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DYNAMIC RESPONSE OF MULTILAYER CYLINDERS:
THREE-DIMENSIONAL ELASTICITY THEORY

ALEXANDER SHUPIKOV AND NATALIYA DOLGOPOLOVA

We suggest an analytic-numerical approach to solving the problem of vibrations
of multilayer cylinders under impulse loading. The behavior of the cylinder
is described by dynamic equations of three-dimensional elasticity theory. The
number of layers in the pack and the thickness and mechanical characteristics of
each layer are selected arbitrarily. The possibilities of the approach are proposed,
and the validity of results obtained is demonstrated by numerical examples.

1. Introduction

Structural elements in the form of multilayer plates and shells are used extensively in
different branches of machine building and civil engineering. The stressed-strained
state (SSS) of real objects can be described most simply using the finite-element
method, but the development of analytic and hybrid calculation methods is the
focus of much current work.

In works where analytic and hybrid methods are used, the SSS is investigated
most often by using different 2-dimensional discrete, continuous and discrete-
continuous theories [Grigoliuk and Kogan 1972; Grigoliuk and Kulikov 1988;
Reddy 1989; 1993; Noor and Rarig 1974; Noor and Burton 1989; Noor and Burton
1990a; 1996; Smetankina et al. 1995; Shupikov and Ugrimov 1997; Shupikov et al.
2004]. Using these theories, obtaining numerical results is relatively straightforward.
In the process, one is faced with the complex problem of determining the limits
within which these theories adequately describe the behavior of the object being
investigated with a prescribed accuracy. At impulse and other nonstationary short-
time actions, the solution of this problem is yet more challenging.

The behavior of a multilayer structure can be investigated most effectively in
terms of three-dimensional elasticity theory. Pagano [1969] was one of the first to
investigate this problem. He studied the cylindrical bending of a simply supported
orthotropic infinite laminated strip under static loading. Later the exact solution of
the bending problem for a finite-dimension plate under static loading was obtained
[Pagano 1970a; 1970b; Little 1973; Noor and Burton 1990b].

Keywords: three-dimensional theory, elasticity theory, cylindrical shell, multilayer shells, dynamics,
equations of motion.
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206 ALEXANDER SHUPIKOV AND NATALIYA DOLGOPOLOVA

Several other works concerned with the behavior of cylindrical shells under static
loading can be mentioned. Thus, Ren [1987] studied the plane strain deformation of
an infinitely long cylindrical shell subjected to a radial load changing harmonically
along the circumference. In terms of three-dimensional elasticity theory, solutions
were obtained for finite-length, cross-ply cylindrical shells, simply supported at
both ends and subjected to transverse sinusoidal loading [Varadan and Bhaskar
1991], and for shell panels [Ren 1989] subjected to a transverse load that changes
both in the axial and circumferential directions. Subsequent works [Bhaskar and
Varadan 1993; 1994; Bhaskar and Ganapathysaran 2002; 2003] dealt with the
three-dimensional analysis of cylindrical shells subjected to different kinds of loads
acting both in the axial and circumferential directions. Liu [2000] presented static
analyses of thick rectangular plane-view laminated plates, carried out in terms of
the three-dimensional theory of elasticity using the differential quadrature element
method.

Attention has also been given to the study of vibrations of multilayer cylindrical
shells in terms of three-dimensional elasticity theory.

Noor and Rarig [1974] obtained equations of free vibrations of a simply supported
laminated orthotropic circular cylinder based on linear three-dimensional elasticity
theory. Kang and Leissa [2000] suggested a three-dimensional analysis method for
determining the free vibrations and the form of the segment of a variable-thickness
spherical shell. The displacement components in the meridional, normal, and
circumferential directions were taken to be sinusoidal with respect to time, periodic
in the circumferential direction, and were expanded into algebraic polynomials in
the meridional and normal directions.

Weingarten and Reismann [1974] gave solutions for nonaxisymmetrical nonsta-
tionary vibrations of a uniform finite-length cylinder. They considered vibrations
of uniform cylindrical shells within the framework of the three-dimensional theory
of elasticity, and compared the results obtained with those given by other theories
of shells. They showed that none of the two-dimensional theories could describe
satisfactorily the wave-like character of the initial strain phase. Philippov et al.
[1978] solved a similar problem, providing an analytic solution to the problem
of axisymmetrical vibrations of a uniform infinite-length cylinder subjected to an
impulse load.

Shupikov and Ugrimov [1999] have suggested an analytic-numerical method
for solving the three-dimensional problem in the elasticity theory of nonstationary
vibrations of multilayer plates subjected to impulse loads. The displacements in
the tangential direction are expanded into a double Fourier series, and the partial
derivatives in the transverse coordinate are replaced by their finite-difference version.
As a result of these transformations, the problem of nonstationary vibration of a
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multilayer plate under the action of an impulse load is reduced to integrating a
system of ordinary differential equations with constant coefficients.

The objective of this work is to develop and generalize further the approach
suggested by [Shupikov and Ugrimov 1999], and to investigate the vibrations of a
thick multilayer closed cylindrical shell subjected to an impulse load.

2. Problem formulation

We consider a multilayer cylindrical shell of finite length A and radius R0, which is
composed of I uniform constant-thickness isotropic layers. The shell is referenced
to the right-hand system of orthogonal curvilinear coordinates z, θ, r .

The coordinate surface is linked to the outer surface of the first layer, R0 is the
radius of inner surface of the shell (Figure 1). Contact between layers prevents their
delamination and mutual slipping.

The behavior of each layer is described by Lamé’s equations [Novatsky 1975]:
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Figure 1. Multilayer cylindrical shell.
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where ∇
2
= ∂2/∂r2

+ (1/r)∂/∂r + (1/r2)∂2/∂θ2
+ ∂2/∂z2.

This system of equations is solved with the boundary conditions on the external
surfaces of the first and I -th layers, namely

σ 1
zr = σ 1

rθ = 0, σ 1
rr = −q− for r = R0,

σ I
zr = σ I

rθ = 0, σ I
rr = −q+ for r = R0 + ξ I , ξ i

=

i∑
j=1

h j
;

(2)

the boundary conditions at the ends,

σ i
zz = ui

r = ui
θ = 0 for z = 0, L , i = 1, I ; (3)

the contact conditions at adjacent layers,
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z ,
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r z for r = R0 + ξ i , i = 1, I − 1;
(4)

and the initial conditions
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∂t
= 0 for i = 1, I . (5)

Here i is the layer number, λi , µi are Lamé’s coefficients, ρi is the specific density,
and ui

= {ui
r , ui

θ , ui
z} is the displacement vector of a point in the i-th layer.

The stress tensor components are calculated from
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jk = 2µiεi
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i , (6)

where δ is Kronecker’s delta,
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Lamé’s coefficients are linked to Young’s modulus E i and Poisson’s coefficient νi

by the relations

λi
=

νi E i

(1 + νi )(1 − 2νi )
, µi

=
E i

2(1 + νi )
.
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3. Solution method

The displacements and the external load are expanded into double Fourier series
with respect to the complete scheme of orthogonal functions satisfying the boundary
conditions (3):

ui
r =

M∑
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N∑
n=0
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(8)

for i = 1, I , where B1mn(z, θ)= sin
mπ z

A
cos nθ , B2mn(z, θ)= sin

mπ z
A

sin nθ ,
and

B3mn(z, θ)= cos
mπ z

A
cos nθ.

