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Y. WESLEY WONG AND SERGIO PELLEGRINO

We present a general analytical model for determining the location and pattern
of wrinkles in thin membranes and for making preliminary estimates of their
wavelength and amplitude. A rectangular membrane under simple shear and
a square membrane subject to corner loads are analysed. In the first problem,
our model predicts the wavelength and the wrinkle amplitude to be respectively
inversely proportional and directly proportional to the fourth root of the shear
angle. Both values are directly proportional to the square root of the height
and thickness of the membrane, and are independent of the Young’s modulus.
In the second problem two wrinkling regimes are identified. The first regime
is characterised by radial corner wrinkles and occurs for load ratios less than
1/(

√
2−1); the number of wrinkles is proportional to the fourth root of the radius

of the wrinkled region and the magnitude of the corner force, and inversely pro-
portional to the Young’s modulus and thickness cubed. The amplitude of these
wrinkles is inversely proportional to their number, directly proportional to the
square root of the radius of the wrinkled region and the magnitude of the corner
force, and inversely proportional to the square root of the Young’s modulus and
thickness. The second regime occurs for load ratios larger than 1/(

√
2 − 1), and

is characterised by a large diagonal wrinkle, plus small radial wrinkles at all four
corners. Analytical expressions for the variation of the width and amplitude of
the large wrinkle with the load ratio are obtained for this case also. All analytical
predictions are compared with experimental and computational results from the
other two papers in this series.

1. Introduction

This is the second paper in a three-part series that deals with estimating wrinkle
details, i.e. shape, wavelength, and amplitude, in thin, initially flat and stress-free
membranes subject to certain prescribed in-plane load and boundary conditions.

The first paper [Wong and Pellegrino 2006a] presented an experimental study
of two different problems. First, a rectangular membrane whose longer edges are
sheared uniformly, and thus forms a “parallelogram” of approximately uniform
wrinkles at 45◦ to the edges. Second, a square membrane loaded by two pairs
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of equal and opposite diagonal forces applied at the corners, which forms fans of
uniform corner wrinkles if the ratio between the larger pair of forces and the smaller
ones is less than about 2.5, but forms a large diagonal wrinkle aligned with the pair
of larger forces if the ratio is higher than 2.5. A particularly interesting feature of
the second problem is the change in the wrinkle pattern in response to changes in
the force ratio. Detailed measurements of the shape of the wrinkles were made,
and trends in the variation of the wavelength and amplitude were observed in each
case.

The present paper presents a simple analytical model for heavily wrinkled mem-
branes. This model is able to explain many features of the behaviour observed in
the experiments and leads to a general method for making approximate estimates of
both the overall wrinkle pattern and the average wrinkle amplitude and wavelength.
This method is then applied to the sheared membrane and the square membrane
problems, and analytical expressions are obtained in each case for the wrinkle
wavelength and amplitude. Finally, the predictions made from these expressions
are compared with the experimental results from [Wong and Pellegrino 2006a]
and computational results from [Wong and Pellegrino 2006b], and are found to be
remarkably accurate.

The layout of the paper is as follows. Section 2 presents a brief review of the
literature on analytical methods for determining the extent of the wrinkle region
and, within it, the direction of the wrinkles. Here the classical assumption is that
the bending stiffness of the membrane is negligible, and hence an infinitely large
number of vanishingly small wrinkles should form. A more detailed review of
the recent literature; in which the bending stiffness of the membrane is no longer
neglected, is then presented. Solutions for uniform, parallel wrinkle amplitudes
have been published. Section 3 outlines the key ideas of our simple analytical
model. Section 4 applies this model to the sheared membrane; here the wrinkles
are known to be at 45◦ to the edges and so the implementation of our analytical
model is rather straightforward. Section 5 implements the model for the square
membrane. Here no analytical characterization of the wrinkle region exists, and so
a range of simple, approximate equilibrium stress fields are proposed; a criterion
for selecting the best approximation (which depends on the ratio of corner loads)
is suggested. The derivation of the wrinkle wavelength and amplitude then follows
along similar lines to Section 4. Section 6 compares the analytical predictions
obtained in Sections 4 and 5 with results from the other two papers in this series.
Section 7 concludes the paper.
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2. Review of previous analytical models

Membrane wrinkling has attracted much interest in the past, starting from the ob-
servation that the web of a thin-walled beam can carry loads well above the initial
buckling value, which prompted the development of tension field theory by Wagner
[1929]. Simpler and yet more general formulations of this theory were proposed
by Reissner [1938] and Mansfield [1968; 1970; 1989].

Reissner explained this theory by considering a thin strip under shear. He noted
that up to a certain intensity of the shear load a uniform state of shear stress is
induced in the sheet. If the load is increased beyond this intensity buckling occurs;
however, if the distance of the longer edges of the sheet is kept constant, the shear
load can be increased without failure to an intensity much greater than that at which
buckling first took place. The out-of-plane deformation of the sheet after wrinkles
are formed has been characterised in the first paper in the present series.

Reissner noted that once wrinkles are formed, the strip is mainly stressed in
tension along the wrinkles, while the compressive stress perpendicular to the wrin-
kles — which is the cause for the wrinkles — is small compared with the tensile
stress. At this point the fundamental assumption of tension field theory is that
this compressive stress, and also the bending stresses induced by the out-of-plane
deformation, are negligible in comparison with the tensile stress. Therefore, the
theory searches for plane stress solutions such that one principal stress is positive
and the other is zero. This is done by considering an elastic, anisotropic material
(whose material directions depend on the stress field) with modulus of elasticity
Eη = 0, where η is the principal stress direction transverse to the wrinkles. Reissner
showed that the line η = constant is straight, and went on to derive expressions for
the rotationally symmetric stress field in a sheet forming a circular annulus whose
edges are sheared.

A generalization of this theory was later proposed by Mansfield [1968; 1970],
who introduced the concept of a tension ray, defined by the trajectories of tensile
principal stress (the wrinkle directions), which again must be straight. He showed
that, given a wrinkled membrane whose boundaries are in part free and in part
subjected to given planar displacements, the direction of the tension rays is such
that the (stretching) strain energy is maximised. This results in a powerful vari-
ational technique with which Mansfield determined the tension rays in, among
others, semi-infinite and finite length rectangular strips clamped to rigid tie rods
(Figure 1). A comprehensive presentation of this work can be found in [Mansfield
1989].

