\bullet
 involve

 a journal of mathematicsDomination with decay in triangular matchstick arrangement graphs

Jill Cochran, Terry Henderson, Aaron Ostrander and Ron Taylor

Domination with decay in triangular matchstick arrangement graphs

Jill Cochran, Terry Henderson, Aaron Ostrander and Ron Taylor (Communicated by Glenn Hurlbert)

Abstract

We provide results for the exponential dominating numbers and total exponential dominating numbers of a family of triangular grid graphs. We then prove inequalities for these numbers and compare them with inequalities that hold more generally for exponential dominating numbers of graphs.

1. Introduction

A dominating set of a graph G is a set $S \subseteq V(G)$ such that every $v \in V(G)$ is either in S or is adjacent to a member of S. A total dominating set of a graph G is a set $S \subseteq V(G)$ such that every $v \in V(G)$ is adjacent to a member of S. The vertices in S are called dominating vertices or dominators, and a vertex adjacent to a dominator is said to be dominated by that dominator. In most kinds of domination a dominator is considered to dominate itself, but this is not the case for total domination where each dominator must be dominated by another dominator.

When considering domination at a distance, a k-dominating set of a graph G is a set $S \subseteq V(G)$ such that every $v \in V(G)$ is either in S or is a distance of k or less from any member of S. More examples of domination at a distance have been investigated in [Erwin 2004; Slater 1976].

In [Dankelmann et al. 2009] the authors introduce exponential domination, a variety of distance domination where the dominating power of a vertex decreases exponentially with the distance from that vertex. In this paper, we consider exponential domination and introduce a variation of exponential domination which we call total exponential domination. In the rest of the paper we sometimes talk about exponential domination or total exponential domination just in terms of domination when the context is clear.

For a connected graph G and $S \subseteq V(G)$ we denote by $G[S]$ the subgraph of G induced by S. For $u \in S$ and $v \in V(G) \backslash S$ we define $d_{S}(u, v)$ to be the distance

[^0]between u and v in $G[V(G) \backslash(S \backslash\{u\})]$; i.e., minimum length paths do not include other dominators.

For exponential domination we use the same weight function as in [Dankelmann et al. 2009], given by

$$
w_{S}(v)= \begin{cases}\sum_{u \in S} 2^{-d_{S}(u, v)+1}, & v \notin S, \\ 2, & v \in S .\end{cases}
$$

For total exponential domination we use a similar weight function given by

$$
w_{S}^{t}(v)= \begin{cases}\sum_{u \in S} 2^{-d_{S}(u, v)+1}, & v \notin S, \\ \sum_{u \in S, u \neq v} 2^{-d_{S}(u, v)+1}, & v \in S .\end{cases}
$$

Note that the only difference between these two weight functions is that $w_{S}(u)=2$ but $w_{S}^{t}(u)$ depends on the distribution of the other dominators for $u \in S$.

As in [Dankelmann et al. 2009], if for each $v \in V(G)$ (or equivalently $v \in V(G) \backslash S$) we have that $w_{S}(v) \geq 1$, then S is an exponential dominating set of G. The exponential dominating number of a graph G, denoted by $\gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set of G. Similarly, if for each $v \in V(G)$ we have that $w_{S}^{t}(v) \geq 1$, then S is a total exponential dominating set of G. The total exponential dominating number of a graph G, denoted by $\gamma_{t e}(G)$, is the smallest cardinality of a total exponential dominating set of G. For an arbitrary S and arbitrary $v \in V(G) \backslash S$, if $w_{S}(v) \geq 1$ or $w_{S}^{t}(v) \geq 1$ then v is exponentially dominated or totally exponentially dominated by S.

We restrict ourselves to a particular family of triangular grid graphs. A triangular grid graph is a graph G such that $V(G)$ can be put in a correspondence with points $(x, y)=\left(\frac{1}{2} a-b, \frac{\sqrt{3}}{2} a\right)$, where $a, b \in \mathbb{Z}$; additionally, we require that in this correspondence two vertices can be adjacent only if their corresponding points are separated by unit distance (this is the same definition that is found in [Gordon et al. 2008]). We denote by G_{n} the graph whose vertices correspond with the points in

$$
\left\{\left.\left(\frac{1}{2} a-b, \frac{\sqrt{3}}{2} a\right) \right\rvert\, a, b \in \mathbb{Z}, 0 \leq b \leq a \leq n\right\}
$$

and which has as many edges as possible; G_{n} is called the triangular matchstick arrangement graph of side n. This is the family of graphs which we consider in this paper. The corners of G_{n} are those vertices corresponding to $a=b=0, a=b=n$, and $a=n, b=0$. The perimeter of G_{n} is the set of vertices and edges that lie on the minimal length paths between the corners. Any one of these minimal length paths is a perimeter edge; note that each perimeter edge of G_{n} contains n edges.

In Section 2 we determine the exponential dominating numbers for G_{n} up to $n=7$. In Section 3 we provide upper bounds for exponential dominating numbers for arbitrary G_{n}. In Section 4 we determine the total exponential dominating numbers for G_{n} up to $n=5$. In Section 5 we use arguments similar to those from Section 3 to provide upper bounds for total exponential dominating numbers for arbitrary G_{n}.

