DmC2tq,
x D .y2� t2C k/=.2t/, is a solution to the equation x2Cy2 D .xC t/2� k for
all q 2 Z. Therefore, for any such t , there are infinitely many solutions. �

The above results give an algorithm for computing the solutions to the equation
x2C y2 D .x C t/2 � k when t is odd. To illustrate this algorithm, we present
an example for each of the cases k � 0; 1; 2; 3 .mod 4/. For this we consider
k D 12; 5; 6; 15, respectively.

3.1.1. Examples for k � 0; 1; 2; 3 .mod 4/. For the case k � 0 .mod 4/, consider
the example k D 12. That is, we want to solve x2 C y2 D .x C t/2 � 12 when
t is odd and has a prime factorization t D

Qr
iD1 p

ei

i . Since t is odd, the only
possibilities for .12; t/ are 3 and 1. First we consider .12; t/D 3. Using Lemma 14,
if 9 j t , then there is no solution to the equation; if 9 does not divide t , then there is
a solution to the equation if and only if y � 0 .mod 3/ and y2 ��12 .mod p

ei

i /

has a solution for each pi ¤ 3, i D 1; 2; : : : ; r . Since .12;pi/D 1 for pi ¤ 3, the
latter congruence is equivalent to finding whether or not �12 is a quadratic residue
modulo each p

ei

i ; this can be done using Euler’s criterion or quadratic reciprocity.
The result for each congruence will be a linear congruence and then the Chinese
remainder theorem can be used. Now, consider the case .12; t/D 1.

The parity of t depends on the parity of x and the parity of y as follows:

� If both x and y are even, then x2Cy2� 0 .mod 4/. This leads to .xC t/2�

0 .mod 4/, which implies that t is even.

� If x and y are both odd, then x2Cy2�2 .mod 4/. Then .xCt/2�2 .mod 4/,
which is a contradiction since no square is congruent to 2 modulo 4.

� If x and y are of opposite parity, then x2Cy2� 1 .mod 4/. This implies that
.xC t/2 � 1 .mod 4/, meaning that x and t are of opposite parity.



888 BOYER, MACGILLIVRAY, MORRISON, MYNHARDT AND NASSERASR

Proposition 17. (i) If p¤ 3 is an odd prime, then s2��12 .mod p/ has exactly
two distinct solutions if p � 1 .mod 6/ and no solution otherwise.

(ii) If tDp
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes, all greater

than 3, and r; ei 2 N, then s2 � �12 .mod t/ has 2r distinct solutions if
pi � 1 .mod 6/ for each i D 1; 2; : : : ; r , and no solution otherwise.

Proof. (i) First suppose s2��12 .mod p/ has exactly two distinct solutions. Since
.4=p/D .22=p/D 1,�

�12

p

�
D

�
�1

p

��
3

p

��
4

p

�
D 1 D)

�
�1

p

��
3

p

�
D 1:

We consider the two cases .�1=p/D .3=p/D 1 and .�1=p/D .3=p/D�1:

(1) .�1=p/D .3=p/D 1. Then, using (2) and (4), we get one of the following:

(i) p � 1 .mod 4/ and p � 1 .mod 12/. These congruences imply p �

1 .mod 2/ and p � 1 .mod 3/, respectively. By the Chinese remainder
theorem p � 1 .mod 6/.

(ii) p � 1 .mod 4/ and p � 11 .mod 12/, which is impossible.

(2) .�1=p/D .3=p/D�1. Then, using (2) and (4), we get one of the following:

(i) p � 3 .mod 4/ and p � 5 .mod 12/, which is impossible.
(ii) p � 3 .mod 4/ and p � 7 .mod 12/. These congruences imply p �

1 .mod 2/ and p � 1 .mod 3/, respectively. By the Chinese remainder
theorem, p � 1 .mod 6/.

For the converse, suppose p � 1 .mod 6/. Then either p � 1 .mod 12/, which
implies .�12=p/ D .�1=p/.3=p/.4=p/ D .1/.1/.1/ D 1, or p � 7 .mod 12/,
which implies .�12=p/D .�1=p/.3=p/.4=p/D .�1/.�1/.1/D 1. In either case,
s2 ��12 .mod p/ has exactly two distinct solutions.

