0

 involve

 involve} a journal of mathematics

A simple proof characterizing interval orders with interval lengths between 1 and k

Simona Boyadzhiyska, Garth Isaak and Ann N. Trenk

A simple proof characterizing interval orders with interval lengths between 1 and k

Simona Boyadzhiyska, Garth Isaak and Ann N. Trenk
(Communicated by Glenn Hurlbert)

A poset $P=(X, \prec)$ has an interval representation if each $x \in X$ can be assigned a real interval I_{x} so that $x \prec y$ in P if and only if I_{x} lies completely to the left of I_{y}. Such orders are called interval orders. Fishburn $(1983,1985)$ proved that for any positive integer k, an interval order has a representation in which all interval lengths are between 1 and k if and only if the order does not contain $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$ as an induced poset. In this paper, we give a simple proof of this result using a digraph model.

1. Introduction

1.1. Posets and interval orders. A poset P consists of a set X of points and a relation \prec that is irreflexive and transitive, and therefore antisymmetric. It is sometimes convenient to write $y \succ x$ instead of $x \prec y$. If $x \prec y$ or $y \prec x$, we say that x and y are comparable, and otherwise we say they are incomparable, and denote the incomparability by $x \| y$. An interval representation of a poset $P=(X, \prec)$ is an assignment of a closed real interval I_{v} to each $v \in X$ so that $x \prec y$ if and only if I_{x} is completely to the left of I_{y}. A poset with such a representation is called an interval order. It is well known that the classes studied in this paper are the same if open intervals are used instead of closed intervals; e.g., see Lemma 1.5 in [Golumbic and Trenk 2004].

The poset $\mathbf{2}+\mathbf{2}$ shown in Figure 1 consists of four elements $\{a, b, x, y\}$ and the only comparabilities are $a \prec x$ and $b \prec y$. The following elegant theorem characterizing interval orders was anticipated by Wiener in 1914, see [Fishburn and Monjardet 1992], and shown by Fishburn [1970]: poset P is an interval order if and only if it contains no induced $\mathbf{2 + 2}$. Posets that have an interval representation in which all intervals are the same length are known as unit interval orders or

[^0]

Figure 1. The posets $\mathbf{2}+\mathbf{2}$ (left), $\mathbf{3}+\mathbf{1}$ (middle), and $\mathbf{4}+\mathbf{1}$ (right).
semiorders. Scott and Suppes [1958] characterized unit interval orders as those posets with no induced $\mathbf{2}+\mathbf{2}$ and no induced $\mathbf{3}+\mathbf{1}$. Figure 1 shows the posets $\mathbf{2}+\mathbf{2}$, $\mathbf{3}+\mathbf{1}$, and $\mathbf{4}+\mathbf{1}$. More generally, the poset $\boldsymbol{n}+\mathbf{1}$ consists of a chain of n distinct elements $a_{1} \prec a_{2} \prec \cdots \prec a_{n}$ and an additional element that is incomparable to each a_{i}.

In this paper, we consider an intermediate class between the extremes of interval orders (no restrictions on interval lengths) and unit interval orders (all intervals the same length). In particular, we allow interval lengths to range from 1 to k, where k is a positive integer. Fishburn [1983; 1985] characterized this class as those posets with no induced $\mathbf{2 + 2}$ and no induced $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$, generalizing the result of Scott and Suppes. In fact, Fishburn characterized those posets that have an interval representation by intervals whose lengths are between m and n for any relatively prime integers m, n in terms of what he calls picycles. Fishburn's proof uses a set of inequalities similar to those in our proof of Theorem 4. His proof is technical, and it does not immediately yield a forbidden poset characterization in the general case. Doignon [1987; 1988] introduced the idea of using potentials in a digraph model to solve a related interval representation problem. (Pages 91-93 of [Pirlot and Vincke 1997] contain an English version of the main result in [Doignon 1988].)

