
inv lve
a journal of mathematics

msp

On the tree cover number of a graph
Chassidy Bozeman, Minerva Catral, Brendan Cook,

Oscar E. González and Carolyn Reinhart

2017 vol. 10, no. 5



msp
INVOLVE 10:5 (2017)

dx.doi.org/10.2140/involve.2017.10.767

On the tree cover number of a graph
Chassidy Bozeman, Minerva Catral, Brendan Cook,

Oscar E. González and Carolyn Reinhart

(Communicated by Anant Godbole)

Given a graph G, the tree cover number of the graph, denoted T .G/, is the
minimum number of vertex disjoint simple trees occurring as induced subgraphs
that cover all the vertices of G. This graph parameter was introduced in 2011 as a
tool for studying the maximum positive semidefinite nullity of a graph, and little
is known about it. It is conjectured that the tree cover number of a graph is at
most the maximum positive semidefinite nullity of the graph.

In this paper, we establish bounds on the tree cover number of a graph, charac-
terize when an edge is required to be in some tree of a minimum tree cover, and
show that the tree cover number of the d -dimensional hypercube is 2 for all d � 2.

1. Introduction

A simple graph is a pair G D .V;E/, where V D f1; 2; : : : ; ng is the vertex set,
and E, the edge set, is a set of 2-element subsets (edges) of the vertices. A
multigraph is a pair G D .V;E/, where V D f1; 2; : : : ; ng, and E is a multiset
of 2-element subsets of the vertices. That is, a multigraph allows multiple edges
between a pair of vertices (note that all simple graphs are multigraphs). Two
vertices u; v 2 V .G/ are said to be adjacent if fu; vg 2E.G/. We say that the edge
fu; vg 2 E.G/ is a simple edge if fu; vg appears in E.G/ exactly once. If fu; vg
appears in E.G/ more than once, then it is a multiedge. All graphs in this paper
are considered to be multigraphs unless otherwise stated.

For a multigraph G, S.G/ denotes the set of real valued symmetric n�n matrices
.ai;j / satisfying:

(1) ai;j D 0 if i ¤ j and i; j are nonadjacent,

(2) ai;j ¤ 0 if i ¤ j and i; j are adjacent via one edge, and

(3) ai;j 2 R if i D j or i; j are adjacent via multiple edges.
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The maximum nullity of a multigraph G is defined to be

M.G/Dmaxfnull.A/ WA 2 S.G/g:

The maximum nullity of a simple graph G is equivalent to the maximum multiplicity
of an eigenvalue among all matrices in S.G/. This graph parameter has connections
to many other concepts in linear algebra (as can be seen in [Fallat and Hogben
2007; 2014]), and has been given a significant amount of consideration as it is very
difficult to compute.

A related and equally important parameter is the maximum positive semidefinite
nullity of a graph. A symmetric n�n real matrix A is said to be positive semidefinite
if xT Ax � 0 for all x 2 Rn. The maximum positive semidefinite nullity of a
multigraph G is defined to be

MC.G/Dmaxfnull.A/ WA 2 SC.G/g;

where SC.G/DfA2S.G/ WA is positive semidefiniteg. It follows that for a multi-
graph G, MC.G/�M.G/. In some cases, one can use tools such as orthogonal
representations (see [Fallat and Hogben 2014]) to compute MC.G/, obtaining a
lower bound for M.G/.

The tree cover number of a graph was introduced in [Barioli et al. 2011] as another
tool for studying the maximum positive semidefinite nullity of a multigraph.

The (simple) path on n vertices, denoted Pn, is the graph with vertex set V .Pn/D

f1; : : : ; ng and edge set E.Pn/ D ffi; i C 1g j i 2 1; : : : ; n� 1g. A simple graph
G D .V;E/ is said to be a tree if for every u; v 2 V .G/, there is exactly one path
from u to v.