(ii) If r D 1, then the result follows from the Case (1). For r > 1, suppose that for
i D 1; 2; : : : ; r , the prime pi is congruent to 1 modulo 6. Then the result follows
from the Case (1) and Lemma 8. For the converse, suppose s2 � �12 .mod t/

has exactly 2r distinct solutions. Then each congruence s2 � �12 .mod pi/,
i D 1; 2; : : : ; r , has a solution and by the Case (1), pi is congruent to 1 modulo 6
for all i D 1; 2; : : : ; r . �

Also, if t D p
e1

1
p

e2

2
: : :p

er
r where p1;p2; : : : ;pr are distinct odd primes and

r; ei 2N, then s2� t2�12 .mod 2t/ has 2r distinct solutions if each pi�1 .mod 6/

and no solution otherwise.

Proposition 18. Let t be an odd number with .12; t/D 1. The equation x2Cy2 D

.xC t/2� 12 has integer solutions for x,y,t if and only if every prime divisor of t

is congruent to 1 modulo 6. For any such t , there are infinitely many solutions.
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Proof. Note that x2 C y2 D .x C t/2 � 12 implies that y2 � t2 � 12 .mod 2t/.
Then by Lemma 12 and Proposition 17, every prime divisor of t is congruent to
1 modulo 6. For the converse, suppose t D p

e1

1
p

e2

2
: : :p

er
r with pi � 1 .mod 6/

for all i D 1; 2; : : : ; r . By Lemma 12 and Proposition 17, y2 � t2 � k .mod 2t/

has 2r distinct solutions. Let m be such a solution that is also a least residue of y

modulo 2t . Then, x, y, t with yDmC2tq, xD .y2� t2C12/=.2t/, is a solution
to the equation x2Cy2 D .xC t/2�12 for q 2 Z. Therefore, for any such t , there
are infinitely many solutions. �

For the case k � 1 .mod 4/, we consider k D 5. In this case, .5; t/ equals 1

or 5. If .5; t/D 5, and 25 does not divide t , then the equation has no solution. If
.5; t/D 5, and 25 j t , then the equation has a solution if and only if the following
system of equations has a solution:

y � 0 .mod 5/ and y2
��5 .mod p

ei

i / for all pi ¤ 5:

Similarly to the previous example, this system can be reduced to linear equations.
We now consider the case .5; t/D 1.

The next lemma can be obtained from Proposition 3.

Lemma 19. (i) If p ¤ 5 is an odd prime, then s2 ��5 .mod p/ has exactly two
distinct solutions if p � 1; 3; 7; 9 .mod 20/ and no solution otherwise.

(ii) If t D p
e1

1
p

e2

2
: : :p

er
r where p1;p2; : : : ;pr are distinct odd primes, pi ¤ 5

for all i D 1; 2; : : : ; r , and r; ei 2 N, then s2 � �5 .mod t/ has 2r distinct
solutions modulo t if each pi � 1; 3; 7; 9 .mod 20/ and no solution otherwise.

We now have the following.

Proposition 20. Suppose t is odd with .5; t/D 1. The equation

x2
Cy2

D .xC t/2� 5

has integer solutions x, y, t if and only if every prime divisor of t is congruent to
1; 3; 7; 9 modulo 20. For any such t there are infinitely many solutions.

For the case k � 2 .mod 4/ we consider k D 6. In this case, since t is odd, we
have either .6; t/D 3 or .6; t/D 1. If 9 j t , there is no solution; if 9 does not divide t ,
then the equation has a solution if and only if there is a solution to

y � 0 .mod 3/ and y2
��6 .mod p

ei

i / for all pi ¤ 3:

Hence we consider the case when .6; t/D 1. We shall use a lemma which follows
from (3).

Lemma 21. (i) If p ¤ 3 is an odd prime, then s2 ��6 .mod p/ has exactly two
distinct solutions if p � 1; 5; 7; 11 .mod 24/ and no solution otherwise.
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(ii) If t Dp
e1

1
p

e2

2
: : :p

er
r , where p1;p2; : : : ;pr are distinct odd primes, .6; t/D 1

and r; ei 2N, then s2 ��6 .mod t/ has 2r distinct solutions modulo t if each
pi � 1; 5; 7; 11 .mod 24/ and no solution otherwise.