With the same fundamental assumptions of the tension field theory, but allowing
for finite strains, an alternative approach [Pipkin 1986] is to construct a relaxed
strain energy such that if at a point both principal stretches are less than 1 (i.e.
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Figure 1. Tension rays in a semi-infinite membrane under simple
shear, from [Mansfield 1989].

the membrane is slack) the relaxed strain energy is defined to be zero; if one
principal stretch is greater than 1 the relaxed strain is defined on the basis of the
larger stretch, and if both principal stretches are greater than 1 then a standard
strain energy function is used. This formulation implicitly gets rid of compressive
stresses, and has the advantage that it fits within a standard variational formula-
tion. This approach was further developed and formalised by Steigmann [1990]
and implemented numerically by Haseganu and Steigmann [1994] and Ligaro and
Valvo [2000]. A generalization of the relaxed strain energy approach [Epstein and
Forcinito 2001] in terms of a hyperelastic material which saturates when wrinkles
form makes it easier to derive consistent expressions for the strain energy variations
in the wrinkled state. Wu [1978], Wu and Canfield [1981], and Roddeman et al.
[1987] have proposed to deal with wrinkling by modifying the deformation tensor
such that the principal stress directions are either unchanged, in the case of isotropic
membranes, or rotated appropriately in the case of anisotropic membranes.

Stein and Hedgepeth [1961] tackled the analysis of a partially wrinkled mem-
brane, which can be divided into taut regions and wrinkled regions, by introduc-
ing the concept of a variable Poisson’s ratio, which accounts for the geometric
strains induced by wrinkling. These authors were able to obtain analytical solutions
for, e.g., the moment-curvature relationship of a stretched rectangular membrane
loaded by axial forces and bending moments at the ends. Here the wrinkles begin
to form along the tension edge of the membrane, and propagate towards the neutral
axis when the moment is increased.

A premise common to all of the above work is that a membrane is modelled as a
two-dimensional continuum unable to carry compression and with negligible bend-
ing stiffness. Hence, it is implicitly assumed that an infinite number of wrinkles of
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Figure 2. Wrinkles in a hanging “blanket”, from [Rimrott and
Cvercko 1986].

infinitesimally small amplitude would form; it is generally believed that the stress
fields produced by these theories are a good approximation to the stress fields in
real membranes, when they are heavily wrinkled [Steigmann 1990]. Analytical
solutions for the onset of wrinkles in rectangular membranes subject to uniaxial
tension plus simple shear were obtained by Lin and Mote [1996]; these solutions
incorporate, of course, the bending stiffness of the membrane.

The first study of the shape of a heavily wrinkled membrane (as opposed to the
lightly corrugated shape that occurs soon after the onset of wrinkles) which also
took into account the role played by the membrane bending stiffness was the “hang-
ing blanket” solution by Rimrott and Cvercko [1986]. Consider a membrane held
at two corner points at the same height. A number of curved wrinkles form under
the action of gravity (Figure 2). The tension-line field, i.e., the stress distribution
that occurs in the membrane if out-of-plane displacements are neglected and yet
no compressive stress is allowed anywhere in the membrane, had previously been
determined by Mansfield [1981] for the case of a rectangular blanket. Rimrott
and Cvercko [1986] considered a membrane with sinusoidal, instead of straight
boundaries, and for this particular case obtained a solution for the post-wrinkling
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Figure 3. (a) Tension strips in hanging blanket and (b) detail of
third tension strip, showing stress distribution along centre line,
from Rimrott and Cvercko [1986].

tension-line field, where the membrane deforms out of plane while forming a num-
ber of wrinkles.

Rimrott and Cvercko noted that equilibrium of the membrane in the out-of-
plane distorted configuration requires each finite-size wrinkle to carry a uniform
horizontal force component; this horizontal force is equal in each wrinkle. Hence,
having shown that the boundaries of the wrinkle lines (Figure 3) have amplitudes
an, . . . , a0 that form a geometric progression (ai/ai+1 = constant) it follows that
the horizontal stress component, σx , at the centre of the wrinkle is largest in the
more closely spaced wrinkles at the top of the membrane. Associated with σx , there
is a compressive stress σy that vanishes at the edges of each finite-size wrinkle and
reaches a maximum along the centre line of the wrinkle; see Figure 3(b). Rimrott
and Cvercko assumed that the critical value, σcr, of this compressive stress is a
characteristic of the blanket material and showed that for any chosen value of σcr

there is corresponding number of finite-sized tension strips in the membrane.
Instead of Rimrott and Cvercko’s “material constant”, we have used for σcr the

Euler buckling stress of an infinitely long, thin plate of thickness t , Young’s mod-
ulus E , and Poisson’s ratio ν [Wong and Pellegrino 2002]. Hence,

σcr = −
π2 Et2

12(1 − ν2)λ2 , (1)
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where the width of the plate, λ, matches the unknown half-wavelength of the wrin-
kle. We derived expressions for the wrinkle wavelength and amplitude in a long,
rectangular membrane in simple shear. This approach, which forms the basis for
the methodology presented in this paper, was extended in [Wong et al. 2003] to
square membranes loaded by corner forces.

Epstein [2003] set up an approximate strain-energy analysis of a field of uniform,
parallel wrinkles. Having assumed the wrinkles to be of sinusoidal shape longitu-
dinally and to form circular arcs transversally (the same assumption had also been
made by Murphey et al. [2002]), Epstein showed that, given a longitudinal strain
εξ and wrinkling strain (transverse) εη, the wrinkle amplitude is

A =

√
2kL(ξ − ξ

2
), (2)

where k =
√

3ε2
η t2/2εξ (1 − ν2) and ξ = ξ/L is a nondimensional length variable

along the wrinkle (where L is the length of the wrinkle).
For the case of a square membrane of side length H , we have εξ = γ /2 and

εη = γ (ν − 1)/2, and Epstein obtained

A =

√√
3γ

4(1−ν2)
(1 − ν)

√
2Ht
2

. (3)

Energy-based derivations of the amplitude and wavelength of uniform, parallel
wrinkles in a rectangular sheet under tension were obtained by Cerda and Mahade-
van [2003].

The model presented in the next sections unifies our previous solutions [Wong
and Pellegrino 2002; 2003] and can be used to tackle other nonparallel, nonuniform
wrinkle fields.

3. Analytical model: general features

Our analytical approach is in four parts, as follows.
First, we propose a two-dimensional stress field that involves no compression

anywhere in the membrane; the regions where the minor principal stress is zero
are then assumed to be wrinkled and the wrinkles are assumed to be aligned with
the major principal stress directions. Ideally, both equilibrium and compatibility
should be satisfied everywhere by this stress field, but analytical solutions in closed
form (obtained by tension field theory, for example) exist only for simple boundary
conditions. However, we will show in Section 6 that a carefully chosen, simple
stress field that satisfies only equilibrium can provide quick solutions that are useful
for preliminary design. When several such stress fields have been identified, an
estimate of the complementary strain energy associated with each field is used to
select the most accurate one. More accurate stress fields, leading to better estimates
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of the wrinkle details, can be obtained, of course, from a two-dimensional finite
element stress analysis using membrane elements.

