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METALS AND POSSIBLY OTHER MATERIALS

RICHARD M. CHRISTENSEN

Yield functions and plastic potentials are expressed in terms of the invariants of
the stress tensor for polycrystalline metals and other isotropic materials. The
plastic volume change data of Richmond is used to evaluate the embedded ma-
terials properties for some bcc metals and one polymer. A general form for the
plastic potential is found that is intended to represent and cover a wide range of
materials types.

1. Introduction

The present work is concerned with the yield functions describing the departure
from ideal, linear elastic conditions, and with the plastic potentials which are used
to describe the ensuing plastic flow which occurs after the yield functions have
been traversed. The definitive theoretical work in this area was formalized by Hill
in his early and insightful book [1950] and his many later contributions such as
[Hill 1959; 1968a; 1968b; Hill and Rice 1972]. The definitive experimental work
was given by Richmond and colleagues (to be cited later), based mainly upon
body centered cubic (bcc) metals. The present work follows the lead of these
two valuable sources. In the intervening time, most efforts to use yield functions
and plastic potentials have proceeded by taking whatever forms were expedient
for the particular application of immediate interest. A main objective here is to
deduce general representations for yield functions and plastic potentials that have
a minimum number of embedded parameters (properties) in order to have the most
reasonably useful forms for application to a wide range of full density materials.
The resulting forms will be evaluated for various materials types. We begin with
the consideration of very ductile metals.

Face centered cubic (fcc) metals provide the backbone of ideal elastic-plastic
behavior. Such metals as copper, nickel, aluminum, silver, gold and lead constitute
the basis for ideal plastic flow, whether that flow be described at the dislocation
level or the continuum level using so-called J2 plasticity theory. The first significant
evidence for the nonideal behavior not adequately described by J2 theory is the
class of bcc metals: chromium, molybdenum, tantalum, tungsten, vanadium, iron
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and most steels. These bcc metals provide the perfect test bed for studying the
inception of nonideal plastic effects, with the ultimate aim of generalizing beyond
this class to much broader classes of materials such as polymers and ceramics.

The present work is at the macroscopic level, but it is helpful to rationalize con-
trolling effects at a more basic level. There are at least two possible sources for the
departure of most bcc metals from the ideal behavior exhibited by most fcc metals.
One is the far-from-ideal form of grain boundaries on the atomic scale. This state
of disorder quite naturally implies a state of nonuniformity and heterogeneity in
the strength properties of grain boundaries. The other possible source of nonideal
behavior for bcc metals is the fact that the core structure of dislocations spreads
over many atomic layers of glide planes [Hirsch 1960; Christian 1983; Vitek 1975].
This fact greatly decreases the mobility of the dislocations, and results in a greater
sensitivity to temperature (and pressure) dependent behavior. Other explanations
are certainly possible for the nonideal behavior of bcc metals; dislocation dynamics
studies related to these matters are rapidly evolving and likely will ultimately pro-
vide new insights. Until that time, however, only the two sources just mentioned
will be further considered here.

The nonuniformity of strength of grain boundaries in fcc materials is of little
importance because the great mobility of the dislocation structures implies that the
loads on the grain boundaries are insufficient to cause any disruption of the grain
boundary. However, in bcc metals the grain boundaries are much more highly
stressed than in fcc metals. Our interest here is with initially isotropic materials,
so only polycrystalline aggregates of bcc crystals will be considered. The actual
behavior on the grain scale involves variability from grain to grain, and progressive
and accumulating degrees of irreversible damage. Because of this variability, the
slip on the grain boundaries and the slip systems within the grains may coordinate
and interact in some grains. A macroscopic description is necessarily an average
over all grains. Probably the grain boundary behavior is much more variable than
that of the grain-to-grain form.

The grain failure itself and the grain boundary failure are not necessarily inde-
pendent and competing physical events. They can be interactive with the grain
boundaries, operating to some extent as slip systems in conjunction with those
within the crystal. In the macroscopic view, sufficiently general descriptors must
be used to cover these possibilities. Even if only shear stresses are needed for the in-
dividual crystals, both shear and normal stresses are needed for the grain boundary
failure. Macroscopically this then requires both shear and normal stresses.