We use a different digraph model, one that appears in [Isaak 2009], to give a shorter and more accessible proof of Fishburn's result for the case $m=1, n=k$. This digraph model uses two vertices for each element, one for each of the endpoints of an interval representing the element. Our digraph model and the equivalence of statements (1) and (3) in Theorem 4 can easily be extended to general m, n. It is also natural to consider allowing the interval lengths to vary between 1 and any real value. Fishburn and Graham [1985] studied the classes $C(\alpha)$ of interval graphs that have a representation by intervals with lengths between 1 and α for any real $\alpha \geq 1$, showing that the points where $C(\alpha)$ expands are the rational values of α. The problem of characterizing posets that have an interval representation in which the possible interval lengths come from a discrete set (rather than from an interval) is more challenging, and we consider two variants of this question in [Boyadzhiyska et al. 2017].
1.2. Digraphs and potentials. A directed graph, or digraph, is a pair $G=(V, E)$, where V is a finite set of vertices, and E is a set of ordered pairs (x, y), with $x, y \in V$, called arcs. A weighted digraph is a digraph in which each $\operatorname{arc}(x, y)$ is
assigned a real number weight $w_{x y}$. We sometimes denote the $\operatorname{arc}(x, y)$ by $x \rightarrow y$, and in a weighted digraph by $x \xrightarrow{w_{x y}} y$. A potential function $p: V \rightarrow \mathbb{R}$, defined on the vertices of a weighted digraph, is a function satisfying $p(y)-p(x) \leq w_{x y}$ for each $\operatorname{arc}(x, y)$. Theorem 1 is a well known result that specifies precisely which digraphs have potential functions.

A cycle in digraph G is a subgraph with vertex set $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{t}\right\}$ and arc set $\left\{\left(x_{i}, x_{i+1}\right): 1 \leq i \leq t-1\right\} \cup\left\{\left(x_{t}, x_{1}\right)\right\}$. In a weighted digraph, the weight of cycle C, denoted by wgt (C), is the sum of the weights of the arcs of C. A cycle with negative weight is called a negative cycle. The following theorem is well known, see Chapter 8 of [Schrijver 2003] for example, and we provide a proof in [Boyadzhiyska et al. 2017].

Theorem 1. A weighted digraph has a potential function if and only if it contains no negative cycle.

2. Orders with a $[1, k]$-interval representation

We say that poset P has an $[a, b]$-interval representation if it has a representation by intervals whose lengths are between a and b (inclusive). When $a=b>0$, the posets with such a representation are the unit interval orders. Because representations can be scaled, for any $b>0$, all interval orders have a $[0, b]$-interval representation. This motivates us to consider the lower bound $a=1$, and in particular, posets that have a [1, k]-interval representation where k is a positive integer. Fishburn [1983] characterized this class by showing the equivalence of (1) and (2) in Theorem 4; however, the proof is quite technical. Using the framework in [Isaak 2009], we construct a weighted digraph $G_{P, k}$ associated with poset P and show that P has a $[1, k]$-interval representation if and only if $G_{P, k}$ has no negative cycle. This allows for a more accessible proof of Theorem 4. We choose the value of ϵ appearing as a weight in $G_{P, k}$ so that $0<\epsilon<1 /(2|X|)$.

Definition 2. Let $P=(X, \prec)$ be a partial order. Define $G_{P, k}$ to be the weighted digraph with vertices $\left\{\ell_{x}, r_{x}\right\}_{x \in X}$ and the arcs

- $\left(\ell_{y}, r_{x}\right)$ with weight $-\epsilon$ for all $x, y \in X$ with $x \prec y$,
- $\left(r_{x}, \ell_{y}\right)$ with weight 0 for all $x, y \in X$ with $x \| y$,
- $\left(r_{x}, \ell_{x}\right)$ with weight -1 for all $x \in X$,
- $\left(\ell_{x}, r_{x}\right)$ with weight k for all $x \in X$.

It is helpful to think of the arcs of $G_{P, k}$ as coming in two categories: $\ell \rightarrow r$ and $r \rightarrow \ell$. We list the arcs by category in Table 1 for easy reference.

