\bullet
 involve

 a journal of mathematicsThe Hamiltonian problem and t-path traceable graphs
Kashif Bari and Michael E. O’Sullivan

The Hamiltonian problem and t-path traceable graphs

Kashif Bari and Michael E. O'Sullivan
(Communicated by Ronald Gould)

Abstract

The problem of characterizing maximal non-Hamiltonian graphs may be naturally extended to characterizing graphs that are maximal with respect to nontraceability and beyond that to t-path traceability. We show how t-path traceability behaves with respect to disjoint union of graphs and the join with a complete graph. Our main result is a decomposition theorem that reduces the problem of characterizing maximal t-path traceable graphs to characterizing those that have no universal vertex. We generalize a construction of maximal nontraceable graphs by Zelinka to t-path traceable graphs.

1. Introduction

The motivating problem for this article is the characterization of maximal nonHamiltonian (MNH) graphs. The first broad family of MNH graphs was given in [Skupień 1979], and all MNH graphs with ten or fewer vertices were described in [Jamrozik et al. 1982], a paper where Skupien and his coauthors gave three constructions, called types $A 1, A 2$, A3, with a similar structure. Zelinka [1998] gave two constructions of graphs that are maximal nontraceable; that is, they have no Hamiltonian path, but the addition of any edge gives a Hamiltonian path. The join of such a graph with a single vertex gives an MNH graph. Zelinka's first family produces, under the join with K_{1}, the original MNH graphs of Skupien. Zelinka's second family is a broad generalization of the type $A 1, A 2$, and $A 3$ graphs of [Jamrozik et al. 1982]. Further examples of infinite families of maximal nontraceable graphs appeared in [Bullock et al. 2008].

In this article, we work with two closely related invariants of a graph $G, \check{\mu}(G)$ and $\mu(G)$. The μ-invariant, introduced by Ore [1961] and also used by Noorvash [1975], is the minimal number of paths in G required to cover the vertex set of G. We define $\check{\mu}(G)$ to be the smallest integer ℓ such that the join of K_{ℓ} with G is Hamiltonian. We show that $\check{\mu}(G)=\mu(G)$ unless G is Hamiltonian, when $\check{\mu}(G)=0$. Maximal

[^0]non-Hamiltonian graphs are maximal with respect to $\check{\mu}(G)=1$, and maximal nontraceable graphs are maximal with respect to $\check{\mu}(G)=2$. It is useful to broaden the perspective to study, for arbitrary t, graphs that are maximal with respect to $\check{\mu}(G)=t$, which we call t-path traceable graphs.

In Section 2 we show how the $\check{\mu}$ and μ invariants behave with respect to disjoint union of graphs and the join with a complete graph. Section 3 derives the main result, a decomposition theorem that reduces the problem of characterizing maximal t-path traceable graphs to characterizing those that have no universal vertex, which we call trim. Section 4 presents a generalization of the Zelinka construction to t-path traceable graphs.

2. Traceability and Hamiltonicity

It will be notationally convenient to say that the complete graphs K_{1} and K_{2} are Hamiltonian. As justification for this view, consider an undirected graph as a directed graph with each edge having a conjugate edge in the reverse direction. This perspective does not affect the Hamiltonicity of a graph with more than three vertices, but it does give K_{2} a Hamiltonian cycle. Similarly, adding loops to any graph with more than two vertices does not alter the Hamiltonicity of the graph, but K_{1}, with an added loop, has a Hamiltonian cycle.

Let G be a graph. A vertex, $v \in V(G)$, is called a universal vertex if $\operatorname{deg}(v)=$ $|V(G)|-1$. A universal vertex is also known as a dominating vertex. Let \bar{G} denote the graph complement of G, having vertex set $V(G)$ and edge set $E\left(K_{n}\right) \backslash E(G)$. We will use the disjoint union of two graphs, $G \sqcup H$ and the join of two graphs $G * H$. The latter is $G \sqcup H$ together with the edges $\{v w \mid v \in V(G)$ and $w \in V(H)\}$.

Definition 1. A set of s disjoint paths in a graph G that includes every vertex in G is an s-path covering of G. We define the following invariants:

$$
\begin{aligned}
\mu(G) & :=\min \{s \in \mathbb{N} \mid \text { there exists an } s \text {-path covering of } G\}, \\
\check{\mu}(G) & :=\min \left\{l \in \mathbb{N}_{0} \mid K_{l} * G \text { is Hamiltonian }\right\}, \\
i_{H}(G) & := \begin{cases}1 & \text { if } G \text { is Hamiltonian, } \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

We will say G is t-path traceable when $\mu(G)=t$. A set of t disjoint paths that covers a t-path traceable graph G is a minimal path covering.

Note that $K_{r} *\left(K_{s} * G\right)=K_{r+s} * G$. If G is Hamiltonian then so is $K_{r} * G$ for $r \geq 0$ (in particular, this is true for $G=K_{1}$ and $G=K_{2}$).