The partial derivatives of the functions 8i
kmn(r, t), k = 1, 2, 3, with respect to

the coordinate r are replaced with their finite-difference presentations. For this we
build a regular grid in each layer:

r i(l)
= R0 + ξ i−1

+ l1i , l = 0, L i , 1i
=

hi

L i , i = 1, I .

Here L i is the number of nodes in the finite-difference grid in the i-th layer, i = 1, I .
The number of series terms M, N retained in expansion (8), and the number

of nodes in the finite-difference grid in each of the layers L i , is selected so as to
ensure convergence of numeric results.

We set
8

i(l)
kmn =8i

kmn(r
i(l), t).

For approximation of partial derivatives, a three-point template is used [Forsythe
and Wasov 1960]
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As a result of these transforms, for n = 0 and m = 1,M system (1) takes the form
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Conditions (2), (4), and (5) become
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all for i = 1, I .

For pairs (m, n) with n = 1, N and m = 1,M , we have instead the following
form for system (1):
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For the same pairs (n,m), conditions (2), (4), and (5) become
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with

8
i(s)
kmn(0)=

d8i(s)
kmn(0)
dt

= 0 for k = 1, 2, 3, i = 1, I .

The boundary conditions at the ends of the cylinder (3) are satisfied exactly by
selecting the coordinate functions Bkmn of (8), which correspond to simply supported
conditions.

Conditions (12) allow us to exclude the values 8i(−1)
km0 and 8i(L i

+1)
km0 (i = 1, I ,

k = 1, 3, n = 0, m = 1,M) of the sought-for functions in “extra-contour” points
from system (10)–(11); and conditions (14)–(15) allow us to exclude the values
8

i(−1)
kmn and 8i(L i

+1)
kmn (i = 1, I , k = 1, 2, 3, n = 1, N , m = 1,M) of the sought-for

functions in “extra-contour” points from system (13).
Hence, the solution of problems (1)–(5) on oscillations of a multilayer cylindrical

shell subjected to an impulse load is reduced for each pair of values (m, n) to
integrating a system of ordinary differential equations with constant coefficients. In
this paper, the system obtained is integrated by Taylor expansion [Bakhvalov 1975;
Shupikov et al. 2004] as described in the Appendix.
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4. Numerical results

We illustrate with examples the method’s feasibility and the validity of its results.
Consider an infinite uniform cylinder with R0 = 0.08 m, h1 = 0.04 m, E1 =

2.06 · 108 kPa, ρ1 = 7.9 · 103 kg/m3, and ν1 = 0.25, subject to an impulse load
applied to the inner surface, the load being a uniformly distributed pressure changing
with respect to time according to the law

q−(θ, z, t)= q−

0 exp(−t/τ), q+(θ, z, t)= 0,

with loading intensity q−

0 = 1.49 · 108 Pa and load action time τ = 14.2 · 10−6 s.
Figures 2 and 3 show data obtained using the exact solution from [Philippov

Figure 2. Circumferential stresses of infinite cylinder under im-
pulse loading: dots, exact solution; solid line, present method.
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et al. 1978], together with the results obtained with the method of this paper. For
the calculations we took L1

= 160. We observe surges at times of stress σ 1
θ (R

∗, t)
and σ 1

r (R
∗, t). For radial stresses σ 1

r (R
∗, t), such surges are more prominent than

for circumferential ones σ 1
θ (R

∗, t), and they have a dramatic impact on both the
absolute values of the stresses σ 1

r (R
∗, t) and on their change in sign. Stress surges

in time correspond to instances of arrival of waves reflected from the outer surface
(r = R0 + h1) to the surface considered with the coordinate r = R∗

= 0.085 m.
The interval t1 corresponds to the time required for the wave to travel the distance
s1 = R∗

− R0 = 5 mm, and it corresponds to the same value obtained from the

Figure 3. Radial stresses of infinite cylinder under impulse load-
ing: dots, exact solution; solid line, present method.
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exact formula
t1 =

s1

V
≈ 0.9µs,

where V is the expansion wave [Novatsky 1975]

V =

√
λ1 +µ1

ρ1 ≈ 5.52 · 103 m/s.

Interval t2 corresponds to the time required for the wave to travel the distance
s2 = 2h1 − (R∗

− R0) = 7.5 mm, and it corresponds to the same value obtained
from the exact formula

t2 =
s2

V
≈ 1.36 · 10−6 s.

In the problem considered, the uniform shell was presented in the form of a
one-, two-, and three-ply shell. In all cases, we observed a satisfactory matching
of results obtained with the help of the given technique and the analytic solution
[Philippov et al. 1978].

For a uniform finite-length cylinder with parameters A = 0.5 m, R0 = 0.095 m,
h1

= 0.01 m, E1
= 6.67 · 104 MPa, ρ1

= 2.5 · 103 kg/m3, and ν1
= 0.3, subjected

to an external radially directed load applied instantaneously to the outer surface,
we give a comparison of the results obtained by the analytic method in [Weingarten
and Reismann 1974], and those obtained by implementing the given approach.

A load with intensity q+

0 is applied instantaneously radially outside the cylinder,
and distributed over a small area on the outer surface of the shell. The dimensions
of the loading areas are ε rad in the direction of axis θ , and λ in the direction of
axis z. The centre of the loading area has the coordinates θ = 0, z = L/2, i.e., the
load is distributed symmetrically with respect to the circumferential coordinate, and
it has the following form:

q+(θ, z, t)= q+

0 f (θ)g(z)H(t), q−(θ, z, t)= 0,

f (θ)=

{
0, |θ |> ε/2

1, |θ | ≤ ε/2
, f (θ + 2π)= f (θ),

g(z)=


0, 0 ≤ z < (L − λ)/2

1, (L − λ)/2 ≤ z ≤ (L + λ)/2,

0, (L + λ)/2< z ≤ λ

λ= 0.5 R, R = 0.1 m, ε = 0.5 rad.

Here q+

0 is the loading intensity (0.1 MPa); f (θ) is the load distribution over
coordinate θ ; g(z) is the load distribution over coordinate z, and H(t) is Heaviside’s
function.
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Figure 4 shows the cylinder’s response to dynamic loading. The dots show the
analytic solution, and the lines represent the solution obtained by using the given
analytic-numerical method. For the calculations we took L1

= 150. The top graph
shows the change in radial displacement on the median surface as a function of
time. The bottom graph shows the change in circumferential stresses on the outer
surface of the shell as a function of time. The abscissa is dimensionless time, which
is normed by the value of the time of travel of the shear wave over the shell radius,
τ ∗

= tV/R0,

V =

√
µ1

ρ1 ≈ 3.203 · 103 m/s.

