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LI YIN-PING AND YANG CHUN-HE

An approximate method of stress analysis in elastic solids with multiple cracks is
proposed to improve the accuracy of the Kachanov method in analyzing closely
spaced cracks. Classical Kachanov method assumed that traction in each crack
can be represented as the sum of a uniform component and a nonuniform one,
and that the interaction among the cracks is only due to the uniform components.
The assumptions simplify considerably the mathematics. However, they may
not be valid when the cracks are very close and overlap along the direction of
load, because each crack may be embedded in the stress-amplifying region as
well as the stress-shielding region of the other cracks at this time. To improve
the accuracy of the Kachanov method, a new asymptotic method, in which the
influence on a crack of the quadratic parabola pseudotractions (QPPTs) rather
than the average ones on the other crack are taken into account, is proposed. Ap-
plications to the problem of three collinear cracks and two offset parallel closely
spaced cracks are considered to validate the accuracy of the new method.

1. Introduction

As one of the key factors in determining the component life of a structure, the inter-
action effect among cracks has received significant attention in recent years. Vari-
ous methods [Sneddon and Lowengrub 1969; Erdogan 1983; Chen 1984a; 1984b,
Horii and Nemat-Nasser 1985b; Chudnovsky et al. 1987a; 1987b; Kachanov 1987;
Lam and Phua 1991; Kachanov 1992; Chen 1995; Basista and Gross 2000; Gor-
batikh and Kachanov 2000; Wang et al. 2000; Li et al. 2003] have been developed
for the analyses. As the boundary conditions can be more readily defined for
traction free cracks, crack interaction problems were formulated in terms of the
interaction tractions rather than in terms of the displacement discontinuities. Based
on the stress superposition technique, Kachanov [1987] proposed a simple method
for calculation of stress intensity factors (SIFs) and effective elastic properties of
solids with multiple cracks. The solution can also be used to construct the stress
and displacement fields in the solid [Kachanov 1987; Gorbatikh and Kachanov
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2000]. Combining the Kachanov method with the sliding crack model of brittle
deformation, Basista and Gross [2000] extended the method to two-dimensional
crack interaction problems under overall compression.

In Kachanov’s stress superposition method, the key assumption is that the trac-
tion in a crack is composed of a uniform and a nonuniform component. The magni-
tude of each component is computed under the assumed condition that the resultant
force of the nonuniform component is zero. The influence of the nonuniform com-
ponent on crack interaction is ignored. Therefore, the accuracy of the Kachanov
method depends on the configuration of crack distribution, and especially on crack
spacing [Kachanov 1992; Wang et al. 2000; Kachanov 2003; Li et al. 2003].

To avoid the limitation of the Kachanov method in analyzing closely spaced
cracks, Li et al. [2003] proposed a new approximate method for the analysis of
cracked solids. The linearly varying component of traction rather than the uniform
one is taken into account. It is shown that the accuracy of the modified method is
better than Kachanov’s. Recently, Kachanov [2003] gave a short overview of vari-
ous approaches to crack interaction problems in which solutions for closely spaced
cracks were discussed. It’s pointed out that in 2-D problems of closely spaced
cracks the accuracy of Kachanov’s method — and even the method of [Li et al.
2003] — may not be sufficient. For example, the problem of two closely spaced
cracks overlapping along the direction of load can not be accurately analyzed using
such methods. This problem is of great interest because of its relevance to propa-
gation and coalescence of two close cracks [Horii and Nemat-Nasser 1985a; Wang
et al. 1996; Li et al. 2003].

One of the original objectives of the Kachanov method is to analyze the meso-
damage of solids with multiple cracks first, and then to compute the macro response
of the solids. The propagation and coalescence of cracks are not considered. But
the accuracy of the Kachanov method and even the linear approximate method
are not satisfactory for closely spaced and overlapping cracks in solids, such as
the cracks in rock-like materials under compression, in which the propagation and
coalescence of cracks have to be taken into account. To improve the accuracy, a
new approximate method, in which the influence of the quadratic parabola pseudo-
tractions (DPPTs) of cracks on other cracks, is proposed in this paper. It’s shown
that DPPTs are able to describe adequately the interaction among closely spaced
cracks. Numerical examples of the interactions of three collinear cracks and a pair
of offset parallel cracks are analyzed in detail to assess the accuracy of the proposed
method.
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2. The generalised Kachanov method

Consider an infinite xy-plane containing N cracks (Figure 1) under remote stresses
σ∞. It is equivalent to the problem of N cracks with tractions

−ni · σ∞ (i = 1, 2, . . ., N ).