Second, we note that the bending stiffness of the membrane is finite, although
small, and hence a compressive stress will exist in the direction perpendicular to the
wrinkles. Because of its comparatively small magnitude, this stress was neglected
in the first part of the analysis. We assume that this compressive stress varies only
with the half-wavelength, λ, of the wrinkles and set it equal to the critical buckling
stress of a thin plate in uniaxial compression. By Euler’s formula applied to a plate
of unit width [Calladine 1983], we have

σcr = −
π2 Et2

12(1 − ν2)λ2 (4)

Thus, the stress across the wrinkles is a known function of the wrinkle wavelength.
Third, in each wrinkled region we describe the out-of-plane displacement of the

membrane, w, in terms of an unknown magnitude, A, and sinusoidal shape func-
tions in a ξ, η coordinate system. The ξ and η-axes are aligned with the principal
curvature directions, i.e. tangent and transverse to the wrinkles, respectively, and
the half-wavelengths of these shape functions correspond to the length and width of
the wrinkles. Thus, w automatically vanishes along the boundaries of the wrinkled
zone.

The equation of equilibrium in the out-of-plane direction for a membrane that
is not subject to any out-of-plane loading can be written in the form

σξκξ + σηκη = 0 (5)

(see [Calladine 1983]), where κξ and κη are the principal curvatures, which can be
obtained by differentiation of w. Since the stress distribution along the wrinkles is
known, from the stress field determined during the first part of the analysis, in the
transverse direction it can be assumed that

ση = σcr (6)

Enforcing Equation (5) at a single point, the midpoint of a wrinkle will be chosen,
provides an equation from which λ can be determined.

Fourth, the wrinkle amplitudes are estimated by considering the total transverse
strain εη as the sum of two components, a material strain (due to Poisson’s ratio
effects) and a wrinkling strain (due to in-plane geometric contraction associated
with out-of-plane displacement). The sum of these two strains must match the
boundary conditions imposed, e.g. by the wrinkle-free regions of the membrane.

Next, this general wrinkle model will be employed to predict the wrinkle details
in two specific examples.
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4. Analysis of membrane in shear

Consider a flat rectangular membrane of length L , height H , and thickness t , with
clamped long edges and short free edges. The upper edge is translated by an amount
δ in the direction of the edge itself, thus subjecting the membrane to a state of
simple shear that causes the formation of a series of wrinkles, as seen in Figure
4. A full explanation of the resulting wrinkle pattern was presented in [Wong and
Pellegrino 2006a], but here we will focus on the uniform wrinkles at 45◦ to the
edges, in the central part of the membrane.

Consider one of these uniform wrinkles in the central, uniformly wrinkled part
of the membrane, depicted in Figure 5.
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Figure 4. Rectangular Kapton sheet under simple shear.
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Figure 5. Perspective view of a single wrinkle.
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Note that the initially flat membrane has deformed into a doubly-curved surface,
alternately above and below the original xy plane of the membrane. This wrinkled
surface intersects the xy plane at a regular spacing λ, defined as the half-wavelength
of the wrinkle; neglecting edge effects, it can be assumed that these intersections
occur along straight lines.

A simple mode-shape describing the wrinkled surface can be readily set up using
the coordinate system ξ, η shown in Figure 5, where ξ is along the said intersection
line, i.e. parallel to the wrinkle direction, and η is perpendicular to it. The boundary
conditions on the out-of-plane displacement w are satisfied if we assume the mode
shape

w = A sin
π(ξ + η)

√
2H

sin
πη

λ
(7)

Nothing is said at this stage about in-plane deflection. Since the wrinkles are long
and narrow, η � ξ apart from a small region near the origin. Hence, the mode
shape can be simplified to

w ≈ A sin
πξ

√
2H

sin
πη

λ
(8)

The stress field consists of tension rays at 45◦ to the edges, and the stress along
the wrinkles, σξ , is much larger than the transverse stress, ση. Hence, neglecting
ση when writing the stress-strain relationship in the ξ -direction, we obtain

σξ = Eεξ (9)

For simple shear
εξ = γ /2 (10)

where γ = δ/H and, substituting into Equation (9) we obtain

σξ = Eγ /2 (11)

Recall that, although ση is relatively small in comparison with σξ , in order for
the wrinkle to have formed, the transverse stress must have reached the critical
buckling stress given in (4).

The principal curvatures that appear in the equilibrium equation (5) can be de-
termined as in [Calladine 1983] by differentiating (8):

κξ = −
∂2w

∂ξ 2 =
π2 A
2H 2 sin

πξ
√

2H
sin

πη

λ
, (12)

κη = −
∂2w

∂η2 =
π2 A
λ2 sin

πξ
√

2H
sin

πη

λ
. (13)

These expressions are only exact where ∂w/∂ξ ≈ 0 and ∂w/∂η ≈ 0, which is
indeed the case at a wrinkle mid point. Substituting Equations (4), (11), (12) and
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(13) into (5), simplifying and rearranging yields for the wrinkle half-wavelength
the expression

λ =

√
π Ht√

3(1 − ν2)γ
. (14)

To find an expression for the amplitude, A, of the wrinkle we note that the
imposed strain εη, given by

εη = −γ /2, (15)

(as can be seen from Mohr’s circle), has to be equal to the sum of the material
strain

εηM = −
ν

E
σξ (16)

with the average geometric strain, εηG, produced by wrinkling. This wrinkling
strain is obtained by taking the difference between the projected width of a wrinkle
and its actual width, and dividing by the actual width. Hence

εηG =

λ −

∫ λ

0

(
1 +

1
2

(
∂w

∂η

)2
)

dη∫ λ

0

(
1 +

1
2

(
∂w

∂η

)2
)

dη

. (17)

Here, assuming the slope ∂w/∂η to be small, the term (∂w/∂ξ)2 in the denominator
can be neglected.

Next, consider the centre line across a wrinkle, and hence substitute ξ = H/
√

2
into (8). Substituting the resulting expression for w into (17) and working out the
in integral gives

εηG = −
π2 A2

4λ2 . (18)

Finally, setting
εη = εηM + εηG (19)

as explained, we obtain

−
γ

2
= −

ν

E
σξ −

π2 A2

4λ2 . (20)

Substituting (11) into (20) and solving for A gives

A =

√
2(1 − ν)γ

π
λ, (21)

from which λ can be eliminated using Equation (14), to find

A =

√
2Ht
π

√
(1−ν)γ

3(1+ν)
. (22)
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It can be readily verified that this expression is equivalent to that obtained by
Epstein [2003], apart from a factor of 0.77. This discrepancy is mainly due to the
fact that Epstein assumed circular arcs as the wrinkle mode shape, instead of a
double sinusoid.

