\bullet
 in Olve

a journal of mathematics

Integer solutions to $x^{2}+y^{2}=z^{2}-k$ for a fixed integer value k

Wanda Boyer, Gary MacGillivray, Laura Morrison, C. M. (Kieka) Mynhardt and Shahla Nasserasr

Integer solutions to $x^{2}+y^{2}=z^{2}-k$ for a fixed integer value k

Wanda Boyer, Gary MacGillivray, Laura Morrison, C. M. (Kieka) Mynhardt and Shahla Nasserasr
(Communicated by Chi-Kwong Li)

For a given integer k, general necessary and sufficient conditions for the existence of integer solutions to an equation of the form $x^{2}+y^{2}=z^{2}-k$ are given. It is shown that when there is a solution, there are infinitely many solutions. An elementary method for finding the solutions, when they exist, is described.

1. Introduction

Finding solutions to quadratic Diophantine equations in three or more variables has been of interest since ancient times. One example is Pythagoras' equation $x^{2}+y^{2}=z^{2}$, which was studied at least 3500 years ago by the Babylonians. Another example is its generalization $x^{2}+y^{2}+w^{2}=z^{2}$, which was completely solved by Catalan [1885] (also see [Ayoub 1984]). A further generalization is the equation $x^{2}+y^{2}=z^{2}-k$ for a given integer $k \neq 0$. Frink [1987] gave a complete solution to the equations of the form $x^{2}+y^{2}=z^{2}+1$. Moreover, solutions to the equation $x^{2}+y^{2}=z^{2}-k$ with $k=1,2$ were crucial in finding the minimum number of arcs in primitive digraphs with smallest large exponent; see [MacGillivray et al. 2008]. When k is a perfect square, the solution set can be found using Catalan's method. In the previous reference, the solution set is described when $k=1,2$.

We study the equation $x^{2}+y^{2}=z^{2}-k$ for any fixed integer value of k. It is advantageous to write $z=x+t$ for some integer t. Hence we seek solutions x, y, t to the Diophantine equation

$$
\begin{equation*}
x^{2}+y^{2}=(x+t)^{2}-k \tag{1}
\end{equation*}
$$

We give conditions on k and t for which the equation has no solution, and describe an elementary method for finding all solutions to the equation in the cases when

[^0]they exist. If $t=0$ then (1) becomes $y^{2}=-k$, which has a solution if and only if $-k$ is a perfect square. Thus in the sequel we consider only nonzero integers t.

2. Background

In an attempt to make this article self-contained, we review some relevant background from elementary number theory. The results and proofs in this section can be found in standard number theory books; for example, see [Apostol 1976; Kumanduri and Romero 1998].

We shall make use of quadratic congruences, that is, congruences of the form $x^{2} \equiv a(\bmod m)$, for integers a and m. The integer a is a quadratic residue modulo m if the congruence $x^{2} \equiv a(\bmod m)$ has a solution, and a quadratic nonresidue modulo m otherwise.

Suppose p is an odd prime and p does not divide a. The Legendre symbol, denoted by (a / p), is defined by

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
1 & \text { if } a \text { is a quadratic residue modulo } p \\
-1 & \text { if } a \text { is a quadratic nonresidue modulo } p
\end{aligned}\right.
$$

Theorem 1 [Kumanduri and Romero 1998, p. 216]. Suppose p is an odd prime which divides neither a nor b. Then:
(1) $\left(\frac{a^{2}}{p}\right)=1$.
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
(3) Euler's criterion: $a^{(p-1) / 2} \equiv\left(\frac{a}{p}\right)(\bmod p)$.

Proposition 2 [Apostol 1976, p. 181; Kumanduri and Romero 1998, p. 414]. Suppose p is an odd prime with $p \neq 3$. Then

$$
\begin{align*}
\left(\frac{-1}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1(\bmod 4), \\
-1 & \text { if } p \equiv 3(\bmod 4),
\end{aligned}\right. \tag{2}\\
\left(\frac{2}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,7(\bmod 8), \\
-1 & \text { if } p \equiv 3,5(\bmod 8),
\end{aligned}\right. \tag{3}\\
\left(\frac{3}{p}\right) & =\left\{\begin{aligned}
1 & \text { if } p \equiv 1,11(\bmod 12), \\
-1 & \text { if } p \equiv 5,7(\bmod 12) .
\end{aligned}\right. \tag{4}
\end{align*}
$$

Proposition 3 [Kumanduri and Romero 1998, p. 428]. For every odd prime $p \neq 5$,

$$
\left(\frac{5}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,4(\bmod 5), \\
-1 & \text { if } p \equiv 2,3(\bmod 5) .
\end{aligned}\right.
$$

We use the notation (a, b) to denote the greatest common divisor of integers a and b.

Proposition 4. Suppose $a, b \in \mathbb{N}$ and p is a prime, and assume $k=k_{1} p^{b}$ with $\left(k_{1}, p\right)=1$. Consider the congruence

$$
\begin{equation*}
y^{2} \equiv-k\left(\bmod p^{a}\right) . \tag{5}
\end{equation*}
$$

(1) If $b<a$, then the congruence (5) has an integer solution if and only if b is even and $-k_{1}$ is a quadratic residue modulo p^{a-b}.
(2) If $b \geq a$, then the congruence (5) always has a solution.