The behavior of the polycrystalline aggregate thus depends not only upon the
shear stress on the slip planes in the individual grains, but also upon normal stresses
acting within the grains and upon the grain boundaries. The corresponding macro-
scopic characteristics involved are the shear stresses and the mean normal stress.
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For the failure of isotropic materials, we will then use the invariants that involve
the shear stresses and the mean normal stress.

The formal statement of the yield function is given by

f (σi j ) ≤ 1.

The plastic potential G(σi j ) describes the plastic flow through the standard flow
form

ε̇
p
i j = λ

∂G
∂σi j

, (1)

where the strain is decomposed into elastic and plastic components. The associative
form of (1) is that which occurs when the yield function and plastic potential are
taken to be identical:

G(σi j ) = f (σi j ).

As is well known, this ideal associative form occurs only in the extremely ductile
limit for application to most fcc metals.

Some of the complications to be considered in the following work will include
the following effects. All materials except the ideal case, show an asymmetry in
the uniaxial tensile and compressive yield values, T 6= C . Also, all except ideal
materials show a pressure dependency. Is one of these effects a fundamental effect
and the other a following consequence? An answer to this question will be sought.
Since the materials are initially isotropic, most approaches utilize the invariants of
the stress tensor, I1, J2 and J3. The first two, I1 and J2, are commonly used, but
the third invariant, J3, is sometimes also argued to be important. The present work
will seek to clarify the significance or lack thereof of J3 for use in yield functions
and plastic potentials. We also will look for a unifying method by which to treat
plastic potentials for materials other than bcc metals. In the present context, the
term yield is interpreted to mean the stress value at the point of major deviation
from the preceding linear elastic region, not at some hypothetical, initial deviation
point, which can be extremely difficult to identify. We begin by considering the
three standard invariants.

2. Invariants

Consider the eigenvalue problem used to find the principal values of the stress
tensor. The notation will follow that of [Wilson 2002]. The invariants I1, I2 and
I3 follow from the characteristic equation

λ3
− I1λ

2
+ I2λ − I3 = 0,
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where
I1 = σ11 + σ22 + σ33,

I2 = σ11σ22 + σ22σ33 + σ33σ11,

I3 = σ11σ22σ33.

Alternatively, the deviatoric stress is taken as

si j = σi j −
δi j

3
σkk, (2)

and the invariants for si j are given through

λ3
+ J1λ

2
− J2λ − J3 = 0,

where
J1 = 0,

J2 =
1
6

(
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2),
J3 = (σ11 − σm)(σ22 − σm)(σ33 − σm),

σm =
1
3 I1.

(3)

The invariants for σi j and si j are related through

J2 =
1
3 I 2

1 − I2,

J3 =
2

27 I 3
1 −

1
3 I1 I2 + I3 = −

1
27 I 3

1 +
1
3 I1 J2 + I3.

(4)

Using the identities (4) it is completely equivalent to take the three independent
invariants as either the grouping I1, I2 and I3 or I1, J2 and J3. It is advantageous
to use the latter combination since the two invariants J2 and J3 are independent of
mean normal stress, which then comes in only through I1. These invariants will be
taken to be those that will be used to specify yield functions for isotropic materials.

Begin by considering yield functions for isotropic materials. The two widely
recognized features of nonideal yield behavior are, first, the asymmetry in the
uniaxial tensile and compressive yield values T and C , thus T ≤ C . The other
feature is the dependence of the yield function upon mean normal stress, in all
cases except the ductile limit described by the Mises form. Consider cases where
these two effects are taken to be independent of each other. In particular take cases
having T 6= C but no dependence upon mean normal stress.