G_{4}^{1}

G_{4}^{2}

G_{4}^{3}

G_{4}^{4}

Figure 1. Graphs for Lemma 5.

2. Base cases for exponential domination

We use the following lemmas in proving Theorem 8.

Lemma 1.

$$
\gamma_{e}\left(G_{n}\right) \leq \gamma_{e}\left(G_{n+1}\right) .
$$

Lemma 2. If there exists an arrangement of dominators that dominates G_{n} where a dominator is placed at a corner vertex, then the graph is also dominated by the arrangement of dominators produced by moving the corner dominator to a vertex adjacent to it and leaving the rest of the dominators in their original positions.

Lemma 3.

$$
\gamma_{e}\left(G_{1}\right)=1 .
$$

Lemma 4.

$$
\gamma_{e}\left(G_{2}\right)=2 .
$$

Proof. To see that $\gamma_{e}\left(G_{2}\right) \leq 2$, note that picking any two vertices of G_{2} to be dominators suffices to dominate the graph.

Suppose $\gamma_{e}\left(G_{2}\right)=1$. For every vertex in $V\left(G_{2}\right)$ there is a second vertex that is a distance of 2 away. Thus no matter where the dominator is placed there always is one vertex with only a weight of $\frac{1}{2}$, so G_{2} is not dominated, which is a contradiction.

Lemma 5.

$$
\gamma_{e}\left(G_{4}\right)=3 .
$$

Proof. The graphs G_{4}^{i} referred to in this proof are contained in Figure 1. To see that $\gamma_{e}\left(G_{4}\right) \leq 3$, consider G_{4}^{1} or G_{4}^{2} (from now on all vertices appearing as bullet points are dominators). If $\gamma_{e}\left(G_{4}\right)<3$ then we can dominate G_{4} with two dominators. We obviously must dominate the corners of G_{4}, and by Lemma 2 we can assume that no dominator is in a corner.

Supposing that the two dominators are at a distance of 1 from two corners (to ensure that at the least those corners are dominated), we produce graph G_{4}^{3}, where one of the circled vertices is also a dominator. The graph is not dominated in any of these cases.

Supposing that the two dominators are each at a distance of 2 from a single corner (to ensure that one corner is dominated), we produce G_{4}^{4}, where one of the circled vertices is also a dominator. G_{4} is not dominated in either case. This suffices to prove the lemma.

Lemma 6.

$$
\gamma_{e}\left(G_{6}\right)=4 .
$$

Figure 2. Graphs for Lemma 6.
Proof. The graphs G_{6}^{i} referred to in this proof are contained in Figure 2. To see that $\gamma_{e}\left(G_{6}\right) \leq 4$, consider G_{6}^{1}.

If $\gamma_{e}\left(G_{6}\right)<4$ then we can dominate G_{6} with three dominators. We first consider the case where each dominator is a distance of 1 from each corner. Doing so we produce G_{6}^{2}, where one of a or b and one of c or d is a dominator. In each of these cases the circled vertex is not dominated.

Considering next the case where one of the corners has two dominators at a distance of 2 , we must place the third dominator on G_{6}^{3}, where one of the circled vertices is a dominator. We cannot place a third dominator in either of these cases so that all of the corners are dominated.

We now consider placing two dominators at a distance of 3 from a corner and the third dominator at a distance of 2 from the same corner. Doing so, we generate G_{6}^{4} or G_{6}^{5}, where two of the circled vertices are dominators. In any such graph only one of the corners is dominated. This suffices to prove the lemma.

Lemma 7.
 $\gamma_{e}\left(G_{7}\right)=5$.

Proof. The graphs G_{7}^{i} referred to in this proof are contained in Figure 3. To see that $\gamma_{e}\left(G_{7}\right) \leq 5$, consider G_{7}^{1}. If $\gamma_{e}\left(G_{7}\right)<5$, then four dominators suffice to dominate the graph. We first try to dominate G_{7} by placing three dominators so that each lies at a distance of 1 from each corner. Doing so, we produce G_{7}^{2} or G_{7}^{3}.

Notice that the vertices a, b and c in G_{7}^{2} have domination of $\frac{17}{32}$ due to the first three dominators. So the fourth dominator must be placed at either of the circled vertices so that a and b will both have domination greater than 1 . However, doing so, the domination of c is either $\frac{21}{32}$ or $\frac{25}{32}$, so we cannot dominate G_{7} with four dominators by starting with G_{7}^{2}.

Figure 3. Graphs for Lemma 7 and Theorem 8.
Note that the vertices a and b in G_{7}^{3} have domination $\frac{13}{32}$ due to the first three dominators. So the fourth dominator must be placed at the circled vertex in order for both a and b to have domination greater than 1 . However, doing so, the domination of c is $\frac{25}{32}$, so we cannot dominate G_{7} with four dominators by starting with G_{7}^{3}.