4.1. An energy approach. An alternative approach to find λ for the present, simple
boundary conditions, is to set up an expression for the strain energy in a wrinkled
thin plate, including the second-order strain due to out-of-plane deflection, and to
minimize with respect to λ. The membrane is modelled as a thin plate stretched in
the ξ -direction and wrinkled in the η-direction.

The general expression for the bending strain energy per unit area of an initially
flat plate that is bent into a cylindrical shape of curvature κη is

Ub =
1
2

Et3

12(1 − ν2)
κ2

η . (23)

As κη is not constant — see Equation (13) — the average strain energy per unit
area, U b, is obtained from

U b =
1
2

Et3

12(1 − ν2)

(
1

√
2Hλ

∫ λ

0

∫ √
2H

0
κ2

η dξ dη

)
=

1
2

Et3

12(1 − ν2)

π4 A2

4λ4 . (24)

The stretching strain energy per unit area can be obtained, neglecting stretching
in the η-direction, from

Us =
1
2 Etε2

ξ . (25)

Here, εξ is the sum of the strain due to the in-plane shear, Equation (10), plus that
due to the out-of-plane deflection due to wrinkling:

εξ =
γ

2
+

1
2

(
∂w

∂ξ

)2

. (26)

Thus εξ is also not constant. Hence, consider the average strain energy per unit
area over a wrinkle, U s , given by

U s =
1
2

Et
(

1
√

2Hλ

∫ λ

0

∫ √
2H

0
ε2
ξ dξ dη

)
≈

Et
2

γ 2

4
+

Et
2

π2 A2γ

16H 2 . (27)

The first of these terms is independent of the wrinkle amplitude, A; therefore it
will not be carried through to the next stage of the analysis.

The total mean strain energy per unit area (neglecting the term without A) is
given by

U = U b + U s =
1
2

Et3

12(1 − ν2)

π4 A2

4λ4 +
Et
2

γ 2

4
+

Et
2

π2 A2γ

16H 2 . (28)
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Next, expressing A in terms of λ, Equation (21), we obtain

U =
(1 − ν)Etγ

2

(
π2t2

24(1 − ν2)λ2 +
γ λ2

8H 2

)
. (29)

Differentiating with respect to λ and setting dU/dλ = 0 gives an expression equiv-
alent to Equation (14). This result shows that the simple equilibrium formulation
with an assumed stress ση, presented in Section 4, captures the same effects as the
analytically more elaborate energy formulation.

5. Analysis of membrane under corner loads

The second problem considered in this paper is an initially flat, square membrane
of side length L + 2a and thickness t , subjected to two pairs of equal and opposite
corner forces, T1 and T2, as shown in Figure 6. Note that the actual corners of the
membrane have been removed, and it is assumed that the concentrated loads are
applied to the membrane through rigid beams of length d . We are interested in de-
termining the wrinkle pattern for different values of the ratio T1/T2. This problem
was investigated experimentally in [Wong and Pellegrino 2006a, Section 5].

A key difficulty in extending the approach of Section 3 to the present problem
is that no tension field solution is known for this problem and so an approximate
solution will be sought. We propose four different, no-compression “equilibrium”
stress fields, some of which are only valid if the ratio of the corner forces is in
a particular range. For each stress distribution an upper-bound estimate of the
corner displacements will be obtained, and so, when for a given load ratio and
membrane dimensions there is more than one potential stress distribution, the best

T1, δ1
L

d

T1, δ1T2, δ2

T2, δ2

L

a

a

a a

Figure 6. Square membrane subject to corner loads.
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approximation to the actual stress field in the membrane will be obtained by choos-
ing the particular distribution that produces the lowest upper bound for the corner
deflections.

5.1. Stress fields. Figure 7 shows four possible stress fields, all of which satisfy
equilibrium everywhere and involve no compressive stress at any point. In each
case the membrane has been divided into regions that are either unloaded or subject
to a simple state of stress. The stress field in Figure 7(b) is valid only for T1 = T2,

d

0

0

0

0

T2

T2=T1
(a) (b)

(d)(c)

0

0

0

0

T2

T2

T1

T1

T2

T2

T1

T2 T1

T1

T1

T2=T1

T1=T2

R1

R2

R2

R1

T1=T2

Figure 7. Equilibrium stress fields: (a) diagonal strip field; (b, c)
wedge fields; (d) variable angle wedge field. A trapezium denotes
a purely radial stress field.
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while the others are more general, although still subject to some restrictions to be
explained later.

Although equilibrium is satisfied, there is no guarantee that the elastic strains
associated with these fields are compatible; indeed obvious compatibility violations
can be easily detected for the simpler fields.

For each stress field it is possible to produce an estimate of the corresponding
corner displacements, δ1 and δ2, defined in Figure 6. These displacements are com-
puted using an upper-bound approach based on the complementary strain energy
in the membrane.

The theorem of minimum complementary energy [Calladine 1983] states that
the total complementary energy in a linear-elastic structure is minimum for the
actual stress distribution. Hence, for an assumed stress field satisfying equilibrium
but not necessarily compatibility, the complementary energy will be higher than
for the actual stress distribution; thus

U 6 U∗, (30)

where U and U∗ are the actual and the estimated complementary energies. Hence,
given a set of stress fields, we will define the “best” to be the stress field that
produces the smallest estimate of U∗.

U∗ can be calculated from

U∗
=

1
2

∫
V
(ε1σ1 + ε2σ2) dV, (31)

where σi and εi denote the principal stresses and strains.
By conservation of energy, U is given for two given sets of corner forces, Ti ,

and corresponding corner displacements δi by

U =
1
2

2∑
i=1

2Tiδi = T1δ1 + T2δ2. (32)

Hence, from Equation (30), the average of the corner displacements, each weighted
by the corresponding applied forces, determined by means of this method, is always
an upper bound to the correct value.

Diagonal strip field. Figure 7(a) shows a simple stress field, consisting of four di-
agonal tension strips of width d , each under uniform uniaxial stress, plus a biaxially
stressed centre region. The remaining parts of the membrane are unstressed.

For the case of symmetric loading, T1 = T2 = T and δ1 = δ2 = δ, the uniaxial
stress in the tension strips is

σt =
T
dt

(33)
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and the complementary energy in each diagonal region is

U∗

1 =
1
2

∫
V

σ 2
t

E
dV =

T 2L

2
√

2d Et
, (34)

whereas the complementary energy in the central biaxially stressed region is

U∗

2 =

∫
V

σ 2
t (1 − ν)

E
dV =

T 2(1 − ν)

Et
. (35)

Hence, considering the four diagonal regions plus the central region, the total
complementary energy for this stress field is

U∗
=

T 2

Et

(√
2L
d

+ (1 − ν)

)
. (36)

Therefore, the corner displacement, δ, can be determined from (30), (32), and (36)
which give

δ 6
T

2Et

(√
2L
d

+ (1 − ν)

)
. (37)

Wedge field. The second stress field, shown in Figure 7(b), is for symmetric load
cases, T1 = T2 = T and δ1 = δ2 = δ. This field is based around four identical wedges
subject to purely radial stress, joined by a central region under uniform biaxial
stress, and with small corner lunes also under uniform biaxial stress. Detailed
views are shown in Figure 8.