Any negative cycle in $G_{P, k}$ with a minimum number of arcs will have at most $2|X|$ arcs since $G_{P, k}$ has $2|X|$ vertices. Since ϵ satisfies $0<\epsilon<1 /(2|X|)$, the

type	arc	weight	(x, y) relation	
$\ell \rightarrow r$	$\left(\ell_{y}, r_{x}\right)$	$-\epsilon$	$y \succ x$	
	$\left(\ell_{x}, r_{x}\right)$	k		
$r \rightarrow \ell$	$\left(r_{x}, \ell_{y}\right)$	0	$x \\| y$	
	$\left(r_{x}, \ell_{x}\right)$	-1		

Table 1. The arcs of the weighted digraph $G_{P, k}$.
arcs of weight $-\epsilon$ will have combined weight w, where $-1<w \leq 0$. We record a consequence of this observation in the following remark.

Remark 3. If C is a negative weight cycle in $G_{P, k}$ containing the minimum number of arcs, then C contains at least k arcs of weight -1 for every arc of weight k.

Theorem 4. Let $P=(X, \prec)$ be a partial order and let $k \in \mathbb{Z}_{\geq 1}$. The following are equivalent:
(1) P has $a[1, k]$-interval representation.
(2) P contains no induced $\mathbf{2}+\mathbf{2}$ or $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$.
(3) The weighted digraph $G_{P, k}$ contains no negative cycle.

Proof. (1) \Rightarrow (3): Suppose that P has an interval representation $\mathcal{I}=\left\{I_{x}\right\}_{x \in X}$, where $I_{x}=[L(x), R(x)]$, and for each $x \in X$ we have $1 \leq\left|I_{x}\right| \leq k$. Choose $\epsilon=\min \{1 /(2|X|+1), \delta\}$, where δ is the smallest distance between unequal endpoints in the representation \mathcal{I}. By the definition of an interval representation and the conditions on the interval lengths, we have
(i) $R(x)-L(y) \leq-\epsilon$ for all $x, y \in X$ with $x \prec y$,
(ii) $L(y)-R(x) \leq 0$ for all $x, y \in X$ with $x \| y$,
(iii) $L(x)-R(x) \leq-1$ for all $x \in X$,
(iv) $R(x)-L(x) \leq k$ for all $x \in X$.

Now define the function p on the vertex set of $G_{P, k}$ as follows. For each $x \in X$ let $p\left(r_{x}\right)=R(x)$ and $p\left(\ell_{x}\right)=L(x)$. So p satisfies
(a) $p\left(r_{x}\right)-p\left(l_{y}\right) \leq-\epsilon$ for all $x, y \in X$ with $x \prec y$,
(b) $p\left(l_{y}\right)-p\left(r_{x}\right) \leq 0$ for all $x, y \in X$ with $x \| y$,
(c) $p\left(l_{x}\right)-p\left(r_{x}\right) \leq-1$ for all $x \in X$,
(d) $p\left(r_{x}\right)-p\left(l_{x}\right) \leq k$ for all $x \in X$.

Thus, for all $(u, v) \in E\left(G_{P, k}\right)$, we have $p(v)-p(u) \leq w_{u v}$. Hence p is a potential function on $G_{P, k}$ and by Theorem $1, G_{P, k}$ has no negative cycle.
$(3) \Rightarrow(1)$: Given $G_{P, k}$ has no negative cycle, by Theorem 1, there exists a potential function p on $G_{P, k}$, and by definition, p satisfies (a), (b), (c), (d). For each $x \in X$, let $L(x)=p\left(\ell_{x}\right)$ and $R(x)=p\left(r_{x}\right)$. By (c) we know $L(x)+1 \leq R(x)$, so $I_{x}=[L(x), R(x)]$ is indeed an interval with $\left|I_{x}\right| \geq 1$. By (d), the length of interval I_{x} satisfies $\left|I_{x}\right| \leq k$, and by (a) and (b), $x \prec y$ in P if and only if $R(x)<L(y)$. Thus the set of intervals $\left\{I_{x}\right\}_{x \in X}$ forms a representation of P in which each interval has length between 1 and k.
(3) $\Rightarrow(2)$: If P contains an induced $\mathbf{2}+\mathbf{2}$, denoted by $(x \succ a) \|(y \succ b)$, then