Consider a possible yield function of the form

a J2 + bJ3 ≤ 1, (5)

which, because of independence of I1, has no mean normal stress dependence. The
yield stress asymmetry T 6= C can however be accommodated by (5). Evaluate a
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and b in (5) to give the uniaxial yield values T and C . The form that (5) then takes
is

3
(

1 + (C/T )3

1 + C/T

)
J2

C2 +
27
2

(
−1 + (C/T )2

1 + T/C

)
J3

C3 ≤ 1. (6)

Now specialize (6) to a biaxial stress state with only principal stresses σ1 and σ2

but σ3 = 0. Then
J2 =

1
3(σ 2

1 − σ1σ2 + σ 2
2 )

and
J3 =

1
27(2σ1 − σ2)(σ1 − 2σ2)(σ1 + σ2). (7)

Take the particular case of T/C = 1/2, which is well within the range of possi-
bility. Then the yield function (6) becomes

J2

C2 + 3
J3

C3 ≤
1
9
. (8)

It can be shown analytically that the yield envelopes in the equation of (8) with (7)
are the linear (line) segments as shown in Figure 1, going through the tensile and
compressive values along the axes.

As seen from Figure 1 the yield function at T/C = 1/2 has a strongly nonconvex
character. In the limit of T/C = 1, the yield function is the Mises form with a

−1 1

−1

1

σ1

C

σ2

C
T
C

=
1
2

Figure 1. J2-J3 yield criterion, Equation (6).
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completely convex character. But as the value of T/C diminishes, a nonconvex
form develops, becoming that of Figure 1 at T/C = 1/2. The yield form shown in
Figure 1 is also physically unrealistic in other respects. It predicts unlimited yield
strength in a state of equibiaxial tension, as well as other nonrealistic features.

Continuing the examination of yield forms which have the strength asymmetry
characteristic but no dependence upon mean normal stress leads to forms such as

a J 1/2
2 + bJ 1/3

3 ≤ 1, a J2 + bJ 1/3
3 ≤ 1, a J 3/2

2 + bJ3 ≤ 1.

All of these cases were been examined (together with Dr. A. Arsenlis) and were
found to reveal the emergence of a nonconvex character somewhere in the range
1/2 ≤ T/C < 1. The nonconvex character results as the direct consequence of the
third invariant J3.

Now consider the opposite situation, namely, yield functions which have no
strength asymmetry but do have a dependence upon mean normal stress. For ex-
ample, the yield form

aI 2
1 + bJ2 (9)

does have a dependence on mean normal stress through I 2
1 but it does not allow

T 6= C . However, the form (9) must be excluded from consideration because it is
independent of whether the mean normal stress is tensile or compressive, which is
a known and strong physical effect.

The conclusion from examining these yield function cases, which are somewhat
arbitrarily tailored to reflect a particular physical effect, is that this is an unproduc-
tive approach. In the next section, in connection with bcc metals data, a more orga-
nized approach to yield functions (and plastic potentials) will be taken, one which
assures convexity of the related forms, and interrelates the tension-compression
asymmetry and the pressure dependence.

3. Polynomial expansion for BCC Metals, 0 ≤ α ≤ 1

Both yield functions f (σi j ) and plastic potentials G(σi j ) for isotropic materials
will now be considered. For either of these, perform a polynomial expansion in the
invariants. Take an expansion in the invariants of the stress tensor, giving

F(σi j ) = a1 I1 + a2 I 2
1 + a3 J2 + a4 I 3

1 + a5 I1 J2 + a6 J3 + · · · , (10)

where F( ) represents either f ( ) or G( ).
Rewrite this form explicitly designating the different possible levels of trunca-

tion through third degree terms

F = a1 I1
∣∣∣∣
1st degree

+ a2 I 2
1 + a3 J2

∣∣∣∣
2nd degree

+ a4 I 3
1 + a5 I1 J2 + a6 J3

∣∣∣∣
3rd degree

. (11)
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At the first-degree level there is one parameter to be evaluated, at the second-degree
level there are three parameters and at the third degree level there are six parameters.
Obviously the first-degree level cannot give the operative physical effects; this
leaves either the second degree level or the third-degree level to be examined. It
is convenient to rewrite (11) normalized by the modulus E so that the coefficients
are in preferred nondimensional form. This gives