Proof. (1) The congruence $y^{2} \equiv-k\left(\bmod p^{a}\right)$ has a solution if and only if there exists an integer m such that $m^{2}=-k+p^{a} q=p^{b}\left(-k_{1}+p^{a-b} q\right)$. Since p does not divide $-k_{1}+p^{a-b} q$, we have $p^{b} \mid m^{2}$ but p^{b+1} does not divide m^{2}, thus b is even. Now, divide both sides of $m^{2}=p^{b}\left(-k_{1}+p^{a-b} q\right)$ by p^{b}. Then $m_{1}^{2}=-k_{1}+p^{a-b} q$, for some integer m_{1}, which implies $x^{2} \equiv-k_{1}\left(\bmod p^{a-b}\right)$ has a solution. The converse is trivial.
(2) If $b \geq a$, then $y^{2} \equiv-k\left(\bmod p^{a}\right)$ has a solution if and only if there exists an integer m such that $m^{2}=-k+p^{a} q=p^{a}\left(-k_{1} p^{b-a}+q\right)$. If a is even, say $a=2 \beta$ for some integer β, then for any integer u, any number of the form $m= \pm u p^{\beta}$ satisfies $m^{2}=\left(\pm p^{\beta}\right)^{2}\left(-k_{1} p^{b-a}+u^{2}+k_{1} p^{b-a}\right)$. So any such m with $0 \leq m \leq p^{a}-1$ is a solution to the congruence $y^{2} \equiv-k\left(\bmod p^{a}\right)$. If $a=2 \beta+1$ is odd, then by a similar argument $m= \pm u p^{\beta+1}$, with $0 \leq m \leq p^{a}-1$, is a solution to the congruence $y^{2} \equiv-k\left(\bmod p^{a}\right)$.

For any integer $n>1$, and given congruence $f(x) \equiv 0(\bmod n)$, let $N(n)$ denote the number of solutions to the congruence $f(x) \equiv 0(\bmod n)$.

Lemma 5 [Apostol 1976, p. 118]. Suppose $f(x)$ is a polynomial with integer coefficients. Let $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ be the prime factorization of t.
(1) The congruence $f(x) \equiv 0(\bmod t)$ has a solution if and only if each of the congruences $f(x) \equiv 0\left(\bmod p_{i}^{e_{i}}\right), i=1,2, \ldots, r$, has a solution.
(2) $N(t)=\prod_{i}^{r} N\left(p_{i}^{e_{i}}\right)$.

The following results will also be used in solving (1).
Lemma 6 [Apostol 1976, p. 178]. If p is an odd prime and p does not divide k, then $y^{2} \equiv-k(\bmod p)$ has either exactly two distinct solutions or no solution.
Lemma 7 [Nasserasr 2007, p. 38]. If p is an odd prime and (k, p) $=1$, then every solution to the congruence $y^{2} \equiv-k\left(\bmod p^{e}\right), e \geq 2$, generates a solution to the congruence $y^{2} \equiv-k(\bmod p)$ and conversely.

If the modulus in Lemma 6 is a composite number, we have the following result.
Lemma 8. If $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes, $r, e_{i} \in \mathbb{N}$, and $(k, t)=1$, then $y^{2} \equiv-k(\bmod t)$ has 2^{r} distinct solutions y if $-k$
is a quadratic residue modulo p_{i} for each $p_{i}, i=1,2, \ldots, r$, and no solution otherwise.

Proof. Suppose for each $p_{i}, i=1,2, \ldots, r$ there is a solution to $y^{2} \equiv-k\left(\bmod p_{i}\right)$. Using Lemma 6, there are exactly two solutions for each congruence. Lemma 5 implies that $s^{2} \equiv-k(\bmod t)$ has exactly 2^{r} distinct solutions. If one of the congruences $s^{2} \equiv-k\left(\bmod p_{i}\right), i=1,2, \ldots, r$, has no solution, then by Lemma 5 , the congruence $y^{2} \equiv-k(\bmod t)$ has no solution.

The following is a special case of $y^{2} \equiv-k(\bmod p)$ when k is a perfect square.
Lemma 9. Let p be an odd prime, and a be an integer such that p does not divide a. Then the congruence $y^{2} \equiv-a^{2}(\bmod p)$ has exactly two distinct solutions if $p \equiv 1(\bmod 4)$ and no solution otherwise.

Proof. The congruence $y^{2} \equiv-a^{2}(\bmod p)$ has exactly two distinct solutions if and only if

$$
\begin{equation*}
\left(\frac{-a^{2}}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{a^{2}}{p}\right)=1 . \tag{6}
\end{equation*}
$$

Since $\left(a^{2} / p\right)=1,(6)$ holds if and only if $(-1 / p)=1=(-1)^{(p-1) / 2}$ (using Euler's criterion). The last equation holds if and only if $p \equiv 1(\bmod 4)$.