Figure 4. Response of a finite-length cylinder to dynamic loading:
dots, analytic solution; solid line, present method.
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R0(m) i Designation in Fig. hi (m) E i (MPa) νi ρi (kg/m3)

0.08 1 0.01 5.59 · 103 0.38 1.2 · 103

2 0.02 6.67 · 104 0.22 2.5 · 103

Table 1. Parameters of multilayer shell.

These examples show good agreement between the results obtained with the
present method and analytic solutions obtained by other authors.

The process of propagation of the disturbance during impulse loading has been
investigated. An infinite two-ply cylindrical shell, whose parameters are given in
Table 1, is considered.

The load applied to the inner surface is a uniformly distributed pressure that
changes with time according to the law

q−(θ, z, t)= q−

0 H(t), q+(θ, z, t)= 0,

where q−

0 = 1.49 · 108 Pa and H(t) is Heaviside’s function.
Figure 5 shows the distribution diagrams for stresses σ i

r (r, t) at different times.
The symbols

and

show the direction of propagation of stress waves. For the calculations we took
L1 = 70 and L2 = 100. The figures presented demonstrate the wavelike pattern of
the process. Besides, one can see the effect of wave reflection from the boundary
between the layers and external surfaces.

Hence, we have shown the possibility of investigating wave processes in thick
uniform and multilayer cylindrical shells. Such an approach can be practical for
evaluating the area of applicability of two-dimensional theories when it is necessary
to investigate the process of propagation of elastic waves, and when the SSS of the
object being investigated has an essentially three-dimensional character.

5. Conclusions

The present work suggests an analytic-numerical method of investigating vibrations
in a multilayer closed cylindrical shell in terms of the three-dimensional theory
of elasticity. The given method allows investigating the behavior of uniform and
multilayer cylindrical shells subjected to impulse loading.

The examples given for different kinds of loading (Figures 2–4) show good
agreement between the results obtained with the present method and analytic
solutions obtained by other authors.
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Figure 5. The propagation of stress waves of a two-layer cylindri-
cal shell.
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The plots in Figures 2, 3 and 5 demonstrate the possibility of investigating wave
processes in thick uniform and multilayer cylindrical shells.

Hence, the given method can be used for verifying the validity of results based
on different two-dimensional theories applied to analyzing vibrations of multilayer
cylindrical shells, as well as for investigating wave processes in cylindrically shaped
elastic bodies.

Appendix: A modified method of solution expansion into Taylor series

A modified method of solution expansion in Taylor series is applied to integrate a
system of ordinary differential equations with constant coefficients.

The initial system of differential equations is written in the form

[�mn
]
¨8mn + [3mn

]8mn = Qmn.

By replacing variables and straightforward transforms, it is reduced to the form

˙Gmn = [Rmn
]
˙Gmn + H mn. (A.1)

The integration interval [0, t] is divided into s sections, each with a length of 1t
so that t = s1t. We denote Gmn (s1t)= Gmns .

At each integration step 1t , the solution is represented as a Taylor series:

Gmns = Gmns−1 +

˙Gmns−1

1!
1t +

¨Gmns−1

2!
1t2

+ · · · . (A.2)

It is assumed that, within the integration step,

H mn(t)= H mns, (s − 1)1t ≤ t ≤ s1t. (A.3)

In this case, given (A.1) and (A.3), the derivatives in series (A.2) can be presented
as

(k)

G mn = [Rmn
]
k Gmn + [Rmn

]
k−1 H mn. (A.4)

An example of calculating the derivatives is given here:

¨Gmn =
d
dt

˙Gmn =
d
dt

(
[Rmn

]Gmn + H mn
)
= [Rmn

]
˙Gmn =

= [Rmn
]
(
[Rmn

]Gmn + H mn
)
= [Rmn

]
2Gmn + [Rmn

]H mn.

Substituting the expressions for derivatives (A.4) into (A.2), we obtain the following
expressions for solving the system at the s-th step:

Gmns = [K mn
]Gmns−1 + [T mn

]H mns . (A.5)
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Here

[Kmn] = [E] +
[Rmn

]

1!
1t +

[Rmn
]
2

2!
1t2

+ · · · ,

[Tmn] =
[E]

1!
1t +

[Rmn
]

2!
1t2

+
[Rmn

]
2

3!
1t3

+ · · · ,

where [E] is the unit matrix.
To refine the solution, the interval [ts−1, ts] is divided into r sections with the

length of 1τ =1t/r . In each section, the function Gmn is calculated using (A.5):

Gmn

(
ts−1 +

1t
r

)
= [K̂ mn

]Gmns−1 + [T̂ mn
]H mns,

...

Gmn

(
ts−1+

i1t
r

)
=[K̂ mn

]
i
Gmns−1+

(
[K̂ mn

]
i−1

+[K̂ mn
]
i−2

+· · ·+[E]
)
[T̂ mn

]H mns

for i = 1, r .

The matrices [K̂ mn
] and [T̂ mn

] are derived from matrices [K mn
] and [T mn

] by
replacing 1t with 1τ .

At i = r , Gmn(ts−1 +1t)= Gmns , the system solution takes its final form

Gmns = [Mmn
]Gmns−1 + [J mn

]H mns,

where

[Mmn
] = [K̂ mn

]
r
;

[J mn
] =

(
[K̂ mn

]
r−1

+ [K̂ mn
]
r−2

+ · · · + [E]
)
[T̂ mn

].

Hence, integrating a system of ordinary differential equations is reduced to calcu-
lating the load vector H mns and multiplying matrices by vectors. The matrices are
calculated once for each pair of values m and n.

In this paper, to ensure stability of the process of numerically integrating a system
of ordinary differential equations, the step of integration with respect to time 1t is
taken to be equal to the time of strain wave travel between adjacent nodes of the
finite-difference grid according to the Courant–Hilbert conditions.
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THE ISOTROPIC MATERIAL CLOSEST TO A
GIVEN ANISOTROPIC MATERIAL

ANDREW N. NORRIS

The isotropic elastic moduli closest to a given anisotropic elasticity tensor are
defined using three definitions of elastic distance: the standard Frobenius (Eu-
clidean) norm, the Riemannian distance for tensors, and the log-Euclidean norm.
The closest moduli are unique for the Riemannian and the log-Euclidean norms,
independent of whether the difference in stiffness or compliance is considered.
Explicit expressions for the closest bulk and shear moduli are presented for cu-
bic materials, and an algorithm is described for finding them for materials with
arbitrary anisotropy. The method is illustrated by application to a variety of
materials, which are ranked according to their distance from isotropy.