We now present a series of lemmas that leads to the main result of this section, which is a formula showing how the μ-invariant and $\check{\mu}$-invariant behave with respect to the disjoint union and the join with a complete graph.

Lemma 2. $\check{\mu}(G)=\min \left\{l \in \mathbb{N}_{0} \mid \bar{K}_{l} * G\right.$ is Hamiltonian $\}$.
Proof. Since $\bar{K}_{l} * G$ is a subgraph of $K_{l} * G$, a Hamiltonian cycle in $\bar{K}_{l} * G$ would also be one in $K_{l} * G$.

Let $\check{\mu}(G)=a$. Suppose C is a Hamiltonian cycle in $K_{a} * G$ and write C as $v \sim P_{1} \sim Q_{1} \sim \cdots \sim P_{s} \sim Q_{s} \sim v$, where v is a vertex in G and the paths P_{i} in G and Q_{i} in K_{a}. If any Q_{i} contains two vertices or more, say u and w_{1}, \ldots, w_{k} with $k \geq 1$, then we may simply remove all the vertices, except u, and end up with a Hamiltonian graph on K_{a-k}. This contradicts the minimality of $a=\check{\mu}(G)$. Therefore, C must not contain any paths of length greater than two in the subgraph K_{a}, and any Hamiltonian cycle on $K_{a} * G$ is also a Hamiltonian cycle on $\bar{K}_{a} * G$.

Lemma 3.

$$
\check{\mu}(G)=\mu(G)-i_{H}(G) .
$$

Proof. If G is Hamiltonian (including K_{1} and K_{2}) then $\check{\mu}(G)=0, \mu(G)=1$ so the equality holds. Suppose G is non-Hamiltonian with $\mu(G)=t$ and t-path covering P_{1}, \ldots, P_{t}. Let K_{t} have vertices u_{1}, \ldots, u_{t}. In the graph $K_{t} * G$, there is a Hamiltonian cycle: $v_{1} \sim P_{1} \sim v_{2} \sim P_{2} \sim \cdots \sim v_{t} \sim P_{t} \sim v_{1}$. Thus $\check{\mu}(G) \leq t=\mu(G)$.

Let $\check{\mu}(G)=a$, so there is a Hamiltonian cycle in $K_{a} * G$. Removing the vertices of K_{a} breaks the cycle into at most a disjoint paths covering G. Thus $\mu(G) \leq \check{\mu}(G)$.

Lemma 4.

$$
\begin{aligned}
& \mu(G \sqcup H)=\mu(G)+\mu(H) \text { and } \\
& \check{\mu}(G \sqcup H)=\check{\mu}(G)+\check{\mu}(H)+i_{H}(G)+i_{H}(H) .
\end{aligned}
$$

Proof. A path covering of G may be combined with a path covering of H to create one for $G \sqcup H$ so $\mu(G \sqcup H) \leq \mu(G)+\mu(H)$. Conversely, paths in a t-path covering of $G \sqcup H$ can be partitioned into those contained in G and those contained in H, giving a path covering of G and one of H. Consequently, $\mu(G \sqcup H) \geq \mu(G)+\mu(H)$.

Since $G \sqcup H$ is not Hamiltonian we have

$$
\begin{aligned}
\check{\mu}(G \sqcup H) & =\mu(G \sqcup H)+i_{H}(G \sqcup H) \\
& =\mu(G)+\mu(H) \\
& =\check{\mu}(G)+i_{H}(G)+\check{\mu}(H)+i_{H}(H) .
\end{aligned}
$$

Lemma 5. For any graph G,

$$
\begin{aligned}
& \mu\left(K_{s} * G\right)=\max \{1, \mu(G)-s\}, \\
& \check{\mu}\left(K_{s} * G\right)=\max \{0, \check{\mu}(G)-s\} .
\end{aligned}
$$

In particular, if $K_{s} * G$ is Hamiltonian then $\mu\left(K_{s} * G\right)=1$ and $\check{\mu}\left(K_{s} * G\right)=0$; otherwise, $\mu\left(K_{s} * G\right)=\mu(G)-s$ and $\check{\mu}\left(K_{s} * G\right)=\check{\mu}(G)-s$.

Proof. The formula for $\check{\mu}$ is immediate when G is Hamiltonian since we have observed that this forces $K_{s} * G$ to be Hamiltonian. Otherwise, it follows from
$K_{r} *\left(K_{s} * G\right)=K_{r+s} * G:$ if $\check{\mu}(G)=a$, then $K_{r} *\left(K_{s} * G\right)$ is Hamiltonian if and only if $r+s \geq a$.

The formula for μ may be derived from the result for $\check{\mu}$ using Lemma 3 .
The main result of this section is the following two formulas for the μ and $\check{\mu}$ invariants of the disjoint union of graphs, and the join with a complete graph.