The equivalent one can be further decomposed to N sub-problems with only one
crack each, on which the tractions ti = {pni pti }

T are acting, where pni and pti are
the normal and tangential components of the tractions ti . The tractions ti are the
summation of the initial tractions −ni · σ∞ and the additional interaction tractions
induced by other cracks. We also have

ti = −ni · σ∞
+

∑
j 6=i

1t j i , (1)

where 1t j i is the additional traction on the i-th crack due to the presence of the j -th
crack. The key point is how to solve the unknown additional tractions adequately.
The Kachanov method [1987] decomposes the unknown tractions into two parts, an
average traction and a higher-order one, and only the influence of the average one
is considered, while that of the higher-order one is ignored. In the modified method
[Li et al. 2003], the linearly varying traction, instead of a uniform one, is used in
an effort to improve the accuracy. However, both methods may be erroneous when
applied to a problem where cracks are closely spaced and overlapping. Therefore,
a modified method considering the influence of QPPTs is carried out in the next
section.

3. The quadratic parabola pseudotraction method

First, one only considers the contribution to the other cracks of the tractions

t (0)
i =

{
p(0)

ni p(0)
ti

}
= −ni · σ∞

(the subscript ‘n’ denotes ‘normal to crack line’ and ‘t’ means ‘tangential to crack
line’) without regard to the additional tractions:

t(1)
i =

{
p(1)

ni p(1)
ti

}T
= −ni · σ∞

+

N∑
j=1, j 6=i

1t (1)
j i (i = 1, 2, . . ., N ), (2)

where
1t(1)

j i (i, j = 1, 2, . . . , N )

is the additional traction acting on the i-th crack due to the traction

t(0)
j = −n j · σ∞
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Figure 1. An infinite plane containing N cracks

on the j-th crack. This additional traction can be obtained from the elemental
solutions of elastic mechanics [Sneddon and Lowengrub 1969]:

t (1)
i =

{
p(1)

ni

p(1)
ti

}
=

{
p(0)

ni

p(0)
ti

}
+

N∑
j=1, j 6=i

[
f nn

ji f tn
ji

f nt
ji f t t

j i

] {
p(0)

nj

p(0)
t j

}
(3)

(i = 1, 2, . . . , N ), where f rs
ji (i, j = 1, 2, . . . , N ; j 6= i ; r, s = n, t) are those

solutions. The explicit forms for f rs
ji are given in the Appendix. In fact, the

solutions above are only first-order approximations because the contributions of
the additional items are ignored.

When considering further the influences of quadratic parabola pseudotractions
(QPPTs), it is assumed that the unknown tractions t (2)

i = {pni (2) p(2)
ti }

T can be
decomposed into

t(2)
i = t̃(2)

i + 1t(2)
i = −ni · σ∞

+

N∑
j=1, j 6=i

1t(2)
j i (i = 1, 2, . . . , N ), (4)

where t̃(2)
i are QPPTs. Its normal and tangential components are respectively

t̃(2)
i =

{
p̃(2)

ni

p̃(2)
ti

}
=

{ 〈
p(2)

ni

〉(
1 + Tni1ξi + Tni2(ξ

2
i −

1
3 l2

i )
)〈

p(2)
ti

〉(
1 + Tti1ξi + Tti2(ξ

2
i −

1
3 l2

i )
) }

(5)

(i = 1, 2, . . . , N ). In these equations, ξi ∈ (−li li ) denotes the coordinate of a
point in the i-th crack line with half-length li , and Tni1, Tni2, Tti1 and Tti2 are the
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dimensionless coefficients of tractions distributions. In (4), the item 1t (2)
j i is the

additional tractions on the i-th crack due to the tractions t (2)
j of the j-th crack, and

1t (2)
i denotes the higher-order items of tractions. Averaging (4) and (5) along the

crack line, one can know the averages of the higher-order tractions are zero, that
is 〈

t(2)
i

〉
=

〈
t̃(2)
i

〉
=

{ 〈
p(2)

ni

〉〈
p(2)

ti

〉 }
=

{ 〈
p̃(2)

ni

〉〈
p̃(2)

ti

〉 } 〈
1t(2)

i

〉
= 0, (6)