1. Introduction

The objective here is to answer the question: what is the isotropic material closest
to a given anisotropic material? In order to attempt an answer one needs a distance
or length function which measures the difference between the elastic moduli of
two materials. The Euclidean norm provides a natural definition for distance, and
using it one can find the elastic tensor of a given symmetry nearest to an anisotropic
elastic tensor [Gazis et al. 1963; Arts et al. 1991; Helbig 1996; Cavallini 1999;
Gangi 2000; Browaeys and Chevrot 2004]. The Euclidean distance function is,
however, not invariant under inversion, that is, considering compliance instead of
stiffness, and as such does not lead to a unique answer to the question posed. To
see this, let 1Ci jkl and 1Si jkl be the elements of the fourth order tensors for the
differences in elastic stiffness and compliance, respectively. Define the length of a
fourth order tensor with elements Ti jkl by (Ti jkl Ti jkl)

1/2. Then it is clear that the
length using 1Ci jkl is not simply related to that of 1Si jkl .

Recently and separately, Moakher [2006] and Arsigny et al. [2005] (see also
[Matthies and Humbert 1995]) introduced two distance functions for elasticity ten-
sors which are unchanged whether one uses stiffness or compliance. The two
measures of elastic distances, called the Riemannian distance [Moakher 2006] and
the log-Euclidean metric [Arsigny et al. 2005], each provide a means to define

Keywords: elastic moduli, anisotropy, Euclidean distance, Riemannian distance.
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unambiguously the distance between any two elasticity tensors. The focus here is
on finding the isotropic material closest to a given arbitrarily anisotropic material.

The distance functions are first reviewed in Section 2 along with the more com-
mon Frobenius or Euclidean norm. The theory is developed in terms of matrices,
with obvious application to tensors. Preliminary results for elastic materials are
presented in Section 4, where closed-form expressions are derived for the isotropic
moduli closest to a given material of cubic symmetry. The general problem for
materials of arbitrary anisotropy is solved in Section 5, and applications to sample
materials are described in Section 6.

2. Matrix distance functions

We begin with P(n), the vector space of positive definite symmetric matrices in
Mn×n , the space of n × n real matrices. Recall that a matrix P is symmetric if
xTPy = yTPx for all x, y in Rn , and positive definite if xTPx> 0 for all nonzero
x ∈ Rn . The spectral decomposition is

P =

n∑
i=1

λi viv
T
i , (1)

where λi are the eigenvalues and vi ∈ Rn the eigenvectors, which satisfy λi > 0,
vT

i v j = δi j . Functions of P can be readily found based on the diagonalized form;
in particular, the logarithm of a matrix is defined as

Log P =

n∑
i=1

ln λi viv
T
i . (2)

Three distinct metrics for positive definite symmetric matrices are considered:
the conventional Euclidean or Frobenius metric dF , the log-Euclidean distance dL

[Arsigny et al. 2005], and the Riemannian distance dR [Moakher 2006]. Thus, for
any pair A, B ∈ P(n)

dF (A, B)= ‖A − B‖ , (3)

dL(A, B)= ‖Log(A)− Log(B)‖ , (4)

dR(A, B)=
∥∥Log(A−1/2 B A−1/2)

∥∥ , (5)

where ‖M‖ ≡ [tr(MTM)]1/2 for any M ∈ Mn×n . The distance function dR is a
consequence of the scalar product

〈M1, M2〉P ≡ tr (P−1 M1 P−1 M2), (6)

for P ∈ P(n) and symmetric M1, M2 ∈ Mn×n , and is also related to the exponen-
tial map [Lang 1998; Moakher 2006]. The metric dL is associated with the Lie
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group on P(n) defined by the following multiplication that preserves symmetry
and positive definiteness [Arsigny et al. 2005] :

P1 � P2 ≡ exp (Log(P1)+ Log(P2)) , P1, P2 ∈ P(n). (7)

The three distance functions possess the properties expected of a distance func-
tion d:

(i) it is symmetric with respect to its arguments, d(A, B)= d(B, A);

(ii) it has nonnegative d(A, B)≥ 0 with equality if and only if A = B;

(iii) it is invariant under a change of basis, d(Q A QT , Q B QT )= d(A, B) for all
orthogonal Q ∈ Mn×n , Q QT

= QT Q = I ; and

(iv) it satisfies the triangle inequality d(A,C) ≤ d(A, B)+ d(B,C) for all A,B,
C ∈ P(n).

The Riemannian and log-Euclidean distances have additional properties not
shared with dF :

dL ,R(a A, a B)= dL ,R(A, B) , a ∈ R+, (8)

dL ,R(Ab, Bb)= |b| dL ,R(A, B) , b ∈ R, (9)

where dL ,R signifies either dL or dR . Thus dL and dR are bi-invariant metrics, that
is, distances are invariant under multiplication and inversion. This property makes
them consistent and unambiguous metrics for elasticity tensors. Moakher [2006]
introduced another bi-invariant distance function, the Kullback–Leibler metric, but
it does not satisfy the triangle inequality, and we do not consider it here.

The distance function dR can be expressed in alternative forms by using the
property B(Log A)B−1

= Log (B AB−1), for example,

dR(A, B)=
[

tr Log2(A−1 B)
]1/2

=
[

tr Log2(B−1 A)
]1/2

, (10)

or in terms of eigenvalues, using Equations (2) and (5),

dR(A, B)=

[ n∑
i=1

(ln λi )
2
]1/2

, (11)

where λi , i = 1, 2, . . . , n are the eigenvalues of P = A−1/2 B A−1/2, or equivalently,
of the matrices A−1 B, B−1 A, AB−1, etc. Note that dR also satisfies

dR(SAST , SBST )= dR(A, B) , for all invertible S ∈ Mn×n. (12)

3. Preliminary examples

The remainder of the paper is concerned with applications to elasticity, with n = 6.
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3.1. Definition of elastic moduli. 6 × 6 symmetric matrices are used to describe
elastic moduli, whether of stiffness or compliance. The matrix representation is
based on Kelvin’s [Thomson 1856] observation in 1856 that the twenty one coeffi-
cients of elasticity define a quadratic form (the energy) in the six strains, and there-
fore possess six “principal strains”. Although Kelvin did not write the elasticity
tensor explicitly as a symmetric positive definite matrix, the idea has proved useful
and has been developed extensively, notably by Rychlewski [1984] and Mehrabadi
and Cowin [1990]. The notation of Mehrabadi and Cowin is employed here. Thus,
the matrix Ĉ ∈ P(6) represents the elastic stiffness, and its inverse is the elastic
compliance, Ŝ, satisfying

Ŝ Ĉ = Ĉ Ŝ = Î, where Î = diag (1, 1, 1, 1, 1, 1). (13)

The elements of the elastic stiffness matrix are

Ĉ=



ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ12 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ13 ĉ23 ĉ33 ĉ34 ĉ35 ĉ36

ĉ14 ĉ24 ĉ34 ĉ44 ĉ45 ĉ46

ĉ15 ĉ25 ĉ35 ĉ45 ĉ55 ĉ56

ĉ16 ĉ26 ĉ36 ĉ46 ĉ56 ĉ66



=



c11 c12 c13
√

2c14
√

2c15
√

2c16

c12 c22 c23
√

2c24
√

2c25
√

2c26

c13 c23 c33
√

2c34
√

2c35
√

2c36

√
2c14

√
2c24

√
2c34 2c44 2c45 2c46

√
2c15

√
2c25

√
2c35 2c45 2c55 2c56

√
2c16

√
2c26

√
2c36 2c46 2c56 2c66



,

(14)
where ci j , i, j = 1, 2, . . . 6 are the coefficients in the Voigt notation.