Given a graph G D .V;E/, a subgraph G0 D .V 0;E0/ is a graph such that
V .G0/� V .G/ and E.G0/�E.G/, i.e., a subgraph of a graph G can be obtained
by deleting edges and vertices (and edges incident to the deleted vertices) of G. A
subgraph G0 D .V 0;E0/ of G is said to be an induced subgraph of G if for each
edge uv 2 E.G/ with u; v 2 V .G0/, it follows that uv 2 E.G0/, i.e., an induced
subgraph of G can be obtained by only deleting vertices (and any edges incident
to the deleted vertices). For a subset S � V .G/, the graph induced by S , denoted
GŒS �, is the induced subgraph of G with vertex set S .

A tree cover is a set of vertex disjoint simple trees occurring as induced subgraphs
that cover all the vertices of the graph. The tree cover number of a graph G, denoted
T .G/, is defined as

T .G/DminfjTj W T is a tree cover of Gg:

Conjecture 1 [Barioli et al. 2011]. T .G/�MC.G/.

This bound has been proven to be true for several families of graphs, including
outerplanar graphs and chordal graphs [Barioli et al. 2011]. In fact, in the previous
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work, the authors showed that equality holds for outerplanar graphs (and in fact for
all graphs of tree-width at most 2, as observed in [Ekstrand et al. 2012]).

In Section 2 we give bounds on the tree cover number, provide an example in
which the tree cover number behaves like the maximum positive semidefinite nullity,
and provide an example in which the tree cover number does not behave like the
maximum positive semidefinite nullity; see [Barioli et al. 2011; Ekstrand et al. 2012]
for definitions of outerplanar and tree-width. In Section 3, we characterize when an
edge is required to be in some tree of a minimum tree cover. In Section 4, we prove
that the tree cover number of the d�dimensional hypercube is 2 for all d � 2.

1.1. More notation and terminology. The cycle on n vertices, denoted Cn, is the
graph with vertex set V .Cn/D f1; : : : ; ng and edge set

E.Cn/D ffi; i C 1g j i 2 1; : : : ; n� 1g[ f1; ng:

The star K1;n is the graph with vertex set f1; : : : ; ng and edge set ff1; j g j j 2
f2; : : : ; ngg. The complete graph, denoted Kn, is the graph on n vertices such that
there is an edge between any two vertices.

A graph is said to be connected if there is a path from any vertex to any other
vertex. If G is not connected, then it is said to be disconnected. Given a graph
G D .V;E/, a connected component of G is a subgraph C , where C is connected
and no vertex in C is adjacent to any vertex of V .G/ nV .C /. A graph is said to be
a forest if each of its connected components is a tree.

If vertices u and v are adjacent, we say that they are neighbors. The neighborhood
of a vertex v, denoted N.v/, is the set of neighbors of v. The degree of v is given
by deg.v/D jN.v/j.

For a graph GD .V;E/, a cover of G is a partition of V .G/. An independent set S

is a subset of V .G/ such that no two vertices in S are adjacent. The independence
number of G, denoted ˛.G/, is defined by

˛.G/DmaxfjS j W S is an independent set in Gg:

Given two simple graphs G and H , the cartesian product of G and H , denoted
G �H , is the graph whose vertex set is the cartesian product V .G/�V .H /, and
any two vertices .u;u0/ and .v; v0/ are adjacent in G�H if and only if either uD v

and u0 is adjacent to v0 in H , or u0 D v0 and u is adjacent to v in G. The union of
G and H , denoted G [H , is the graph with vertex set V .G/[V .H / and edge set
E.G/[E.H /.

Throughout this paper, we often denote an edge fu; vg by uv. An edge uv is
called a bridge of G if C � uv is disconnected, where C is the component of G

with uv 2E.C / and C �uv denotes the subgraph obtained from C by deleting the
edge uv. Note that if e D uv is a bridge, then e D uv is a simple edge.
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2. Some bounds for the tree cover number

In this section, we give an upper bound on the tree cover number of a graph using
the size of an independent set in the graph. We also provide upper and lower bounds
on the tree cover number of a subgraph of G obtained by deleting an edge from G.
In addition, we observe that subdividing an edge of a graph does not change the
tree cover number.

The following proposition shows that, for a connected simple graph, we are able
to bound the tree cover number by the difference between the order of the graph
and the size of an independent set of vertices of the graph.