$$
\ell_{x} \xrightarrow{-\epsilon} r_{a} \xrightarrow{0} \ell_{y} \xrightarrow{-\epsilon} r_{b} \xrightarrow{0} \ell_{x}
$$

is a cycle in $G_{P, k}$ with weight -2ϵ. Similarly, if P contains an induced $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$, denoted by $x \|\left(a_{k+2} \succ a_{k+1} \succ \cdots \succ a_{2} \succ a_{1}\right)$, then $G_{P, k}$ contains the cycle

$$
\begin{aligned}
& r_{x} \xrightarrow{0} \ell_{a_{k+2}} \xrightarrow{-\epsilon} r_{a_{k+1}} \xrightarrow{-1} \ell_{a_{k+1}} \xrightarrow{-\epsilon} r_{a_{k}} \xrightarrow{-1} \ell_{a_{k}} \xrightarrow{-\epsilon} \\
& \ldots \xrightarrow{-\epsilon} r_{a_{2}} \xrightarrow{-1} \ell_{a_{2}} \xrightarrow{-\epsilon} r_{a_{1}} \xrightarrow{0} l_{x} \xrightarrow{k} r_{x},
\end{aligned}
$$

whose weight is $(-1) k+k+(-\epsilon)(k+1)<0$. In either case, we obtain a negative cycle in P, a contradiction.
(2) \Rightarrow (3): Now assume P contains no induced $\mathbf{2}+\mathbf{2}$ or $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$. For a contradiction, assume that $G_{P, k}$ contains a negative cycle, and let C be a negative cycle in $G_{P, k}$ containing the minimum number of arcs. By the definition of $G_{P, k}$, the arcs in C must alternate between arcs of type $\ell \rightarrow r$ and arcs of type $r \rightarrow \ell$, thus C has the form $\ell_{x_{1}} \rightarrow r_{x_{2}} \rightarrow \ell_{x_{3}} \rightarrow \cdots \rightarrow r_{x_{n}} \rightarrow \ell_{x_{1}}$ for some $x_{1}, x_{2}, \ldots, x_{n} \in X$, not necessarily distinct. The cycles in $G_{P, k}$ that contain exactly two arcs have nonnegative weight; hence $n \geq 4$. Furthermore, since vertices of a cycle are distinct, we know that $x_{i} \neq x_{i+2}$ for $1 \leq i \leq n$, where the indices are taken modulo n.

Next we show $\operatorname{wgt}(C) \leq-2 \epsilon$. Since $x_{i} \neq x_{i+2}$ for $1 \leq i \leq n$ (indices taken modulo n), the arcs of C immediately before and after a weight $-k$ arc must have weight 0 . If C has at most one arc of weight $-\epsilon$, then the remaining $\ell \rightarrow r$ arcs have weight k, resulting in a positive weight for C, a contradiction. Thus C contains at least two arcs of weight $-\epsilon$, and Remark 3 implies that $\operatorname{wgt}(C) \leq-2 \epsilon$.

We next claim that C does not contain a segment of three consecutive arcs of weights $-\epsilon, 0,-\epsilon$. For a contradiction, suppose C contains the segment

$$
S_{1}: \ell_{a} \xrightarrow{-\epsilon} r_{b} \xrightarrow{0} \ell_{c} \xrightarrow{-\epsilon} r_{d} .
$$

Then by the definition of $G_{P, k}$, we have $a \succ b, \quad b \| c$, and $c \succ d$. If $d \succ a$, we get $c \succ d \succ a \succ b$, contradicting $b \| c$. If $a \| d$, then the elements a, b, c, d induce in P the poset 2+2, a contradiction. Otherwise, $a \succ d$ and we can replace the segment S_{1} by $\ell_{a} \xrightarrow{-\epsilon} r_{d}$ to yield a shorter cycle C^{\prime} with $\operatorname{wgt}\left(C^{\prime}\right)=\operatorname{wgt}(C)+\epsilon \leq-2 \epsilon+\epsilon=-\epsilon<0$. This contradicts the minimality of C.