F = b1
I1

E
+ b2

I 2
1

E2 + b3
J2

E2 + b4
I 3
1

E3 + b5
I1 J2

E3 + b6
J3

E3 . (12)

Whatever the level of truncation, the form (12) gives a rationale for neglecting the
terms of higher order beyond that level. Obviously the lowest degree level that
can adequately reflect the physical effects of interest must be used. The second-
degree level will be considered in this work. If it does not successfully capture the
requisite physical effects, then the third degree level with six parameters must be
considered.

Using the form (11) rather than (12) for convenience, the second degree form is

F = a1 I1 + a2 I 2
1 + a3 J2. (13)

In application to yield functions and plastic potentials, if it is assumed that there
can be no plastic response under a state of purely hydrostatic compressive stresses
then it can be shown that the coefficient a2 in (13) must vanish. This condition will
be used in this work, leaving (13) as

F = a1 I1 + a3 J2. (14)

The form (14) has a considerable history, described in [Christensen 2004].
The form (14) thus excludes the third invariant from participation in the process.

It is quite logical that the third invariant not be involved with yielding and plastic
flow even though it is involved in the eigenvalue problem of principal stresses.
Stress is a 3 × 3 matrix and the characteristic equation necessarily involves the
third invariant. In the present approach, there are only two relevant stress states
for isotropic materials. These are dilatation and shear, and it is these that are
directly involved with the first and second invariants. The third invariant cannot
be visualized as a specific and independent stress state having I1 = J2 = 0. For
these reasons the polynomial expansion is truncated at terms of 2nd degree, not
bringing in J3. It may also be noted that the form (14) always produces a convex
surface. Finally, since the expansion directly involves the mean normal stress, I1,
it is concluded that the dependence upon mean normal stress is a primary effect,
and that the tension compression asymmetry is merely a consequence of that.
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As shown in [Christensen 2004] the form (14) as a yield function can be written
as

ασ̂kk +
3
2(1 + α)ŝi j ŝi j ≤ 1, (15)

where the stress is nondimensionalized by the uniaxial compressive yield strength
as

σ̂i j =
σi j

κ
,

where
κ = C

and

α =
C
T

− 1.

It is advantageous to use the nondimensional parameter α, and in this section it will
be restricted to cover the range 0 ≤ α ≤ 1 which does cover most bcc metals. Either
of the two properties groupings T and C or α and κ will be used, as appropriate.

Now, using the representation (14) for the plastic potential, G, in flow form (1)
gives

G = βκσkk +
3
2 si j si j . (16)

The 3/2 factor in (16) could be absorbed into λ (1) but it is retained here for scaling
convenience, and parameter β remains to be determined from data. Comparing (15)
and (16) it is seen that the associative form of the plastic potential is given by

β =
α

1 + α
, (associative).

The deviatoric term in the yield function can be written in terms of stress compo-
nents as

ŝi j ŝi j =
1
3

(
(σ̂11 − σ̂22)

2
+ (σ̂22 − σ̂33)

2
+ (σ̂33 − σ̂11)

2)
+ 2(σ̂ 2

12 + σ̂ 2
23 + σ̂ 2

31). (17)

The plastic potential is

G = κβ(σ11 + σ22 + σ33) +
1
2

(
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2)
+ 3(σ 2

12 + σ 2
23 + σ 2

31). (18)

Using the flow rule (1) with (18) gives the plastic strain increments as

ε̇
p
11

λ
= κβ + 2σ11 − σ22 − σ33,

ε̇
p
33

λ
= κβ − σ11 − σ22 + 2σ33

ε̇
p
22

λ
= κβ − σ11 + 2σ22 − σ33

ε̇
p
i j

λ
= 6σi j for i 6= j.

