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This paper presents the steady-state solutions and traveling wave solutions for
a spatially distributed PDE version of the spruce budworm model. The ODE
(undistributed) model has been used in practical scenarios to model the outbreaks
of the spruce budworm in forest environments, alongside the study of concepts
involving fixed points and bifurcations in introductory differential equations
courses. This study represents the spread of an outbreak from one end of a forest
to the other. Numerical simulations are conducted using spectral methods.

1. Introduction

In the early 1900s, regions of eastern Canada began to see periodic outbreaks in the
spruce budworm population, occurring approximately forty years apart [Williams
and Birdsey 2003]. These outbreaks caused severe forest devastation, particularly
in conifer tree species that are preferred by the budworms. In response to these
population explosions, researchers at the University of British Columbia sought to
explain and predict the outbreaks using mathematical models. The spruce budworm
model, introduced in [Ludwig et al. 1978], is a modified logistic growth equation
with an additional term, p(N ), to account for budworm mortality due to predation.
Specifically,

dN
dτ
= rB N

(
1− N

K B

)
− p(N ) with p(N )=

B N 2

A2+ N 2 , (1)

where N represents the spruce budworm population, rB represents the intrinsic
growth rate and K B is the carrying capacity of the budworm population. The
predation term p(N ) is determined by the switching value A and the predation
efficiency B. The switching value for predation refers to the minimum budworm
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population required to cause birds to take interest in them as a source of food.
Predation efficiency refers to the degree of accuracy exhibited by predatory birds in
the capture of budworms.

Equation (1) contains variables of varying dimensions, making numerical analysis
a challenge. To simplify (1), we seek to remove physical dimension from the
variables. Substituting

u = N/A, r = ArB/B, q = K B/A, and t = Bτ/A

into (1), we find the nondimensionalized spruce budworm model

du
dt
= ru

(
1− u

q

)
− h(u) with h(u)=

u2

1+ u2 , (2)

where u represents the budworm population density and t represents time. As with
the logistic growth model, r and q correspond with the natural growth rate and the
carrying capacity of the population respectively.

The traditional spruce budworm model simulates a stationary population over
time. It does not account for the spatial layout of the budworm habitat or the diffusion
of the population across this habitat. In order to make the spruce budworm model
mimic a diffusive insect population, the addition of a diffusion term is necessary.
The fundamental differential equation of diffusion in one spatial dimension x is
given by

Ct = aCxx ,

where C is the concentration of the diffusing substance, t is the time variable, x is
the spatial variable and a is the diffusion coefficient. The term Ct represents the
change in the concentration of the diffusing substance with respect to time, and
the term Cxx accounts for the diffusing substance changing over space, or along
the x axis. Making use of Fick’s second law of diffusion, we can deduce that the
diffusion of the spruce bud worm population u across a linear habitat defined by x
can be modeled by the second derivative of u in respect to x . The addition of the
diffusion term auxx to (2) leaves us with the distributed spruce budworm model

ut = auxx + ru
(

1− u
q

)
−

u2

1+ u2 , (3)

which simulates a migratory population that is both time and space-dependent.
In this paper, we study the numerical existence of the steady-state and the traveling

wave solutions of (3). First we use the shooting method to determine the steady-state
solutions at various diffusion rates (a) and identify bifurcation values that produce
additional steady-state solutions. Then we vary the carrying capacity values (q) and
determine the growth rate (r) where the traveling solutions travel to the right, to
the left or stay there without a movement, and numerically estimate the velocities
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for various combinations of r and q. Finally, we study the relation between the
carrying capacity and the growth rate for various values of traveling velocities.

2. Numerical methods and the region of exploration

2.1. Numerical methods. We use numerical methods to compute and simulate the
steady-state and traveling wave solutions of (3). We discretize in the spatial (x)
direction, and use a spectral differentiation matrix Dxx as in [Trefethen 2000] to
approximate uxx as Dxx u. This turns the PDE into a system of ODEs. We then
use the shooting method along with the Matlab fsolve command to identify the
steady states. Spectral differentiation matrices were paired with Matlab’s built
in ODE solver ode45 to form a PDE solver that we used to verify steady-state
solutions found from the shooting method and fsolve, and to simulate traveling
wave solutions. The spatial range is chosen to be −1≤ x ≤ 1.

2.2. Parameter ranges of exploration. As the carrying capacity value q, growth
rate r and diffusion constant a vary, the number of steady states and traveling waves
of (3) changes. First we find the steady-state solutions (fixed point solutions) of the
undistributed system (2) which satisfy the equation

ru
(

1− u
q

)
=

u2

1+ u2 . (4)

Since (4) can be written as a quartic equation, we expect a maximum of four
solutions. Our interest is the case where four fixed solutions exist. In order to find
these solutions, we look for the intersection points of the two functions

y1 = ru
(

1− u
q

)
and y2 =

u2

1+ u2 .