We next try to dominate G_{7} by placing two dominators a distance of 1 from two corners and two other dominators a distance of 2 from the third corner. Doing so, we produce G_{7}^{4}, where one of a and b, one of c and d, and two of e, f, and g are dominators. In each of these graphs one of the circled vertices fails to be dominated. This exhausts all of the ways that we can ensure that all of the corners are dominated, which suffices to prove the lemma.

Theorem 8. The exponential domination numbers for G_{1} through G_{7} are

n	1	2	3	4	5	6	7
$\gamma_{e}\left(G_{n}\right)$	1	2	2	3	3	4	5

Proof. Lemmas 3-7 provide values for $\gamma_{e}\left(G_{n}\right)$ for $n \in\{1,2,4,6,7\}$. To see that $\gamma_{e}\left(G_{3}\right) \leq 2$, consider G_{3} in Figure 3; by Lemmas 1 and $4, \gamma_{e}\left(G_{3}\right)=2$. To see that $\gamma_{e}\left(G_{5}\right) \leq 3$, consider G_{5} in Figure 3; by Lemmas 1 and 5 we see that $\gamma_{e}\left(G_{5}\right)=3$. \square Theorem 9. The exponential domination numbers for G_{10} through G_{15} are bounded as follows:

n	8	9	10	11	12	13	14	15
$\gamma_{e}\left(G_{n}\right) \leq$	6	6	7	9	10	11	12	13

Proof. Consult Figure 4 for graphs that satisfy these bounds.

Figure 4. Graphs for Theorem 9.

3. Inequalities for exponential domination

We will now determine the total exponential dominating numbers for G_{n} up to $n=5$.
Theorem 10 [Dankelmann et al. 2009]. If G is a connected graph of size n then

$$
\gamma_{e}(G) \leq \frac{2}{5}(n+2)
$$

Applying this inequality to triangular grid graphs, we have the bound

$$
\gamma_{e}\left(G_{n}\right) \leq \frac{2}{5}\left(\binom{n+2}{2}+2\right)=\frac{1}{5}\left(n^{2}+3 n+6\right)
$$

The theorem in [Dankelmann et al. 2009] that bounds $\gamma_{e}(G)$ is established by considering an exponentially dominated spanning tree of G and not G itself. In establishing our bounds, we make use of the fact that G_{n+1} can be constructed from G_{n} by a set of elementary operations that are dependent on n. Our strongest bounds arise from considering how we can construct a distribution of dominators that dominates G_{n+r} based on a distribution of dominators that dominates G_{n}.

Lemma 11. Suppose $G_{4 n}$ can be dominated by a set of m dominators where each of the corners are dominated by two dominators placed on the perimeter at a distance of 2 from each corner:
(1) If dominators are placed along the rest of the perimeter edge between those two corners with a distance of 4 between each dominator, then $G_{4 n+4}$ can be dominated in a similar manner with $m+n+3$ dominators.
(2) If dominators are placed along two of the perimeter edges with a distance of 4 between each dominator, then $G_{4 n+8}$ can be dominated in a similar manner by $m+2 n+6$ dominators.
(3) If dominators are placed along the rest of the perimeter with a distance of 4 between each dominator, then $G_{4 n+12}$ can be dominated in a similar manner by $m+3 n+9$ dominators.

Proof. (1) Consider the labeled $G_{4 n+4}$ implied by Figure 5. A labeled $G_{4 n}$ can be seen by removing the lower four rows of vertices from the $G_{4 n+4}$ with the lower perimeter of $G_{4 n}$, including the row of vertices labeled $\{1,2, \ldots, n\}$. Both $G_{4 n}$ and $G_{4 n+4}$ have dominators placed as described in the hypotheses of the lemma. It can be confirmed that all of the vertices in the additional four rows of $G_{4 n+4}$ are dominated by this arrangement of dominators. If the $G_{4 n}$ is dominated by m dominators, then we have dominated $G_{4 n+4}$ by adding $n+1$ dominators along the lower perimeter and two dominators on the other perimeters; thus we have dominated $G_{4 n+4}$ with $m+n+3$ dominators.
(2) Similarly, consider the labeled $G_{4 n+8}$ implied by Figure 5. If $G_{4 n}$ is dominated by m dominators then we have dominated $G_{4 n+8}$ by adding $n+2$ dominators along

Figure 5. Graphs for Lemma 11.
two perimeter edges and two dominators on the other perimeter edge; thus we have dominated $G_{4 n+8}$ with $m+2 n+6$ dominators.
(3) Similarly, consider the labeled $G_{4 n+12}$ implied by Figure 5. If $G_{4 n}$ is dominated by m dominators then we have dominated $G_{4 n+12}$ by adding $n+3$ dominators along each perimeter edge; thus we have dominated $G_{4 n+12}$ with $m+3 n+9$ dominators.

Lemma 12. If $G_{15 n}$ can be dominated by m dominators where
(1) dominators are placed at two corners, and
(2) along the perimeter edge between those corners dominators are placed with a distance of 3 between them,
then $G_{15 n+15}$ can be dominated in a similar manner by $m+13+15 n$ dominators.