3. General results

We give solutions to the equation

$$
x^{2}+y^{2}=(x+t)^{2}-k .
$$

First, we show that it is possible to remove common divisors of k and t.
Proposition 10. Suppose t has prime factorization of the form $t=\prod_{i=1}^{r} p_{i}^{e_{i}}$ and let $k=k_{1} p_{i_{0}}^{f_{i}}$, where $1 \leq i_{0} \leq r$ and $p_{i_{0}} \nmid k_{1}$. Then the equation $x^{2}+y^{2}=(x+t)^{2}-k$ is equivalent to $x_{1}^{2}+y_{1}^{2}=\left(x_{1}+t_{1}\right)^{2}-k_{1}$, where $p_{i_{0}}^{2} \nmid\left(k_{1}, t_{1}\right)$.
Proof. We prove the statement for the case $f_{i_{0}} \leq e_{i_{0}}$. The case $f_{i_{0}}>e_{i_{0}}$ is similar. Depending on whether $f_{i_{0}}$ is even or odd we have $f_{i_{0}}=2 \alpha+\beta$ with $\beta=0,1$. Since $p_{i_{0}}^{2 \alpha} \mid(k, t)$, if the equation has a solution, then $p_{i_{0}}^{2 \alpha} \mid y^{2}$. Thus, dividing both sides of the equation $y^{2}=2 x t+t^{2}-k$ by $p_{i_{0}}^{2 \alpha}$ implies

$$
\left(\frac{y}{p_{i_{0}}^{\alpha}}\right)^{2}=2\left(\frac{x}{p_{i_{0}}^{\alpha}}\right)\left(\frac{t}{p_{i_{0}}^{\alpha}}\right)+\left(\frac{t}{p_{i_{0}}^{\alpha}}\right)^{2}-\left(\frac{k}{p_{i_{0}}^{2 \alpha}}\right) .
$$

This is equivalent to $x_{1}^{2}+y_{1}^{2}=\left(x_{1}+t_{1}\right)^{2}-k_{1} p_{i_{0}}^{\beta}$, and the result follows.
In Proposition 10, if $\alpha=1$, in solving the equation we can consider $k / p_{i_{0}}^{2}$ and $t / p_{i_{0}}$ instead of k and t, respectively. By repeating this process on each common
prime factor p of k and t such that $p^{2} \mid k$ and $p \mid t$, we arrive to an equation of the form $x^{2}+y^{2}=x^{2}+2 x t+t^{2}-k$ with a few possibilities for common divisors of k and t listed below.

Lemma 11. For every common prime factor p of k and t, (1) can be reduced to an equation of a similar form where k and t satisfy one of the following conditions:
(1) $(k, t)=1$.
(2) $(k, t)=s p$ where p does not divide s, p^{2} does not divide k and $p^{2} \mid t$.
(3) $(k, t)=s p$ where p does not divide s, p^{2} does not divide k, and p^{2} does not divide t.

Therefore, without loss of generality, in solving (1) we may assume that k and t satisfy one of the conditions in Lemma 11.

We consider the cases for t odd and t even separately.
3.1. Solutions to $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}=(\boldsymbol{x}+\boldsymbol{t})^{\mathbf{2}}-\boldsymbol{k}$ when \boldsymbol{t} is odd. If t is odd and y is a variable, the solutions to $y^{2} \equiv t^{2}-k(\bmod 2 t)$ and $y^{2} \equiv-k(\bmod t)$ are related.

Lemma 12. Suppose t is odd and k is an even integer. Then m is a solution to $y^{2} \equiv t^{2}-k(\bmod 2 t)$ if and only if it is an odd solution to $y^{2} \equiv-k(\bmod t)$.
Proof. If m is a solution to $y^{2} \equiv t^{2}-k(\bmod 2 t)$, then there exists $q \in \mathbb{Z}$ such that $m^{2}=-k+t(2 q+t)$. Since t is odd and k is even, m is an odd solution to $y^{2} \equiv-k(\bmod t)$. For the converse, note that if m is an odd solution to $y^{2} \equiv$ $-k(\bmod t)$, then m is a solution to $y^{2} \equiv t^{2}-k(\bmod t)$. Since $m^{2}-t^{2}+k$ is even and t is odd, m is a solution to $y^{2} \equiv t^{2}-k(\bmod 2 t)$.

In this case, if all solutions to $y^{2} \equiv-k(\bmod t)$ are odd, then they all generate distinct solutions to $y^{2} \equiv t^{2}-k(\bmod 2 t)$. However, if $y^{2} \equiv-k(\bmod t)$ has an even solution v, then $v+t$ is an odd solution to $y^{2} \equiv-k(\bmod t)$ and thus it is a solution to $y^{2} \equiv t^{2}-k(\bmod t)$. That is, for $t=\prod_{i=1}^{r} p_{i}^{e_{i}}$, we can choose 2^{r} distinct solutions to the congruence $y^{2} \equiv-k(\bmod t)$ to be odd, and they will generate 2^{r} distinct solutions to the congruence $y^{2} \equiv t^{2}-k(\bmod 2 t)$.
Lemma 13. Suppose t and k are odd integers. Then m is a solution to $y^{2} \equiv$ $t^{2}-k(\bmod 2 t)$ if and only if it is an even solution to $y^{2} \equiv-k(\bmod t)$.
Proof. If m is a solution to $y^{2} \equiv t^{2}-k(\bmod 2 t)$, then m is even and there exists $q \in \mathbb{Z}$ such that $m^{2}=-k+t(2 q+t)$. Since t and k are odd, m is an even solution to $y^{2} \equiv-k(\bmod t)$. If m is an even solution to $y^{2} \equiv-k(\bmod t)$, then m is a solution to $y^{2} \equiv t^{2}-k(\bmod t)$. Now, $m^{2}-t^{2}+k$ is even and t is odd, so m is a solution to $y^{2} \equiv t^{2}-k(\bmod 2 t)$.