(i = 1, 2, . . . , N ).
Assume that the additional tractions

1t (2)
j i

of the i-th crack are contributed by the tractions t̃ (2)
j of the j-th crack, while the

higher-order tractions
1t (2)

i

are ignored. Clearly, if the tractions t̃ (2)
i were known, the

1t (2)
j i

could be determined. However, the average tractions as well as the dimensionless
coefficients Tni1, Tni2, Tti1 and Tti2 are unknown so far. So, it is reasonable to
assume that these coefficients can be estimated by the known tractions

t (1)
i =

{
p(1)

ni p(1)
ti

}T

to be

Tni1 =
p(1)

ni (li ) − p(1)
ni (−li )

2li 〈p(1)
ni 〉

,

Tni2 =
p(1)

ni (li ) + p(1)
ni (−li ) − 2p(1)

ni (0)

2l2
i 〈p(1)

ni 〉

(i = 1, 2, . . . , N ), (7)

where the
〈
p(1)

ni

〉
are the average normal tractions, which can be obtained by inte-

gration: 〈
p(1)

ni

〉
=

1
2li

∫ li

−li
p(1)

ni (ξi ) dξi , (8)

(i = 1, 2, . . . , N ). The tangential coefficients Tti1 and Tti2 and the average tangen-
tial tractions 〈

p(1)
ti

〉
can be obtained by replacing the subscript n by t in (7) and (8).
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Now the expressions of the additional tractions 1t (2)
i of the i-th crack due to

QPPTs on the other cracks can be given as

t (2)
i =

{
p(2)

ni

p(2)
ti

}
=

{
p(0)

ni

p(0)
ti

}
+

N∑
j=1, j 6=i

[
f̂ nn

ji f̂ tn
ji

f̂ nt
ji f̂ t t

j i

] {
p(2)

nj

p(2)
t j

}
(i = 1, 2, . . . , N ).

(9)
In (9), the coefficients

f̂ rs
ji (i, j = 1, 2, ..., N ; j 6= i; r, s = n, t)

denote the interaction coefficients. For example, f̂ tn
ji is the normal (n) traction of

the i-th crack contributed by the tangential (t) QPPT((
1 + Tt j1ξi + Tt j2(ξ

2
j −

1
3 l2

j )
))

of the j-th crack. The QPPT has a unit mean value along the crack line.
Averaging (9) along the i-th crack line, one gets{ 〈

p(2)
ni

〉〈
p(2)

ti

〉 }
=

{ 〈
p(0)

ni

〉〈
p(0)

ti

〉 }
+

N∑
j=1, j 6=i

[
3nn

ji 3tn
ji

3nt
ji 3t t

j i

] { 〈
p(2)

nj

〉〈
p(2)

t j

〉 }
(10)

(i = 1, 2, . . . , N ).
In these equations, the coefficients

3rs
ji (i, j = 1, 2, . . . , N ; j 6= i; r, s = n, t)

denote the interaction coefficients. For example, 3tn
ji is the average normal traction

of the i-th crack contributed by the tangential QPPT of the j -th crack. The explicit
forms for f̂ rs

ji in (9) and 3rs
ji in (10) are listed in the Appendix.

For each crack, one can establish a set of (10). Therefore, there will be 2N
equations with 2N unknown average tractions〈

p(2)
ni

〉
and

〈
p(2)

ti

〉
(i = 1, 2, . . . , N ).

By solving these equations, one can determine the average tractions.
Once the average tractions are determined, one can then obtain the QPPTs

t̃ (2)
i

acting on these cracks and calculate the tractions t (2)
i in (4) by the elemental so-

lutions of elastic mechanics. The SIFs of each crack can be computed as follows:

K I (±li )

K II (±li )

}
= −

1
√

πli

∫ li

−li

√
li ± ξi

li ∓ ξi

{
p(2)

ni (ξi )

p(2)
ti (ξi )

}
dξi . (11)
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In fact, it can be seen from (5) that, if the coefficients Tni2 and Tti2 are zero,
the present formulation is similar to that of the linear approximate method [Li
et al. 2003] except that the way to estimate the coefficients Tni1 and Tti1 is slightly
different. Furthermore, if all of the coefficients are assumed to be zero, the present
formulation is then identical to the original Kachanov method, in which only the
average tractions are considered.