In Figure 1, upper left, we present the intersection points of these two function
curves when r = 0.5 and q = 10. Clearly u = 0 is a solution, so we have divided
both y1 and y2 by u and graphed both functions to visualize the other three inter-
section points. For these values, the corresponding fixed point solutions are u = 0,
u = 0.6834, u = 2.0000 and u = 7.3166. In Figure 1, upper right, for these q and r
values, we show the corresponding direction field of (2). As shown in this direction
field, u = 0.6834 and u = 7.3166 are stable solutions, while u = 0 and u = 2.0000
are unstable solutions. In Figure 1, lower left and lower right, we present q and r
values (on different scales) that gives us four intersection points of the two curves
y1 and y2, i.e., the four fixed solutions of (2).

When there are four solutions to (4), the solution u = 0 will always be one of
them, and it will be unstable. The smallest nonzero solution we will refer to as the
“refuge level” and the largest nonzero solution as the “outbreak level”, which are
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both stable. Between these two stable equilibria is an unstable one that we will
refer to as “intermediate”.

As the carrying capacity q gets larger, the range of r values that provide four
intersection points approaches 0< r < 0.5. To show this, consider (4) and then let
q→∞. This results in a cubic equation in u, with u = 0 being one of the roots.
The discriminant of the resulting quadratic equation (after u = 0 is factored out)
is −4r2

+ 1, and hence to get three solutions (the fourth has gone to infinity) we
require 0< r < 0.5, assuming positive r . The smallest value of q for which there
are four intersection points is about q = 5.

Until now we only considered the fixed point solutions of the nondistributed
model (2) and found q and r values that give us the maximum number of fixed point
solutions (and hence two stable equilibria). We might expect that these q and r
values would also give us two stable steady-state solutions (refuge and outbreak)
to the distributed model and perhaps the maximum number of steady states of the
distributed model (3). In fact we will see that as a, the diffusion constant, gets
smaller, the number of steady states gets bigger. Also, the existence of the refuge
and outbreak steady states are a dependent.

Finally, we use a values in the range 0.0005< a < 0.1. This range includes a
values appropriate to both steady-state and traveling wave solutions that illustrate
our findings.

3. Steady state solutions

In this section we will present the numerical steady-state solutions of (3) with the
boundary conditions

u(−1, t)= 0, u(1, t)= 0. (5)

As we discussed in Section 2.2, we are interested in q and r values that will provide
us the maximum number of steady-state solutions for the nondistributed case. For
this purpose we now illustrate our results for r = 0.5 and q = 10.

Steady state solutions u(x, t)= φ(x) to (3) do not change over time, i.e., φt = 0.
Thus φ satisfies the following ordinary differential equation:

0= aφ′′+ rφ
(

1− φ
q

)
−

φ2

1+φ2 , (6)

with φ(−1)=0 and φ(1)=0. We can change this second-order differential equation
into a first-order system by defining y1 = φ and y2 = φ

′. Then we get the system

y′1 = y2, y′2 =
−r y1

a

(
1−

y1

q

)
+

y2
1

a(1+ y2
1)
. (7)
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Figure 1. Upper left: the nonzero intersections of y1 and y2 occurs
at u = 0, u = 0.6834, u = 2.0000 and u = 7.3166 when r = 0.5
and q = 10. Upper right: the direction field of the nondistributed
model (2) when r = 0.5 and q = 10. Lower left and lower right: r
vs. q values that gives exactly four fixed point solutions to (2).

A phase portrait of the system of equations (7) is shown in Figure 2, for r = 0.5,
q = 10 and a = 0.1. Other a values give a similar phase portrait (with a different
scale on the y axis). In the phase portrait, one can see the four fixed points for the
undistributed model, now as centers and saddles. The first (a center) is at the origin,
the second (a saddle) is at φ = 0.6834, the third (a center) is at φ = 2 and the fourth
(a saddle) is at φ = 7.3166.

3.1. The shooting method. The shooting method is a numerical technique for
solving two-point boundary value problems (BVP’s) by reformulating them as
initial value problems (IVP’s). The objective of this method is to determine initial
conditions for the corresponding IVP that produce solutions that satisfy the original
BVP. Solutions are found by fixing the left boundary point of the solution and
guessing the initial slope until the right-hand boundary condition is satisfied.

Several sample solutions to (6) on [−1, 1] with initial conditions φ(−1) = 0
and φ′(−1)= ω are plotted in Figure 3. The value of ω, or the initial slope of the
solution, is varied until the right endpoint of the solution, φ(1), meets the desired
boundary value at zero.
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y 2

y1

Figure 2. Phase portrait of (7) when a = 0.1, r = 0.5 and q = 10.