We now consider two cases depending on whether or not C contains an arc of weight k.
Case 1: C has no arc of weight k. In this case, C alternates between arcs with weight $-\epsilon$ and arcs with weight in the set $\{0,-1\}$. Since C has at least four arcs and no segment of the form $(-\epsilon, 0,-\epsilon)$, there must be an arc of weight -1 . Without loss of generality, choose a starting point for C so that it begins with the segment

$$
S_{2}: \ell_{x_{1}} \xrightarrow{-\epsilon} r_{x_{2}} \xrightarrow{-1} \ell_{x_{3}} \xrightarrow{-\epsilon} r_{x_{4}} .
$$

By the definition of $G_{P, k}$ we have $x_{1} \succ x_{2}=x_{3} \succ x_{4}$, so $x_{1} \succ x_{4}$. Replace segment S_{2} by $\ell_{x_{1}} \xrightarrow{-\epsilon} r_{x_{4}}$ to obtain a cycle C^{\prime} whose weight is also negative since it contains no arcs of weight k. Since C^{\prime} has fewer arcs than C, this contradicts the minimality of C.

Case 2: C contains an arc of weight k. By Remark 3, there is a segment of C that starts with an arc of weight k and has at least k arcs of weight -1 before the next arc of weight k. Thus this segment of C contains at least $2 k$ arcs. Without loss of generality, we can choose the starting point of C so that it begins with the segment

$$
\ell_{x_{1}} \xrightarrow{k} r_{x_{2}} \longrightarrow \ell_{x_{3}} \xrightarrow{-\epsilon} r_{x_{4}} \longrightarrow \cdots \xrightarrow{-\epsilon} r_{x_{2 k}} \longrightarrow \ell_{x_{2 k+1}} .
$$

If the $\operatorname{arc}\left(r_{x_{2}}, \ell_{x_{3}}\right)$ has weight -1 , then $x_{1}=x_{2}=x_{3}$, a contradiction since $x_{1} \neq x_{3}$. Thus, the arc $\left(r_{x_{2}}, \ell_{x_{3}}\right)$ has weight 0 and C begins with the segment

$$
\ell_{x_{1}} \xrightarrow{k} r_{x_{2}} \xrightarrow{0} \ell_{x_{3}} \xrightarrow{-\epsilon} r_{x_{4}} .
$$

If any of the next k arcs of the type $r \rightarrow \ell$ on C had weight 0 , then C would contain a segment of the form $(-\epsilon, 0,-\epsilon)$, contradicting our earlier claim. Thus each of these arcs has weight -1 and C starts with the segment

$$
\ell_{x_{1}} \xrightarrow{k} r_{x_{2}} \xrightarrow{0} \ell_{x_{3}} \xrightarrow{-\epsilon} r_{x_{4}} \xrightarrow{-1} \ell_{x_{5}} \xrightarrow{-\epsilon} r_{x_{6}} \xrightarrow{-1} \cdots \xrightarrow{-\epsilon} r_{x_{2 k+2}} \xrightarrow{-1} \ell_{x_{2 k+3}} .
$$

Note that the arcs $\ell_{x_{2 k+1}} \rightarrow r_{x_{2 k+2}} \rightarrow \ell_{x_{2 k+3}}$ are included since there must be k arcs of weight -1 before the next arc of weight k.

By the definition of $G_{P, k}$, we have the following relations in P :

$$
x_{1}=x_{2} \| x_{3} \succ x_{4}=x_{5} \succ x_{6}=x_{7} \succ \cdots=x_{2 k+1} \succ x_{2 k+2}=x_{2 k+3}
$$