Figure 6. Graph for Lemma 12.
Proof. Consider the labeled $G_{15 n+15}$ implied by Figure 6. The lower perimeter edge of a $G_{15 n}$ is emboldened, as is part of the perimeter of a G_{15} dominated by 14 dominators. If dominators are placed in the lower 15 rows of $G_{15 n+15}$, outside of the bold G_{15}, as suggested by the placement of the labeled dominators, then both $G_{15 n}$ and $G_{15 n+15}$ have dominator distributions as described in the hypotheses of the lemma. It can be confirmed that $G_{15 n+15}$ is dominated provided that $G_{15 n}$ is dominated. If $G_{15 n}$ is dominated by m dominators then we have dominated $G_{15 n+15}$ by placing $15 n$ dominators in a regular pattern in the lower 15 rows and 13 dominators in the remaining space; thus we have dominated $G_{15 n+15}$ with $m+13+15 n$ dominators.

Note that this lemma makes use of a G_{15} that is dominated using 14 dominators; however, from Theorem 9 we see that the exponential dominating number is at most 13 . We use more dominators than necessary here in order to produce a consistent pattern of dominators along the lower perimeter edge of each subsequently constructed graph.
Theorem 13. The following inequalities hold for $n \geq 0$:
(1) $\gamma_{e}\left(G_{4 n}\right) \leq \frac{1}{2}(n(n+5))$.
(2) $\gamma_{e}\left(G_{4+8 n}\right) \leq 2 n^{2}+6 n+3$.
(3) $\gamma_{e}\left(G_{4+12 n}\right) \leq \frac{1}{2}\left(9 n^{2}+15 n+6\right)$.
(4) $\gamma_{e}\left(G_{8+4 n}\right) \leq \frac{1}{2}\left(n^{2}+9 n+12\right)$.
$\gamma_{e}\left(G_{8 n}\right) \leq 2 n(n+2)$.

Figure 7. Graphs for Theorem 13.
(6) $\gamma_{e}\left(G_{8+12 n}\right) \leq \frac{1}{2}\left(9 n^{2}+21 n+12\right)$.
(7) $\gamma_{e}\left(G_{12+4 n}\right) \leq \frac{1}{2}\left(n^{2}+11 n+20\right)$.
(8) $\gamma_{e}\left(G_{12+8 n}\right) \leq 2 n^{2}+10 n+10$.
(9) $\gamma_{e}\left(G_{12 n}\right) \leq \frac{1}{2}\left(9 n^{2}+9 n+2\right)$.
(10) $\gamma_{e}\left(G_{15 n}\right) \leq \frac{1}{2}\left(15 n^{2}+11 n+2\right)$.

Proof. We will prove inequalities (1)-(3) and (10); inequalities (4)-(9) can be proven by means similar to those used to prove (1)-(3) using the same lemmas. The dominated G_{8} used for inequalities (4)-(6) and the dominated G_{12} used for inequalities (7)-(9) can be found in Figure 4; the second G_{12} that appears in Figure 4 is the one we use because it is the only one that satisfies the hypotheses of Lemma 11.

From Figure 1 we see that G_{4}^{2} satisfies the hypotheses of Lemma 11. Lemma 5 also implies that $\gamma_{e}\left(G_{4}\right) \leq 3$, so we see that inequality (1) holds for the case where $n=1$, and inequalities (2) and (3) hold for the case where $n=0$.

Suppose that inequality (1) holds for all n up to some m; also suppose that $G_{4 m}$ can be dominated in agreement with the hypotheses of Lemma 11 by a number of dominators less than or equal to the bound provided by inequality (1). Then $\gamma_{e}\left(G_{4 m}\right) \leq \frac{1}{2}\left(m^{2}+5 m\right)$, and by Lemma 11 we see that $G_{4 m+4}$ can be dominated by

$$
\frac{1}{2}\left(m^{2}+5 m\right)+m+3=\frac{1}{2}\left(m^{2}+7 m+6\right)=\frac{1}{2}(m+1)(m+6)
$$

dominators. Thus $\gamma_{e}\left(G_{4(m+1)}\right) \leq \frac{1}{2}(m+1)((m+1)+5)$, which proves inequality (1).

Suppose that inequality (2) holds for all n up to some m; also suppose that $G_{4+8 m}$ can be dominated in agreement with the hypotheses of Lemma 11 by a number of dominators less than or equal to the bound provided by inequality (2). Then $\gamma_{e}\left(G_{4+8 m}\right)=\gamma_{e}\left(G_{4(1+2 m)}\right) \leq 2 m^{2}+6 m+3$, and by Lemma 11 we see that $G_{4(1+2 m)+8}$ can be dominated by
$\left(2 m^{2}+6 m+3\right)+2(1+2 m)+6=2 m^{2}+10 m+11=2(m+1)^{2}+6(m+1)+3$
dominators. Thus

$$
\gamma_{e}\left(G_{4(1+2 m)+8}\right)=\gamma_{e}\left(G_{4+8(m+1)}\right) \leq 2(m+1)^{2}+6(m+1)+3
$$