Proposition 6. Let $\left\{G_{j}\right\}_{j=1}^{m}$ be graphs. Then

$$
\begin{aligned}
& \mu\left(\bigsqcup_{j=1}^{m} G_{j}\right)=\sum_{j=1}^{m} \mu\left(G_{j}\right), \\
& \check{\mu}\left(\bigsqcup_{j=1}^{m} G_{j}\right)=\sum_{j=1}^{m} \check{\mu}\left(G_{j}\right)+\sum_{j=1}^{m} i_{H}\left(G_{j}\right) .
\end{aligned}
$$

Furthermore,

$$
\check{\mu}\left(\left(\bigsqcup_{j=1}^{m} G_{j}\right) * K_{r}\right)=\max \left\{0, \sum_{j=1}^{m} \check{\mu}\left(G_{j}\right)+\sum_{j=1}^{m} i_{H}\left(G_{j}\right)-r\right\} .
$$

Proof. We proceed by induction. The base case $k=2$ is exactly Lemma 4. Assume the formula holds for k graphs; we will prove it for $k+1$ graphs.

$$
\begin{aligned}
\mu\left(\bigsqcup_{j=1}^{k+1} G_{j}\right) & =\mu\left(\left(\bigsqcup_{j=1}^{k} G_{j}\right) \sqcup G_{k+1}\right)=\mu\left(\bigsqcup_{j=1}^{k} G_{j}\right)+\mu\left(G_{k+1}\right) \\
& =\sum_{j=1}^{k} \mu\left(G_{j}\right)+\mu\left(G_{k+1}\right)=\sum_{j=1}^{k+1} \mu\left(G_{j}\right)
\end{aligned}
$$

By Lemma 3 and the fact that disjoint graphs are not Hamiltonian, we have

$$
\begin{aligned}
\check{\mu}\left(\bigsqcup_{j=1}^{m} G_{j}\right) & =\mu\left(\bigsqcup_{j=1}^{m} G_{j}\right)+i_{H}\left(\bigsqcup_{j=1}^{m} G_{j}\right) \\
& =\sum_{j=1}^{m}\left(\check{\mu}\left(G_{j}\right)+i_{H}\left(G_{j}\right)\right)=\sum_{j=1}^{m} \check{\mu}\left(G_{j}\right)+\sum_{j=1}^{m} i_{H}\left(G_{j}\right) .
\end{aligned}
$$

Therefore, we have by Lemma 5,

$$
\begin{aligned}
\check{\mu}\left(\left(\bigsqcup_{j=1}^{m} G_{j}\right) * K_{r}\right) & =\max \left\{0, \check{\mu}\left(\bigsqcup_{j=1}^{m} G_{j}\right)-r\right\} \\
& =\max \left\{0, \sum_{j=1}^{m} \check{\mu}\left(G_{j}\right)+\sum_{j=1}^{m} i_{H}\left(G_{j}\right)-r\right\} .
\end{aligned}
$$

The following lemma will be useful in the next section. To express it succinctly, we introduce the following Boolean condition. For a graph G and vertex $v \in V(G)$, $T(v, G)$ is true if and only if v is a terminal vertex in some minimal path covering of G.

Lemma 7. Let $v \in V(G)$ and $w \in V(H)$. Then we have

$$
\mu((G \sqcup H)+v w)= \begin{cases}\mu(G \sqcup H)-1 & \text { if } T(v, G) \text { and } T(w, H), \\ \mu(G \sqcup H) & \text { otherwise. }\end{cases}
$$

Proof. Let $\mu(G)=c, \mu(H)=d$ and $\mu((G \sqcup H)+v w)=t$. Clearly, $t \leq c+d$.
Let R_{1}, \ldots, R_{t} be a minimal path cover of $(G \sqcup H)+v w$. If no R_{i} contains $v w$ then this is also a minimal path cover of $(G \sqcup H)$ so $t=c+d$. Suppose R_{1} contains $v w$ and note that R_{1} is the only path with vertices in both G and H. Removing $v w$ gives two paths $P \subseteq G$ and $Q \subseteq H$. Paths P and Q along with R_{2}, \ldots, R_{t} cover $G \sqcup H$, so $t+1 \geq c+d$. Thus, t can either be $c+d$ or $c+d-1$.

If $t=c+d-1$, then we have the minimal $(t+1)$-path covering $P, Q, R_{2}, \ldots, R_{t}$ of $G \sqcup H$, as above. We note that v must be a terminal point of P and w must be a terminal point of Q, by construction. This path covering may be partitioned into a c-path covering of G containing P and a d-path covering of H containing Q. Thus, $T(v, G)$ and $T(w, G)$ hold.

Conversely, suppose $T(u, G)$ and $T(w, H)$ both hold. Let P_{1}, \ldots, P_{c} be a minimal path of G with v a terminal vertex of P_{1} and let Q_{1}, \ldots, Q_{d} be a minimal path cover of H with w a terminal vertex of Q_{1}. The edge $v w$ knits P_{1} and Q_{1} into a single path and $P_{1} \sim Q_{1}, P_{1}, \ldots, P_{c}, Q_{1}, \ldots, Q_{d}$ is a $c+d-1$ cover of $(G \sqcup H)+v w$. Consequently, $t \leq c+d-1$.