Proposition 2. Let G D .V;E/ be a connected simple graph, and let S � V .G/ be
an independent set. Then, T .G/ � jGj � jS j. In particular, T .G/ � jGj � ˛.G/,
where ˛.G/ is the independence number of G. Furthermore, this bound is tight.

Proof. Let V .G/ D fv1; v2; : : : ; vng and suppose that S D fv1; : : : ; vkg is an
independent set. We construct a tree cover of size n� k by the following iterative
process: for i D kC 1, let Tvi

be the tree induced by the set of vertices fvkC1g[

fN.vkC1/\Sg. For i D kC2 to n, let Tvi
be the tree induced by the set of vertices

in fvig[ fN.vi/\Sg that do not belong to V .Tvj
/ for kC 1� j < i . Since G is

connected, each s 2 S has at least one neighbor in fvkC1; : : : ; vng, so this process
produces a tree cover of G (where all components are stars) of size n� k. Thus,
T .G/� n�k. In particular, T .G/� n�˛.G/. The star K1;n shows that the bound
T .G/� jGj �˛.G/ is tight. �

In connection with the conjecture that T.G/�MC.G/, we show that for some
bounds on MC.G/, analogous bounds hold for T.G/.

For a graph G D .V;E/ and e 2 E.G/, let G � e denoted the graph obtained
from G be deleting the edge e. In [Booth et al. 2011], it was shown that

MC.G/� 1�MC.G � e/�MC.G/C 1;

when G is a simple graph. We show that an analogous bound holds for the tree
cover number of a multigraph G.

Theorem 3. For a graph G D .V;E/ and e 2E.G/,

T.G/� 1� T.G � e/� T .G/C 1:

Proof. Let u; v 2 V .G/ such that e D uv. Consider the graph G � e obtained
from G by deleting e (note that e could be a multiedge). Let T be a minimum
tree cover of G � e. If u and v are in disjoint trees in T, then T is a tree cover
of G. So, T .G/� T .G � e/. If u and v are in the same tree in T, denoted by Tuv ,
then the graph induced by the vertices of Tuv contains a cycle in G, so T is not
a tree cover of G. However, we may partition the vertices of Tuv into two sets
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A and B, such that the tree induced by the vertices in A contains u and the tree
induced by the vertices in B contains v. Denote these trees by TA and TB . Then,
.T nTuv/[TA [TB is a tree cover of G of size T .G � e/C 1. This shows that
T.G/� 1� T.G � e/.

We now show that T .G � e/ � T .G/C 1. Suppose there is a minimum tree
cover T of G such that u and v are in separate trees. Then T is a tree cover of
G � e, so T .G � e/� T .G/. Otherwise, let T be a minimum tree cover of G that
uses the edge e (so e is a simple edge by the definition of a tree cover), and let Te

be the tree in T that contains e. By deleting e from Te , we produce a tree cover of
G � e of size T .G/C 1. This shows that T .G � e/� T .G/C 1, which completes
the proof. �

The next theorem gives a bound that holds for the positive semidefinite maximum
nullity of a graph, but the example that follows demonstrates that the analogous
bound for the tree cover number fails.

A 2-separation of a graph G D .V;E/ is a pair of subgraphs .G1;G2/ such
that V .G1/ [ V .G2/ D V , jV .G1/ \ V .G2/j D 2, E.G1/ [E.G2/ D E, and
E.G1/\E.G2/D∅.

Theorem 4 [van der Holst 2009, Theorem 2.8]. Let .G1;G2/ be a 2-separation
of a graph G D .V;E/, and let H1 and H2 be obtained from G1 D .V1;E1/

and G2 D .V2;E2/, respectively, by adding an edge between the vertices of RD

fr1; r2g D V1\V2. Then

MC.G/DmaxfMC.G1/CMC.G2/� 2;MC.H1/CMC.H2/� 2g:

The analogous bound does not hold for the tree cover number. The next example
provides a counterexample.