Before considering materials of arbitrary anisotropy, it is instructive to examine
the distance functions for materials possessing the simplest type of anisotropy:
cubic symmetry. Materials of cubic symmetry are described by three independent
moduli: c11 = c22 = c33, c12 = c23 = c13, c44 = c55 = c66, with the rest equal to
zero. The three moduli commonly used are the bulk modulus κ and the two distinct
shear moduli µ and η, which are related to the matrix elements by

3κ = ĉ11 + 2ĉ12, 2µ= ĉ44, 2η = ĉ11 − ĉ12. (15)

Isotropic materials have only two independent moduli, κ , µ, and are of the same
form as for cubic materials with the restriction ĉ11 − ĉ12 − ĉ44 = 0, or equivalently,
η = µ.
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A concise notation is used for isotropic and cubic matrices, based upon Wal-
pole’s [Walpole 1984] general scheme for performing algebra with elasticity ten-
sors. Define the matrices Ĵ , K̂ , L̂ and M̂ by

K̂ = Î − Ĵ, Ĵ = uuT , where u =

( 1
√

3
,

1
√

3
,

1
√

3
, 0, 0, 0

)T
, (16)

M̂ = K̂ − L̂, L̂ = diag (0, 0, 0, 1, 1, 1) . (17)

Note that Î and Ĵ correspond, respectively, to the fourth order isotropic symmetric
tensors with components Ii jkl = (δikδ jl + δilδ jk)/2 and Ji jkl = (1/3)δi jδkl . Elastic
moduli of isotropic and cubic materials are of the generic form

Ĉ iso(3κ, 2µ)≡ 3κ Ĵ + 2µ K̂ , κ, µ > 0, (18)

Ĉcub(3κ, 2µ, 2η)≡ 3κ Ĵ + 2µ L̂ + 2η M̂, κ, µ, η > 0. (19)

The isotropic matrices {Ĵ, K̂ } are idempotent and their matrix product vanishes:
Ĵ2

= Ĵ , K̂ 2
= K̂ , Ĵ K̂ = K̂ Ĵ = 0. Similarly, it may be checked that the three

basis matrices for cubic materials {Ĵ, L̂, M̂} are idempotent and have zero mutual
products. The algebra of matrix multiplication for isotropic and cubic materials
follows from these basic multiplication tables:

Ĵ
K̂

∣∣∣∣∣∣∣
Ĵ K̂
Ĵ 0
0 K̂

Ĵ
L̂
M̂

∣∣∣∣∣∣∣∣∣
Ĵ L̂ M̂
Ĵ 0 0
0 L̂ 0
0 0 M̂

.

Thus, the inverses are

Ŝcub = Ĉ−1
cub = Ĉcub

( 1
3κ
,

1
2µ
,

1
2η

)
, Ŝiso = Ĉ iso

( 1
3κ
,

1
2µ

)
,

and the products are

Ĉ−1
iso (3κ1, 2µ1) Ĉ iso (3κ2, 2µ2)≡

κ2

κ1
Ĵ +

µ2

µ1
K̂ , (20)

Ĉ−1
cub(3κ1, 2µ1, 2η1) Ĉcub (3κ2, 2µ2, 2η2)≡

κ2

κ1
Ĵ +

µ2

µ1
L̂ +

η2

η1
M̂. (21)

Results for isotropic materials follow from those for cubic with η = µ. For the
sake of simplicity and brevity we therefore focus on properties for cubic materials
in the next subsection.

3.2. Elastic distance for cubic and isotropic materials. Consider two cubic ma-
terials with moduli Ĉ1 = Ĉcub(3κ1, 2µ1, 2η1) and Ĉ2 = Ĉcub (3κ2, 2µ2, 2η2).
The Euclidean distance function of Equation (3) follows from the above properties
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and the relations tr Ĵ = 1, tr L̂ = 3, tr M̂ = 2. Similarly, the Riemannian and
log-Euclidean distances follow from the identities

Log (Ĉ2)−Log (Ĉ1)= Log Ĉ−1
1 Ĉ2 = ln

(κ2

κ1

)
Ĵ + ln

(µ2

µ1

)
L̂ + ln

(η2

η1

)
M̂ . (22)

Thus, the distances functions are

dF ( Ĉ1, Ĉ2)=
[(

3κ1 − 3κ2
)2

+ 3
(
2µ1 − 2µ2

)2
+ 2

(
2η1 − 2η2

)2]1/2
, (23)

dL ,R( Ĉ1, Ĉ2)=

[(
ln
κ2

κ1

)2
+ 3

(
ln
µ2

µ1

)2
+ 2

(
ln
η2

η1

)2
]1/2

. (24)

It is clear that dL and dR are invariant under inversion,

dL ,R ( Ŝ1, Ŝ2)= dL ,R ( Ĉ1, Ĉ2).

Note that the first identity in (22) is a consequence of the fact that Ĉ1 and Ĉ2

commute, which is not true in general for material symmetries lower than cubic.
What is the isotropic material closest to a given cubic material? The answer

may be found by considering the distance functions between an arbitrary cubic
stiffness Ĉcub(3κ, 2µ, 2η) and the isotropic stiffness Ĉ iso(3κ∗, 2µ∗). The same
question will also be considered for the compliances. Minimizing with respect to
the isotropic moduli κ∗, µ∗ yields

min
κ∗, µ∗

dL ,R
(

Ĉcub, Ĉ iso(3κ∗, 2µ∗)
)
= min
κ∗, µ∗

dL ,R
(

Ŝcub, Ŝiso
)
=

√
6
5

∣∣∣∣ln µη
∣∣∣∣ , (25)

min
κ∗, µ∗

dF
(

Ĉcub, Ĉ iso(3κ∗, 2µ∗)
)
=

√
6
5

|2µ− 2η| , (26)

min
κ∗, µ∗

dF
(

Ĉ−1
cub, Ĉ−1

iso (3κ∗, 2µ∗)
)
=

√
6
5

∣∣∣∣ 1
2µ

−
1

2η

∣∣∣∣ . (27)

Denote the values of the closest isotropic moduli by (κL , µL), (κR, µR) for dL , dR ,
and (κA, µA) or (κH , µH ) for dF depending on whether the stiffness (A) or its
inverse (H) is used. Thus,

κL ,R,A,H = κ, µL ,R = (µ3η2)1/5, µA =
3
5
µ+

2
5
η,

1
µH

=
3

5µ
+

2
5η
. (28)

Equations (25) and (28) show clearly that the “closest” isotropic material using the
Frobenius metric is ambiguous because it depends on whether one uses stiffness
or compliance. Each gives a different isotropic material since µH < µL ,R < µA

for µ− η 6= 0. The Riemannian and log-Euclidean metrics give the same unique
“closest” isotropic material, regardless of whether the stiffness or the compliance
is used. The fact that they agree is particular to the case of cubic symmetry, as
noted above, and is not true in general.
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In summary, the closest isotropic material to a given cubic material, in the sense
of dR and dL , is defined by moduli

κR = κL =
1
3 (ĉ11 + 2ĉ12)

and
µR = µL =

1
2

[
ĉ3

44 (ĉ11 − ĉ12)
2]1/5

,

and the distance from isotropy is

dL ,R =

√
6
5

∣∣∣∣ln ĉ11 − ĉ12

ĉ44

∣∣∣∣ .
These results will be generalized to materials of arbitrary anisotropy next.