4. Example: three collinear cracks

To evaluate the accuracy of the present method, the problem of three collinear
cracks in an infinite medium under a uniform tensile stress normal to the crack line
as shown in Figure 2 is taken as a test case here. The present results are compared
with those available from the literature [Sih 1965] and those obtained by using
the original Kachanov method [1987] and the linear approximate method [Li et al.
2003]. The errors are also listed in the table. It can be seen from Table 1 that
very good agreement has been achieved between the present method and the exact
solutions. On the other hand, the errors of the Kachanov results at the inner tip are
significant when three cracks are closely spaced. In addition, the discrepancies of
the SIFs of the outer tips are not as obvious as those of the inner tips.

Though the computational time required to obtain the solutions by the present
method is slightly more than with Kachanov’s method, the much improved accu-
racy makes it attractive for the analysis of interaction cracks, especially when those
cracks are closely spaced.

It is interesting also to compare the improvement in accuracy of the two modi-
fied methods. This comparison will be done in Section 6 after another numerical
example for two overlapping cracks is given.

5. A pair of offset parallel cracks

In this section, the same approach is used to analyse a pair of offset parallel cracks.
In this case, it is slightly more complicated than in the case of collinear cracks,
but one can still obtain the interaction factors by integrating the equations given
in the Appendix. Having 3rs

i j determined, one can obtain the Kachanov tractions
and the improved tractions accordingly. To investigate the influence of the distance
between the two overlapping cracks, two parameters are employed: h/a and a/b,
as shown in Figures 3 and 4.

The exact solutions, the present solutions and the Kachanov solutions are given
together in Figures 3 and 4. Note that K0 is the stress intensity factor for an isolated
crack under normal remote stress and is given by K0 = σ

√
πa. It is obvious that

the results of the proposed method are in good agreement with those of Rooke and
Cartwright [1976] even when the two cracks overlap (0.5 < h/a < 1.0). When
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Figure 2. Three collinear cracks.

the two cracks are remotely spaced (e.g., h/a = 1.0) or not overlapping (a/b <

0.5), the Kachanov solutions are good approximations. However, the Kachanov
solutions become increasingly more erroneous as the two cracks get closer (e. g.,
h/a = 0.5, 0.1) and overlapping (0.5 < h/a < 1.0) along the load direction. In
addition, the discrepancies of the SIFs of the inner tips are more remarkable than
those of the outer tips.

So far, there are three Kachanov-type methods for interaction of multiple cracks.
An interesting question is when and why it is worth using the present method
instead of the linear one [Li et al. 2003] and Kachanov’s. Therefore, comparison
of this QPPTs method with the other two Kachanov-type methods and also other
polynomial approximation techniques is given in next section.

6. Comparison with other techniques

First, we compare the original Kachanov method with its two modifications. The
essential difference among the three lies in that they use approximate polynomial
functions of different orders — p = 0, 1, and 2.

The results of the three methods in Table 1 indicate that the linear method (p =

1) and the present quadratic method (p = 2) yield smaller errors than does the
Kachanov method (p = 0). One can conclude that a higher-degree method gives
better results than a lower one, though the present method does not generate as
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K A
I /K0

K A
II /K0

Figure 3. A pair of offset parallel cracks, Tip A. Code: solid line,
Rooke and Cartwright [1976]; ∗, present method with h/a = 0.1,
0.5, 1.0; 4, Kachanov method with h/a = 0.1; ♦, Kachanov
method with h/a = 0.5; �, Kachanov method with h/a = 1.0.
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K B
I /K0

K B
II /K0

Figure 4. A pair of offset parallel cracks, Tip B. Code: solid line,
Rooke and Cartwright [1976]; ∗, present method with h/a = 0.1,
0.5, 1.0; 4, Kachanov method with h/a = 0.1; ♦, Kachanov
method with h/a = 0.5; �, Kachanov method with h/a = 1.0.
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K I /K0