Proposition 22. The equation x2Cy2 D .xC t/2� 6 with .t; 6/D 1 has integer
solutions x, y, t if and only if every prime divisor of t is congruent to 1; 5; 7; 11

modulo 24. For any such t there are infinitely many solutions.

Finally, k D 15 is considered as an example for the case k � 3 .mod 4/. The
cases when .15; t/D 3; 5; 15 are similar to the previous examples. We only consider
the case when .15; t/D 1.

Lemma 23. (i) If p � 7 is an odd prime, then s2 � �15 .mod p/ has exactly
two distinct solutions if p � 1; 7; 17; 19; 23; 31; 43; 47; 49; 53 .mod 60/ and
no solution otherwise.

(ii) If tDp
e1

1
p

e2

2
: : :p

er
r where p1;p2; : : : ;pr are distinct odd primes, .15; t/D1,

and r; ei 2 N, then s2 � �15 .mod t/ has 2r distinct solutions modulo t if
each pi is congruent to 1; 7; 17; 19; 23; 31; 43; 47; 49; 53 modulo 60, and no
solution otherwise.

Proposition 24. The equation x2Cy2D .xC t/2�15 with .15; t/D 1 has integer
solutions x, y, t if and only if every prime divisor of t is congruent to 1, 7, 17, 19,
23, 31, 43, 47, 49, 53 modulo 60. For any such t there are infinitely many solutions.

3.2. Solutions to x2Cy2 D .xC t/2�k when t is even. Now we consider the
equation x2Cy2 D .xC t/2� k when t is even.

Proposition 25. Let k; t be integers and suppose t is even. Then m is a solution to
the congruence y2� t2�k .mod 2t/ if and only if it is a solution to the congruence
y2 ��k .mod 2t/.

Proof. Note that since t is even, 2t j t2. Now, m is a solution for y2 � t2 � k

.mod 2t/ if and only if 2t j .m2� t2C k/ if and only if 2t j .m2C k/. �

Thus, in this section our focus is on congruences of the form y2� t2�k .mod 2t/.
We first show that when pD 2, there is no solution to (1) in Case (2) or Case (3) of
Lemma 11.

Lemma 26. Consider integers k, t :

(1) If 2 j .k; t/ but 4 does not divide k, and 4 j t , then the congruence y2 �

�k .mod 2t/ has no solution.

(2) If 2 j .k; t/ but 4 divides neither k nor t , then the congruence y2 � �k

.mod 2t/ has no solution.
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Proof. (1) Suppose k D 2˛ and t D 4ˇ for some integers ˛ and ˇ, where ˛ is odd.
The congruence y2��k .mod 2t/ has a solution if and only if there exist integers
m, q such that m2 D�2.˛C 4ˇq/. This is not possible since ˛C 4ˇq is odd.

(2) Suppose k D 2˛ and t D 2ˇ for some odd integers ˛ and ˇ. As above, the
congruence y2 � �k .mod 2t/ has a solution if and only if there exist integers
m, q such that m2 D�2.˛C 2ˇq/. This is not possible since ˛C 2ˇq is odd. �

If 2 does not divide .k; t/ but .k; t/¤ 1, the same argument as the case of t odd
can be used. Thus, without loss of generality, we can assume that .k; t/D 1. This
implies that k is odd. Let t D 2r s where r 2N and sD

Qu
iD1 p

ei

i is an odd integer.
Since .2rC1; s/D 1, using Lemma 5, the congruence y2 � �k .mod 2t/ can be
reduced to two congruences:

y2
��k .mod 2rC1/; and y2

��k .mod s/:

The congruence y2 � �k .mod s/ can be solved using the results from the
previous section. We now consider different cases for r for the remaining congruence
y2 ��k .mod 2rC1/.

The following result can be found in most number theory books; see [Kumanduri
and Romero 1998, p. 231] for example. We restate it using the notation used in this
work.

Lemma 27 [Kumanduri and Romero 1998, p. 231]. Suppose k is odd and r � 1.
Consider the congruence

y2
��k .mod 2rC1/: (7)

(1) If r D 1, the congruence (7) has exactly two distinct solutions if �k �

1 .mod 4/ and no solution otherwise.

(2) If r � 2, the congruence (7) has exactly four distinct solutions if �k � 1

.mod 8/ and no solution otherwise. If y0 is a solution, then �y0 and˙y0C2r

are also solutions.