Thus, $T(u, G)$ and $T(w, H)$ both hold if and only if $t=c+d-1$. Otherwise, $t=c+d$.

Corollary 8. Let $v \in V(G)$ and $w \in V(H)$. Then we have

$$
\check{\mu}((G \sqcup H)+v w)= \begin{cases}\check{\mu}(G \sqcup H)-2 & \text { if } G=H=K_{1}, \\ \check{\mu}(G \sqcup H)-1 & \text { if } T(v, G) \text { and } T(w, H), \\ \check{\mu}(G \sqcup H) & \text { otherwise } .\end{cases}
$$

Proof. Let $\delta=1$ if $T(v, G)$ and $T(w, H)$ are both true and $\delta=0$ otherwise. Then

$$
\begin{aligned}
\check{\mu}((G \sqcup H)+v w) & =\mu((G \sqcup H)+v w)-i_{H}((G \sqcup H)+v w) \\
& =\mu\left((G \sqcup H)-\delta-i_{H}((G \sqcup H)+v w) .\right.
\end{aligned}
$$

The final term is -1 if and only if $G=H=K_{1}$.

3. Decomposing maximal t-path traceable graphs

In this section we prove our main result, a maximal t-path traceable graph may be uniquely written as the join of a complete graph and a disjoint union of graphs that are also maximal with respect to traceability, but which are also either complete or have no universal vertex. We work with the families of graphs \mathcal{M}_{t} for $t \geq 0$ and \mathcal{N}_{t} for $t \geq 1$:

$$
\begin{aligned}
\mathcal{M}_{t} & :=\{G \mid \check{\mu}(G)=t \text { and } \check{\mu}(G+e)<t, \forall e \in E(\bar{G})\}, \\
\mathcal{N}_{t} & :=\left\{G \in \mathcal{M}_{t} \mid G \text { is connected and has no universal vertex }\right\} .
\end{aligned}
$$

The set \mathcal{M}_{0} is the set of complete graphs. The set \mathcal{M}_{1} is the set of graphs with a Hamiltonian path but no Hamiltonian cycle, that is, maximal non-Hamiltonian graphs. For $t>1, \mathcal{M}_{t}$ is also the set of graphs G such $\mu(G)=t$ and $\mu(G+e)=t-1$ for any $e \in E(\bar{G})$. We will call these maximal t-path traceable graphs. A graph in \mathcal{N}_{t} will be called trim.

Proposition 9. For $0 \leq r<t, G \in \mathcal{M}_{t}$ if and only if $K_{r} * G \in \mathcal{M}_{t-r}$.
Proof. We have $\check{\mu}\left(K_{r} * G\right)=\check{\mu}(G)-r$, by Lemma 5 , so we just need to show that $K_{r} * G$ is maximal if and only if G is maximal. The only edges that can be added to $K_{r} * G$ are those between vertices of G, that is, $E\left(\overline{K_{r} * G}\right)=E(\bar{G})$. For such an edge e,

$$
\begin{equation*}
\check{\mu}\left(\left(K_{r} * G\right)+e\right)=\check{\mu}\left(K_{r} *(G+e)\right)=\check{\mu}(G+e)-r . \tag{1}
\end{equation*}
$$

Thus, $\check{\mu}(G+e)=\check{\mu}(G)-1$ if and only if $\check{\mu}\left(\left(K_{r} * G\right)+e\right)=\check{\mu}\left(K_{r} * G\right)-1$.
Note that the proposition is false for $r=t>0$ since $K_{r} * G$ will not be a complete graph and \mathcal{M}_{0} is the set of complete graphs. The proof breaks down in (1).

As a key step before the main theorem, the next lemma shows that in a maximal graph, each vertex is either universal or it is a terminal vertex in a minimal path covering (but not both).
Lemma 10. Let $c \geq 1$ and $G \in \mathcal{M}_{c}$. For any two nonadjacent vertices v, w in G, there is a c-path covering of G in which both v and w are terminal points of paths. Moreover, a vertex $v \in V(G)$ is a terminal point in some c-path covering if and only if v is not universal.
Proof. Suppose $c>1$ and let v, w be nonadjacent in G. Since G is maximal, $G+v w$ has a $(c-1)$-path covering, P_{1}, \ldots, P_{c-1}. The edge $v w$ must be contained in some P_{i} because G has no $(c-1)$-path covering. Removing that edge gives a c-path covering of G with v and w as terminal vertices. The special case $c=1$ is well known, adding the edge $v w$ gives a Hamiltonian cycle, and removing it leaves a path with endpoints v and w. A consequence is that any nonuniversal vertex is the terminal point of some path in a c-path covering.