Figure 3. Solutions to the IVP (bottom to top) ω = 0.44, 0.48,
0.52, 0.56, 0.60 and 0.64 and for r = 0.5, q = 10 and a = 0.1.

ω = 0.52
u(1)= 0

φ
(1
)

ω

Figure 4. The solution φ(1) as a function of ω for r = 0.5, q = 10
and a = 0.1.

A plot of the right endpoints φ(1) versus the initial slope values ω can be used
to determine the appropriate initial conditions to produce a solution to (6); see
Figure 4. When the φ(1) vs. ω curve intersects the ω axis, φ(1)= 0 and the right
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boundary condition is met. Each value of ω that causes φ(1) = 0 represents a
steady-state solution. Similar results apply to other a values.

3.2. Steady states for various a values. In Figure 5 we show all nonzero steady-
state solutions superimposed for a few a values. Solid lines represent stable steady-
states, and dashed, dotted or dash-dot lines represent unstable ones.

The steady states for each diffusion rate, or a value, were determined using both
the shooting method and the phase portrait of (7), which is shown in Figure 2. Within
the shooting method plots, we expect a new steady-state solution to emerge each
time the ω axis is intersected. Furthermore, the ω value at the point of intersection
corresponds with the initial slope of the equilibrium solution. The phase portrait
helps to make sure that no steady-state solutions are missed; each steady-state
solution must start on the φ′ axis and end on the φ′ axis ensuring that φ = 0 at
x =−1 and x = 1, as required by the boundary value problem.

At a = 0.05, there are two positive initial conditions that force the boundary
condition at φ(1) to meet zero: ω ≈ 0.19 and ω ≈ 0.97. In Figure 6, left, we see
these values as points where the shooting plot crosses the ω axis, and in Figure 6,
right, we see these values as the starting values of the phase plots of the steady-state
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Figure 5. Nonzero steady-state solutions for several a values and
for r = 0.5 and q = 10.
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Figure 6. Steady-state solutions for a = 0.05, r = 0.5 and q = 10.
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Figure 7. Solutions for a = 0.0225, r = 0.5 and q = 10.

solutions. For the smaller ω-value, the phase plots overlap themselves and thus
appear to form a closed loop. Finally, if the initial slope is ω ≈ −0.19, we get
another steady-state solution, and the phase plot is indistinguishable from the one
for which ω ≈ 0.19.

Looking back to Figure 5, upper left, we again see the three (nontrivial) steady-
state solutions. The one with the larger positive initial slope (ω≈ 0.97) is stable and
corresponds to the refuge level of the undistributed model. The unstable solution
with the smaller positive initial slope corresponds to the unstable (dashed) solution
that goes from slightly positive (on the left) to slightly negative (on the right). The
third unstable solution has initial slope ω≈−0.19 and is a mirror image (left-right)
of the other unstable solution.

We now look at what happens when a is lowered to a = 0.0225. In Figure 7,
right, we find two new solutions whose phase plots wrap around the saddle at
φ = 0.6834 and the center at φ = 2.000. This indicates the appearance of a stable
outbreak equilibrium solution, and a slightly smaller unstable intermediate steady-
state solution, as shown in Figure 5, upper right. At this point we have steady-state
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Figure 8. Solutions for a = 0.02, r = 0.5 and q = 10.

solutions corresponding to each of the four fixed points of the nondistributed model,
and with similar stability types.

If you look closely at Figure 7, left, it appears that there will be six nonzero
equilibrium solutions. There are a pair of positive solutions near ω=1.5 and another
pair of positive solutions near ω = 6.65 (outbreak and intermediate solutions). In
addition there are negative solutions near ω =−1.5 and ω =−0.75. Close to zero
the situation is not so clear, but upon closer inspection we find another positive
solution near ω = 0.0055 (as well as the trivial zero solution).

Three solution types. The solution types can be broken into three groups using
phase plots. We define group I as steady-state solutions that start on the positive φ′

axis and end on the negative φ′ axis, and form exactly one-half of a loop. These
are the solutions that correspond directly to the fixed-points of the nondistributed
model, and represent physically realistic solutions. We define group II as solutions
that loop around both centers and the smaller saddle one or more times (including
half loops such as 1.5 or 2.5 loops). We will also refer to these as “big loops”, and
they appear as “big waves” in the φ vs. x plots of Figure 2. Because these solutions
have negative φ values, they are not physically realistic. Group III then consists
of solutions that loop around only the origin one or more times (“small loops” in
the phase plane or “small waves” in the φ vs. x plots). These solutions are not
physically realistic.