4. Closest isotropic moduli

We now turn to the more general question of finding the isotropic material closest
to a given anisotropic material characterized by Ĉ or its inverse Ŝ. The solution
using the Euclidean metric is relatively simple, and is considered first.

4.1. Minimum Frobenius distances. The closest isotropic elastic moduli are as-
sumed to be of general isotropic form Ĉ iso(3κ, 2µ); see Equations (18)–(19). The
bulk and shear moduli are found by minimizing dF (Ĉ iso, Ĉ), which implies

3κ tr Ĵ = tr Ĵ Ĉ, 2µ tr K̂ = tr K̂ Ĉ . (29)

Using suffix A to indicate that the minimization is in the arithmetic sense (in line
with [Moakher 2006]),

9κA = ĉ11 + ĉ22 + ĉ33 + 2(ĉ23 + ĉ31 + ĉ12) ,

30µA = 2(ĉ11 + ĉ22 + ĉ33 − ĉ23 − ĉ31 − ĉ12)+ 3(ĉ44 + ĉ55 + ĉ66) ,
(30)

which are well known; see, for example, [Fedorov 1968]. Similarly, the closest
isotropic elastic compliance can be determined by minimizing

dF (Ĉ
−1
iso , Ĉ−1

).

Denoting the isotropic moduli with the suffix H for harmonic,

1/κH = ŝ11 + ŝ22 + ŝ33 + 2(ŝ23 + ŝ31 + ŝ12) ,

15/(2µH )= 2(ŝ11 + ŝ22 + ŝ33 − ŝ23 − ŝ31 − ŝ12)+3(ŝ44 + ŝ55 + ŝ66) .
(31)

The Euclidean distance does not provide a unique closest isotropic material, al-
though the values in Equations (30) and (31) are sometimes considered as bounds.
Equations (29) and (30) also agree with the special case discussed above for cubic
materials, Equation (28).
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4.2. Minimum log-Euclidean distance. The isotropic elasticity Ĉ iso(3κL , 2µL)

is found using the same methods as above by replacing Ĉ iso and Ĉ with Log(Ĉ iso)

and Log(Ĉ), respectively. Thus,

log(3κL)= tr Ĵ Log(Ĉ), 5 log(2µL)= tr K̂ Log(Ĉ) . (32)

Adding the two equations and using Ĵ + K̂ = Î , implies the identity

det(Ĉ iso)= det(Ĉ). (33)

Thus, we have explicit formulae for the closest moduli,

κL =
1
3 exp

(
tr Ĵ Log(Ĉ)

)
, µL =

1
2 exp

( 1
5 tr K̂ Log(Ĉ)

)
. (34)

4.3. The minimum Riemannian distance. We look for moduli of the form

Ĉ iso(3κR, 2µR)= 3κR Ĵ + 2µR K̂ , (35)

which minimize
d2

R(Ĉ iso, Ĉ)= tr
[

Log2(Ĉ−1
iso Ĉ)

]
. (36)

This is achieved using the following result (Proposition 2.1 of [Moakher 2005]) for
any invertible matrix X(t) that does not have negative real-valued eigenvalues,

d
dt

tr
[

Log2 X(t)
]
= 2 tr

[
Log X(t)X−1(t)

d
dt

X(t)
]
. (37)

Differentiating (36) with respect to κR and µR separately, implies respectively

tr
[
Ĉ−1

iso Ĵ Log (Ĉ−1
iso Ĉ)

]
= 0, tr

[
Ĉ−1

iso K̂ Log (Ĉ−1
iso Ĉ)

]
= 0. (38)

Further simplification yields

tr
[
Ĵ Log (Ĉ−1

iso Ĉ)
]
= 0, tr

[
K̂ Log (Ĉ−1

iso Ĉ)
]
= 0. (39)

These conditions, which are necessary for a minimum, can be simplified as follows.
Define the eigenvalues and associated eigenvectors by the diagonalization

Ĉ−1/2
iso Ĉ Ĉ−1/2

iso =

n∑
i=1

λi viv
T
i . (40)

Adding the two conditions (39) using the identity Î = Ĵ + K̂ , along with the
expression (2) for the logarithm of a matrix, yields

n∏
i=1

λi = 1 . (41)
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A second condition follows by direct substitution from (40) into the first of (39),
giving

n∏
i=1

λ
αi
i = 1 , αi ≡ vT

i Ĵvi , i = 1, 2, . . . n. (42)

Note that 0 ≤ αi ≤ 1 and αi form a partition of unity,

n∑
i=1

αi = 1 . (43)

This follows from the representation Ĵ = uuT where the unit 6 vector u is defined
in Equation (16). Thus, the minimal isotropic moduli are found by satisfying the
two simultaneous Equations (41) and (42). We now show how the first of these
two conditions can be met, leaving one condition to satisfy.

Let
Ĉ iso = 3κR

(
Ĵ + ρ−2 K̂

)
, (44)

where ρ ≥ 0 is defined by

ρ2
=

3κR

2µR
=

1 + νR

1 − 2νR
, (45)

and νR is the Poisson’s ratio of the minimizer. We choose this form for Ĉ iso so that
Ĉ−1/2

iso = (3κR)
−1/2

(
Ĵ + ρ K̂

)
. Hence, the eigenvalues of (40) are of the form

λi =
λ̄i (ρ)

3κR
, (46)

where the normalized eigenvectors λ̄i = λ̄i (ρ) and the (unchanged) eigenvectors
vi , i = 1, 2, . . . , n = 6 are defined by

3κR Ĉ−1/2
iso Ĉ Ĉ−1/2

iso =
(

Ĵ + ρ K̂
)

Ĉ
(

Ĵ + ρ K̂
)
=

n∑
i=1

λ̄i viv
T
i . (47)

Turning to the first condition, (41), it is automatically satisfied if the bulk mod-
ulus is given by

3κR =

( n∏
i=1

λ̄i

)1/n

. (48)

It remains to determine ρ from the second stationary condition, Equation (42),
which can be expressed in terms of the modified eigenvalues as

n∏
i=1

λ̄
(αi −1/n)
i = 1 . (49)
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Equation (49) involves the eigenvectors v through the inner products αi . However,
αi vanishes identically for eigenvectors of deviatoric form—in fact the definition
of a deviatoric eigenvector is αi = 0 [Mehrabadi and Cowin 1990]. Conversely,
αi = 1 for purely dilatational eigenvectors [Mehrabadi and Cowin 1990], that is,
eigenvectors parallel to u of Equation (16).