Suppose P_{1}, \ldots, P_{c} is a c-path covering of $G \in \mathcal{M}_{c}$ with v a terminal point of P_{i}. Then v is not adjacent to any of the terminal points of P_{j} for $j \neq i$, for otherwise two paths could be combined into a single one. In the case $c=1, v$ cannot be adjacent to the other terminal point of P_{1}, otherwise G would have a Hamiltonian cycle. Consequently, a universal vertex is not a terminal point in a c-path covering of G.

Proposition 11. Let $G \in \mathcal{M}_{c}$ and $H \in \mathcal{M}_{d}$. The following are equivalent:
(1) $G \sqcup H \in \mathcal{M}_{c+d+i_{H}(G)+i_{H}(H)}$.
(2) Each of G and H is either complete or has no universal vertex.

Proof. We have already shown that $\check{\mu}(G \sqcup H)=c+d+i_{H}(G)+i_{H}(H)$. We have to consider whether adding an edge to $G \sqcup H$ reduces the $\check{\mu}$-invariant. There are three cases to consider: the extra edge may be in $E(\bar{G})$ or $E(\bar{H})$ or it may join a vertex in G to one in H. Since G is maximal, adding an edge to G is either impossible, when G is complete, or it reduces the $\check{\mu}$-invariant of G. This edge would also reduce the $\check{\mu}$-invariant of $G \sqcup H$ by Lemma 4 . The case for adding an edge of H is the same. Consider the edge $v w$ for $v \in V(G)$ and $w \in V(H)$. By Corollary 8 the $\check{\mu}$-invariant will drop if and only if v is the terminal point of a path in a minimal path covering of G and similarly for w in H, that is, $T(v, G)$ and $T(w, H)$. Clearly this holds for all vertices in a complete graph. Lemma 10 shows that $T(v, G)$ holds for $G \in \mathcal{M}_{c}$ with $c>0$ if and only if v is not a universal vertex in G. Thus, in order for $G \sqcup H$ to be maximal, G must either be complete or be maximal itself and have no universal vertex, and similarly for H.

Theorem 12. For any $G \in \mathcal{M}_{t}, t>0, G$ may be uniquely decomposed as

$$
K_{r} *\left(G_{1} \sqcup \ldots \sqcup G_{m}\right),
$$

where r is the number of universal vertices of G, and each G_{j} is either complete or $G_{j} \in \mathcal{N}_{t_{j}}$ for some $t_{j}>0$. Furthermore $t=\sum_{j=1}^{m} t_{j}+\sum_{j=1}^{m} i_{H}\left(G_{j}\right)-r$.
Proof. Suppose $G \in \mathcal{M}_{t}$ and let r be the number of universal vertices of G. Let m be the number of components in the graph obtained by removing the universal vertices from G, let $G_{1}, \ldots G_{m}$ be the components and let $\check{\mu}\left(G_{j}\right)=t_{j}$. Then $G=K_{r} *\left(G_{1} \sqcup \ldots \sqcup G_{m}\right)$.

Proposition 6 shows that $t=\sum_{j=1}^{m} t_{j}+\sum_{j=1}^{m} i_{H}\left(G_{j}\right)-r$. By Proposition 9, we have that $G \in \mathcal{M}_{t}$ if and only if $G_{1} \sqcup \ldots \sqcup G_{m} \in \mathcal{M}_{t+r}$. Each G_{i} must be maximal, otherwise the disjoint union would not be maximal (add an appropriate edge to a G_{i} in Proposition 6). Inductively applying Proposition 11 to $G_{1} \sqcup \ldots \sqcup G_{m} \in \mathcal{M}_{t+r}$, where $t+r=\sum_{j=1}^{m} t_{j}+\sum_{j=1}^{m} i_{H}\left(G_{j}\right)$, we have that each G_{j} is complete or is $\operatorname{trim}\left(G_{j} \in \mathcal{N}_{t_{j}}\right.$ for $\left.t_{j}>0\right)$.

4. Trim maximal \boldsymbol{t}-path traceable graphs

Skupień [1979] discovered the first family of maximal non-Hamiltonian graphs, that is, graphs in \mathcal{M}_{1}. These graphs are formed by taking the join of K_{r} with the disjoint union of $r+1$ complete graphs [Marczyk and Skupień 1991]. The smallest graph in \mathcal{N}_{2} is shown in Figure 1. Chvátal [1973] identified its join with K_{1} as the smallest maximal non-Hamiltonian graph that is not 1-tough, that is, not one of the Skupień family. Jamrozik, Kalinowski and Skupień [1982] generalized this example to three different families. Family $A 1$ replaces each edge $u_{i} v_{i}$ in Figure 1 with an arbitrary complete graph containing u_{i} and replaces the K_{3} formed by the u_{i} with an arbitrary complete graph. The result - a type $A 1$ graph - has four cliques, the first three disjoint from each other but each intersecting the fourth clique in a single vertex. An $A 1$ graph is in \mathcal{N}_{2} and its join with K_{1} gives a maximal non-Hamiltonian graph. Family $A 2$ is formed by taking the join with K_{2} of the disjoint union of a complete graph and an $A 1$ graph. Theorem 12 shows that the resulting graph is in \mathcal{M}_{1}. Family $A 3$ is a modification of the $A 1$ family based on the graph in Figure 2, which is in \mathcal{N}_{2}.