Similarly, in this case, if all solutions to $y^{2} \equiv-k(\bmod t)$ are even, then they all generate distinct solutions to $y^{2} \equiv t^{2}-k(\bmod 2 t)$. However, if $y^{2} \equiv t^{2}-k(\bmod t)$
has an odd solution v, then $v+t$ is an even solution to $y^{2} \equiv-k(\bmod t)$ and thus is a solution to $y^{2} \equiv t^{2}-k(\bmod 2 t)$. Similar to the previous case, we can generate 2^{r} distinct solutions to the congruence $y^{2} \equiv t^{2}-k(\bmod 2 t)$ by choosing enough even solutions to $y^{2} \equiv-k(\bmod t)$.

Therefore, when t is odd, solving the congruence $y^{2} \equiv-k(\bmod t)$ is critical in solving (1). We study the cases of $(k, t) \neq 1$ and $(k, t)=1$ separately.
Lemma 14. Let $t=\prod_{i=1}^{r} p_{i}^{e_{i}}$ be the prime factorization of t. Consider the equation $x^{2}+y^{2}=(x+t)^{2}-k:$
(1) If $(k, t)=s p$ and p does not divide s, p^{2} does not divide k, and $p^{2} \mid t$, for some common prime factor p of k and t, then the equation has no solution.
(2) If the above case does not hold for any common prime factor of k and t, and there exists a prime p such that $(k, t)=s p, p$ does not divide s, p^{2} does not divide k, and p^{2} does not divide t, then the equation has a solution if and only if every congruence $y^{2} \equiv-k\left(\bmod p_{i}^{e_{i}}\right)$ with $p_{i} \neq p$ has a solution of the form $y \equiv 0(\bmod p)$.
Proof. (1) In this case, one of the congruences obtained from the congruence $y^{2} \equiv-k(\bmod t)$ is equivalent to $y^{2} \equiv-k_{1} p\left(\bmod p^{2}\right)$, where $\left(k_{1}, p\right)=1$. Using Proposition 4, this congruence has no solution, which implies that (1) has no solution.
(2) In this case, one of the congruences obtained from the congruence $y^{2} \equiv-k$ $(\bmod t)$ is equivalent to $y^{2} \equiv-k_{1} p(\bmod p)$. Using Proposition 4 , this congruence always has a solution, namely $y \equiv 0(\bmod p)$. Since $y^{2} \equiv-k(\bmod t)$ has a solution if and only if each of the congruences $y^{2} \equiv-k\left(\bmod p_{i}^{e_{i}}\right)$ with $p_{i} \neq p$ for all other prime divisors of t has a solution, the result follows.

Now consider the case where $(k, t)=1$ and t is odd.
Using Lemma 5, if $t=\prod_{i=1}^{r} p_{i}^{e_{i}}$ is an odd integer, then the congruence $y^{2} \equiv$ $-k(\bmod t)$ is equivalent to the system of congruences

$$
\begin{gathered}
y^{2} \equiv-k\left(\bmod p_{1}^{e_{1}}\right), \\
y^{2} \equiv-k\left(\bmod p_{2}^{e_{2}}\right), \\
\vdots \\
y^{2} \equiv-k\left(\bmod p_{r}^{e_{r}}\right) .
\end{gathered}
$$

That is, if one of the above congruences does not have a solution, then the congruence $y^{2} \equiv-k(\bmod t)$ has no solution. Now, if all of the above congruences have solutions, then each congruence can be replaced by a linear congruence, and the resulting system of congruences can be solved using the Chinese remainder theorem.

The following is a consequence of Lemmas 8, 12, and 13.

Corollary 15. If $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $r, e_{i} \in \mathbb{N}$, then $y^{2} \equiv t^{2}-k(\bmod 2 t)$ has 2^{r} distinct solutions for y if $-k$ is a quadratic residue modulo p_{i} for each $p_{i}, i=1,2, \ldots, r$, and no solution otherwise.
Theorem 16. Suppose t is odd and k is an integer with $(k, t)=1$. The equation $x^{2}+y^{2}=(x+t)^{2}-k$ has integer solutions x, y, t if and only if $-k$ is a quadratic residue modulo p_{i} for every prime divisor p_{i} of t. For any such t, there are infinitely many solutions.
Proof. Suppose $x^{2}+y^{2}=(x+t)^{2}-k$ has integer solutions x, y, t. Then, $y^{2} \equiv t^{2}-k(\bmod 2 t)$, so by Corollary $15,-k$ is a quadratic residue modulo every prime divisor of t.