(19)
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The plastic volume change is then given by

ε̇
p
kk = 3λκβ. (20)

The volume change in states of uniaxial tension and compression will be used to
evaluate the parameter β in the plastic potential (18). From the yield function (15)
and (17) it is found that for uniaxial tension

σ̂ T
11 =

1
1 + α

, (21)

and for uniaxial compression
σ̂C

11 = −1. (22)

Using (21) and (22) in the plastic strain expressions (19) and using the volume
change form (20) gives the plastic volume change normalized by the plastic strain
increment in the stress direction as

ε̇
p
kk

ε̇
p
11

=
3

1 +
2

β(1 + α)

(tension) (23)

and
ε̇

p
kk

|ε̇
p
11|

=
3

1 − 2/β
(compression). (24)

At this point, data can be used to evaluate the parameter β. The carefully prepared
and evaluated data of Spitzig, Sober and Richmond [Spitzig et al. 1975] on two
formulations of steel will be used. The two materials types give the same results,
to within experimental accuracy. Spitzig et. al. expressed the T/C asymmetry
through a factor defined as the strength differential (SD). The relation between
their strength differential and parameter α defined above is given by

α =
SD

1 − SD/2
. (25)

For the two quenched and tempered (4310 and 4330) steels, the strength differential
was determined to be in the range

SD = 0.045 – 0.065.

The strength differential of SD = 0.05 will be used giving an α value of

α = 0.051.

This means that the tensile yield value T was about 5% less than the compressive
value C . The experimental value for the plastic volume change normalized by the
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plastic strain was
ε̇

p
kk

ε̇
p
11

= 0.005,

with the same values for both the tension and compression cases. This very small
plastic volume increase is likely due to the generation of vacancies as dislocation
lines cross each other [Hull and Bacon 2001].

Using the α value and the above plastic volume change value in either (23) or
(24) gives β as

β = 0.0032.

The associative value for β, β = α/(1 + α), would be given by

β = 0.049 (associative).

Thus the actual material parameter β in (16) is an order of magnitude less than the
associative value for it would be in the case of these bcc metals.

The fact that the tensile and compressive plastic volume changes were indistin-
guishable experimentally is a form of partial verification for the results (23) and
(24) in this range of α and β values. [Spitzig et al. 1976] tested several more steel
formulations and in all cases but one found results compatible with those just used
for these first cases. Their main conclusions were that the associative flow rule
is in error by about an order of magnitude for these materials. Their results are
also compatible with the general forms of yield functions and plastic potentials
considered here, namely (15) and (16). It can be said that these forms appear
adequately to describe the plastic behavior for these bcc metals.

The situation as it stands at this point is that the yield function (15) is completely
specified by measurements of the uniaxial tensile and compressive yield strengths
for each material of interest. The plastic potential is completely specified by the
evaluation of the parameter β in (16) for each material of interest. In the next
section we consider a more general approach for specifying the plastic potential,
possibly applicable to a much broader class of materials than just bcc metals.

4. General materials, 0 ≤ α ≤ ∞

With no certainty of success, we now look for a more general and unifying approach
than that of determining parameter β in the plastic potential (16) for each separate
material of interest. First some recent results need to be assembled to approach
this problem.

Write the yield function (15) in a slightly different form as

α

1 + α
σ̂kk +

3
2

ŝi j ŝi j ≤
1

1 + α
, (26)
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−1 1
log α

1

α

1 + α

Figure 2. Dilatational term coefficient, Equation (26).

with α now having the full range

α =
C
T

− 1, 0 ≤ α ≤ ∞.

The value α = 0 is that of the perfectly ductile Mises material. The other limit
α → ∞ is the brittle limit, wherein the tensile yield strength is negligible compared
with the compressive yield strength. This limiting case still has material integrity
as opposed to that of a granular material. Free flowing granular materials as well
as porous materials are separate and distinct classes from the macroscopically ho-
mogeneous materials considered here.