Example 5. For the graphs G;G1;G2;H1;H2 given in Figure 1, we have that
MC.Gi/ D 2, MC.Hi/ D 3, and T .Gi/ D T .Hi/ D 2 for i 2 f1; 2g. So by
Theorem 4, MC.G/D 4. However,

3D T.G/ >maxfT.G1/CT.G2/� 2;T.H1/CT.H2/� 2g D 2:

3. Characterizing edges required in a minimum tree cover

Proposition 6. Let G D .V;E/ be a graph such that uv 2E.G/ is a bridge. Then
uv is in a tree in every minimum tree cover of G.

Proof. Note that there is no path from u to v that does not include uv. Therefore, for
any tree cover that does not include uv, it must be the case that u and v are in separate
trees. These two trees can be consolidated into one tree by adding the edge uv. �

We then ask the question: if an edge is required in every minimum tree cover,
must it be a bridge? Figure 2 shows that such an edge is not necessarily a bridge.
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Figure 1. Graphs of G (top left), G1 (top middle), G2 (top right),
H1 (bottom left), and H2 (bottom right).
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Figure 2. Graph for Example 7.

Example 7. Figure 2 gives a graph whose tree cover number is 2. However,
although uv is not a bridge, any tree cover that does not include uv is of size at least 3.

The next lemma gives us a way to determine if an edge is required in every mini-
mum tree cover, given that we are able to compute the necessary tree cover numbers.

Lemma 8. Let G be a graph, u; v 2 V .G/, and uv is a simple edge in E.G/. Let
H be the graph obtained from G by adding a vertex such that V .H /D V .G/[fwg

and E.H /DE.G/[fuw; vwg, where uw and vw are simple edges. Then, uv is
required in every minimum tree cover of G if and only if T.H /D T.G/C 1.

Proof. First observe that T .H / � T .G/C 1 since any tree cover of G together
with fwg is a tree cover for H . Let T D fT1;T2; : : : ;Tkg be a minimum tree
cover of H such that w 2 Ti for some i . Since w, u, and v cannot all be in
the same tree, then either w is a leaf in Ti or Ti D fwg. If w is a leaf in Ti ,
then T1;T2; : : : ;Ti �w;TiC1; : : : ;Tk is a tree cover of G, so T .G/ � T .H /. If
Ti D fwg, then TnTi is a tree cover for G, so T .G/� T .H /�1. This shows that
T .H /D T .G/ or T .H /D T .G/C 1.
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Figure 3. Graphs of G, H , and yH for Example 9.

Suppose that uv is required in every minimum tree cover of G. If w is a leaf
in Ti , then T1;T2; : : : ;Ti �w;TiC1; : : : ;Tk is a tree cover of G with u and v in
separate trees, so it follows that T .H /D T .G/C1. If Ti D fwg, then we also have
that T .H /D T .G/C 1.

Suppose that there exists a minimum tree cover TD fT1;T2; : : : ;Tkg of G such
that u and v are in different trees. If u 2 Ti , we can create a tree cover of H of
size k by adding the edge uw to E.Ti/. In this case, T .G/D T .H /. �

One might think that if H is a graph obtained from G by adding the edge uv,
and uv is required in every minimum tree cover of H , then T .G/ D T .H /C 1.
However, this is not true. Example 9 provides a counterexample.

Example 9. It is easy to see that T .G/DT .H /D 2 (for H , take the set f1;u; v; 5g
and f2; 3; 4g for example). It can also be verified that T . yH /D 3. By Lemma 8, it
follows that the edge uv is required in every minimum tree cover of H .

4. Tree cover number of the hypercube

The d-dimensional hypercube, denoted Qd , is the simple graph with vertex set
f0; 1gd where two vertices are adjacent if and only if they differ in exactly one
position. For example, the 2-dimensional hypercube is a square (see left figure
below) and the 3-dimensional hypercube is a cube (right figure). Equivalently,
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hypercubes can be inductively defined as the cartesian product of d copies of the
complete graph K2. Hypercubes are a particular case of a larger family of graphs
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called Hamming graphs. The d -dimensional Hamming graph, denoted H.d; q/, is
the graph with vertex set f0; : : : ; n� 1gd where two vertices are adjacent if and
only if they differ in exactly one position. Hamming graphs are of use in many
areas including error-correcting codes, modeling heat diffusion, and association
schemes in statistics. In this section, we show that the tree cover number of the
d -dimensional hypercube is 2 for all d � 2.