Thus as a changes from 0.05 to 0.0225 there are two bifurcations; there are two
new group I steady-state solutions, and two new group III solutions. The group III
solutions are 1.5 loop solutions around the origin (one with positive initial slope
and one with equal and opposite negative initial slope).

As a is further reduced to 0.02 (Figure 8), the two larger steady-state solutions
(stable outbreak and unstable intermediate half loops) grow more distinct and easily
perceivable. Also, the shooting plot now shows that the small positive solution,
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Figure 9. Solutions for a = 0.0125, r = 0.5 and q = 10.

which could not be distinguished for a = 0.0225, is now clearly visible, and shows
up as a loop in the phase plot and a small wave in Figure 2. Thus no bifurcations
occur between the a values 0.0225 and 0.02.

Note finally that the two 1-loop inner solutions (one for positive initial slope and
one for equal and opposite initial slope) coincide in the phase plane and so cannot
be distinguished from each other there. On the other hand, the two 1.5-loop inner
solutions (initial slopes positive and negative but not equal and opposite), which are
closer to the origin than the 1-loop solutions, are distinguishable in the phase plane.

Finally, when a is lowered again from 0.02 to 0.0125 (see Figure 9), we see two
new group II solutions (“big loops” that wrap around once) as well as two group III
solutions (“small loops” that wrap around two times). The two small loop solutions
have equal and opposite initial slopes, and hence are indistinguishable in the phase
plane. Thus two more bifurcations have occurred.

3.3. Determination of bifurcation values. [Aron et al. 2014, Theorem 3.4] states
that the eigenvalues of the linear boundary value problem

φ′′+ λ2φ = 0, φ(−1)= 0, φ(1)= 0, (8)

correspond to the bifurcation values of the nonlinear boundary value problem

φ′′+ λ2(φ−φ3)= 0, φ(−1)= 0, φ(1)= 0. (9)

The proof is based on the property that close to the origin, the solution curves of the
nonlinear problem approach those of the linear one, and that as the solution curves
move clockwise around the origin, the ones corresponding to the nonlinear problem
move slower (in the sense of the angle in polar coordinates), and are farther from
the origin (in the sense of the radius in polar coordinates), than those of the linear
problem.
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Figure 10. Linear (blue) vs. nonlinear (red) system near the origin.

The spruce budworm BVP (see (6)) can be written as

φ′′+
r
a
φ(1−φ)−

φ2

a(1+φ2)
= 0, φ(−1)= 0, φ(1)= 0. (10)

This equation can also be linearized, giving

φ′′+
r
a
φ = 0, φ(−1)= 0, φ(1)= 0, (11)

which with the identification λ2
= r/a is again (8). We hypothesize that this will

give us some of the bifurcation values for the spruce budworm BVP of (10). Solving
for a, we have a = r/λ2. When λn =

1
2 nπ (eigenvalues from (8)) is substituted into

this equation, we find some of the expected bifurcation values of (3) in terms of a:

an =
r( 1

2 nπ
)2 for n = 1, 2, 3, 4 . . . (12)

The bifurcations calculated from (12) correspond to the emergence of a new
small half loop (for n = 1) and new small loops (for n > 1) in the terminology of
the previous section. That these can be calculated analytically is a result of the
linearization of the problem for solution curves near the origin. For bifurcation
values corresponding to the emergence of new big loop solutions (group II) we
have estimated the bifurcation values using numerical exploration.

Finally, there are bifurcations that lead to new small loop solutions that are not
given by (12). This is a result of the lack of left-right symmetry in the vector field
for the nonlinear spruce budworm BVP, which leads to the property that solution
curves in the phase plane travel faster around the origin (in terms of angle in polar
coordinates), and closer to it (in terms of the radius in polar coordinates) than
those of the linearized equation for x < 0, but slower around the origin (and farther
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from it) than those of the linearized equation for x > 0, as long as the solution
curves are sufficiently close to the origin (see Figure 10).

This allows new solutions to the BVP that start on the negative y axis and end on
the positive y axis (1.5 loop, 2.5 loop, etc.) to occur for a values slightly larger than
the predicted bifurcations values of (12). Only solutions that start on the negative y
axis and end on the positive y axis can “outrun” the corresponding linear solution
(since they spend more time in the fast region x < 0). Thus a values corresponding
to the appearance of these types of solutions are the only inner loop bifurcations
that must be calculated using numerical experimentation.

In Figure 11, left, we demonstrate a numerically calculated bifurcation of this
type at approximately a = 0.0230814. To do this we show the endpoints only
(with connecting lines for readability) of solution curves for a = 0.0230830 and
a = 0.0230800, corresponding to several initial conditions along the negative
y = φ′ axis. The initial conditions used are labeled in the figure. These endpoints
correspond to solutions that wrap around the origin about 1.5 times.