If $x_{1}=x_{2 k+3}$, then by transitivity, $x_{1} \prec x_{3}$, contradicting the relation $x_{1}=x_{2} \| x_{3}$. Thus C contains at least two more $\operatorname{arcs}\left(\ell_{x_{2 k+3}}, r_{x_{2 k+4}}\right)$ and $\left(r_{x_{2 k+4}}, \ell_{x_{2 k+5}}\right)$. If arc $\left(\ell_{x_{2 k+3}}, r_{x_{2 k+4}}\right)$ had weight k, then $x_{2 k+2}=x_{2 k+3}=x_{2 k+4}$, a contradiction since $x_{2 k+2} \neq x_{2 k+4}$. Thus arc $\left(\ell_{x_{2 k+3}}, r_{x_{2 k+4}}\right)$ has weight $-\epsilon$, and $x_{2 k+3} \succ x_{2 k+4}$ in P, and C starts with the segment

$$
S: \ell_{x_{1}} \xrightarrow{k} r_{x_{2}} \xrightarrow{0} \ell_{x_{3}} \xrightarrow{-\epsilon} r_{x_{4}} \xrightarrow{-1} \ell_{x_{5}} \xrightarrow{-\epsilon} r_{x_{6}} \xrightarrow{-1} \cdots \xrightarrow{-\epsilon} r_{x_{2 k+2}} \xrightarrow{-1} \ell_{x_{2 k+3}} \xrightarrow{-\epsilon} r_{x_{2 k+4}} .
$$

Finally, we consider the relation between x_{1} and $x_{2 k+4}$ in P. If $x_{1} \prec x_{2 k+4}$, then by transitivity, $x_{1} \prec x_{3}$, a contradiction. If $x_{1} \succ x_{2 k+4}$, we can replace segment S by $\ell_{x_{1}} \xrightarrow{-\epsilon} r_{x_{2 k+4}}$ to obtain a shorter cycle C^{\prime} in $G_{P, k}$. As noted earlier, the combined weight of the arcs of C that have weight $-\epsilon$ is strictly greater than -1 , so C^{\prime} also has negative weight, contradicting the minimality of C. Hence $x_{1} \| x_{2 k+4}$ and the $k+3$ elements in the set $\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{2 k+3}, x_{2 k+4}\right\}$ induce a $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$ in P, a contradiction.

We end by describing an algorithm that constructs a $[1, k]$-interval representation of a poset P if one exists and otherwise produces a forbidden poset, either $\mathbf{2}+\mathbf{2}$ or $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$. Use a standard shortest-paths algorithm such as the Bellman-Ford or the matrix multiplication method on $G_{P, k}$ to compute the weight of a minimum-weight path between each pair of vertices or detect a negative cycle. If there is a negative cycle, these algorithms detect one with a minimum number of arcs. If such a negative cycle exists in $G_{P, k}$, then as in the proof of $(2) \Rightarrow(3)$ of Theorem 4, either the cycle contains the segment $-\epsilon, 0,-\epsilon$, and a $\mathbf{2}+\mathbf{2}$ is detected in P, or else as in Case 2 of that proof, a $(\boldsymbol{k}+\mathbf{2})+\mathbf{1}$ is detected in P. If there is no negative cycle, Theorem 1 ensures that a potential function p exists for $G_{P, k}$. Indeed, setting $p(v)$ to be the minimum weight of a walk ending at v produces a potential function. As we showed in the proof of $(3) \Rightarrow(1)$, the intervals $\left[p\left(\ell_{x}\right), p\left(r_{x}\right)\right]$ provide a [$1, k]$-interval representation of P. Thus there is a polynomial-time certifying algorithm.