Theorem 10. Let Qd be the d-dimensional hypercube graph. For all d � 2,
T .Qd /D 2.

Proof. We first list explicit sets which induce a tree cover of size 2 for Qd , for
d 2 f2; 3; 4; 5g:

T12
Df.00/; .01/g; T22

Df.11/; .10/g:

T13
Df.010/; .000/; .001/; .110/g; T23

Df.111/; .011/; .100/; .101/g:

T14
Df.0011/; .0010/; .0000/; .0110/; .1111/; .1011/; .1100/; .1101/g;

T24
Df.0001/; .0111/; .0100/; .0101/; .1010/; .1000/; .1001/; .1110/g:

T15
Df.00100/; .00011/; .00000/; .00110/; .01111/; .01011/; .01100/; .01101/;

.10001/; .10111/; .10100/; .10101/; .11010/; .11000/; .11001/; .11110/g;

T25
Df.00010/; .00001/; .00111/; .00101/; .01010/; .01000/; .01001/; .01110/;

.10011/; .10010/; .10000/; .10110/; .11111/; .11011/; .11100/; .11101/g:

Other values of d are handled by induction. Throughout the proof, the sets yT1j

and yT2j
are covers that will be used as preliminary steps to obtain the sets T1j

and T2j
that will induce a tree cover of size two for Qj . The proof proceeds as

follows: first we give a cover and a tree cover of size two for Q6; due to the volume
of data this information is presented in an online-only supplement. Then, using
this tree cover, we construct a cover and a tree cover of size two for Q7, which
again appears in the supplement. We then inductively show that for d � 8 we can
systematically construct a tree cover of size two using the covers and tree covers
constructed for Qd�1 and Qd�2.

Consider the sets yT16
and yT26

given in the supplement. Note that f yT16
; yT26
g

is a cover for Q6, and that Q6Œ yT16
� and Q6Œ yT17

� are both forests, each consisting
of two disjoint trees. Let x16

D .001101/, x26
D .110010/, y16

D .001001/,
y26
D .110100/. Then x16

and x26
are in yT16

, and they are not in the same tree
in Q6Œ yT16

�. Similarly, y16
and y26

are in yT26
, and they are not in the same tree in

Q6Œ yT26
�. By swapping x16

and y16
, the resulting sets T16

and T26
(listed in the

supplement) induce a tree cover for Q6 of size two.
To obtain a tree cover of size two for Q7, we begin by adding a 0 to the beginning

of each element in T16
, and a 1 to the beginning of each element in T26

. Denote

http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
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these sets by T16;0 and T26;1, respectively, and let yT17
WD T16;0[T26;1. Similarly,

we construct the sets T16;1 and T26;0, and let yT27
WDT16;1[T26;0 (see supplement).

Then, both Q7Œ yT17
� and Q7Œ yT27

� are forests consisting of two disjoint trees. By
swapping 0x26

and 0y26
, the resulting sets T17

and T27
(given in supplement)

induce a tree cover of size two for Q7.
We proceed by induction to prove the claim for Qd with d � 8. Suppose that we

have constructed the sets yT1d�2
D fx1;x2; : : : ;xng and yT2d�2

D fy1;y2; : : : ;yng

such that f yT1d�2
; yT2d�2

g gives a cover for Qd�2 satisfying the following conditions:

(1) Qd�2Œ yT1d�2
� and Qd�2Œ yT2d�2

� are forests composed of two disjoint trees.

(2) Swapping x1 and y1 results in sets

T1d�2
D fy1;x2; : : : ;xng; T2d�2

D fx1;y2; : : : ;yng;

that induce a tree cover of Qd�2 of size two.