One sees that for a = 0.0230830 the solution curves do not reach the y axis, and
hence they are not solutions to the BVP. For a = 0.0230800 the longer curves pass
the y axis and the shorter ones fall short of it, showing that there are exactly two
new solutions to the BVP. At some point in between these two cases there must be
an a value for which the longest solution curve just touches the y axis (this value is
about a = 0.0230814).

This type of bifurcation is similar to a saddle-node bifurcation for a first-order
ordinary differential equation, where at the bifurcation point a single fixed point
appears where there was previously none, then this single fixed point splits into two
fixed points which grow farther apart. This is also how new big-loop steady-state
solutions are created; they must also be estimated using numerical exploration.

Figure 11, right and bottom, shows the two other types of bifurcation that occur to
create new steady-state solutions. Figure 11, right, illustrates the type of bifurcation
that occurs at a bifurcation point calculated by (12) when new solutions with a
fractional number of loops are created (which corresponds to n odd in (12)). For
a just larger than the bifurcation value, one observes a solution with negative
initial condition and the zero solution. At the bifurcation value there is just the
zero solution, and for a just smaller than the bifurcation value there is the zero
solution and solution with positive initial condition. This is somewhat similar to a
transcritical bifurcation for first-order ODE’s.

Bifurcations of this type occur for a slightly smaller than the type shown in
Figure 11, left. Thus as a gets smaller, first two new small loop solutions are
created which have negative initial conditions (Figure 11, left), and then shortly
after that the negative solution that is closest to zero switches over to become
positive (Figure 11, right). The net result is one new solution with negative initial
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Figure 11. Bifurcation types for r = 0.5 and q = 10.

condition and one with positive initial condition (in addition to the zero solution)
after both bifurcations.

Finally, Figure 11, bottom, shows the type of bifurcation that occurs when new
inner loop solutions are created for n even in (12) (nonfractional number of loops).
This type of bifurcation can be compared to the pitchfork bifurcation of first-order
ODEs; as a is reduced, the zero solution gives rise to two new solutions, one with
positive initial condition and one with negative initial condition (the zero solution
continues). Note that the end of result of the two bifurcations in Figures 11, left,
and 11, right, is similar to the bifurcation in Figure 11, bottom, in that including
the zero solution, the number of solutions goes from one to three, corresponding to
one new solution with positive initial condition and one negative. The difference
is that for the case of even n the initial conditions that correspond to steady-state
solutions have equal and opposite sign, but not for the case of odd n.
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bifurcation type bifurcation values in terms of a

small loop from an = r/( 1
2 nπ)2(n > 1) 0.05066, 0.02252, 0.01267, 0.00811

small loop estimated numerically 0.023081
small half loop from an = r/( 1

2 nπ)2 (n = 1) 0.20264
big loop estimated numerically 0.0225578, 0.015, 0.0106, 0.0045

Table 1. Bifurcations values for r = 0.5 and q = 10.

In Table 1 we show all bifurcations that occur for 0.00811≤ α ≤ 0.20264. From
that table we see that the bifurcation just described at a = 0.023814 occurs just
before (as a gets smaller) the one calculated by (12) at a = 0.02252.

3.4. Stability analysis. Our numerical simulations have shown that some of the
equilibrium solutions found in Section 3.2 are stable and some are unstable. This
has motivated us to check the eigenvalues of the linearized operator of (3) about
the steady-state solution φ.

Let v be a small perturbation and u = φ + v the solution to (3), then if we
substitute it into (3), we get

(φ+ v)t = a(φ+ v)xx + r(φ+ v)
(

1− φ+v
q

)
−

(φ+ v)2

1+ (φ+ v)2
. (13)

Since φ is a steady-state solution, we have aφxx + rφ(1−φ/q)−φ2/(1+φ2)= 0.
If we linearize the nonlinear terms about the steady-state φ, we get

vt = avxx + f (φ)v,
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Figure 12. Stable and unstable solutions with color-coded eigen-
value spectrum for a = 0.05, r = 0.05 and q = 10.
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Figure 13. Left: stable solutions with spectrum for a = 0.002,
r = 0.5 and q = 10. Right: unstable solutions with spectrum for
a = 0.002, r = 0.5 and q = 10.

where

f (φ)= r − 2rφ
q
−

2φ
(1+φ2)2

.

Then the corresponding linear system is

vt =Hv, where H= a
d2

dx2 + f (φ). (14)

Our interest is the sign of the real part of the largest eigenvalue of H for each steady
state φ. If that value is negative, we expect the perturbation from the steady state to
shrink until the perturbed solution conforms to the steady state.