The stress distribution in the wedge region, ABCD, is assumed to be purely
radial and inversely proportional to the distance r from the apex O:

σr =
T

√
2r t

, (38)

T

(a) (b)

T/√2a

T/√2at

σr=T/√2at

σr=T/√2at

σr=√2T/(2a+L)t

(c)
CL

(d)

CL
σr=√2T/(2a+L)t

A

B

A

B
A

B C

D

C

D F

a

L/2

Figure 8. Components of wedge field: (a) free body diagram of
edge beam; (b) biaxially stressed corner lune; (c) radially stressed
wedge region; (d) one quarter of biaxially stressed centre region.
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where a < r < a + L/2. Hence, the radial stress is uniform on any circular arc and
all other stress components are zero. It can be readily shown that this distribution
satisfies equilibrium, indeed this distribution was inspired from the classical plane-
stress solution for a wedge-shaped thin plate [Timoshenko and Goodier 1970].

The radial stress along the curved edges of this wedge are equilibrated by two
regions of uniform, biaxial stress: the lune AB and the central region defined by
the arc CD and the symmetry lines CF and DF. The stress magnitudes in these two
regions are obtained by substituting r = a and r = a + L/2, respectively, into (38).

The complementary energy for each of these regions can be found by an ap-
proach analogous to that described in Section 5.1, although now the derivation is
much lengthier as the integration of the complementary strain energy has to be
carried out over several regions. Thus we obtain for the corner displacement the
upper bound

δ 6
T

4Et

(
π ln

(
1 +

L
2a

)
+ 2(1 − ν)

)
. (39)

This type of stress field can be extended to asymmetric loading. Starting from
the symmetric case described above, consider increasing T1. For equilibrium to
be still satisfied, the key requirement is that the radial stress along the four arcs
bounding the central region should be uniform. Since now σr in each wedge region
is proportional to Ti/r , we can compensate for the increase in T1 by increasing
correspondingly the outer radius of this wedge, or by decreasing the outer radius
of the wedge corresponding to T2, or both; see Figure 7(c). For the stress along the
edges of the centre region to be uniform, clearly we require that R1/R2 ∝ T1/T2.

This approach is valid until the two arcs of larger radius touch at the centre of
the membrane, which happens when

R1

R2
=

T1

T2
=

1
√

2 − 1
≈ 2.41. (40)

When T1 6= T2 the corner displacements δ1 and δ2 are also different. Hence,
computing the overall complementary energy does not lead to a bound on a par-
ticular corner displacement. A useful estimate of the radial corner displacements
can be obtained by dividing the membrane into two parts, each associated with the
displacements of a pair of opposite corners; the split is illustrated in Figure 9. For
example, the corners loaded by T1 are associated with the larger two wedges, plus
the two areas labelled A1.

The areas labelled A1 and A2 needed for the complementary strain energy cal-
culation are given by

A1 =
(R1 + R2)

2

2
−

π R2
1

4
− R2

2 =
1
2

(
1 −

π

2

)
R2

1 + R1 R2 −
R2

2

2
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T1
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R1

R2

A1
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A2

Figure 9. Partitioning of membrane for energy calculation.

and

A2 = R2
2 −

π R2
2

4
.

Thus, after computing the complementary strain energy associated with each
corner, we obtain

δ1 6
T1

4Et

(
π ln

R1

a
+

1 − v

R2
1

(4R1 R2 − 2R2
2)

)
, (41)

δ2 6
T2

4Et

(
π ln

R2

a
+ 2(1 − ν)

)
. (42)

Note that, although Equations (41) and (42) are useful tools for design, they are
not rigorous expressions, since their validity is not underpinned by the complemen-
tary energy theorem.

Variable angle wedge field. As stated earlier, the wedge stress field presented in
Section 5.1 is only valid up to T1/T2 ≈ 2.41. At this point the edges of the larger
two wedges come into contact, thus forming a single region (continuous between
the two most heavily loaded corners of the membrane) without tensile stress in the
transverse direction. Note that the limit of 2.41 closely corresponds to the load
ratio at which a diagonal wrinkle was first observed experimentally [Wong and
Pellegrino 2006a].

A more general stress field, which allows us to consider larger values of T1/T2,
has been shown in Figure 7(d). Here, the outer radius of the wedges corresponding
to the larger loads is kept equal to the value at which the wedges meet at the centre
of the membrane

R1 = a + L/
√

2 (43)
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Figure 10. Geometry of variable angle wedge field.

but the angle subtended by these wedges, 2θ1, is allowed to vary, depending on
T1/T2. This has the effect that the outer radius of the remaining two wedges also
varies.

Thus, this stress field consists of: four wedges subject to purely radial stress
(A′B′C′D′, D′FGH, etc.); a central region under uniform biaxial stress (C′D′FI);
and four corner lunes also under biaxial stress. This leaves four triangular edge
regions that are unstressed. The acute angles of these triangles are related to the
wedge half-angles by

αi =
π

4
− θi . (44)

The stress distribution in each of the four wedge regions is given by a general-
ization of (38) to a wedge subtending an angle of 2θi

σr =
Ti

2r t sin θi
. (45)

Hence, the normal stress along the edges of C′D′FI is obtained by substituting
r = R1 and r = R2 into (45), and for the two magnitudes to be equal we require

T1

2R1t sin θ1
=

T2

2R2t sin θ2
. (46)

Rearranging (46) we obtain the general condition

R2 sin θ2

sin θ1
=

R1T2

T1
. (47)

For any given T1 and T2, and since R1 is known, R2, θ1, and θ2 have to satisfy this
condition.



46 Y. WESLEY WONG AND SERGIO PELLEGRINO

Two additional conditions on R2, θ1, and θ2 are obtained as follows. For the first
condition, note that

J D′ = O D′ sin α1 = R1 sin
(π

4
− θ1

)
(48)

and also

J D′ = P D′ sin α2 = R2 sin
(π

4
− θ2

)
. (49)

Equating these expressions for J D′ and rearranging

R2 = R1

(
sin

π

4
− θ1

)/(
sin

π

4
− θ2

)
. (50)

For the second condition, apply the sine rule to D′OP to obtain

R1

sin α2
=

2a + L
sin(π − α1 − α2)

(51)

Substituting Equation (44) and grouping all unknowns on the right-hand side gives

cos(θ1 + θ2)

sin
(
π

4
− θ2

) =
2a + L

R1
. (52)

Equations (47), (50), and (52) can be solved for any given value of T1/T2 >

1/(
√

2 − 1) to determine the corresponding parameters of the stress field.
Figure 11 is a plot of the variation with T1/T2 of the angles that determine the

four wedges, θ1 and θ2. Note that, since the wedge angles become smaller as T1/T2

increases, the slack regions along the edges of the membrane, denoted by a “0” in
Figure 7(d), get bigger.