(3) For the cover

yT1d�1
DT1d�2;0

[T2d�2;1
D f0y1; 0x2; 0x3; : : : ; 0xn; 1x1; 1y2; : : : ; 1yng;

yT2d�1
DT2d�2;0

[T1d�2;1
D f0x1; 0y2; 0y3; : : : ; 0yn; 1y1; 1x2; : : : ; 1xng;

of Qd�1, swapping 0x2 2
yT1d�1

and 0y2 2
yT2d�1

results in sets

T1d�1
D f0y1; 0y2; 0x3; : : : ; 0xn; 1x1; 1y2; : : : ; 1yng;

T2d�1
D f0x1; 0x2; 0y3; : : : ; 0yn; 1y1; 1x2; : : : ; 1xng;

for Qd�1 that induced a tree cover of Qd�1 of size two.

(4) x1 and x2 are not in the same induced tree in yT1d�2
.

(5) y1 and y2 are not in the same induced tree in yT2d�2
.

We are also assuming that xi ¤ xj , yi ¤ yj for i ¤ j , and xi ¤ yj for all i; j .
Then we can construct a cover for Qd such that swapping two of the elements in

the cover will result in a tree cover of size two for Qd . Furthermore, we show that
the constructed cover and tree cover for Qd , together with the constructed cover
and tree cover for Qd�1, still satisfy the above hypotheses, which proves the claim
for all d � 8.

We first construct a cover f yT1d
; yT2d
g for Qd in the following way:

yT1d
D T1d�1;0

[T2d�1;1

D f00y1; 00y2; 00x3; : : : ; 00xn; 01x1; 01y2; 01y3; : : : ; 01yn;

10x1; 10x2; 10y3; : : : ; 10yn; 11y1; 11x2; 11x3; : : : ; 11xng:

http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt
http://msp.org/involve/2017/10-5/involve-v10-n5-x04-TheoremSets.txt


776 C. BOZEMAN, M. CATRAL, B. COOK, O. GONZÁLEZ AND C. REINHART

yT2d
D T2d�1;0

[T1d�1;1

D f00x1; 00x2; 00y3; : : : ; 00yn; 01y1; 01x2; 01x3; : : : ; 01xn;

10y1; 10y2; 10x3; : : : ; 10xn; 11x1; 11y2; 11y3; : : : ; 11yng:

Note that since Qd�1ŒT1d�1
� and Qd�1ŒT2d�1

� are two disjoint trees, it follows that
Qd Œ yT1d

� is a forest consisting of two disjoint trees. Similarly, Qd Œ yT2d
� is a forest

consisting of two disjoint trees. By swapping 01x1 and 01y1, we obtain the sets

T1d
D f00y1; 00y2; 00x3; : : : ; 00xn; 01y1; 01y2; 01y3; : : : ; 01yn;

10x1; 10x2; 10y3; : : : ; 10yn; 11y1; 11x2; 11x3; : : : ; 11xng;

T2d
D f00x1; 00x2; 00y3; : : : ; 00yn; 01x1; 01x2; 01x3; : : : ; 01xn;

10y1; 10y2; 10x3; : : : ; 10xn; 11x1; 11y2; 11y3; : : : ; 11yng:

We now show that fQd ŒT1d
�;Qd ŒT2d

�g is a tree cover for Qd of size two by
showing:

(1) Qd ŒT1d
� and Qd ŒT2d

� are forests (i.e., there are no cycles in each of Qd ŒT1d
�

and Qd ŒT2d
�).

(2) Both Qd ŒT1d
� and Qd ŒT2d

� are connected graphs.

We show that Qd ŒT1d
� is a forest (a similar argument shows that Qd ŒT2d

� is a
forest). From our construction Qd Œ yT1d

� is a forest composed of 2 trees, denoted
Qd Œ yA� and Qd ŒB�, where

yA WD f00y1; 00y2; 00x3; : : : ; 00xn; 01x1; 01y2; 01y3; : : : ; 01yng;

B WD f10x1; 10x2; 10y3; : : : ; 10yn; 11y1; 11x2; 11x3; : : : ; 11xng:

By definition T1d
D . yT1d

n f01x1g/[f01y1g. By removing 01x1 from yT1d
, B is

not affected, and Qd Œ yAnf01x1g� is now the union of deg.01x1/ disjoint trees. We
now show that by adding 01y1 to yT1d

n f01x1g, no cycles are created in Qd Œ T1d
].