An application of the above results can solve (1) when t is even, as follows.

Theorem 28. Assume k is odd and consider (1) with t D 2r s, where s is an odd
integer and r > 0:

(1) If r D 1, then (1) has a solution if and only if �k � 1 .mod 4/ and y2 �

�k .mod s/ has a solution.

(2) If r � 2, then (1) has a solution if and only if �k � 1 .mod 8/ and y2 �

�k .mod s/ has a solution.

In each case, if there is one solution, there are infinitely many solutions.
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Proof. Using Proposition 25, we know that x2Cy2D .xC t/2�k has a solution if
and only if y2 ��k .mod 2t/ has a solution. The conditions for the existence of a
solution in each case follow from Lemma 27 and the discussion preceding it. Now,
suppose m is a solution to y2��k .mod 2t/. Using Proposition 25, we see that it is
also a solution to y2� t2�k .mod 2t/. Thus, the triple .x;y; t/ with yDmC2tq,
x D .y2� t2C k/=.2t/, is a solution to the equation x2Cy2 D .xC t/2� k for
all q 2 Z. Since q can be chosen arbitrarily, there are infinitely many solutions. �
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A solution to a problem of Frechette and Locus
Chenthuran Abeyakaran
(Communicated by Ken Ono)

In a recent paper, Frechette and Locus examined and found expressions for the
infinite product Dm(q) :=

∏
∞

t=1(1−qmt )/(1−q t ) in terms of products of q-series
of the Rogers–Ramanujan type coming from Hall–Littlewood polynomials, when
m≡0, 1, 2 (mod 4). These q-series were originally discovered in 2014 by Griffin,
Ono, and Warnaar in their work on the framework of the Rogers–Ramanujan
identities. Extending this framework, Rains and Warnaar also recently discovered
more q-series and their corresponding infinite products. Frechette and Locus left
open the case where m ≡ 3 (mod 4). Here we find such an expression for the
infinite products for m ≡ 3 (mod 4) by making use of the new q-series obtained
by Rains and Warnaar.

1. Introduction

The Rogers–Ramanujan identities [Andrews 1971]

G(q) :=
∞∑

n=0

qn2

(1− q)(1− q2) . . . (1− qn)
=

∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

, (1-1)

H(q) :=
∞∑

n=0

qn2
+n

(1− q)(1− q2) . . . (1− qn)
=

∞∏
n=0

1
(1− q5n+2)(1− q5n+3)

, (1-2)

have inspired research and discoveries in many areas of mathematics and physics,
such as modular forms and elliptic curves, conformal field theory, knot theory,
probability, and statistical mechanics. (See next citation for some discussion.)
Given the importance of these identities, it had been an open problem for nearly a
century to build a theory suggested by these two Rogers–Ramanujan identities. In
2014 Griffin, Ono, and Warnaar [Griffin et al. 2016] discovered1 a more general
framework for identities similar to that of Rogers–Ramanujan, where an infinite
sum, defined using Hall–Littlewood polynomials Pλ(x; q), is equal to an infinite
product with periodic exponents.

MSC2010: 11P84.
Keywords: Rogers–Ramanujan Identities.

1Their work was named the 15th top story in science in 2014 by Discover magazine.
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In order to define the Hall–Littlewood polynomials, we recall the definition of an
integer partition and the following notation. A partition is a nonincreasing sequence
of nonnegative integers with finitely many nonzero terms. For a partition λ =
(λ1, λ2, . . . , λn), we define the weight of the partition to be |λ| := λ1+λ2+· · ·+λn

and the length of the partition λ to be n. In addition, we let 2λ := (2λ1, 2λ2, . . . , 2λn).
Let mi denote the multiplicity of size i parts. Also, let (q)k = (q; q)k denote the
q-Pochhammer symbol, which is defined as follows:

(a)k := (a; q)k =

{
(1− a)(1− aq)(1− aq2) · · · (1− aqk−1) if k ≥ 0,∏
∞

n=0(1− aqn) if k =∞.

If λ has length n, the Hall–Littlewood polynomial is a symmetric function in n
variables, namely x1, x2, . . . , xn , defined as

Pλ(x; q)=
1

vλ(q)

∑
w∈Sn

w

(
xλ
∏
i< j

xi − qx j

xi − x j

)
, (1-3)

where xλ := xλ1
1 xλ2

2 xλ3
3 . . . xλn

n , vλ(q) :=
∏n

i=0(q)mi /(1− q)mi , and the symmetric
group Sn acts on x by permuting all the xi .