which proves inequality (2).
Suppose that inequality (3) holds for all n up to some m; also suppose that $G_{4+12 m}$ can be dominated in agreement with the hypotheses of Lemma 11 by a number of dominators less than or equal to the bound provided by inequality (3). Then $\gamma_{e}\left(G_{4+12 m}\right)=\gamma_{e}\left(G_{4(1+3 m)}\right) \leq \frac{1}{2}\left(9 m^{2}+15 m+6\right)$, and by Lemma 11 we see that $G_{4(1+3 m)+12}$ can be dominated by

$$
\frac{1}{2}\left(9 m^{2}+15 m+6\right)+3(1+3 m)+9=\frac{1}{2}\left(9 m^{2}+33 m+30\right)=\frac{1}{2}\left(9(m+1)^{2}+15(m+1)+6\right)
$$

dominators. Thus

$$
\gamma_{e}\left(G_{4(1+3 m)+12}\right)=\gamma_{e}\left(G_{4+12(m+1)}\right) \leq \frac{1}{2}\left(9(m+1)^{2}+15(m+1)+6\right)
$$

which proves inequality (3).
From Figure 6 we see that G_{15} can be dominated by 14 dominators in a way that satisfies the hypotheses of Lemma 12. This implies that $\gamma_{e}\left(G_{15}\right) \leq 14$, so we see inequality 10 holds for the case where $n=1$. Suppose that inequality (10) holds for all n up to some m; also suppose that $G_{15 m}$ can be dominated in agreement with the hypotheses of Lemma 12 by a number of dominators less than or equal to the bound provided by inequality (10). Then $\gamma_{e}\left(G_{15 m}\right) \leq \frac{1}{2}\left(15 m^{2}+11 m+2\right)$, and by Lemma 12 we see that $G_{15(m+1)}$ can be dominated by
$\frac{1}{2}\left(15 m^{2}+11 m+2\right)+13+15 m=\frac{1}{2}\left(15 m^{2}+41 m+28\right)=\frac{1}{2}\left(15(m+1)^{2}+11(m+1)+2\right)$ dominators. Thus,

$$
\gamma_{e}\left(G_{15(m+1)}\right) \leq \frac{1}{2}\left(15(m+1)^{2}+11(m+1)+2\right)
$$

which proves inequality (10).
This provides us with the following corollary.
Corollary 14. The following inequalities hold for $n \in \mathbb{Z}^{+}$as specified:
(1) $\gamma_{e}\left(G_{n}\right) \leq \frac{1}{32}\left(n^{2}+12 n+32\right)$, where $n \bmod 4=0$.
(2) $\gamma_{e}\left(G_{n}\right) \leq \frac{1}{30}\left(n^{2}+11 n+30\right)$, where $n \bmod 15=0$.

The first inequality here is implied by inequalities (3), (6), and (9) in Theorem 13, and the second inequality is implied by inequality (10). The other inequalities from Theorem 13 do not provide bounds that are as good as these.

4. Base cases for total exponential domination

The following lemma is the analogue of Lemma 1 for total exponential domination.
Lemma 15.

$$
\gamma_{t e}\left(G_{n}\right) \leq \gamma_{t e}\left(G_{n+1}\right) .
$$

Lemma 16.

$$
\gamma_{t e}\left(G_{1}\right)=2 .
$$

Proof. To see that $\gamma_{t e}\left(G_{1}\right) \leq 2$, note that picking any two vertices as dominators suffices to dominate G_{1}. To see that $\gamma_{t e}\left(G_{1}\right) \neq 1$, note that a single dominator can never dominate an entire graph.

Lemma 17.

$$
\gamma_{t e}\left(G_{3}\right)=3 .
$$

Proof. To see that $\gamma_{t e}\left(G_{3}\right) \leq 3$, consider the first graph in Figure 8. Suppose that $\gamma_{t e}\left(G_{3}\right)<3$. Then the graph is dominated with two dominators. In a graph with only two dominators, the dominators must be adjacent since otherwise both of them will not have weight greater than 1 . Any G_{3} with two adjacent dominators will be one of the graphs shown in Figure 8, none of which is dominated.

Lemma 18.
 $$
\gamma_{t e}\left(G_{5}\right)=5 .
$$

Proof. The graphs referred to in this proof appear in Figure 9. To see that $\gamma_{t e}\left(G_{5}\right) \leq 5$, consider the graph G_{5}. Supposing that $\gamma_{t e}\left(G_{5}\right)<5$, we can dominate the graph with four dominators. Since each corner must have a weight greater than or equal to 1 , we organize this proof according to the ways that corners can be dominated by the fewest number of dominators. Note that 1 can be written as a sum of four or fewer powers of $\frac{1}{2}$ (not necessarily unique) with numerators of 1 in the following five ways: $1,2\left(\frac{1}{2}\right), \frac{1}{2}+2\left(\frac{1}{4}\right), \frac{1}{2}+\frac{1}{4}+2\left(\frac{1}{8}\right), 4\left(\frac{1}{4}\right)$. We consider each of these possible combinations of weights separately.
1: One way for all of the corners to have weight at least 1 is to place dominators at a distance of 1 from each of the corners. Doing so, we produce either G_{5}^{1} or G_{5}^{2}. In these graphs each dominator has weight less than $\frac{1}{2}$, so in order for the dominators to be dominated we must place another dominator no more than a distance of 1 away from each. It is not possible to do this with a single dominator, so there is

Figure 8. Graphs for Lemma 17.