The complementary strain energy associated with each of the corner displace-
ments is then calculated, splitting the central, biaxially stressed region into areas
A1 and A2, which now have the expressions

A1 =
(2a + L)2

2
− R2

1(θ1 + sin α1 cos α1) − R2
2 cos2 α2,

A2 = R2
2(cos2 α2 − θ2 − sin α2 cos α2).

Thus, following the same approach as in Section 5.1, we obtain

δi ≤
Ti

4Et sin2 θi

(
2θi ln

Ri

a
+ (1 − ν)(θi − sin θi cos θi ) +

Ai

R2
i

)
, (53)

where i takes the values 1 or 2, depending on the corner of interest.
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Figure 11. Geometric parameters of variable angle wedge field.

5.2. Wrinkle details. Based on the no-compression stress fields that have been
proposed in Section 5.1, two different kinds of wrinkle patterns can be expected.
Note that the diagonal strip stress field was included only for the sake of explanation
but, as it does not lead to accurate estimates, it will not be used for any further
analysis.

If T1/T2 < 1/(
√

2 − 1), there is a biaxially stressed region at the centre of the
membrane, separating four uniaxially stressed corner regions. Hence, four separate
fans of wrinkles will form near the corners, but they cannot go through the centre.
If T1/T2 ≥ 1/(

√
2 − 1), the two larger uniaxial stress regions join up at the centre

of the membrane. Hence, there is a continuous, narrow diagonal region that is
uniaxially stressed, and so in this case a small number of wrinkles can go all the
way from one highly loaded corner to the other.

In the first case, we will assume each fan to consist of identical, radial wrinkles
that start right at the edge of a biaxially stressed corner lune and extend as far as
an unknown radius, Rw. This analysis can be more easily explained for the case of
symmetric loading. In the second case, although fans of wrinkles will also form,
we will focus on the much larger, diagonal wrinkle parallel to the loads T1.

Corner wrinkles. Figure 12 shows a corner of a symmetrically loaded membrane.
Here, Rw denotes the outer radius of the wrinkled zone, and it is assumed that the
wrinkles start right at the edge of the biaxially stressed lune, AB. Note that in the
region between Rw and R the formation of wrinkles is possible, because the stress
is still uniaxial, but there isn’t enough spare material for the wrinkles to actually
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Figure 12. Region affected by fan of n = 4 half-wrinkles.

show. R denotes the outer radius of the wedge stress field, hence R = a + L/2 for
symmetric loading. However, we will keep the more general notation.

The profile of the membrane in the wrinkled zone is assumed to be given by

w = A sin
π(r − a)

Rw − a
sin 2nθ, (54)

where the angle θ is measured from an edge of the membrane, A is an unknown
amplitude, and n is the total number of half-wrinkles, each subtending an angle of
π/2n. Note that the particular mode shape sketched in Figure 12 and assumed in
Equation (54) sets the out-of-plane displacement of the membrane to zero along
the edges, and assumes an integer number of half-wrinkles, for simplicity.

The value of n can be determined by considering out-of-plane equilibrium in
the middle of a wrinkle. At such a point the principal directions of curvature are r
and θ , and hence the equilibrium equation is

σrκr + σθκθ = 0, (55)

where κr and κθ are the radial and hoop curvatures obtained by differentiation of
Equation (54). Hence,

κr = −
∂2w

∂r2 =
Aπ2

(Rw − a)2 sin
π(r − a)

Rw − a
sin 2nθ,

κθ = −
1
r2

∂2w

∂θ2 =
4An2

r2 sin
π(r − a)

Rw − a
sin 2nθ.



WRINKLED MEMBRANES II: ANALYTICAL MODELS 49

The centre of a wrinkle is the point where the curvatures are maximum, hence
it is located at

r̃ =
Rw + a

2
(56)

The maximum curvatures are therefore

κ̃r =
Aπ2

(Rw − a)2 , κ̃θ =
16An2

(Rw + a)2 . (57)

The radial stress at the centre of the wrinkle is obtained by substituting Equation
(56) into the general expression for the wedge field, Equation (38). Hence

σr =

√
2T

(Rw + a)t
. (58)

The hoop stress will be set equal to the critical buckling stress, Equation (4), with
λ set equal to the central wrinkle half-wavelength, λ̃. Hence,

λ̃ =
π r̃
2n

=
π(Rw + a)

4n

and so

σθ = −
4Et2n2

3(1 − ν2)(Rw + a)2 . (59)

Substituting Equations (57), (58) and (59) into (55) and simplifying gives
√

2π2T
(Rw + a)(Rw − a)2t

−
64Et2n4

3(1 − ν2)(Rw + a)3 = 0,

from which, solving for n,

n =
4

√
3
√

2π2(1 − ν2)(Rw + a)3

64Et3(Rw − a)2 T . (60)

To find the amplitude, A, we equate the total hoop strain, obtained from the in-
plane displacement field, to the sum of the material strain and the geometric strain
due to the wrinkles.

The displacement field is assumed to be purely radial. Hence, denoting by u(r)

the radial displacement, defined to be positive in the positive r direction, we have

u =

∫ r

R
εr dr =

∫ r

R

σr

E
dr =

T
√

2Et
ln

r
R

,

where it has been assumed that u(R) ≈ 0. The hoop strain at the centre of a wrinkle
is therefore

ε̃θ =
ũ
r̃

=

√
2T

Et (Rw + a)
ln

Rw + a
2R

. (61)
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On the other hand, the material hoop strain and the geometric hoop strain due to
the out-of-plane deformation associated with wrinkling, at the centre of a wrinkle,
are respectively

ε̃θM = −ν
σr

E
= −

ν

E

√
2T

(Rw + a)t
, ε̃θG = −

π2 A2

4λ̃2
= −

4A2n2

(Rw + a)2 . (62)

Hence, substituting Equations (61) and (62) into

ε̃θ = ε̃θM + ε̃θG

and simplifying, we obtain
√

2T
Et

ln
Rw + a

2R
= −

√
2νT
Et

−
4A2n2

Rw + a
.