For ordered pairs ν = (c, d) ∈ {(1,−1), (2,−1), (1, 0), (2,−2)} and arbitrary
a, b ≥ 1, Griffin, Ono, and Warnaar [Griffin et al. 2016], and more recently Rains
and Warnaar [2015], defined the q-series

Rν(a, b; q)=
∑
λ,λ1≤a

qc|λ|P2λ(1, q, q2, . . . ; q2b+d), (1-4)

S(a, b; q)=
∑
λ,λ1≤a

q |λ|/2 Pλ(1, q, q2, . . . ; q2b), (1-5)

and

T (a, b; q)

=

∑
λ,λ1≤a

q |λ|
( a−1∏

i=1

(−qb−1/2
; qb−1/2)mi (λ)

)
Pλ(1, q, q2, . . . ; q2b−1). (1-6)

Here the Pλ(1, q, q2, . . . ; qT ) are Hall–Littlewood q-series in infinitely many
parameters. To define these Hall–Littlewood q-series, we must first express the
Hall–Littlewood polynomial Pλ(x1, x2, . . . , xn; qT ) in terms of the r -th power sum
symmetric function, xr

1+xr
2+· · ·+xr

n . This is possible due to a well-known fact in ab-
stract algebra which states that every symmetric polynomial can be written as a sum
of products of r -th power sum symmetric functions with rational coefficients [Mac-
donald 1995]. Now we obtain the Hall–Littlewood polynomial Pλ(1, q, q2, . . . ; qT )

by replacing (xr
1 + xr

2 + · · ·+ xr
n) with 1r

+ qr
+ q2r

+ · · · = 1/(1− qr ).
To motivate our work, consider another interesting property of the Roger–

Ramanujan identities. When we take the product of both Rogers–Ramanujan
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identities, we can see that

G(q)·H(q)=
∞∏

n=0

1
(1−q5n+1)(1−q5n+4)

·

∞∏
n=0

1
(1−q5n+2)(1−q5n+3)

=

∞∏
n=0

1
(1−q5n+1)(1−q5n+4)(1−q5n+2)(1−q5n+3)

=

∞∏
n=1

(1−q5n)

(1−qn)
.

Inspired by this emergence of this infinite product, Frechette and Locus [2016]
explored the natural question of more generalized products of q-series of the Rogers–
Ramanujan type that result in an infinite product of the form

Dm(q) :=
∞∏

t=1

(1− qmt)

(1− q t)
. (1-7)

Making use of the Rogers–Ramanujan framework of [Griffin et al. 2016], Frechette
and Locus obtained explicit formulas for Dm(q) when m ≡ 0, 1, 2 (mod 4). When
m ≥ 8 and is even, they found that

Dm(q)=
R(1,0)

(
2, m

2 − 3; q
)
· R(2,−2)

(m
2 , 2; q

)
R(2,−2)

(m
2 − 3, 3; q

) . (1-8)

They also found for m ≡ 1 (mod 4) and m > 1,

Dm(q)=
R(1,−1)

(m−1
2 − 1, 1; q

)
· R(2,−1)

(m−1
4 , m−1

4 ; q
)

R(2,−1)
(m−1

4 + 1, m−1
4 − 1; q

) . (1-9)

However, they were unable to construct Dm(q) for positive integers m ≡ 3
(mod 4). Their difficulty arose from the fact that the Rogers–Ramanujan framework
of [Griffin et al. 2016]. Rains and Warnaar [2015] recently found this extension. In
this paper, we address this case and provide such a formula.

Theorem 1.1. If m ≡ 3 (mod 4) and m ≥ 7, we have

Dm(q)=
T
(m+1

2 , m+1
4 ; q

)
S
(m+1

2 , m+1
4 − 1; q

)
R(1,−1)

(m−1
2 − 1, 1; q

)
T
(m+1

2 + 2, m+1
4 − 1; q

)
S
(m+1

2 − 2, m+1
4 ; q

) .