Figure 9. Graphs for Lemma 18.
not a configuration of dominators that dominates the graph where each corner is adjacent to a dominator.
$\mathbf{2 (\frac { 1 } { 2 })}$: Another method to dominate all of the corners is to place two dominators a distance of 2 away from one corner and to place the other dominators adjacent to the other corners. Doing this we produce G_{5}^{3}, where two of a, b, and c are dominators, one of d and e is a dominator, and one of f and g is a dominator. It can be confirmed that in each of these cases the graph fails to be dominated.

The next way to consider having corners dominated is to place two dominators at a distance of 2 from one corner, and to do the same for a second corner. Doing so we produce G_{5}^{4}, where two of a, b, and c are dominators and two of d, e, and f are dominators. It can be confirmed that in each of these cases the graph fails to be dominated.
$\frac{\mathbf{1}}{\mathbf{2}}+\mathbf{2}\left(\frac{\mathbf{1}}{\mathbf{4}}\right)$: The third case involves dominating a single corner by placing one dominator at a distance of 2 and two dominators at a distance of 3 in such a way that the dominators don't interfere with one another. If we begin by doing this for the top corner, we make one of the graphs from G_{5}^{5} to G_{5}^{11}. In those graphs with vertices labeled a, each labeled vertex has domination less than $\frac{1}{2}$, so a dominator must be placed adjacent to it. It is easy to confirm that doing so will never suffice to dominate the graph by considering the lower corner vertex opposite to the labeled vertex. In those graphs with vertices labeled b, the weight of each labeled vertex is at least $\frac{1}{2}$ but less than $\frac{3}{4}$, so a dominator must be placed at distance of 2 or closer. Since the labeled vertices are a distance of 5 apart this is not possible.
$\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{4}}+\mathbf{2}\left(\frac{\mathbf{1}}{\mathbf{8}}\right)$: The only other cases that need to be considered are those in which all four dominators are used to dominate a single corner. This can be achieved by placing dominators in a configuration with one dominator at a distance of 2, one dominator at a distance of 3 , and two dominators at a distance of 4 (using $d_{S}(u, v)$). Doing so, we produce one graph from G_{5}^{12} to G_{5}^{16}, where two of the vertices labeled by letters are dominators. It can be confirmed that in each case the graph fails to be dominated (this can be easily done by considering domination of the other two corners). $\mathbf{4}\left(\frac{\mathbf{1}}{\mathbf{4}}\right)$: If we try to dominate G_{5} using four dominators all at a distance of 3 from one of the corners then we produce G_{5}^{17}, which is not dominated.

Theorem 19. The total exponential domination numbers for G_{1} through G_{5} are

n	1	2	3	4	5
$\gamma_{t e}\left(G_{n}\right)$	2	2	3	3	5

Proof. Lemmas 16-18 provide $\gamma_{t e}\left(G_{n}\right)$ for $n \in\{1,3,5\}$. To see that $\gamma_{t e}\left(G_{2}\right) \leq 2$, consider the graph in Figure 10; by Lemmas 15 and 16 we see that $\gamma_{t e}\left(G_{2}\right)=2$. To see that $\gamma_{t e}\left(G_{4}\right) \leq 3$, consider the graph in Figure 10; by Lemmas 15 and 17 we see that $\gamma_{t e}\left(G_{4}\right)=3$.

Figure 10. Graphs for Theorem 19.

Theorem 20. The total exponential domination numbers for G_{6} through G_{9} are bounded as follows:

n	6	7	8	9
$\gamma_{t e}\left(G_{n}\right) \leq$	6	6	6	8

Proof. Consult Figure 7 for graphs that satisfy these bounds.

5. Inequalities for total exponential domination

Lemma 21. If $G_{2 n+1}$ can be dominated by a set of m dominators so that there exists a subgraph of $G_{2 n+1}$ isomorphic to $G_{2 n}$ that contains all of the dominators and such that
(1) two of the corners of the $G_{2 n}$ subgraph are adjacent to two dominators, and
(2) dominators are placed along the rest of perimeter edge between those two corners with a distance of 2 between each dominator,
then $G_{2 n+7}$ can be dominated in a similar way by $m+n+5$ dominators.
Proof. Consider the labeled $G_{2 n+7}$ implied by Figure 11. The lower perimeter edge of a $G_{2 n+1}$ has been emboldened. The lower perimeter edge of a $G_{2 n+6}$ subgraph corresponds with the second-lowest set of edges and vertices, including the vertices labeled by $\{1,2, \ldots, n+2, n+3\}$; this graph has dominators placed as described above. A labeled $G_{2 n}$ can be produced by removing the lower seven rows of vertices from the $G_{2 n+7}$; this $G_{2 n}$ has dominators placed as described above and is a subgraph of the $G_{2 n+1}$ whose lower perimeter edge is bold. It can be confirmed that all of the vertices in the lower six rows are dominated by an arrangement of dominators like the one depicted in Figure 11. If $G_{2 n+1}$ is dominated by m dominators then we have dominated $G_{2 n+7}$ by adding a total of $n+5$ dominators, thereby dominating $G_{2 n+7}$ with $m+n+5$ dominators.