More than two decades later, Bullock, Frick, Singleton and van Aardt [2008] recognized that two constructions of Zelinka [1998] give maximal nontraceable graphs, that is, elements of M_{2}. Zelinka's first construction is like the Skupień family: formed from $r+1$ complete graphs followed by the join with K_{r-1}. The Zelinka type II family contains graphs in \mathcal{N}_{2} that are a significant generalization of the graphs in Figures 1 and 2. In this section we generalize this family further to get graphs in \mathcal{N}_{t} for arbitrary t. Our starting point is the graph in Figure 3, which is in \mathcal{N}_{3}.
Example 13. Consider K_{m} with $m=2 t-1$ and vertices u_{1}, \ldots, u_{m}. Let G be the graph containing K_{m} along with vertices $v_{1}, \ldots, v_{2 t-1}$ and edges $u_{i} v_{i}$. The case with $t=3$ and $m=5=2 t-1$ is Figure 3 . We claim $G \in \mathcal{N}_{t}$.

One can readily check that this graph is t-path covered using $v_{2 i-1} \sim u_{2 i-1} \sim$ $u_{2 i} \sim v_{2 i}$ for $i=1, \ldots, t-1$ and $v_{2 t-1} \sim u_{2 t-1} \sim u_{2 t} \sim \cdots \sim u_{m}$. We check that G is maximal. By the symmetry of the graph, we need only consider the addition

Figure 1. Smallest graph in \mathcal{N}_{2}.

Figure 2. The join of this graph with K_{1} is the smallest graph in the $A 3$ family.

Figure 3. Whirligig in \mathcal{N}_{3}.
of the edge $v_{1} u_{m}$ or $v_{1} u_{2}$ or $v_{1} v_{2}$. In each case, the last and the first paths listed above may be combined into one, either

$$
\begin{aligned}
& v_{2 t-1} \sim u_{2 t-1} \sim \ldots \sim u_{m} \sim v_{1} \sim u_{1} \sim u_{2} \sim v_{2}, \text { or } \\
& v_{2 t-1} \sim u_{2 t-1} \sim \ldots \sim u_{m} \sim u_{1} \sim v_{1} \sim u_{2} \sim v_{2}, \text { or } \\
& v_{2 t-1} \sim u_{2 t-1} \sim \ldots \sim u_{m} \sim u_{1} \sim v_{1} \sim v_{2} \sim u_{2} .
\end{aligned}
$$

Thus, adding an edge creates a $(t-1)$-path covered graph, proving maximality.
The next proposition shows that the previous example is the only way to have a trim maximal t-path covered graph with $2 t-1$ degree-one vertices. We start with a technical lemma.
Lemma 14. Let G be a connected graph and $u_{1}, v_{1}, v_{2}, v_{3} \in V(G)$ with $\operatorname{deg}\left(v_{i}\right)=1$, and u adjacent to v_{1} and v_{2} but not v_{3}. Then $\mu(G)=\mu\left(G+u v_{3}\right)$.
Proof. Let P_{1}, \ldots, P_{r} be a minimal path covering of $G+u v_{3}$; it is enough to show that there are r-paths covering G. If the covering doesn't include $u v_{3}$, then P_{1}, \ldots, P_{r} also give a minimal path covering of G, establishing the claim of the lemma. Otherwise, suppose $u v_{3}$ is an edge of P_{1}. We consider two cases.

Suppose P_{1} contains the edge $u v_{1}$ (or similarly $u v_{2}$). Then P_{1} has v_{1} as a terminal point and one of the other paths, say P_{2}, must be a length- 0 path containing simply v_{2}. Let Q be obtained by removing $u v_{1}$ and $u v_{3}$ from P_{1}. Then $v_{1} \sim u \sim$ $v_{2}, Q, P_{3}, \ldots, P_{r}$, gives an r-path covering of G.

Suppose P_{1} contains neither $u v_{1}$ nor $u v_{2}$. Then each of v_{1} and v_{2} must be on a length- 0 path in the covering, say P_{2} and P_{3} are these paths. Furthermore u must not be a terminal point of P_{1}; if it were, the path could be extended to include v_{1} or v_{2}, reducing the number of paths required to cover G. Removing u from P_{1} yields two paths, Q_{1}, Q_{2}. Then $v_{1} \sim u \sim v_{2}, Q_{1}, Q_{2}, P_{4}, \ldots, P_{r}$ gives an r-path cover of G. This proves the lemma.

Proposition 15. Let $G \in \mathcal{N}_{t}$. The number of degree-one vertices in G is at most $2 t-1$. This occurs if and only if the $2 t-1$ vertices of degree-one have distinct neighbors and removing the degree-one vertices leaves a complete graph.