d/a → 1.0 0.5 0.2 0.1 0.05

Tip A

Exact* 1.1674 1.3214 1.6542 2.0325 2.5537

Kachanov
method

1.1669
0.04%

1.3179
0.26%

1.6309
1.4%

1.9601
3.6%

2.3657
7.4%

Linear
method

1.1672
0.02%

1.3210
0.03%

1.6649
0.65%

2.0591
1.3%

2.6252
2.8%

Present
method

1.1673
0.01%

1.3211
0.02%

1.6604
0.37%

2.0453
0.6%

2.5825
1.1%

Tip B

Exact 1.1387 1.2836 1.6119 1.9923 2.5185

Kachanov
method

1.1382
0.04%

1.2797
0.30%

1.5877
1.5%

1.9086
4.2%

2.3095
8.3%

Linear
method

1.1384
0.03%

1.2833
0.02%

1.6202
0.51%

2.0262
1.7%

2.5941
3.0%

Present
method

1.1385
0.02%

1.2834
0.02%

1.6201
0.50%

2.0093
0.8%

2.5563
1.5%

Tip C

Exact 1.0687 1.1103 1.1714 1.2167 1.2587

Kachanov
method

1.0686
0.00%

1.1081
0.20%

1.1667
0.40%

1.2094
0.60%

1.2486
0.80%

Linear
method

1.0686
0.00%

1.1101
0.02%

1.1741
0.23%

1.2224
0.47%

1.2637
0.40%

Present
method

1.0686
0.00%

1.1102
0.01%

1.1728
0.12%

1.2195
0.23%

1.2617
0.24%

Table 1. Results for three collinear cracks (after Sih [1965]).

much of an improvement over the linear one as the latter does over the original.
For example, comparing the results for the closest cracks (d/a = 0.05) at crack
Tip B, the errors are 8.3% for the Kachanov method, 3.0% for the linear method
and 1.5% for the present method.

One can compare in succession the results of the three methods for the offset
cracks case. In fact, to avoid confusion, the results from [Li et al. 2003] for the same
example are not shown in Figures 3 and 4. Therefore, here, the SIFs of the inner
tips for the closer case (h/a = 0.2) not shown in the figures are listed in Table 2 for
comparison of the results of the three methods. From Table 2 and Figures 3 and 4,
one can see that the discrepancies of the Kachanov solutions become increasingly
more serious as the two cracks get closer and overlap along the loading direction.
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Figure 5. Stress-amplifying region and stress-shielding region of
a crack.

The maximal error reaches 30%. By comparison with the Kachanov method, the
linear method generates better results with errors below 14.5%. For the same case,
the present method yields practically imperceptible errors of only 4% or less. The
accuracy of the results is adequate for the analysis of propagation and coalescence
of several cracks (see Section 1).

One can examine this phenomenon as illustrated in Figure 5. For the problem
of closely spaced cracks overlapping along the loading direction, each crack is
embedded in the stress-amplifying region as well as in the stress-shielding region
of the other one. The pseudotractions acting on cracks may vary intensely, in which
case the use of constant or linearly varying approximation for the tractions would
result in significant errors in the SIFs. Then it is reasonable that a higher-order
approximation would yield a remarkable improvement in accuracy.

Therefore, we suggest that: for the problems of remotely-spaced cracks, the
three Kachanov-type methods all can generate satisfactory results for SIFs; the
most simple Kachanov method is preferred; for the problems of cracks closely
spaced but not overlapping each other, the linear method is adequate for analysis;
for the problem of cracks closely spaced and overlapping each other, the present
method instead of the other two methods should be chosen.

These Kachanov-type methods can be considered as further developments of the
ideas from [Chen 1984a; Horii and Nemat-Nasser 1985b; Chudnovsky et al. 1987a;
1987b], where tractions on individual cracks were interrelated by self-consistence
conditions. Kachanov [1987] compared his method with previous works in detail,
so only some statements are repeated here. In [Horii and Nemat-Nasser 1985b;
Chudnovsky et al. 1987a; 1987b], Taylor or Chebyshev polynomials centered at
the crack center were applied to the configuration “crack-microcrack array” and to
the general 2-D crack array. Horii and Nemat-Nasser [1985b] considered the test
problem of two collinear cracks. They found that the degree of the approximating
polynomials increases rapidly as the spacing between cracks becomes smaller. The
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a/b → 0.1 0.2 0.4 0.48 0.54 0.60 0.70 0.80 0.90

Exact* 1.0017 1.0093 1.1611 1.6988 1.0805 0.5791 0.3023 0.2987 0.4312

Kachanov
method

1.0011
0.00%

1.0085
0.10%

1.1260
3.0%

1.4640
13.8%

1.0663
1.3%

0.6438
11.2%

0.3641
20.4%

0.3890
30.0%

0.5502
27.6%

Linear
method

1.0016
0.01%

1.0090
0.03%

1.1499
0.97%

1.6049
5.5%

1.0743
0.58%

0.6024
4.0%

0.3295
9.0%

0.3420
14.5%

0.4883
13.3%

Present
method

1.0016
0.01%

1.0091
0.02%

1.1558
0.45%

1.6612
2.2%

1.0770
0.33%

0.5895
1.8%

0.3116
3.1%

0.3104
3.9%

0.4479
3.9%

Table 2. K A
I /K0 for two offset parallel cracks h/a = 0.2 (after

Rooke and Cartwright [1976]).