Figure 11. Graph for Lemma 21.

Figure 12. Graph for Lemma 22.
Lemma 22. If $G_{5 n+2}$ can be dominated by a set of m dominators so that there exists a subgraph of $G_{5 n+2}$ isomorphic to $G_{5 n+1}$ that contains all of the dominators and such that
(1) two of the corners of the subgraph are dominators,
(2) along the perimeter edge of the subgraph between those dominators there are two dominators adjacent to each of the above-mentioned dominators, and
(3) along the rest of the perimeter there occur pairs of adjacent dominators with a distance of 4 between each pair,
then $G_{5 n+7}$ can be dominated in a similar way by $m+4+2 n$ dominators.
Proof. Consider the labeled $G_{5 n+7}$ implied by Figure 12. The lower perimeter edge of a $G_{5 n+2}$ subgraph has been emboldened. The lower perimeter edge of a $G_{5 n+6}$ subgraph corresponds with the second-lowest set of edges and vertices, including the vertices labeled by $\{1,2, \ldots, n, n+1\}$; this graph has dominators placed as described above. A labeled $G_{5 n+1}$ can be produced by removing the lower six rows of vertices from the $G_{5 n+7}$; this graph has dominators placed as described above and is a subgraph of the $G_{5 n+2}$ whose lower perimeter edge has been emboldened. It can be confirmed that all of the vertices in the lower five rows are dominated by an arrangement of dominators like the one depicted in Figure 12. If the $G_{5 n+2}$ is dominated by m dominators then we have dominated $G_{5 n+7}$ by adding a total of $2 n+4$ dominators, thereby dominating $G_{5 n+7}$ with $m+4+2 n$ dominators.

Theorem 23. The following inequalities hold for $n \geq 0$:
(1) $\gamma_{t e}\left(G_{5+6 n}\right) \leq \frac{1}{2}\left(3 n^{2}+11 n+10\right)$.
(2) $\gamma_{t e}\left(G_{7+6 n}\right) \leq \frac{1}{2}\left(3 n^{2}+13 n+14\right)$.
(3) $\gamma_{t e}\left(G_{9+6 n}\right) \leq \frac{1}{2}\left(3 n^{2}+15 n+18\right)$.
(4) $\gamma_{t e}\left(G_{2+5 n}\right) \leq(n+1)(n+2)$.

Proof. We will prove inequalities (1) and (4). The proofs for inequalities (2) and (3) are similar to the proof of inequality (1). The dominated G_{7} and G_{9} used to
prove inequalities (2) and (3) can be found in Figure 7; we use the second G_{7} and second G_{9} that appear because they are the only ones that satisfy the hypotheses of Lemma 21.

From Figure 9 we see that G_{5} can be dominated by five dominators in a way that satisfies the hypotheses of Lemma 21. This implies that $\gamma_{t e}\left(G_{5}\right) \leq 5$, so we see that inequality (1) is satisfied for the case where $n=0$. Suppose that inequality (1) holds for all n up to some m; also suppose that $G_{5+6 m}$ can be dominated in agreement with the hypotheses of Lemma 21 by a number of dominators less than or equal to the bound provided by inequality (1). Then $\gamma_{t e}\left(G_{5+6 m}\right)=\gamma_{t e}\left(G_{2(3 m+2)+1}\right) \leq$ $\frac{1}{2}\left(3 m^{2}+11 m+10\right)$, and by Lemma 21 we see that $G_{5+6(m+1)}$ can be dominated by

$$
\begin{aligned}
\frac{1}{2}\left(3 m^{2}+11 m+10\right)+(3 m+2)+5 & =\frac{1}{2}\left(3 m^{2}+17 m+24\right) \\
& =\frac{1}{2}\left(3(m+1)^{2}+11(m+1)+10\right)
\end{aligned}
$$

dominators. Thus

$$
\gamma_{t e}\left(G_{5+6(m+1)}\right) \leq \frac{1}{2}\left(3(m+1)^{2}+11(m+1)+10\right),
$$

which proves inequality (1).
From Figure 10 we see that G_{2} can be dominated in a way that satisfies the hypotheses of Lemma 22. This implies that $\gamma_{t e}\left(G_{2}\right) \leq 2$, so we see that inequality (4) holds in the case where $n=0$. For some $m>0$ suppose that $G_{2+5 m}$ can be dominated in agreement with the hypotheses of Lemma 22 by a number of dominators less than or equal to the bound provided by inequality (4). Then $\gamma_{t e}\left(G_{2+5 m}\right) \leq m^{2}+3 m+2$, and by Lemma $22, G_{7+5 m}$ can be dominated by

$$
\left(m^{2}+3 m+2\right)+4+2 m=m^{2}+5 m+6=(m+1)^{2}+3(m+1)+2
$$

dominators. Thus

$$
\gamma_{t e}\left(G_{7+5 m}\right)=\gamma_{t e}\left(G_{2+5(m+1)}\right) \leq(m+1)^{2}+3(m+1)+2,
$$

which proves inequality (4).
Corollary 24. The following inequalities hold for n as specified:
(1) $\gamma_{t e}\left(G_{n}\right) \leq \frac{1}{24}\left(n^{2}+12 n+35\right)$, where n is odd and $n \geq 5$.
(2) $\gamma_{t e}\left(G_{n}\right) \leq \frac{1}{25}\left(n^{2}+11 n+24\right)$, where $n \bmod 5=2$.