The coefficient α/(1 + α) in (26) has an interesting behavior. It is shown in
Figure 2 with a log scale. The log scale is natural to use because α varies from
0 to ∞ and, as with spectra, this properties variation is best viewed through log
scales. Note that at log α = 0, α = 1 the coefficient shown in Figure 2 undergoes a
transition (transition of material type) defined by the point of maximum slope (rate
of change) with respect to log α. Thus, the coefficient α/(1+α) in (26) determines
the relative weights of the dilatational and distortional terms. Over the range of
α, this goes from no dilatational contribution to the yield function up to a fully
interactive dilatational contribution. Then there is the transition between these two
extremes at α = 1 for this contribution of the dilatational term.

Christensen [2004] has examined this yield/failure behavior described above and
found that at the transition value of α = 1, a Rankine type fracture criterion must
come into effect. Thus the yield function (26) must be augmented by the explicit
fracture criterion

σ1 ≤ T if α ≥ 1, (27)
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where σ1 is the largest principal stress. The fracture criterion has no effect di-
rectly at α = 1, but as α is incrementally increased beyond that value, the fracture
criterion (27) gains a gradually increasing effect, more limiting than the yield cri-
terion (26) under some conditions. For large values of α the fracture criterion can
be very limiting in effect. See [Christensen 2005] for an elaboration.

With the above background, we can now proceed with the plastic potential
problem. For the plastic potential form given in (16) the coefficient β controls
the relative weight of the dilatational and distortional terms. Take β = β(α) and
note that it is required that

(i) β = 0 at α = 0,

in order to be consistent with Mises behavior at that limit. Now, assume two more
conditions on β(α) in (16) and its applicability over the full range of α. Take

(ii) β → A as α → ∞,

where A is some nonzero constant, unknown at this point. Finally require that β(α)

have a transition (point of maximum slope versus log α) at the same value as for
the yield function, namely at log α = 0, α = 1. Thus

(iii) β(α) has transition at α = 1.

This requirement ensures compatibility between the transition locations in the yield
function and the plastic potential.

A standard form for β(α) in the plastic potential (16) would be as an expansion
of the type

β =

∞∑
n=1

An

(
α

1 + α

)n

.

The first term will be explicitly considered here, as a form that directly satisfies
conditions (i), (ii) and (iii),

β =
Aα

1 + α
, (28)

where A is a constant with respect to α and to be determined. Parameter α is
considered to be known from the yield function. Substituting (28) into (16) gives
the plastic potential as

G = A
(

α

1 + α

)
σ̂kk +

3
2

ŝi j ŝi j .

Form (28) for the plastic potential in (16) is intimately related to the yield form,
being directly proportional to the corresponding coefficient in (26) over the full
range of α. The limits on A are

0 ≤ A ≤ 1,
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where

A =

{
0 for a purely distortional plastic potential,

1 for an associative plastic potential.

The constant A is unlikely to be universal, but the form (28) could possibly be
useful as an approximation. If so, the form (28) would have considerable utility
since β would not have to be re-determined for each different material of interest.
The possible validity and usefulness of (28) will now be examined.

With the form (28), the results (23) and (24) on uniaxial tension and compression
volume change for the plastic response become

ε̇
p
kk

ε̇
p
11

=
3Aα

2 + Aα
(tension) (29)

and

ε̇
p
kk

|ε̇
p
11|

=
3Aα

2(1 + α) − Aα
(compression). (30)

The steel testing data of [Spitzig et al. 1975] given in the previous section just after
Equation (25) with the values for β and α inserted into (28) give constant A as

A = 0.065 = 1/15 (steel). (31)

This result means that the dilatational contribution to the plastic potential is 1/15
the size of the dilatational contribution to the yield function at the same value of α.

Next, a very different type of material will be considered. Spitzig and Richmond
[1979] performed tests on polyethylene, similar to those described for steel. The
strength differential was determined to be

SD = 0.085,

giving α as
α = 0.089.

The plastic volume change was measured in uniaxial compression and tension and
was found to be

ε̇
p
kk

ε̇
p
11

= 0.011.

Using these data to evaluate β and A gives

β = 0.0067,

A = 0.083 = 1/12 (polyethylene).