In Figures 12, 13 and 14 we show graphs of the steady-state solutions and the
corresponding eigenvalues of H for the α values 0.05, 0.002 and 0.00125.

In Figure 15 we show snapshots of an animation of a perturbed initial condition
and how it converges to a stable steady state. Notice that variations in the initial
condition and large deviations from the original steady state do not affect the long
term behavior of the solutions. This is typical of the outbreak and refuge solutions,
for which all eigenvalues are negative.

Conversely, if the largest eigenvalue has a positive real part, we will expect the
perturbation to grow, distancing the perturbed solution from the original steady
state; see Figures 16 and 17. Equilibria with positive eigenvalues are unstable and
achieved only under specific initial conditions [Seydel 2010]. Subtle changes to an
initial condition in the neighborhood of an unstable equilibrium will alter the long
term behavior of the solution. Figure 16 shows a small loop solution and Figure 17
shows an intermediate half-loop solution (between outbreak and refuge levels)

In some cases, the perturbed solution will rest near the steady state for a period
of time, then slowly gravitate to a new, distinct resting place. This sort of behavior
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Figure 14. Left: stable solutions with spectrum for a = 0.00125,
r = 0.5 and q = 10. Right: unstable solutions with spectrum for
a = 0.00125, r = 0.5 and q = 10.

is typical of equilibria that are “almost stable” in the sense that there is only one
positive eigenvalue and it is very small.

4. Traveling wave solutions

We study the traveling wave solutions of (3) that are in the form u(x, t)=φ(x−vt),
where v is the speed of the wave with the boundary conditions

u(−1, t)= h, and u(1, t)= k

and the initial condition

u(x, 0)= h+ 2(k−h)
π

tan−1 eCx . (15)
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Figure 15. A stable equilibrium solution (printed in black) and a
perturbed solution (printed in blue) are plotted each at t = 0, t = 2
and t = 10. The perturbation from the steady state is amplified to
highlight insensitivity to changes in the initial condition.
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Figure 16. An unstable equilibrium solution (black) and a per-
turbed solution (blue).
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Figure 17. An unstable equilibrium solution (black) and a per-
turbed solution (blue).

With these boundary and initial conditions (and appropriately chosen C), the so-
lutions are close in shape to traveling wavefronts, and thus quickly converge to
traveling wavefronts and end in steady-state solutions. These waves represent
growth/decay of the population as a function of the spatial dimension.

4.1. Choosing boundary conditions. We pick the boundary conditions as

u(−1, t)= h and u(1, t)= k,

where h and k are the fixed point solutions to the nondistributed model (2). As
explained in Section 2.2, we consider q and r values that give us the four fixed point
solutions to (2). Two of these solutions are stable and the other two are unstable.
One of the unstable fixed solutions is the zero solution and if us1 and us2 are stable
and uu is the unstable solution, we have the following inequality:

0< us1 < uu < us2 . (16)

We are interested in the traveling waves that converge to stable fixed point solutions
at ±1, i.e., h = us1 and k = us2 .

4.2. Results.
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4.2.1. The movement of the wavefront. Traveling wavefronts move according to
the boundary conditions, growth constant r and carrying constant q . Fixing q and
varying r , a critical r = r∗ was found at different q values such that:

• for r < r∗, the wave travels to the right, and the population dies out;

• for r > r∗, the wave travels to the left, and infestation occurs;

• for r = r∗, the wave does not travel, and no population growth or decay occurs.

The behavior of the wave movement was observed after incrementally selecting the
values of q from [9, 15]with the increment 1 while r values were varied continuously
within an interval for which both the refuge and outbreak levels existed. The effect
of changing r and q over a selected range, with a = 0.001 fixed, is recorded in
Table 2. When the wave moves to the right, it means that the wave favors moving to
the refuge solution and the population decreases. On the other hand, the wave favors
outbreak and an increase in population when it moves to the left. This behavior is
presented in Figure 18 for a = 0.001 and q = 14.5, with r changing in value from
its lowest to highest value within the range of r specified within the four solutions
case for (2) as shown Figure 1, lower left. In Figure 18 the wave is plotted at the
critical r value where the wave does not move and the thus the population does not
change in time.

Note that for a wavefront that starts at the outbreak level on the left and ends
at the refuge level on the right, the movement of the wavefront would be in the
opposite direction of that just described.