6. Conclusion

In this paper we have proven the values of $\gamma_{e}\left(G_{n}\right)$ for $n \leq 7$ and $\gamma_{t e}\left(G_{n}\right)$ for $n \leq 5$. We also provided bounds on $\gamma_{e}\left(G_{n}\right)$ for $n \leq 15$ and $\gamma_{t e}\left(G_{n}\right)$ for $n \leq 9$. We made use of the regular structure of triangular matchstick arrangement graphs to establish bounds on $\gamma_{e}\left(G_{n}\right)$ and $\gamma_{t e}\left(G_{n}\right)$ for arbitrary n. The constructive methods
we used produced inequalities that are significantly tighter than those found in [Dankelmann et al. 2009]. These techniques are particularly promising since the family of triangular grid graphs is just one family of graphs where G_{n+1} can be constructed from G_{n} by adding edges and vertices in a regularly defined manner. Similar methods could be used with recursively constructible families of graphs (studied in [Noy and Ribó 2004]) and regular n-gon grid graphs, such as square grid graphs, as in [Gonçalves et al. 2011].

References

[Dankelmann et al. 2009] P. Dankelmann, D. Day, D. Erwin, S. Mukwembi, and H. Swart, "Domination with exponential decay", Discrete Math. 309:19 (2009), 5877-5883. MR Zbl
[Erwin 2004] D. J. Erwin, "Dominating broadcasts in graphs", Bull. Inst. Combin. Appl. 42 (2004), 89-105. MR Zbl
[Gonçalves et al. 2011] D. Gonçalves, A. Pinlou, M. Rao, and S. Thomassé, "The domination number of grids", SIAM J. Discrete Math. 25:3 (2011), 1443-1453. MR Zbl
[Gordon et al. 2008] V. S. Gordon, Y. L. Orlovich, and F. Werner, "Hamiltonian properties of triangular grid graphs", Discrete Math. 308:24 (2008), 6166-6188. MR Zbl
[Noy and Ribó 2004] M. Noy and A. Ribó, "Recursively constructible families of graphs", $A d v$. in Appl. Math. 32:1-2 (2004), 350-363. MR Zbl
[Slater 1976] P. J. Slater, " R-domination in graphs", J. Assoc. Comput. Mach. 23:3 (1976), 446-450. MR Zbl

Received: 2015-09-11 Revised: 2016-07-14 Accepted: 2016-07-24

jcochran@berry.edu	Department of Mathematics and Computer Science,
	Berry College, Mount Berry, GA 30149, United States

kenneth.t.henderson@gmail.com Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, NC 27109, United States
the.aaron.ostrander@gmail.com Department of Physics, University of Maryland, College Park, MD 20742, United States
rtaylor@berry.edu
Department of Mathematics and Computer Science, Berry College, Mount Berry, GA 30149, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $\$ 175 /$ year for the electronic version, and $\$ 235 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2017 vol. 10 no. 5

Algorithms for finding knight's tours on Aztec diamonds 721Samantha Davies, Chentiao Xue and Carl R. Yerger
Optimal aggression in kleptoparasitic interactions 735
David G. Sykes and Jan Rychtář
Domination with decay in triangular matchstick arrangement graphs 749
Jill Cochran, Terry Henderson, Aaron Ostrander and RonTAYLOR
On the tree cover number of a graph
Chassidy Bozeman, Minerva Catral, Brendan Cook, Oscar E. GonZález and Carolyn Reinhart767
Matrix completions for linear matrix equations 781
Geoffrey Buhl, Elijah Cronk, Rosa Moreno, Kirsten Morris,Dianne Pedroza and Jack Ryan
The Hamiltonian problem and t-path traceable graphs 801
Kashif Bari and Michael E. O’Sullivan
Relations between the conditions of admitting cycles in Boolean and ODE 813network systemsYuniiao Wang, Bamidele Omidiran, Franklin Kigwe and KiranChilakamarri
Weak and strong solutions to the inverse-square brachistochrone problem on 833
circular and annular domains
Christopher Grimm and John A. Gemmer
Numerical existence and stability of steady state solutions to the distributed spruce 857
budworm modelHala Al-Khalil, Catherine Brennan, Robert Decker, AslihanDemirkaya and Jamie Nagode
Integer solutions to $x^{2}+y^{2}=z^{2}-k$ for a fixed integer value k 881
Wanda Boyer, Gary MacGillivray, Laura Morrison, C. M. (Kieka) Mynhardt and Shahla Nasserasr
A solution to a problem of Frechette and Locus 893

[^0]: MSC2010: 05A20, 05C69.
 Keywords: domination, distance, triangular grid graphs.
 Research was supported by the Berry College Department of Mathematics and Computer Science.