Proof. Each degree-one vertex must be a terminal point in a path covering. So any graph G covered by t paths can have at most $2 t$ degree-one vertices. Aside from the case $t=1$ and $G=K_{2}$, we can see that a graph with $2 t$ degree-one vertices cannot be maximal t-path traceable as follows. It is easy to check that a $2 t$ star is not t-path traceable (it is also not trim). A t-path traceable graph with $2 t$ degree-one vertices must therefore have an interior vertex w that is not connected to at least one of the degree-one vertices v. Such a graph is not maximal because the edge $v w$ can be added leaving $2 t-1$ degree-one vertices. This resulting graph cannot be ($t-1$)-path covered.

Suppose that $G \in \mathcal{N}_{t}$ with $2 t-1$ degree-one vertices, $v_{1}, \ldots, v_{2 t-1}$. Lemma 14 shows that no two of the v_{i} can be adjacent to the same vertex, for that would violate maximality of G. So, the v_{i} have distinct neighbors. Furthermore, all the vertices except the v_{i} can be connected to each other and a path covering will still require at least t paths since there remain $2 t-1$ degree-one vertices. This proves the necessity of the structure claimed in the proposition. The previous example showed that the graph is indeed in \mathcal{N}_{t}.

We can now generalize the Zelinka family.
Construction 16. Let $U_{0}, U_{1}, \ldots, U_{2 t-1}$ be disjoint sets of vertices and

$$
U=\bigsqcup_{i=0}^{2 t-1} U_{i} .
$$

Let $m_{i}=\left|U_{i}\right|$ and assume that for $i>0$ the U_{i} are nonempty, so $m_{i}>0$. For $i=1, \ldots, 2 t-1$ (but not $i=0$) and $j=1, \ldots, m_{i}$, let $V_{i j}$ be nonempty sets of vertices disjoint from each other and from U. Form the graph W with vertex set $U \sqcup\left(\bigsqcup_{i=1}^{2 t-1}\left(\bigsqcup_{j=1}^{m_{i}} V_{i j}\right)\right)$ and edges $u u^{\prime}$ for $u, u^{\prime} \in U$ and $u v$ for any $u \in U_{i}$

Figure 4. Generalization of the whirligig, W.
and $v \in V_{i j}$ with $i=1, \ldots, 2 t-1$ and $j=1, \ldots, m_{i}$ and all edges within each set $V_{i j}$. The cliques of this graph are K_{U} and $K_{U_{i} \sqcup V_{i j}}$ for each $i=1, \ldots, 2 t-1$ and $j=1, \ldots, m_{i}$.

The graph in Figure 2 has $m_{0}=0, m_{1}=m_{2}=1$ and $m_{3}=2$, and the graph in Figure 4 indicates the general construction.
Theorem 17. The graph W in Construction 16 is a trim, maximal t-path traceable graph.

Proof. We must show that W is t-path covered and not $(t-1)$-path covered, and that the addition of any edge yields a $(t-1)$-path covered graph. The argument is analogous to the one in Example 13.

Let R be a Hamiltonian path in U_{0}. For each $i=1, \ldots, 2 t-1$ and $j=1, \ldots, m_{i}$, let $Q_{i j}$ be a Hamiltonian path in $K_{V_{i j}}$. Let P_{i} be the path

$$
P_{i}: Q_{i 1} \sim u_{i 1} \sim Q_{i 2} \sim u_{i 2} \sim \cdots \sim Q_{i m_{i}} \sim u_{i m_{i}}
$$

and let $\overleftarrow{P_{i}}$ be the reversal of P_{i}.
Since there is an edge $u_{i m_{i}} u_{j m_{j}}$ there is a path $P_{i} \sim \overleftarrow{P}_{j}$ for any $i \not \equiv j \in$ $\{1, \ldots, 2 t-1\}$. Therefore the graph W has a t-path covering $P_{2 i-1} \sim \overleftarrow{P}_{2 i}$ for $i=1, \ldots,(t-1)$, along with $P_{2 t-1} \sim R$. We leave to the reader the argument that there is no $(t-1)$-path cover.

To show W is maximal we show that after adding an edge e, we can join two paths in the t-path cover above, with a bit of rearrangement. There are three types of edges to consider, the edge e might join $V_{i j}$ to $U_{i^{\prime}}$ for $i \neq i^{\prime}$; or $V_{i j}$ to $V_{i j^{\prime}}$ for $j \neq j^{\prime}$; or $V_{i j}$ to $V_{i^{\prime} j^{\prime}}$ for $i \neq i^{\prime}$. Because of the symmetry of W, we may assume
$i=1$ and $j=1$ and that the vertex chosen from $V_{i j}=V_{1,1}$ is the initial vertex of $Q_{1,1}$. Other simplifications due to symmetry will be evident in what follows.