In Section 2, we cover preliminaries on q-series and state the results of [Griffin
et al. 2016; Rains and Warnaar 2015; Frechette and Locus 2016]. In Section 3, we
use these results to prove Theorem 1.1.
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2. Preliminaries

In order to simplify the products involved in writing Rν(a, b; q), S(a, b; q), and
T (a, b; q), we use a modified theta function

θ(a; q) := (a; q)∞(q/a; q)∞, (2-1)

where (a; q)∞ denotes the q-Pochhammer symbol we previously defined. We then
define

θ(a1, a2, . . . , an; q)= θ(a1; q) · θ(a2; q) · · · θ(an; q). (2-2)

Theorem 2.1 [Griffin et al. 2016, Theorem 1.1]. If a and b are positive integers
and κ := 2a+ 2b+ 1, we have

R(1,−1)(a, b; q) :=
∑
λ,λ1≤a

q |λ|P2λ(1, q, q2, . . . ; q2b−1)

=
(qκ; qκ)b

∞

(q)b
∞

·

b∏
i=1

θ(q i+a
; qκ)

∏
1≤i< j≤b

θ(q j−i , q i+ j−1
; qκ)

=
(qκ; qκ)a

∞

(q)a
∞

·

a∏
i=1

θ(q i+1
; qκ)

∏
1≤i< j≤a

θ(q j−i , q i+ j+1
; qκ).

This result has generalizations to the functions S and T :

Theorem 2.2 [Rains and Warnaar 2015, Theorem 5.10]. If a and b are positive
integers and κ := a+ 2b+ 1, we have

S(a, b; q) :=
∑
λ,λ1≤a

q |λ|/2 Pλ(1, q, q2, . . . ; q2b)

=
(qκ; qκ)b−1

∞
(qκ/2; qκ/2)∞

(q)b−1
∞ (q1/2; q1/2)∞

b∏
i=1

θ(q i
; qκ/2)

∏
1≤i< j≤b

θ(q j−i , q i+ j
; qκ).

Theorem 2.3 [Rains and Warnaar 2015, Remark 5.13]. If a and b are positive
integers and κ := a+ 2b− 1, we have

T (a, b; q) :=
∑
λ,λ1≤a

q |λ|
( a−1∏

i=1

(−qb−1/2
; qb−1/2)mi (λ)

)
Pλ(1, q, q2, . . . ; q2b−1)

=
(qκ; qκ)b

∞

(q)b−1
∞ (q1/2; q1/2)∞

b∏
i=1

θ(q i−1/2
; qκ)

∏
1≤i< j≤b

θ(q j−i , q i+ j−1
; qκ).

To prove our result, we combine Theorem 2.3 with the following proposition.
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Proposition 2.4. If i ∈ Z+, we have

θ(q i
; qm/2)= θ(q i

; qm)θ(qm/2−i
; qm).

Proof. Using the definition of the modified theta function, we have

θ(q i
; qm/2)= (q i

; qm/2)∞(qm/2−i
; qm/2)∞

=

∞∏
n=0

(1− q i
· qmn/2)

∞∏
n=0

(1− qm/2−i
· qmn/2).

Separating terms in the infinite product on the right-hand side based on the parity
of n, we have

θ(q i
; qm/2)=

∞∏
n=0

(1−q i
·qmn)(1−q i+m/2

·qmn)

∞∏
n=0

(1−qm/2−i
·qmn)(1−qm−i

·qmn)

=

∞∏
n=0

(1−q i
·qmn)(1−qm−i

·qmn)(1−qm/2−i
·qmn)(1−q i+m/2

·qmn)

= (q i
; qm)∞(qm−i

; qm)∞(qm/2−i
; qm)∞(qm/2+i

; qm)∞

= θ(q i
; qm)θ(qm/2−i

; qm). �

3. Proof of Theorem 1.1

We shall now prove Theorem 1.1. By Theorem 2.3, when m = a+2b−1, we have

T
(m+1

2
,

m+1
4
; q
)

=
(qm
; qm)

(m+1)/4
∞

(q)(m+1)/4−1
∞ (q1/2; q1/2)∞

(m+1)/4∏
i=1

θ(q i−1/2
; qm)∏

1≤i< j≤(m+1)/4

θ(q j−i , q i+ j−1
; qm) (3-1)

and

T
(m+1

2
+ 2, m+1

4
− 1; q

)
=

(qm
; qm)