The solution to Equation (49) may be found numerically by searching for the
zero over the permissible range for the Poisson’s ratio: −1 < νR < 1/2. The
minimizing moduli κR and µR then follow from Equations (48) and (45), or more
directly,

3κR = ρ5/3 (
det Ĉ

)1/6
, 2µR = ρ−1/3 (

det Ĉ
)1/6

, (50)

and the minimal distance between Ĉ iso and Ĉ is given by

dR( Ĉ iso, Ĉ )=
1
n

[ n∑
i=1

ln2
(
( λ̄i )

−n
n∏

j=1

λ̄ j

)]1/2

(n = 6). (51)

We next demonstrate the application of the above procedure to the case of a
given elasticity matrix of cubic symmetry.

4.4. Example: cubic materials. By substituting the assumed form Ĉ = Ĉcub from
Equation (19) into the explicit formulae of Equation (34) for the closest moduli
in the log-Euclidean sense, it is a straightforward matter to show that the latter
reproduce the results determined directly, in Equation (28). Regarding the closest
moduli using the Riemannian distance, the matrix in Equation (47) follows by
using the algebra for cubic matrices,(

Ĵ + ρ K̂
)

Ĉ
(
ρ Ĵ + ρ K̂

)
= 3κ Ĵ + 2µρ2 L̂ + 2ηρ2 M̂ . (52)

Thus, λ̄1 = 3κ , λ̄2 = λ̄3 = λ̄4 = 2µρ2, λ̄5 = λ̄6 = 2ηρ2, and the eigenvectors are
either pure dilatational (α1 = 1) or deviatoric (αi = 0, i = 2, 3, . . . , 6). Therefore,
Equation (49) becomes(

3κ
)5/6 (

2µ
)−1/2 (

2η
)−1/3

ρ−5/3
= 1. (53)

Solving for the intermediate variable ρ, and evaluating µR and κR from Equations
(48) and (45), respectively, gives κR = κ and µR = (µ3η2)1/5, again in agreement
with Equation (28).

5. Applications and discussion

Table 1 lists the computed distance from isotropy of various anisotropic materi-
als, using data from Musgrave [2003]. Materials of cubic (cub), hexagonal (hex),
tetragonal (tet) and orthotropic (ort) symmetry are considered. In each case the
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moduli of the closest isotropic material were found using the algorithm described
above. The resulting bulk modulus κR and Poisson’s ratio νR are tabulated.

Table 1 ranks the materials in terms of the Riemannian distance dR of the origi-
nal anisotropic moduli from the closest isotropic material. The second column of
numbers lists the distance between the closest isotropic materials found using the
Riemannian and log-Euclidean distances. That is,

dL R ≡ dL ,R
(

Ĉ iso(3κR, 2µR), Ĉ iso(3κL , 2µL)
)

=

[(
ln
κL

κR

)2
+ 5

(
ln
µL

µR

)2
]1/2

,
(54)

which is identically zero for cubic materials. The arithmetic (κA, µA) and har-
monic (κH , µH ) moduli minimizing the Euclidean distances were also computed,
and the Riemannian distance between these two is denoted dH A. The distances dR A

and dRH are the distances between the closest isotropic material (κR, µR) and the
arithmetic and harmonic isotropic approximants, respectively. All distances listed
in Table 1 are based on the Riemannian metric.

Note that the distance between the closest materials using dR and dL is less than
0.05 except for the extremely anisotropic spruce. In order to gain some appreciation
for the magnitude of the nondimensional distances in Table 1, consider the distance
of any P ∈ P(n) from a multiple of itself:

dR
(

P, a P
)
= dL

(
P, a P

)
=

√
n |log a| , a ∈ R+ . (55)

Small values of the elastic distance can be identified with values of a close to unity,
specifically

a = 1 ±
1

√
6

dL ,R + O(d2
L ,R)≈ 1 ± 0.4 dL ,R . (56)

Note that the distance dH A between the arithmetic and harmonic approximations
is generally less than the distance from isotropy dR . This is more so for those
materials that are closer to isotropy—at the top of Table 1. As the material gets
further from isotropy - the lower half of Table 1—the magnitude of dH A relative to
dR grows as the latter increases. The two distances are of comparable magnitude
for the highly anisotropic materials at the very bottom of the table, such as oak and
spruce.

As a numerical check on the computations, the triangle inequality

dH A ≤ dR A + dRH (57)
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Material Symm dR 100dL R dR A dRH dH A νR κR

magnesium hex 0.18 0.00 0.01 0.01 0.02 0.29 3.53
diamond cub 0.21 0 0.01 0.01 0.02 0.07 44.20
aluminum cub 0.21 0 0.01 0.01 0.02 0.35 7.69
beryllium hex 0.22 0.01 0.01 0.01 0.02 0.05 11.44
sodium fluoride cub 0.29 0 0.02 0.02 0.04 0.24 4.86
ice (H2O) 257◦K hex 0.31 0.00 0.02 0.02 0.04 0.33 0.89
β-quartz (SiO2) hex 0.35 0.02 0.03 0.03 0.05 0.21 5.64
beryllium hex 0.37 0.23 0.03 0.03 0.06 0.26 14.41
caesium iodide cub 0.37 0 0.03 0.03 0.06 0.27 1.29
sodium chloride cub 0.40 0 0.04 0.03 0.07 0.25 2.45
sodium iodide cub 0.43 0 0.04 0.04 0.08 0.25 1.46
sodium bromide cub 0.44 0 0.04 0.04 0.09 0.25 1.94
caesium bromide cub 0.45 0 0.05 0.04 0.09 0.27 1.59
silicon cub 0.49 0 0.05 0.05 0.11 0.22 9.78
cobalt hex 0.51 0.00 0.07 0.05 0.12 0.31 19.03
silver bromide cub 0.52 0 0.06 0.06 0.12 0.40 4.06
germanium cub 0.56 0 0.07 0.07 0.14 0.21 7.52
caesium chloride cub 0.58 0 0.08 0.07 0.15 0.27 1.83
gallium antimonide cub 0.64 0 0.09 0.10 0.18 0.25 5.64
α-uranium ort 0.68 0.37 0.10 0.10 0.20 0.20 11.28
silver chloride cub 0.70 0 0.11 0.10 0.22 0.41 4.42
apatite hex 0.72 0.11 0.10 0.13 0.22 0.21 8.43
indium antimonide cub 0.75 0 0.12 0.13 0.25 0.29 4.69
potassium fluoride cub 0.75 0 0.13 0.12 0.25 0.28 3.19
benzophenone ort 0.85 1.92 0.15 0.14 0.29 0.30 5.14
zircon tet 0.98 0.74 0.21 0.18 0.39 0.13 1.99
sulphur ort 0.98 4.13 0.20 0.18 0.39 0.34 1.88
iron cub 0.99 0 0.20 0.23 0.43 0.30 17.05
nickel cub 1.01 0 0.21 0.23 0.44 0.29 18.04
cadmium hex 1.04 3.43 0.20 0.24 0.44 0.30 5.40
rutile (TiO2) tet 1.07 0.79 0.21 0.28 0.49 0.27 21.49
potassium chloride cub 1.08 0 0.27 0.24 0.50 0.28 1.78
barium titanate tet 1.13 3.20 0.26 0.27 0.52 0.36 17.67
potassium bromide cub 1.14 0 0.30 0.26 0.56 0.29 1.58
gold cub 1.16 0 0.27 0.31 0.58 0.42 17.28
Rochelle salt ort 1.17 0.97 0.24 0.34 0.59 0.31 1.97
zinc hex 1.18 2.58 0.24 0.34 0.57 0.24 6.61
white tin tet 1.18 0.04 0.24 0.38 0.62 0.35 5.50
ammon. dihyd. phos. tet 1.19 0.95 0.36 0.25 0.61 0.33 2.70
silver cub 1.21 0 0.29 0.33 0.63 0.37 10.36
potassium iodide cub 1.25 0 0.36 0.31 0.67 0.30 1.20
copper cub 1.28 0 0.32 0.37 0.70 0.35 13.71
potass. dihyd. phos. tet 1.34 0.01 0.40 0.38 0.78 0.26 2.67
α-brass cub 1.46 0 0.41 0.48 0.90 0.34 11.96
indium tet 1.57 0.01 0.50 0.54 1.04 0.44 4.16
oak ort 2.30 1.75 0.96 1.09 2.05 0.08 0.17
β-brass cub 2.34 0 0.94 1.19 2.13 0.36 11.62
spruce ort 5.66 59.5 7.16 3.33 10.45 0.23 0.09