In the first case there are two subcases - determined by $i^{\prime} \geq 2 t$ or not - and after permutation, we may consider the edge e from the initial vertex of $Q_{1,1}$ to the terminal vertex of R, or to the terminal vertex of $P_{2 t-1}$. We can then join two paths in the t-path cover: either $P_{2 t-1} \sim R \stackrel{e}{\sim} P_{1} \sim \overleftarrow{P}_{2}$ or $P_{2 t-1} \stackrel{e}{\sim} P_{1} \sim R \sim \overleftarrow{P}_{2}$

Suppose next that we join the initial vertex of Q_{11} with the terminal vertex of Q_{12}. We then rearrange P_{1} and join two paths in the t-path cover to get

$$
P_{2 t-1} \sim R \sim u_{1,1} \sim Q_{1,1} \stackrel{e}{\sim} Q_{1,2} \sim u_{1,2} \sim \cdots \sim Q_{1 m_{1}} \sim u_{1 m_{1}} \sim \overleftarrow{P}_{2}
$$

Finally, suppose that we join the initial vertex of $Q_{1,1}$ with the initial vertex of $Q_{2 t-1,1}$. Then we rearrange to

$$
\overleftarrow{R} \sim \overleftarrow{P}_{2 t-1} \stackrel{e}{\sim} P_{1} \sim \overleftarrow{P}_{2}
$$

References

[Bullock et al. 2008] F. Bullock, M. Frick, J. Singleton, S. van Aardt, and K. Mynhardt, "Maximal nontraceable graphs with toughness less than one", Electron. J. Combin. 15:1 (2008), \#R18, 19 pp. MR Zbl
[Chvátal 1973] V. Chvátal, "Tough graphs and Hamiltonian circuits", Discrete Math. 5 (1973), 215-228. MR Zbl
[Jamrozik et al. 1982] J. Jamrozik, R. Kalinowski, and Z. Skupień, "A catalogue of small maximal non-Hamiltonian graphs", Discrete Math. 39:2 (1982), 229-234. MR Zbl
[Marczyk and Skupień 1991] A. Marczyk and Z. Skupień, "Maximum non-Hamiltonian tough graphs", Discrete Math. 96:3 (1991), 213-220. MR Zbl
[Noorvash 1975] S. Noorvash, "Covering the vertices of a graph by vertex-disjoint paths", Pacific J. Math. 58:1 (1975), 159-168. MR Zbl
[Ore 1961] O. Ore, "Arc coverings of graphs", Ann. Mat. Pura Appl. (4) 55 (1961), 315-321. MR Zbl
[Skupień 1979] Z. Skupień, "On maximal non-Hamiltonian graphs", Rostock. Math. Kolloq. 11 (1979), 97-106. MR Zbl
[Zelinka 1998] B. Zelinka, "Graphs maximal with respect to absence of Hamiltonian paths", Discuss. Math. Graph Theory 18:2 (1998), 205-208. MR Zbl

Received: 2016-02-07 Revised: 2016-06-23 Accepted: 2016-07-24
kashbari@math.tamu.edu
mosullivan@mail.sdsu.edu

Department of Mathematics and Statistics, San Diego
State University, San Diego, CA 92182, United States
Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $\$ 175 /$ year for the electronic version, and $\$ 235 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2017 vol. 10 no. 5

Algorithms for finding knight's tours on Aztec diamonds 721Samantha Davies, Chentiao Xue and Carl R. Yerger
Optimal aggression in kleptoparasitic interactions 735
David G. Sykes and Jan Rychtář
Domination with decay in triangular matchstick arrangement graphs 749
Jill Cochran, Terry Henderson, Aaron Ostrander and RonTAYLOR
On the tree cover number of a graph
Chassidy Bozeman, Minerva Catral, Brendan Cook, Oscar E. GonZález and Carolyn Reinhart767
Matrix completions for linear matrix equations 781
Geoffrey Buhl, Elijah Cronk, Rosa Moreno, Kirsten Morris,Dianne Pedroza and Jack Ryan
The Hamiltonian problem and t-path traceable graphs 801
Kashif Bari and Michael E. O’Sullivan
Relations between the conditions of admitting cycles in Boolean and ODE 813network systemsYuniiao Wang, Bamidele Omidiran, Franklin Kigwe and KiranChilakamarri
Weak and strong solutions to the inverse-square brachistochrone problem on 833
circular and annular domains
Christopher Grimm and John A. Gemmer
Numerical existence and stability of steady state solutions to the distributed spruce 857
budworm modelHala Al-Khalil, Catherine Brennan, Robert Decker, AslihanDemirkaya and Jamie Nagode
Integer solutions to $x^{2}+y^{2}=z^{2}-k$ for a fixed integer value k 881
Wanda Boyer, Gary MacGillivray, Laura Morrison, C. M. (Kieka) Mynhardt and Shahla Nasserasr
A solution to a problem of Frechette and Locus 893

[^0]: MSC2010: 05C45.
 Keywords: maximal non-hamiltonian, hamiltonian, graph theory, t-path traceable.