Solving for A we find

A =
1
n

√
Rw + a

2
√

2Et

(
ln

2R
Rw + a

− ν

)
T (63)

Finally, we can determine the value of the outer radius of the wrinkled region,
Rw, by looking for the value of r at which the material hoop strain is the total hoop
strain, and so εθG = 0. Hence, we substitute r = Rw into general expressions for
εθ and εθM, and then set εθ = εθM to find

T
√

2Et Rw

ln
Rw

R
= −

νT
√

2Et Rw

, (64)

from which, solving for Rw,
Rw = e−ν R. (65)

Asymmetric loading. The analysis presented in the previous section can be gener-
alised to cover the case of nonsymmetric loading with 1 < T1/T2 < 1/(

√
2 − 1),

and can also be used to characterize the fans of corner wrinkles that occur when
T1/T2 > 1/(

√
2 − 1).

In the latter case, though, we are mainly interested in the largest wrinkle, which
runs along the diagonal parallel to the loads T1, as depicted in Figure 13. Inciden-
tally, due to the narrowness of the region of contact between the two larger wedge
stress fields, it is reasonable to assume that only a single large wrinkle will be able
to form.

Consider the coordinate system ξ, η shown in the figure, with axes parallel and
orthogonal to the wrinkle direction, and the simple mode shape

w = A sin
πξ

√
2(L + a)

sin
πη

λ
(66)
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Figure 13. Wrinkle pattern for T1/T2 ≥ 1/(
√

2 − 1).

where λ is the half-wavelength, and A the maximum amplitude. We will follow
the same procedure of Section 5.2 to estimate the wavelength of this wrinkle.

The longitudinal and transverse curvatures, obtained by differentiating Equation
(66), are

κξ = −
∂2w

∂ξ 2 =
Aπ2

2(L + a)2 sin
πξ

√
2(L + a)

sin
πη

λ
,

κη = −
∂2w

∂η2 =
Aπ2

λ2 sin
πξ

√
2(L + a)

sin
πη

λ
,

and the corresponding maximum values, at the centre of the membrane, are

κ̃ξ =
Aπ2

2(L + a)2 , κ̃η =
Aπ2

λ2 . (67)

The longitudinal stress at the centre of the wrinkle is obtained by determining
the wedge angle θ1, as explained in Section 5.1, and then noting that at the centre
of the membrane ξ and r are parallel. Hence,

σξ =
T1

√
2(L + 2a)t sin θ1

. (68)

The transverse stress, ση, at the centre of the wrinkle is given by Equation (4), as
usual. Substituting Equations (67), (68) and (4) into Equation (5), and then solving
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for λ gives

λ =
4

√
π2 Et3(L + 2a)(L + a)2 sin θ1

3
√

2(1 − ν2)T1
. (69)

The calculation of the wrinkle amplitude is different from the earlier case, as
now we are dealing with a localised wrinkle. Hence, instead of working in terms of
strains, we will consider the total extensions along the diagonals of the membrane.

We begin by noting that the variable angle wedge stress field involves slack
regions along all four edges of the membrane. Hence, neglecting the effects of
any out-of-plane deformation, we can think of the edges of the membrane simply
as four rigid links connected by pin-joints, and hence forming a square four-bar
linkage. Therefore, since the corners of the membrane subjected to the loads T1

move outwards, each by δ1 (whose value can be estimated with (53), for i = 1), the
corners subjected to the loads T2 move inwards by δ1. Therefore, the extension of
the diagonal parallel to the loads T2 is −2δ1.

This extension includes a component due to elastic stretching, found by inte-
grating the elastic strains along the diagonal, and hence given by 2δ2. The value
of δ2 can be estimated with Equation (53), for i = 2. It also includes a component
due to the geometric strain induced by the single wrinkle, which can be found by
multiplying the wave-length, 2λ, by the wrinkling strain, Equation (18); this gives
−π2 A2/2λ. Therefore, we obtain

−2δ1 = 2δ2 −
A2π2

2λ

and, solving for A,

A =
2
√

λ(δ1 + δ2)

π
(70)

where λ is given by (69) and δ1, δ2 are given by (53).

6. Validation of analytical results

The analytical predictions of the wrinkle details, developed in Sections 4 and 5.2
will now be compared against a variety of “reference” results obtained experimen-
tally or numerically, on Kapton HNr membranes with measured Young’s modulus
E = 3500 N/mm2 and Poisson ratio ν = 0.31 [Wong and Pellegrino 2006a].

6.1. Membrane in shear. The dimensions of the membranes were H = 128 mm
by L = 380 mm.

To begin with, we consider the average magnitude of the midsurface minor prin-
cipal stress, i.e., the compressive stress across the wrinkles, acting at midheight.
This stress would be difficult to measure experimentally, but can be readily obtained
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Figure 14. Minor principal stress at midheight, for 0.025 mm
thick Kapton membrane in shear.

from a detailed finite-element simulation where the membrane is represented by
thin-shell elements.

Figure 14 compares, for different values of the shear angle, the average stress
obtained in [Wong and Pellegrino 2006b] with analytical predictions obtained by
substituting (14) into (4). The largest discrepancy between the analytical predic-
tions, which do not take into account the fans of wrinkles at either end of the
membrane, and a very detailed finite element simulation is never more than 30%.

Next, we consider the relationships between the wrinkle wavelength, 2λ, and the
amplitude, A, with the angle of shear, γ , provided by (14) and (22), respectively.
Figures 15 and 16 show plots of these relationships, together with a large set of ex-
perimental results obtained from Kapton membranes of three different thicknesses,
and a set of finite-element simulation results, obtained in [Wong and Pellegrino
2006b]. Both sets of results bunch closely along the analytical predictions.

6.2. Membrane under corner loads. The geometrical parameters of the membrane
were L = 472 mm, a = 17 mm, and t = 0.025 mm.

First, we consider the membrane loaded by four equal forces. For this case we
will focus on the corner load-displacement relationship and the details of the corner
wrinkles.

Figure 17 compares the predictions of the corner displacements from Equa-
tions (37) and (39) (both of which are known to provide upper-bound estimates
on the correct displacement) with two sets of reference values, obtained from two
different types of finite element models [Wong and Pellegrino 2006b].
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Figure 17. Relationship between nondimensional corner displace-
ment and load, for symmetric loading of square membrane.

The two sets of finite-element results fit almost exactly on a straight line, and
both analytical predictions are also linear. Equation (39), based on the wedge field,
gives much closer predictions than (37), based on the diagonal strip field. This
suggests that, among these two, the wedge field provides a much more accurate
approximation to the actual stress distribution in the membrane when equal corner
loads are applied.

Table 1 compares the number of corner wrinkles and their maximum amplitude,
predicted using Equations (60) and (63), with direct experimental measurements
[Wong and Pellegrino 2006a] and results from finite-element simulations using a
thin-shell model [Wong and Pellegrino 2006b], for two different load levels, T =

5 N and 20 N.

n A (mm)
Equation (60) Exp. F.E. Equation (63) Exp. F.E.