It can be shown that for a = 1 that there is an integral condition [Murray 2005]
that determines the value of r∗ for fixed q for which the velocity is zero. The
condition is ∫ us2

us1

ru
(

1− u
q

)
−

u2

u2+ 1
du = 0. (17)

In fact, by inspecting the proof in the reference just given, it is clear that this
condition works for all positive a values. This condition was checked against the
numerically calculated values in Table 2, and the results were consistent. This

q 9 10 11 12 13 14 15

r∗ 0.4605 0.4258 0.3956 0.3692 0.3459 0.3252 0.3067

Table 2. Critical r∗ that represents zero velocity wavefronts for
different q values, calculated numerically for a = 0.001, but valid
for other a values. Larger r means wavefront moves left (outbreak
level increasing) and for smaller r wavefront moves right (outbreak
level decreasing).
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Figure 18. The plots captured at t = 0 (blue curve), t = 5 (red
curve) and t = 10 (green curve) with a = 0.001 and q = 14.5.
Top: r = 0.3165, h = 0.345918 and k = 9.93485. Left: r = 0.28,
h = 0.2987 and k = 8.47012. Right: r = 0.538, h = 1.03008 and
k = 12.3281.

means that even though the values given in Table 2 were calculated with a = 0.001,
they are valid for other a values.

4.2.2. Velocity as a function of r and q, with a fixed. We have studied how the
velocity of a traveling wave depends on r and q . Figure 19 shows that relation for a
few different values of a. For these charts, the speed was calculated via simulation
of the PDE for various r and q values, and then a contour plot of the data was
created using Matlab.

These charts can be used to estimate the speed at which an outbreak spreads
within the parameter ranges shown.

4.2.3. The approximately linear relation between v and r, with q and a fixed. For
a fixed q value, by utilizing the ranges of velocities for each q and range of r ,
we observed an approximately linear relation between r and v. Thus, for a fixed
carrying capacity, we can estimate the velocity of the budworm wave as a function
of the growth rate of the insect. Figure 20 shows this relation for different values
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Figure 19. The speed contour plots.

of q when a = 0.0005 and when a = 0.001. These equations are consistent with
Figure 19.

5. How outbreaks spread

In this section we demonstrate one possible way for an outbreak of budworms
localized in space can spread to the entire forest (the region −1 ≤ x ≤ 1). We
choose r = 0.5 and q = 10 again, so that we are in the r −q region where there are
four fixed points. We also choose a = 0.0005 which makes sure that the outbreak
and subsistence levels occur in the distributed model as well.

We show how a large enough perturbation of the steady-state solution that
represents the subsistence level of budworms can create a traveling wavefront of the
type studied in the last section, and end in the steady-state solution that represents
the outbreak level. The speed of the wave can be estimated using the charts and
equations from that last section as well.
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Figure 21. Initial Gaussian increase in budworm population from
subsistence level spreads to outbreak.

In Figure 21 we show the effect of imposing a Gaussian bump, representing a
small normally distributed increase in the budworm population, on top of a steady-
state subsistence solution. In that figure we see snapshots of an animation every 20
time units, starting at t = 0 (blue dots). Also highlighted are the times t = 80 (cyan
dots), t = 160 (dark green dots) and t = 260 (red dots). The snapshot at t = 80
represents the point at which the initial disturbance to the subsistence level has
grown so that the top has reached the outbreak level. At this point there are two
wavefronts of the type described in Section 4 (one moving left and one moving
right) as well as two regions that conform to the steady-state subsistence level
(−1≤ x ≤−0.2 and 0.8≤ x ≤ 1) as described in Section 3.
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At t = 160 there are three regions; for −0.25≤ x ≤ 1 we observe the population
conforming to the steady-state outbreak level of Section 3, for −0.75≤ x ≤−0.25
we have a traveling wavefront as in Section 4, and for−1≤ x≤−0.75 the population
conforms to the steady-state subsistence level of Section 3. Finally at t = 260 the
population has completely reached the steady-state outbreak level.

Finally, from Figure 19 we can estimate the speed of the wavefront to be slightly
larger than −0.006 (for the left-moving front); the equation from Figure 20, right,
gives−0.0067. In the 80 time units that separate the snapshots at t = 80 and t = 160
we would expect the wavefront to move about −0.5 units to the left, which is what
is seen in Figure 21.

6. Conclusion

The original spruce budworm model is an ordinary differential equation and it
models the outbreaks of the spruce budworm in forest environments. By adding the
diffusion term auxx to the original equation, we got the distributed model, which is
a partial differential equation. By using spectral numerical methods in the spatial
direction, and Matlab’s ode45 solver in the time direction, we studied the numerical
existence of steady-state and traveling wave solutions of the equation.

In particular, we found bifurcations values in terms of the diffusion parameter a
for which new steady-state solutions emerge, and we determined the stability of
each steady-state solution found. We were able to numerically estimate the speed of
a traveling wave solution given the values of the growth rate and carrying capacity
parameters. Finally we showed how a small Gaussian perturbation of the refuge level
can lead to the steady-state outbreak level, and estimate how quickly that can happen.