closest distance considered is 1/4 of the crack length (1/10 otherwise in the present
work); at this distance the polynomials’ degree is 28. At distances one order of
magnitude smaller than the crack length, the polynomial’s degree in their method
can be expected to be several times higher. Kachanov [1987] also pointed out that
in the Chebyshev polynomial technique, as with the Taylor polynomial technique,
convergence gets increasingly difficult as the spacings between cracks become
smaller. At a close distance (1/10 of the crack length), Chebyshev polynomials
of the sixth degree yield a 10.7% error in SIFs, while the Kachanov method yields
only a 1.5% error.

Note also that the technique of polynomial approximation [Chen 1984a] is based
on complex variable representations and is not, therefore, easily extensible to 3-D
configurations. The main drawback of the polynomial technique — a large number
of polynomial coefficients (rapidly increasing as spacings between cracks become
smaller) — will, however, become much more severe in the 3-D problems.

The key idea of Kachanov-type methods — to neglect the impact on a given
crack of higher-order traction nonuniformities — is reminiscent of Saint-Venant’s
principle of elasticity and may be interpreted as a Saint-Venant-type principle for
solids with cracks. Moreover, since the SIFs are given by integrals of tractions,
the effect of higher-order nonuniformities is neglected not in the pointwise sense
but in a milder, integral sense. This may explain why further refinements of the
original Kachanov method work well for closely spaced cracks.

7. Conclusions

To improve the accuracy of the Kachanov method in analyzing closely spaced
and overlapping cracks, a QPPT method for the analysis of solids with multiple
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crack j

crack i

y′

x ′

Figure 6. Cracks i and j .

cracks is proposed. The pseudotraction in a crack is decomposed into a quadratic-
varying component and a higher-order one. The higher-order component has a
zero average. It is further assumed that the interaction effects among the cracks
are only due to the quadratic-varying component. Mathematical relations for the
tractions in the cracks are derived and the solutions are obtained for various cases.
It is shown through two numerical examples that the results of the method are in
close agreement with the exact solutions, even when closely spaced cracks overlap
along the direction of loading.

Appendix: The interaction coefficients

Consider two cracks i and j as shown in Figure 6; the interaction coefficients in
Equations (3), (9) and (10) can be obtained thus [Chen 1984a; Cheung et al. 1992]:

f nn
i j − i f tn

i j =

∫ l j

−l j

( f̄ nn
i j − i f̄ tn

i j ) dξ j ,

f tn
i j − i f t t

i j =

∫ l j

−l j

( f̄ tn
i j − i f̄ t t

i j ) dξ j ,

f̂ nn
i j − i f̂ tn

i j =

∫ l j

−l j

( f̄ nn
i j − i f̄ tn

i j )
(
1 + Tnj1ξ j + Tnj2(ξ

2
j −

1
3 l2

j )
)

dξ j ,

f̂ tn
i j − i f̂ t t

i j =

∫ l j

−l j

( f̄ tn
i j − i f̄ t t

i j )
(
1 + Tt j1ξ j + Tt j2(ξ

2
j −

1
3 l2

j )
)

dξ j ,

3rs
i j =

1
2ai

∫ ai

−ai

f rs
i j dξi (r, s = n, t),
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where

f̄ nn
i j − i f̄ tn

i j =

√
l2

j − ξ 2
j

2π

(
G(z) + G(z) + e−2iαi (z − z̄)G ′(z)

)
,

f̄ tn
i j − i f̄ t t

i j = −

√
l2

j − ξ 2
j

2π i

(
G(z)(1 − 2e−2iαi ) − G(z) + e−2iαi (z − z̄)G ′(z)

)
;

here z = z(ξi ) is the complex coordinate in the xy coordinate system of the point
(ξi , 0) in crack i and

G(z) =
1

(z − ξ j )
√

z2
− l2

j

, G ′(z) =
l2

j + ξ j z − 2z2

(z − ξ j )2
(√

z2
− l2

j

)3 .
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