Now, suppose $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ where $-k$ is a quadratic residue of every p_{i}. By Corollary $15, y^{2} \equiv t^{2}-k(\bmod 2 t)$ has 2^{r} distinct solutions. Let m be such a solution that is also a least residue of y modulo $2 t$. Now, x, y, t with $y=m+2 t q$, $x=\left(y^{2}-t^{2}+k\right) /(2 t)$, is a solution to the equation $x^{2}+y^{2}=(x+t)^{2}-k$ for all $q \in \mathbb{Z}$. Therefore, for any such t, there are infinitely many solutions.

The above results give an algorithm for computing the solutions to the equation $x^{2}+y^{2}=(x+t)^{2}-k$ when t is odd. To illustrate this algorithm, we present an example for each of the cases $k \equiv 0,1,2,3(\bmod 4)$. For this we consider $k=12,5,6,15$, respectively.
3.1.1. Examples for $k \equiv 0,1,2,3(\bmod 4)$. For the case $k \equiv 0(\bmod 4)$, consider the example $k=12$. That is, we want to solve $x^{2}+y^{2}=(x+t)^{2}-12$ when t is odd and has a prime factorization $t=\prod_{i=1}^{r} p_{i}^{e_{i}}$. Since t is odd, the only possibilities for $(12, t)$ are 3 and 1 . First we consider $(12, t)=3$. Using Lemma 14, if $9 \mid t$, then there is no solution to the equation; if 9 does not divide t, then there is a solution to the equation if and only if $y \equiv 0(\bmod 3)$ and $y^{2} \equiv-12\left(\bmod p_{i}^{e_{i}}\right)$ has a solution for each $p_{i} \neq 3, i=1,2, \ldots, r$. Since $\left(12, p_{i}\right)=1$ for $p_{i} \neq 3$, the latter congruence is equivalent to finding whether or not -12 is a quadratic residue modulo each $p_{i}^{e_{i}}$; this can be done using Euler's criterion or quadratic reciprocity. The result for each congruence will be a linear congruence and then the Chinese remainder theorem can be used. Now, consider the case $(12, t)=1$.

The parity of t depends on the parity of x and the parity of y as follows:

- If both x and y are even, then $x^{2}+y^{2} \equiv 0(\bmod 4)$. This leads to $(x+t)^{2} \equiv$ $0(\bmod 4)$, which implies that t is even.
- If x and y are both odd, then $x^{2}+y^{2} \equiv 2(\bmod 4)$. Then $(x+t)^{2} \equiv 2(\bmod 4)$, which is a contradiction since no square is congruent to 2 modulo 4 .
- If x and y are of opposite parity, then $x^{2}+y^{2} \equiv 1(\bmod 4)$. This implies that $(x+t)^{2} \equiv 1(\bmod 4)$, meaning that x and t are of opposite parity.

Proposition 17. (i) If $p \neq 3$ is an odd prime, then $s^{2} \equiv-12(\bmod p)$ has exactly two distinct solutions if $p \equiv 1(\bmod 6)$ and no solution otherwise.
(ii) If $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes, all greater than 3 , and $r, e_{i} \in \mathbb{N}$, then $s^{2} \equiv-12(\bmod t)$ has 2^{r} distinct solutions if $p_{i} \equiv 1(\bmod 6)$ for each $i=1,2, \ldots, r$, and no solution otherwise.

Proof. (i) First suppose $s^{2} \equiv-12(\bmod p)$ has exactly two distinct solutions. Since $(4 / p)=\left(2^{2} / p\right)=1$,

$$
\left(\frac{-12}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)\left(\frac{4}{p}\right)=1 \quad \Longrightarrow \quad\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=1 .
$$

We consider the two cases $(-1 / p)=(3 / p)=1$ and $(-1 / p)=(3 / p)=-1$:
(1) $(-1 / p)=(3 / p)=1$. Then, using (2) and (4), we get one of the following:
(i) $p \equiv 1(\bmod 4)$ and $p \equiv 1(\bmod 12)$. These congruences imply $p \equiv$ $1(\bmod 2)$ and $p \equiv 1(\bmod 3)$, respectively. By the Chinese remainder theorem $p \equiv 1(\bmod 6)$.
(ii) $p \equiv 1(\bmod 4)$ and $p \equiv 11(\bmod 12)$, which is impossible.
(2) $(-1 / p)=(3 / p)=-1$. Then, using (2) and (4), we get one of the following:
(i) $p \equiv 3(\bmod 4)$ and $p \equiv 5(\bmod 12)$, which is impossible.
(ii) $p \equiv 3(\bmod 4)$ and $p \equiv 7(\bmod 12)$. These congruences imply $p \equiv$ $1(\bmod 2)$ and $p \equiv 1(\bmod 3)$, respectively. By the Chinese remainder theorem, $p \equiv 1(\bmod 6)$.