Define A D f00y1; 00y2; 00x3; : : : ; 00xn; 01y1; 01y2; 01y3; : : : ; 01yng (note that
T1d
D A[B). Between A and B, the only vertices that are adjacent are 01y1

and 11y1 (everything else differs in more than one position). Hence, if there is
a cycle in Qd ŒT1d

�, it must be in Qd ŒA�. Since Qd ŒA n f01y1g� (which equals
Qd ŒÂnf01x1g�) is a forest composed of deg.01x1/ trees, if there is a cycle in
Qd ŒA� it must involve 01y1. We will now show that it is not possible to have a
cycle involving 01y1, hence no cycle is possible in Qd ŒT1d

�.
Note that there is an edge between 00y1 and 01y1, and that there are no edges

between 01y1 and any of 00y2; 00x3; : : : ; 00xn. Thus, the neighbors of 01y1 in
Qd ŒA� are 00y1 and a subset of f01y3; 01y4; : : : ; 01yng (since y1 is not adjacent to
y2 by condition (5) above, then 01y1 is not adjacent to 01y2). Let 01yi and 01yj ,
i ¤ j , be arbitrary neighbors of 01y1. We show that:
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(a) There is no path from 01yi to 01yj in Qd ŒA� for i; j 2 f3; 4; : : : ; ng that does
not include 01y1.

(b) There is no path from 00y1 to 01yi in Qd ŒA� that does not include 01y1.

To see (a), note that from condition (1), Qd�2Œfy1; : : : ;yng� is a forest of two
disjoint trees. This implies that Qd Œf01y1; : : : ; 01yng� is a forest of two disjoint
trees. Then, within Qd Œf01y1; : : : ; 01yng� there is no path from 01yi to 01yj that
does not include 01y1. Note that vertices of f01y3; 01y4; : : : ; 01yng are not adjacent
to any vertices in A except for possibly each other and 01y1 and 01y2. Thus, any
path from 01yi to 01yj not including 01y1 must include 01y2. By condition (1),
y1 and y2 are not in the same induced tree of Qd�2Œfy1; : : : ;yng�, so 01y1 and
01y2 are not in the same induced tree of Qd Œf01y1; : : : ; 01yng�. Since 01yi and
01yj are neighbors of 01y1, and 01y1 is not in the same induced tree as 01y2 in
Qd Œf01y1; : : : ; 01yng�, then 01yi and 01yj are not in the same induced tree as 01y2.
Thus, the only path from 01yi to 01yj is .01yi ; 01y1; 01yj /.

For (b), we have that the vertices in the set f01y3; 01y4; : : : ; 01yng are not
connected in Qd ŒA� to any vertices in A except for possibly each other and 01y1.
We also have that 01yi is not adjacent to 00y1 in Qd ŒA�. So any path from 01yi

to 00y1 must include 01y1.
Next we show that Qd ŒT1d

� is connected (a similar argument shows that Qd ŒT2d
�

is connected). Recall from the hypotheses that

Qd�2Œ yT2d�2
�DQd�2Œfy1;y2; : : : ;yng�

is a forest consisting of two disjoint trees, and

Qd�2ŒT2d�2
�DQd�2Œfx1;y2; : : : ;yng�

is a tree. This implies that y1 has exactly one fewer neighbor among y2; : : : ;yn

than x1. To see this, note that Qd�2Œ yT2d�2
n fy1g� is composed of 1C deg.y1/

trees. Since
Qd�2ŒT2d�2

�DQd�2Œ. yT2d�2
n fy1g/[fx1g�

is a tree, we must have deg.x1/D 1Cdeg.y1/. Therefore, 01y1 must have one less
neighbor than 01x1 among 01y2; : : : ; 01yn. Hence, 01y1 and 01x1 have the same
number of neighbors in A, and thus 01y1 has one more neighbor than 01x1 in T1d