References

[Aron et al. 2014] M. Aron, P. Bowers, N. Byer, R. Decker, A. Demirkaya, and J. H. Ryu, “Numerical
results on existence and stability of steady state solutions for the reaction-diffusion and Klein–Gordon
equations”, Involve 7:6 (2014), 723–742. MR Zbl

[Ludwig et al. 1978] D. Ludwig, D. D. Jones, and C. S. Holling, “Qualitative analysis of insect
outbreak systems: the spruce budworm and forest”, J. Anim. Ecol. 47:1 (1978), 315–332.

[Murray 2005] J. Murray, Mathematical biology, I: An introduction, 3rd ed., Interdisciplinary applied
mathematics 17, Springer, New York, 2005. Zbl

[Seydel 2010] R. Seydel, Practical bifurcation and stability analysis, 3rd ed., Interdisciplinary
Applied Mathematics 5, Springer, 2010. MR Zbl

[Trefethen 2000] L. N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools
10, Society for Industrial and Applied Mathematics, Philadelphia, 2000. MR Zbl

[Williams and Birdsey 2003] D. W. Williams and R. A. Birdsey, “Historical patterns of spruce
budworm defoliation and bark beetle outbreaks in North American conifer forests: an atlas and
description of digital maps”, general technical report NE-308, U.S. Department of Agriculture,

http://dx.doi.org/10.2140/involve.2014.7.723
http://dx.doi.org/10.2140/involve.2014.7.723
http://dx.doi.org/10.2140/involve.2014.7.723
http://msp.org/idx/mr/3284880
http://msp.org/idx/zbl/1308.35025
http://dx.doi.org/10.2307/3939
http://dx.doi.org/10.2307/3939
http://dx.doi.org/10.1007/b98868
http://msp.org/idx/zbl/1006.92001
http://dx.doi.org/10.1007/978-1-4419-1740-9
http://msp.org/idx/mr/2561077
http://msp.org/idx/zbl/1195.34004
http://dx.doi.org/10.1137/1.9780898719598
http://msp.org/idx/mr/1776072
http://msp.org/idx/zbl/0953.68643
http://www.treesearch.fs.fed.us/pubs/5521
http://www.treesearch.fs.fed.us/pubs/5521
http://www.treesearch.fs.fed.us/pubs/5521


NUMERICAL EXISTENCE OF SOLUTIONS TO THE SPRUCE BUDWORM MODEL 879

Forest Service, Northeastern Research Station, Newtown Square, PA, 2003, available at http://
www.treesearch.fs.fed.us/pubs/5521.

Received: 2016-06-06 Accepted: 2016-08-21

alkhalil@stanford.edu Stanford University, Stanford, CA 94305, United States

cbrenna1@ucsc.edu UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064,
United States

rdecker@hartford.edu Department of Mathematics, University of Hartford,
200 Bloomfield Ave, West Hartford, CT 06117, United States

demirkaya@hartford.edu Department of Mathematics, University of Hartford,
Dano Hall 210, 200 Bloomfield Ave,
West Hartford, CT 06117, United States

nagode@colostate.edu Colorado State University, Fort Collins, CO 80523,
United States

mathematical sciences publishers msp

mailto:alkhalil@stanford.edu
mailto:cbrenna1@ucsc.edu
mailto:rdecker@hartford.edu
mailto:demirkaya@hartford.edu
mailto:nagode@colostate.edu
http://msp.org


involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA

Martin Bohner Missouri U of Science and Technology, USA
Nigel Boston University of Wisconsin, USA

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
Pietro Cerone La Trobe University, Australia

Scott Chapman Sam Houston State University, USA
Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Behrouz Emamizadeh The Petroleum Institute, UAE

Joel Foisy SUNY Potsdam, USA
Errin W. Fulp Wake Forest University, USA

Joseph Gallian University of Minnesota Duluth, USA
Stephan R. Garcia Pomona College, USA

Anant Godbole East Tennessee State University, USA
Ron Gould Emory University, USA

Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA

Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA

Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA

Natalia Hritonenko Prairie View A&M University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA

Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA

Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Timothy E. O’Brien Loyola University Chicago, USA

Joseph O’Rourke Smith College, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA

Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA

Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA

James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor

Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA

John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $175/year for the electronic
version, and $235/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2017 vol. 10 no. 5

721Algorithms for finding knight’s tours on Aztec diamonds
SAMANTHA DAVIES, CHENXIAO XUE AND CARL R. YERGER

735Optimal aggression in kleptoparasitic interactions
DAVID G. SYKES AND JAN RYCHTÁŘ
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