(m−3)/4
∞

(q)(m−7)/4
∞ (q1/2; q1/2)∞

(m−3)/4∏
i=1

θ(q i−1/2
; qm)∏

1≤i< j≤(m−3)/4

θ(q j−i , q i+ j−1
; qm), (3-2)
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which gives

T
(m+1

2 , m+1
4 ; q

)
T
(m+1

2 + 2, m+1
4 − 1; q

)
=
(qm
; qm)∞

(q)∞
θ(q(m−1)/4

; qm)

(m+1)/4−1∏
i=1

θ(q(m+1)/4−i , q(m+1)/4−1+i
; qm)

=
(qm
; qm)∞

(q)∞
θ(q(m−1)/4

; qm)

(m+1)/4−1∏
i=1

θ(q i
; qm)

(m+1)/2−2∏
i=(m+1)/4

θ(q i
; qm)

=
(qm
; qm)∞

(q)∞
θ(q(m−1)/4

; qm)

(m−1)/2∏
i=1

θ(q i
; qm). (3-3)

Using Theorem 2.2 and Proposition 2.4, we have

S
(m+1

2
− 2, m+1

4
; q
)

=
(qm
; qm)

(m+1)/4−1
∞ (qm/2

; qm/2)∞

(q)(m+1)/4−1
∞ (q1/2; q1/2)∞

(m+1)/4∏
i=1

θ(q i
; qm)θ(qm/2−i

; qm)∏
1≤i< j≤(m+1)/4

θ(q j−i , q i+ j
; qm), (3-4)

and

S
(m+1

2
,

m+1
4
− 1; q

)
=
(qm
; qm)

(m+1)/4−2
∞ (qm/2

; qm/2)∞

(q)(m+1)/4−2
∞ (q1/2; q1/2)∞

(m+1)/4−1∏
i=1

θ(q i
; qm)θ(qm/2−i

; qm/2)∏
1≤i< j≤(m+1)/4−1

θ(q j−i , q i+ j
; qm). (3-5)

Now, we evaluate the following quotient:

S
(m+1

2 − 2, (m+1)
4 ; q

)
S
(m+1

2 , m+1
4 − 1; q

)
=
(qm
; qm)∞

(q)∞
θ(q(m+1)/4

; qm)θ(q(m−1)/4
; qm)

(m+1)/4−1∏
i=1

θ(q(m+1)/4−i , q(m+1)/4+i
; qm)
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=
(qm
; qm)∞

(q)∞
θ(q(m+1)/4

; qm)θ(q(m−1)/4
; qm)

(m+1)/4−1∏
i=1

θ(q i
; qm)

(m+1)/2−1∏
i=(m+1)/4+1

θ(q i
; qm)

=
(qm
; qm)∞

(q)∞
θ(q(m−1)/4;qm

)

(m−1)/2∏
i=1

θ(q i
; qm). (3-6)

Dividing (3-3) by (3-6), we obtain

T
(m+1

2 , m+1
4 ; q

)
S
(m+1

2 , m+1
4 − 1; q

)
T
(m+1

2 + 2, m+1
4 − 1; q

)
S
(m+1

2 − 2, m+1
4 ; q

)
=
(qm
; qm)∞/(q)∞ θ(q(m−1)/4

; qm)
∏(m−3)/2

i=1 θ(q i
; qm)

(qm; qm)∞/(q)∞ θ(q(m−1)/4; qm)
∏(m−1)/2

i=1 θ(q i ; qm)

=
1

θ(q(m−1)/2; qm)
.

(3-7)

By Theorem 2.1, we have the identity

R(1,−1)

(m−1
2
− 1, 1; q

)
=
(qm
; qm)∞

(q)∞
θ(q(m−1)/2

; qm). (3-8)

Multiplying (3-8) and (3-7) gives us our desired result:

T
(m+1

2 +1,m+1
4 ;q

)
S
(m+1

2 ,m+1
4 −1;q

)
R(1,−1)

(m−1
2 −1,1;q

)
T
(m+1

2 +3,m+1
4 −1;q

)
S
(m+1

2 −2,m+1
4 ;q

)
=
(qm
; qm)∞

(q)∞
θ(q(m−1)/2

; qm)·
1

θ(q(m−1)/2; qm)

=
(qm
; qm)∞

(q)∞
=

∞∏
t=1

(1−qmt)

(1−q t)
= Dm(q). �
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