.
We will now show that this last statement implies that Qd ŒT1d

� is connected.
Since the graphs induced by T1d�1

and T2d�1
are trees, then

Qd ŒT1d
�DQd ŒT1d�1;0

[T2d�1;1
�

is a forest consisting of two disjoint trees. Hence, Qd Œ yT1d
n f01x1g� is a forest

consisting of 1C deg.01x1/ trees. Since deg.01y1/ D 1C deg.01x1/, and since
Qd ŒT1d

� has no cycles, we have that each of the edges of 01y1 must be connected
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to a different component of the forest. Therefore, Qd ŒT1d
� is a tree. An analogous

argument shows that Qd ŒT2d
� is a tree. Thus, fQd ŒT1d

�;Qd ŒT2d
�g is a tree cover

of size two of Qd .
We now show that the covers and tree covers constructed for Qd�1 and Qd

satisfy the induction hypotheses. Note that since Qd�2ŒT1d�2
� and Qd�2ŒT2d�2

� are
two disjoint trees, it follows from construction that Qd Œ yT1d�1

� is a forest consisting
of two disjoint trees. Similarly, Qd Œ yT2d�1

� is a forest consisting of two disjoint
trees, satisfying condition (1). For clarity, we relabel the vertices of yT1d�1

and
yT2d�1

such that yT1d�1
Dfw1; : : : ; wmg and yT2d�1

Dfz1; : : : ; zmgwherew1D0x2,
w2 D 1x1, z1 D 0y2, and z2 D 1y1. Then by condition (3), swapping w1 and z1

results in sets T1d�1
Dfz1; w2; : : : ; wmg and T2d�1

Dfw1; z2; : : : ; zmg that induce
a tree cover of Qd�1 of size two, which shows that condition (2) is satisfied. Note
that with this relabeling, the sets yT1d

and yT2d
become

yT1d
D T1d�1;0

[T2d�1;1
D f0z1; 0w2; 0w3; : : : ; 0wm; 1w1; 1z; : : : ; 1zmg

yT2d
D T2d�1;0

[T1d�1;1
D f0w1; 0z2; 0y3; : : : ; 0zm; 1z1; 1w2; : : : ; 1wmg;

and we have shown above that swapping 0w2 D 01x1 and 0z2 D 01y1 results in
the sets T1d

and T2d
which induce a tree cover of size two for Qd , satisfying

condition (3). Furthermore, since w1D 0x2 2 T1d�2;0
and w2D 1x1 2 T2d�2;1

, we
have that w1 and w2 are not in the same induced tree in Qd�1Œ yT1d�1

�. Similarly,
z1 D 0y2 2 T2d�2;0

and z2 D 1y1 2 T1d�2;1
, so z1 and z2 are not in the same

induced tree in Qd�1Œ yT2d�1
�, showing that conditions (4) and (5) are satisfied.

Since the hypotheses still hold with the constructed covers and tree covers of
Qd�1 and Qd , then it follows, by inductively applying the above argument, that
T.Qd /D 2 for all d . �

One may wonder why the base case of the proof starts with Q6 and Q7. We
would like to note that starting as early as d D 2, we were able to use a tree cover
of Qd to produce a cover for QdC1 such that there exists two vertices that could
be swapped in order to produce a tree cover for QdC1. In fact, this is how we
constructed the tree covers for Q3;Q4;Q5 given at the start of the proof. However,
there is a choice to be made when switching vertices, and the point at which the
above constructive pattern holds is dependent upon the initial choice of vertices
that are swapped. For example, we experimented with using a different initial swap
and found that the pattern did not hold until d D 11 or later. It may also be the case
that there is an initial swap that allows the pattern to begin sooner than d D 8. This
is a very interesting phenomenon that is worth further exploration.

We also investigated the idea of generalizing the above proof to all Hamming
graphs. For H.2; 3/, we found that T .H.2; 3// D 3, and evidence suggests that
T .H.d; q//D q.
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Conjecture 11. T .H.d; q//D q, for H.d; q/ the Hamming graph of dimension d .
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