Other testing data on polycarbonate by Spitzig and Richmond [1979] were incon-
clusive.
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Compare the β values for steel and polyethylene of 0.0032 and 0.0067, respec-
tively. These differ by more than a factor of two. However, the corresponding A
values of 1/15 and 1/12 are much closer together. The β values difference show
the two materials to have strongly different behaviors, but the much smaller A
value differences shows the form (28) for β(α) to have a unifying effect.

The previous two materials examples are of a very ductile type; now an example
far removed from this condition will be given, that of cast iron. For grey cast iron
the yield values in [Grassi and Cornet 1949; Coffin 1950] give

T
C

=
1
3
, α = 2.

Using this value of α in the uniaxial compression result (30) gives

ε̇
p
kk

|ε̇
p
11|

=
3A

3 − A
(compression). (32)

The corresponding result for uniaxial tension is not relevant because it is excluded
by the fracture criterion (27) for this value of α. The same situation applies for
simple shear stress, at large values of α plastic flow is subsumed by the fracture
criterion (27) and brittle behavior.

Unfortunately, there does not appear to be data for the plastic volume change
in compression of cast iron of the quality of that of the previous two examples.
An alternative approach using plastic Poisson’s ratio will be given instead. Plastic
Poisson’s ratio is defined in the usual way as

υ p
= −

ε̇
p
22

ε̇
p
11

.

With ε̇
p
22 = ε̇

p
33, this then gives

ε̇
p
kk

|ε̇
p
11|

= 1 − 2υ p. (33)

Note that υ p > 1/2 must occur to have positive plastic volume change in uniaxial
compression. The elastic restrictions on Poisson’s ratio do not apply here.

Equating the forms in (32) and (33) gives

υ p
=

1
2

(
3 + 2A
3 − A

)
, α = 2. (34)

The limits of A give the values for υ p as

A =

{
0, υ p

= 1/2,

1, υ p
= 5/4.
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The extremely large value of υ p at the associative value A = 1 is completely un-
realistic, again specifying extremely large plastic volume change. The value of A
must be small, A � 1, to avoid this unrealistic behavior.

Poisson’s ratio is difficult to measure accurately unless very precise volumetric
measurements are done. As a first approximation, it is widely taken that the de-
formation is plastically not expandable, υ p

= 1/2, which we will loosely refer to
as incompressible, since that is common terminology. The error or difference for
the plastic deformation to be taken as incompressible, when in fact it is slightly
expandable, is given by ε as

ε =
υ p

− 1/2
υ p , (35)

where υ p is the actual value. For example, for υ p
= 0.55 the error in assuming

plastic incompressibility is 9.1%. By this method, taking realistic errors in assum-
ing an incompressible plastic Poisson’s ratio to be in the range of 5–10% can then
be used to give the value of υ p from (35). With the υ p value, the corresponding
constant A value follows from (34). The results, for this case of α = 2, are

Error 6% 8% 10%
A = 1/16.0 1/11.8 1/9.3.

These values of A are in the same range as those found for steels and the one
polymer. The corresponding β values are found from (28). For example for A =

1/14 and at the value α = 2, β = 0.047. This is over an order of magnitude larger
than the value found for steel of β = 0.0032. Thus the form (28) for β involving A
does appear to be reasonable and realistic in going from the extremely small value
of α in the ductile range to an order of magnitude larger value of α = 2 for cast
iron.

Finally, consider the limiting case α → ∞. From (30) it follows that

ε̇
p
kk

|ε̇
p
11|

= −
3A

2 − A
. (36)

Equating (36) and (33) then gives

υ p
=

1 + A
2 − A

, α → ∞. (37)

The associative case with A = 1 gives υ p
= 2, a wholly unrealistic condition. Again,

constant A must be small. Following the method just outlined, for a 10% error in
assuming υ p to be incompressible compared with its actual value, (35) and (37),
give the corresponding A value as

A =
1

14.0
, α → ∞. (38)
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The plastic potential in (16) has the A value in (28) to be in the general range of
an order of magnitude less than one. This then is consistent with bcc behavior
and polymer behavior at the ductile end of the α scale and also consistent with
the above reasoning for behavior in the brittle range at α = 2 and the brittle limit
α → ∞.