References

[Boyadzhiyska et al. 2017] S. Boyadzhiyska, G. Isaak, and A. N. Trenk, "Interval orders with two interval lengths", preprint, 2017. arXiv
[Doignon 1987] J.-P. Doignon, "Threshold representations of multiple semiorders", SIAM J. Algebraic Discrete Methods 8:1 (1987), 77-84. MR Zbl
[Doignon 1988] J.-P. Doignon, "Sur les représentations minimales des semiordres et des ordres d'intervalles", Math. Sci. Humaines 101 (1988), 49-59. MR Zbl
[Fishburn 1970] P. C. Fishburn, "Intransitive indifference with unequal indifference intervals", J. Mathematical Psychology 7:1 (1970), 144-149. MR Zbl
[Fishburn 1983] P. C. Fishburn, "Threshold-bounded interval orders and a theory of picycles", SIAM J. Algebraic Discrete Methods 4:3 (1983), 290-305. MR Zbl
[Fishburn 1985] P. C. Fishburn, Interval orders and interval graphs: a study of partially ordered sets, John Wiley and Sons, Chichester, 1985. MR Zbl
[Fishburn and Graham 1985] P. C. Fishburn and R. L. Graham, "Classes of interval graphs under expanding length restrictions", J. Graph Theory 9:4 (1985), 459-472. MR Zbl
[Fishburn and Monjardet 1992] P. Fishburn and B. Monjardet, "Norbert Wiener on the theory of measurement (1914, 1915, 1921)", J. Math. Psych. 36:2 (1992), 165-184. MR Zbl
[Golumbic and Trenk 2004] M. C. Golumbic and A. N. Trenk, Tolerance graphs, Cambridge Studies in Advanced Mathematics 89, Cambridge University Press, 2004. MR Zbl
[Isaak 2009] G. Isaak, "Interval order representations via shortest paths", pp. 303-311 in The mathematics of preference, choice and order, edited by S. J. Brams et al., Springer, 2009. MR Zbl [Pirlot and Vincke 1997] M. Pirlot and P. Vincke, Semiorders: properties, representations, applications, Theory and Decision Library 36, Kluwer, Dordrecht, 1997. MR Zbl
[Schrijver 2003] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, Algorithms and Combinatorics 24, Springer, 2003. MR Zbl
[Scott and Suppes 1958] D. Scott and P. Suppes, "Foundational aspects of theories of measurement", J. Symb. Logic 23 (1958), 113-128. MR Zbl

Received: 2017-08-31 Revised: 2018-01-30 Accepted: 2018-02-05

s.boyadzhiyska@fu-berlin.de	Berlin Mathematical School, Freie Universität Berlin, Berlin, Germany
gi02@lehigh.edu	Department of Mathematics, Lehigh University, Bethlehem, PA, United States
atrenk@wellesley.edu	Department of Mathematics, Wellesley College, Wellesley, MA, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 / y e a r$ for the electronic version, and $\$ 250 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
-I mathematical sciences publishers nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers
On the minuscule representation of type B_{n} 721William J. Cook and Noah A. Hughes
Pythagorean orthogonality of compact sets 735Pallavi Aggarwal, Steven Schlicker and RyanSwartzentruber
Different definitions of conic sections in hyperbolic geometry 753
Patrick Chao and Jonathan Rosenberg
The Fibonacci sequence under a modulus: computing all moduli that produce a 769
given period
Alex Dishong and Marc S. Renault
On the faithfulness of the representation of $\mathrm{GL}(n)$ on the space of curvature 775tensorsCorey Dunn, Darien Elderfield and Rory Martin-HagemeyerQuasipositive curvature on a biquotient of $\mathrm{Sp}(3)$787
Jason DeVito and Wesley Martin
Symmetric numerical ranges of four-by-four matrices 803Shelby L. Burnett, Ashley Chandler and Linda J. PattonCounting eta-quotients of prime level827Allison Arnold-Roksandich, Kevin James and Rodney Keaton
The k-diameter component edge connectivity parameter 845Nathan Shank and Adam Buzzard
Time stopping for Tsirelson's norm 857
Kevin Beanland, Noah Duncan and Michael HoltEnumeration of stacks of spheres867Lauren Endicott, Russell May and Sienna Shacklette
Rings isomorphic to their nontrivial subrings877
Jacob Lojewski and Greg Oman
On generalized MacDonald codes 885
Padmapani Seneviratne and Lauren Melcher
A simple proof characterizing interval orders with interval lengths between 1 and k 893Simona Boyadzhiyska, Garth Isaak and Ann N. Trenk

1944-4176(2018)11:5;1-4

[^0]: MSC2010: 05C62, 06A99.
 Keywords: interval order, interval graph, semiorder.
 Boyadzhiyska was supported by a Jerome A. Schiff Fellowship at Wellesley College. Trenk was supported by a grant from the Simons Foundation \#426725.