For the converse, suppose $p \equiv 1(\bmod 6)$. Then either $p \equiv 1(\bmod 12)$, which implies $(-12 / p)=(-1 / p)(3 / p)(4 / p)=(1)(1)(1)=1$, or $p \equiv 7(\bmod 12)$, which implies $(-12 / p)=(-1 / p)(3 / p)(4 / p)=(-1)(-1)(1)=1$. In either case, $s^{2} \equiv-12(\bmod p)$ has exactly two distinct solutions.
(ii) If $r=1$, then the result follows from the Case (1). For $r>1$, suppose that for $i=1,2, \ldots, r$, the prime p_{i} is congruent to 1 modulo 6 . Then the result follows from the Case (1) and Lemma 8. For the converse, suppose $s^{2} \equiv-12(\bmod t)$ has exactly 2^{r} distinct solutions. Then each congruence $s^{2} \equiv-12\left(\bmod p_{i}\right)$, $i=1,2, \ldots, r$, has a solution and by the Case (1), p_{i} is congruent to 1 modulo 6 for all $i=1,2, \ldots, r$.

Also, if $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes and $r, e_{i} \in \mathbb{N}$, then $s^{2} \equiv t^{2}-12(\bmod 2 t)$ has 2^{r} distinct solutions if each $p_{i} \equiv 1(\bmod 6)$ and no solution otherwise.

Proposition 18. Let t be an odd number with $(12, t)=1$. The equation $x^{2}+y^{2}=$ $(x+t)^{2}-12$ has integer solutions for x, y, t if and only if every prime divisor of t is congruent to 1 modulo 6 . For any such t, there are infinitely many solutions.

Proof. Note that $x^{2}+y^{2}=(x+t)^{2}-12$ implies that $y^{2} \equiv t^{2}-12(\bmod 2 t)$. Then by Lemma 12 and Proposition 17, every prime divisor of t is congruent to 1 modulo 6. For the converse, suppose $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ with $p_{i} \equiv 1(\bmod 6)$ for all $i=1,2, \ldots, r$. By Lemma 12 and Proposition $17, y^{2} \equiv t^{2}-k(\bmod 2 t)$ has 2^{r} distinct solutions. Let m be such a solution that is also a least residue of y modulo $2 t$. Then, x, y, t with $y=m+2 t q, x=\left(y^{2}-t^{2}+12\right) /(2 t)$, is a solution to the equation $x^{2}+y^{2}=(x+t)^{2}-12$ for $q \in \mathbb{Z}$. Therefore, for any such t, there are infinitely many solutions.

For the case $k \equiv 1(\bmod 4)$, we consider $k=5$. In this case, $(5, t)$ equals 1 or 5 . If $(5, t)=5$, and 25 does not divide t, then the equation has no solution. If $(5, t)=5$, and $25 \mid t$, then the equation has a solution if and only if the following system of equations has a solution:

$$
y \equiv 0(\bmod 5) \quad \text { and } \quad y^{2} \equiv-5\left(\bmod p_{i}^{e_{i}}\right) \quad \text { for all } p_{i} \neq 5
$$

Similarly to the previous example, this system can be reduced to linear equations. We now consider the case $(5, t)=1$.

The next lemma can be obtained from Proposition 3.
Lemma 19. (i) If $p \neq 5$ is an odd prime, then $s^{2} \equiv-5(\bmod p)$ has exactly two distinct solutions if $p \equiv 1,3,7,9(\bmod 20)$ and no solution otherwise.
(ii) If $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes, $p_{i} \neq 5$ for all $i=1,2, \ldots, r$, and $r, e_{i} \in \mathbb{N}$, then $s^{2} \equiv-5(\bmod t)$ has 2^{r} distinct solutions modulo t if each $p_{i} \equiv 1,3,7,9(\bmod 20)$ and no solution otherwise.

We now have the following.
Proposition 20. Suppose t is odd with $(5, t)=1$. The equation

$$
x^{2}+y^{2}=(x+t)^{2}-5
$$

has integer solutions x, y, t if and only if every prime divisor of t is congruent to 1, 3, 7, 9 modulo 20. For any such there are infinitely many solutions.

For the case $k \equiv 2(\bmod 4)$ we consider $k=6$. In this case, since t is odd, we have either $(6, t)=3$ or $(6, t)=1$. If $9 \mid t$, there is no solution; if 9 does not divide t, then the equation has a solution if and only if there is a solution to

$$
y \equiv 0(\bmod 3) \quad \text { and } \quad y^{2} \equiv-6\left(\bmod p_{i}^{e_{i}}\right) \text { for all } p_{i} \neq 3
$$

Hence we consider the case when $(6, t)=1$. We shall use a lemma which follows from (3).

Lemma 21. (i) If $p \neq 3$ is an odd prime, then $s^{2} \equiv-6(\bmod p)$ has exactly two distinct solutions if $p \equiv 1,5,7,11(\bmod 24)$ and no solution otherwise.
(ii) If $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes, $(6, t)=1$ and $r, e_{i} \in \mathbb{N}$, then $s^{2} \equiv-6(\bmod t)$ has 2^{r} distinct solutions modulo t if each $p_{i} \equiv 1,5,7,11(\bmod 24)$ and no solution otherwise.