5. Conclusions

The consequence of this assessment is that the dilatational contribution to the plas-
tic potential (16) is found to be much less influential than the dilatational contri-
bution to the yield function (26) over the full range of each. At first it might be
surprising that the dilatational contribution to the plastic potential seems so small,
by comparison. The present work suggests, however, that the inverse situation
is more understandable; that is, the small dilatational contribution to the plastic
potential can be reasoned, but the much stronger dilatational contribution to the
yield function is the somewhat surprising effect. The plastic flow, as accessed
through the plastic potential, seems quite naturally to be highly influenced by the
physical effects of shearing (distortional) motion, indeed, that is the essence of
ductile behavior. However, the yield function shows a strong departure from dis-
tortionally dominated effects for larger values of α. The source for this effect is the
emerging importance of fracture as α increases. In the present context, the yield
function (26) undergoes rather drastic changes of shape as α increases — changes
necessary to ensure compatibility with the fracture criterion (27), as evidenced by
their union at α = 1. This emergence of fracture modes greatly cuts down the size
of the domain for plastic flow, as α increases.

For the examples considered, the values of constant A in the plastic potential
(16) and (28) were found to be in the general range of 1/10 to 1/20. We now
inquire as to whether there is any special significance to this magnitude of A in
the plastic potential. The coefficient Aα/(1 +α) controls the size and effect of the
dilatational term in the plastic potential. This coefficient at the full extent of its
range, α → ∞, just becomes coefficient A itself, which is about 1/14, to take a
specific value from the examples considered earlier. Thus at the limit α → ∞ the
plastic volume change, (36), at A = 1/14 becomes

ε̇
p
kk =

1
9 |ε̇

p
11| = 0.111|ε̇

p
11|.

The plastic volume change is about 11% of the size of the imposed strain for uni-
axial compressive stress, at this limit. This size for the plastic volume change is
in the proper range for the effect of dilatancy in highly damaged materials. The
dilatancy is most likely due to the nucleation of voids in general and void space
at grain boundaries in particular materials of that type. The dilatancy is still a
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significant and recognizable effect at this size, but it is not at the unrealistically
large size predicted by the associative form. Alternatively, if the constant A were
yet another order of magnitude smaller than the above value, the predicted dilatancy
effect would be much too small to be recognizable or significant. Thus the constant
A being about an order of magnitude less than one recovers the proper result for
bcc metals approaching the extreme ductile range, α → 0, and it also recovers the
proper dilatancy behavior approaching the opposite limit, α → ∞. If a single value
for A were to be taken for general applications, the present work suggests it would
be about 1/15 as supported by the data of Richmond and colleagues.

The plastic potential apparently would be of purely distortional form were it not
for the proclivity of homogeneous materials to generate voids, requiring the small
correction found here. In the very ductile range, such as with most bcc metals, the
combination of a small value of α and small A in (28) means that it is justified, and
perhaps obvious, to approximate the plastic potential as being purely distortional,
even though the yield function may not be taken to be so. For materials with values
of α that are not small, the smallness of constant A still provides assurance that
the dilatational term in the plastic potential can be neglected in many situations.
According to the preceding examples the resulting error would be of the order
of constant A. Thus the present work indicates that for most homogeneous and
isotropic materials (not just ductile metals) in stress states allowing plastic flow
rather than brittle behavior, the plastic potential is quite well represented by the
simple distortional form of (16) having β ∼= 0, and as coordinated with the yield
function (15) or (26) having interacting distortional and dilatational effects. The
competitive fracture mode of failure is controlled by criterion (27). All of these
forms are fully specified by two properties: the uniaxial tensile yield (or fracture)
strength and the uniaxial compressive yield strength.
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