T = 5 N 11.3 8 8 0.14 0.12 0.12
T = 20 N 16.0 11 9 0.20 0.14 0.16

Table 1. Number of corner wrinkles, n, and their maximum am-
plitude, A, under symmetric loading.
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Figure 18. Relationship between corner displacement and load
ratio, for asymmetric loading of square membrane.

The number of wrinkles predicted by Equation (60) is typically a 40% overes-
timate of the number observed in the experiments, whereas the simulation results
match the experiments much more closely. It is not surprising that the analytically
predicted number of wrinkles should be in excess of the actual number, since we
have assumed a uniform fan of wrinkles whereas in reality there are no wrinkles
along the edges Wong and Pellegrino [2006a, Figure 9].

The predicted wrinkle amplitudes are also overestimates, by 15% to 40%, due to
the fact that in a real membrane a significant amount of out-of-plane displacement
associated with wrinkling takes place along the edges of the region.

Next, we consider the same membrane and, while keeping two of the corner
forces constant at T2 = 5 N, we increase the other two forces, T1, until the ratio
between T1 and T2 becomes 4. For this case we will focus on the relationship
between corner displacement and load ratio, and on the diagonal wrinkle.

Figure 18 shows a plot of Equation (53) for the diagonal displacement of the
most heavily loaded corners vs. the ratio T1/T2, plus two sets of reference results,
obtained from two different finite-element models [Wong and Pellegrino 2006b]
which have given substantially identical results. An alternative, and simpler, pre-
diction, could be obtained from Equation (30), however we have already seen for
the case of symmetric loading that the predictions from this equation are poor.

The main observation from Figure 18 is that the reference response shows an
approximately bilinear variation of δ1, with softening by about 30% at T1/T2 ≈

2.7. This decrease in stiffness coincides with the formation of a large diagonal
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Figure 19. Distribution of midsurface principal stress along a di-
agonal, for T1/T2 = 4.

wrinkle. The response predicted by Equation (53) follows the same general trends
as the reference solution, but the value of T1/T2 at which the slope changes is
underestimated by about 10% and the predicted slopes are over-estimated by about
10% and 60%, respectively before and after the slope transition.

Incidentally, the initial mismatch between the two solutions, at T1/T2 = 1, is
largely due to fact that the finite-element models include the corner tabs that were
used in our experiments [Wong and Pellegrino 2006a].

It is interesting to compare the distribution of the midsurface, major principal
stress along a diagonal, shown in Figure 19. The variation of σ1 derived from the
variable-angle wedge field is a square wave, whereas the finite-element simulations
show an almost triangular wave. The stress increases near the corners; also note
that the assumed stress field underestimates the peak stress by about 60%.

Finally, Table 2 compares our analytical predictions of the diagonal wrinkle
details when T1/T2 = 4, for two different membrane thicknesses, t = 0.025 mm
and t = 0.050 mm. Experimental results from [Wong and Pellegrino 2006a] and
finite-element simulation results from [Wong and Pellegrino 2006b] are provided
for comparison.

Regarding the half-wavelength presented in Table 2, our predictions for the thin-
ner membrane practically coincide with the experimental measurements and the FE
simulations. For the thicker membrane, Equation (69) over-estimates λ by about
15%.

Regarding the wrinkle amplitude, it can be predicted in two different ways. The
most direct method is to follow a fully analytically approach, and hence to estimate



58 Y. WESLEY WONG AND SERGIO PELLEGRINO

λ (mm) A (mm)
t (mm) Eq. (69) Exp. F.E.a Eq. (70)+(53) Eq. (70)+F.E.b Exp. F.E.b

0.025 24.6 25.4 22.3 3.55 2.8 1.89 2.02
0.050 41.3 33.9 35.6 3.25 2.1 1.81 1.63

Table 2. Half-wavelength, λ, and amplitude, A, of diagonal wrin-
kle for T1/T2 = 4. a shell model. b IMP model.

δ1 and δ2 from Equation (53), and substitute their values into Equation (70). Alter-
natively, one can estimate δ1 and δ2 with a finite-element stress analysis that uses
no-compression elements, such as the IMP model used in [Wong and Pellegrino
2006b]. The corresponding results are presented in columns 5 and 6 of Table 2.

The fully analytical estimates are up to 88% higher than the experimental mea-
surements. However, the error decreases, to 48% and 16%, respectively for the
thinner and thicker membranes, when Equation (70) is combined with the finite-
element estimates.

7. Discussion and conclusions

This paper has presented a general analytical framework for thinking about the
location and pattern of wrinkles in thin membranes, and for making preliminary
estimates of their wavelength and amplitude.

The key ideas in the analytical model that has been proposed are as follows.
First, the wrinkled region and the direction of the wrinkles can be determined
from a two-dimensional stress field that admits no compressive stress anywhere,
satisfies equilibrium, and provides a reasonably close (upper) bound to the actual
complementary strain energy of the membrane. Second, the wavelength of the
wrinkles can be estimated by considering a (small) compressive buckling stress in
the direction transverse to the wrinkles, and by ensuring that this stress component
and the longitudinal stress (given by the two-dimensional stress field) are in equi-
librium in the out-of-plane direction, say, at the centre of the wrinkles. Third, the
amplitude of the wrinkles is determined by matching the sum of the material strain
and geometric strain due to wrinkling, in the direction transverse to the wrinkles,
to the boundary conditions imposed by the nonwrinkled region.

This analytical model has been applied to two different problems, a rectangular
membrane under simple shear and a square membrane loaded at the corners.

In the first problem, the wrinkles are essentially uniform and the stress field
is known. Our model predicts the wavelength and the wrinkle amplitude to be
respectively inversely proportional and directly proportional to the fourth root of
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the shear angle; see Equations (14) and (22). Both values are directly proportional
to the square root of the height and thickness of the membrane, and both are inde-
pendent of the Young’s modulus.

In the second problem two wrinkling regimes have been identified. The first is
characterised by relatively uniform, small, radial corner wrinkles and occurs for
load ratios smaller than 1/(

√
2 − 1). The number of radial wrinkles is proportional

to the fourth root of the radius of the wrinkled region and the corner forces; see
Equation (60). The amplitude of these wrinkles is inversely proportional to this
number and directly proportional to the square root of the radius of the wrinkled
region and to the corner force; see Equation (63). Here the radius of the wrinkled
region is proportional to the radius of the uniaxially stressed wedge field (Equation
(65)).

The second regime occurs for load ratios larger than 1/(
√

2 − 1), and is charac-
terised by a large diagonal wrinkle, plus small radial wrinkles at all four corners.
The variation of the width and amplitude of this wrinkle are more complex — see
Equations (69) and (70) — since the geometric parameters of the stress field are
dependent on the load ratio, through Equations (47), (50), and (52).
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