Proposition 22. The equation $x^{2}+y^{2}=(x+t)^{2}-6$ with $(t, 6)=1$ has integer solutions x, y, t if and only if every prime divisor of t is congruent to $1,5,7,11$ modulo 24. For any such t there are infinitely many solutions.

Finally, $k=15$ is considered as an example for the case $k \equiv 3(\bmod 4)$. The cases when $(15, t)=3,5,15$ are similar to the previous examples. We only consider the case when $(15, t)=1$.

Lemma 23. (i) If $p \geq 7$ is an odd prime, then $s^{2} \equiv-15(\bmod p)$ has exactly two distinct solutions if $p \equiv 1,7,17,19,23,31,43,47,49,53(\bmod 60)$ and no solution otherwise.
(ii) If $t=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes, $(15, t)=1$, and $r, e_{i} \in \mathbb{N}$, then $s^{2} \equiv-15(\bmod t)$ has 2^{r} distinct solutions modulo t if each p_{i} is congruent to $1,7,17,19,23,31,43,47,49,53$ modulo 60 , and no solution otherwise.

Proposition 24. The equation $x^{2}+y^{2}=(x+t)^{2}-15$ with $(15, t)=1$ has integer solutions x, y, t if and only if every prime divisor of t is congruent to $1,7,17,19$, 23, 31, 43, 47, 49, 53 modulo 60 . For any such t there are infinitely many solutions.
3.2. Solutions to $\boldsymbol{x}^{2}+y^{2}=(x+t)^{2}-k$ when t is even. Now we consider the equation $x^{2}+y^{2}=(x+t)^{2}-k$ when t is even.

Proposition 25. Let k, t be integers and suppose t is even. Then m is a solution to the congruence $y^{2} \equiv t^{2}-k(\bmod 2 t)$ if and only if it is a solution to the congruence $y^{2} \equiv-k(\bmod 2 t)$.
Proof. Note that since t is even, $2 t \mid t^{2}$. Now, m is a solution for $y^{2} \equiv t^{2}-k$ $(\bmod 2 t)$ if and only if $2 t \mid\left(m^{2}-t^{2}+k\right)$ if and only if $2 t \mid\left(m^{2}+k\right)$.

Thus, in this section our focus is on congruences of the form $y^{2} \equiv t^{2}-k(\bmod 2 t)$. We first show that when $p=2$, there is no solution to (1) in Case (2) or Case (3) of Lemma 11.

Lemma 26. Consider integers k, t :
(1) If $2 \mid(k, t)$ but 4 does not divide k, and $4 \mid t$, then the congruence $y^{2} \equiv$ $-k(\bmod 2 t)$ has no solution.
(2) If $2 \mid(k, t)$ but 4 divides neither k nor t, then the congruence $y^{2} \equiv-k$ $(\bmod 2 t)$ has no solution.

Proof. (1) Suppose $k=2 \alpha$ and $t=4 \beta$ for some integers α and β, where α is odd. The congruence $y^{2} \equiv-k(\bmod 2 t)$ has a solution if and only if there exist integers m, q such that $m^{2}=-2(\alpha+4 \beta q)$. This is not possible since $\alpha+4 \beta q$ is odd.
(2) Suppose $k=2 \alpha$ and $t=2 \beta$ for some odd integers α and β. As above, the congruence $y^{2} \equiv-k(\bmod 2 t)$ has a solution if and only if there exist integers m, q such that $m^{2}=-2(\alpha+2 \beta q)$. This is not possible since $\alpha+2 \beta q$ is odd.

If 2 does not divide (k, t) but $(k, t) \neq 1$, the same argument as the case of t odd can be used. Thus, without loss of generality, we can assume that $(k, t)=1$. This implies that k is odd. Let $t=2^{r} s$ where $r \in \mathbb{N}$ and $s=\prod_{i=1}^{u} p_{i}^{e_{i}}$ is an odd integer. Since $\left(2^{r+1}, s\right)=1$, using Lemma 5, the congruence $y^{2} \equiv-k(\bmod 2 t)$ can be reduced to two congruences:

$$
y^{2} \equiv-k\left(\bmod 2^{r+1}\right), \quad \text { and } \quad y^{2} \equiv-k(\bmod s)
$$

The congruence $y^{2} \equiv-k(\bmod s)$ can be solved using the results from the previous section. We now consider different cases for r for the remaining congruence $y^{2} \equiv-k\left(\bmod 2^{r+1}\right)$.

The following result can be found in most number theory books; see [Kumanduri and Romero 1998, p. 231] for example. We restate it using the notation used in this work.

Lemma 27 [Kumanduri and Romero 1998, p. 231]. Suppose k is odd and $r \geq 1$. Consider the congruence

$$
\begin{equation*}
y^{2} \equiv-k\left(\bmod 2^{r+1}\right) \tag{7}
\end{equation*}
$$

(1) If $r=1$, the congruence (7) has exactly two distinct solutions if $-k \equiv$ $1(\bmod 4)$ and no solution otherwise.
(2) If $r \geq 2$, the congruence (7) has exactly four distinct solutions if $-k \equiv 1$ $(\bmod 8)$ and no solution otherwise. If y_{0} is a solution, then $-y_{0}$ and $\pm y_{0}+2^{r}$ are also solutions.

An application of the above results can solve (1) when t is even, as follows.
Theorem 28. Assume k is odd and consider (1) with $t=2^{r} s$, where s is an odd integer and $r>0$:
(1) If $r=1$, then (1) has a solution if and only if $-k \equiv 1(\bmod 4)$ and $y^{2} \equiv$ $-k(\bmod s)$ has a solution.
(2) If $r \geq 2$, then (1) has a solution if and only if $-k \equiv 1(\bmod 8)$ and $y^{2} \equiv$ $-k(\bmod s)$ has a solution.

In each case, if there is one solution, there are infinitely many solutions.

Proof. Using Proposition 25, we know that $x^{2}+y^{2}=(x+t)^{2}-k$ has a solution if and only if $y^{2} \equiv-k(\bmod 2 t)$ has a solution. The conditions for the existence of a solution in each case follow from Lemma 27 and the discussion preceding it. Now, suppose m is a solution to $y^{2} \equiv-k(\bmod 2 t)$. Using Proposition 25 , we see that it is also a solution to $y^{2} \equiv t^{2}-k(\bmod 2 t)$. Thus, the triple (x, y, t) with $y=m+2 t q$, $x=\left(y^{2}-t^{2}+k\right) /(2 t)$, is a solution to the equation $x^{2}+y^{2}=(x+t)^{2}-k$ for all $q \in \mathbb{Z}$. Since q can be chosen arbitrarily, there are infinitely many solutions.

References

[Apostol 1976] T. M. Apostol, Introduction to analytic number theory, Springer, 1976. MR Zbl
[Ayoub 1984] A. B. Ayoub, "Integral solutions to the equation $x^{2}+y^{2}+z^{2}=u^{2}$: a geometrical approach", Math. Mag. 57:4 (1984), 222-223. MR Zbl
[Catalan 1885] E. Catalan, "Questions d’analyse indéterminée", Bull. Acad. Roy. Sci. Belgique (3) 9 (1885), 531-534. JFM
[Frink 1987] O. Frink, "Almost Pythagorean triples", Math. Mag. 60:4 (1987), 234-236. MR Zbl
[Kumanduri and Romero 1998] R. Kumanduri and C. Romero, Number theory with computer applications, Prentice Hall, Upper Saddle River, NJ, 1998. Zbl
[MacGillivray et al. 2008] G. MacGillivray, S. Nasserasr, D. D. Olesky, and P. van den Driessche, "Primitive digraphs with smallest large exponent", Linear Algebra Appl. 428:7 (2008), 1740-1752. MR Zbl
[Nasserasr 2007] S. Nasserasr, Primitive digraphs with smallest large exponent, master's thesis, University of Victoria, 2007, available at http://hdl.handle.net/1828/184.

Received: 2016-07-27 Accepted: 2016-09-25
wbkboyer@uvic.ca Deparment of Mathematics and Statistics, University of Victoria, P.O. Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada
gmacgill@uvic.ca Department of Mathematics and Statistics, University of Victoria, P.O. Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada
laura.may.morrison@gmail.com
kieka@uvic.ca
snasserasr@nova.edu

Department of Mathematics and Statistics, University of Victoria, P.O. Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada

Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria BC V8W 3R4, Canada

Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL 33324, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2017 is US $\$ 175 /$ year for the electronic version, and $\$ 235 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2017 vol. 10 no. 5

Algorithms for finding knight's tours on Aztec diamonds 721Samantha Davies, Chentiao Xue and Carl R. Yerger
Optimal aggression in kleptoparasitic interactions 735
David G. Sykes and Jan Rychtář
Domination with decay in triangular matchstick arrangement graphs 749
Jill Cochran, Terry Henderson, Aaron Ostrander and RonTAYLOR
On the tree cover number of a graph
Chassidy Bozeman, Minerva Catral, Brendan Cook, Oscar E. GonZález and Carolyn Reinhart767
Matrix completions for linear matrix equations 781
Geoffrey Buhl, Elijah Cronk, Rosa Moreno, Kirsten Morris,Dianne Pedroza and Jack Ryan
The Hamiltonian problem and t-path traceable graphs 801
Kashif Bari and Michael E. O’Sullivan
Relations between the conditions of admitting cycles in Boolean and ODE 813network systemsYuniiao Wang, Bamidele Omidiran, Franklin Kigwe and KiranChilakamarri
Weak and strong solutions to the inverse-square brachistochrone problem on 833
circular and annular domains
Christopher Grimm and John A. Gemmer
Numerical existence and stability of steady state solutions to the distributed spruce 857
budworm modelHala Al-Khalil, Catherine Brennan, Robert Decker, AslihanDemirkaya and Jamie Nagode
Integer solutions to $x^{2}+y^{2}=z^{2}-k$ for a fixed integer value k 881
Wanda Boyer, Gary MacGillivray, Laura Morrison, C. M. (Kieka) Mynhardt and Shahla Nasserasr
A solution to a problem of Frechette and Locus 893

[^0]: MSC2010: primary 11D09; secondary 11A07, 11A15.
 Keywords: Diophantine equations, congruences, residue systems, Pythagorean triples.