Table 1. Distance from isotropy for some materials - data from
[Musgrave 2003]. κR units 1010 N/m2.
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was confirmed for each material in Table 1. Since the three vertices of the triangle
are isotropic materials, the inequality may be written, using (24), as

[
(ln

κA

κH
)2 + 5(ln

µA

µH
)2

]1/2

≤
[
(ln

κA

κR
)2 + 5(ln

µA

µR
)2

]1/2
+

[
(ln

κR

κH
)2 + 5(ln

µR

µH
)2

]1/2
. (58)

For cubic materials κA = κH = κR , and consequently the triangle is a straight line:

dH A = dR A + dRH for cubic materials only. (59)

The quantity (dR A+dRH −dH A)/dH A was found to be very small for all the cases
considered (and numerically zero for the cubic examples), less than 10−3 for all
materials considered except barium titanate (1.2 × 10−3) and spruce (2.8 × 10−3).
The “triangle” is almost flat, indicating that the closest moduli (κR, µR) are in
some sense optimally centered between the arithmetic and harmonic approxima-
tions. Note however, that κR , µR are not equal to the Riemannian mean [Moakher
2006] of the arithmetic and harmonic approximations, denoted as κAH , µAH . The
Riemannian mean of two elasticity matrices Ĉ1 and Ĉ2 is Ĉ1( Ĉ−1

1 Ĉ2)
1/2 [Moakher

2006], and consequently the means of the arithmetic and harmonic moduli are
κAH = (κAκH )

1/2, µAH = (µAµH )
1/2. By considering the case of cubic materi-

als, for which all these quantities have explicit expressions, it may be shown that
(µR −µAH )(η−µ) > 0 for η−µ 6= 0.

6. Conclusions

We have presented a method for finding the isotropic elastic moduli closest to a
given material of arbitrary symmetry based on three different metrics. Unlike the
Frobenius (Euclidean) distance, the Riemmanian and log-Euclidean metrics pro-
vide unique isotropic moduli. The values obtained according to these two metrics
are identical if the comparison medium has cubic symmetry, and are otherwise
relatively close. The procedures developed here for finding the closest isotropic
moduli can be generalized to find the closest material of lower symmetry. The
solution for cubic symmetry with the cube axes given is presented in the Appendix,
and other, lower symmetries will be considered elsewhere. Another generalization
of the present problem is that of determining the closest material of cubic or lower
symmetry where the symmetry axes are unrestrained. These and other challenging
questions make this an interesting topic for some time to come.
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Appendix: The closest cubic material

The cubic stiffness (compliance) closest to Ĉ (Ŝ) in the Euclidean metric dF has
moduli κA, µA, ηA (κH , µH and ηH ), where κA and κH are given by Equations
(30) and (31), and

6µA = ĉ44 + ĉ55 + ĉ66, 6ηA = ĉ11+ĉ22+ĉ33 − ĉ23 − ĉ31 − ĉ12, (A.1)

3
2µH

= ŝ44 + ŝ55 + ŝ66,
3

2ηH
= ŝ11+ŝ22+ŝ33 − ŝ23 − ŝ31 − ŝ12. (A.2)

Using the method for deriving Equation (34), we find the following for the log-
Euclidean distance,

κL =
1
3 exp

(
tr Ĵ Log( Ĉ )

)
,

µL =
1
2 exp

( 1
3 tr L̂ Log( Ĉ )

)
,

ηL =
1
2 exp

( 1
2 tr M̂ Log( Ĉ )

)
.

(A.3)

Note the identity, similar to Equation (33),

det( Ĉcub)= det( Ĉ ). (A.4)

For the Riemannian distance dR we find that the closest cubic material Ĉcub of
the form Equation (19) is determined by three equations:

n∏
i=1

λi = 1 ,
n∏

i=1

λ
αi
i = 1 ,

n∏
i=1

λ
βi
i = 1 , (A.5)

where
αi ≡ vT

i Ĵvi , βi ≡ vT
i L̂vi , i = 1, 2, . . . n, (A.6)

and {λi , vi } are the eigenvalues and eigenvectors of

Ĉ−1/2
cub ĈĈ−1/2

cub .

The parameters αi satisfy the same properties as before, including the fact that they
sum to unity. Since {vi } form an orthonormal basis, it follows that

n∑
i=1

βi = dim L̂ = 3.

Furthermore, βi = 0 if the eigenvector is dilatational. The three equations (A.5)
may be reduced to two by assuming the unknown moduli are of the form

Ĉcub = 3κR
(

Ĵ + ρ−2
1 L̂ + ρ−2

2 M̂
)
.
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Define the modified eigenvalues λ̄i = λ̄i (ρ1, ρ2) to be the eigenvalues of(
Ĵ + ρ1 L̂ + ρ2M̂

)
Ĉ

(
Ĵ + ρ1 L̂ + ρ2M̂

)
,

then κR is given by the formula (48), while ρ1, ρ1 solve the simultaneous equations

n∏
i=1

λ̄
(αi −1/n)
i = 1,

n∏
i=1

λ̄
(βi −1/n)
i = 1 . (A.7)
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NONLINEAR DYNAMIC CHARACTERISTICS OF A
VIBRO-IMPACT SYSTEM UNDER HARMONIC EXCITATION

JIANLIAN CHENG AND HUI XU

Dynamical behaviors of a two-degree-of-freedom (TDOF) vibro-impact system
are investigated. The theoretical solution of periodic-one double-impact motion
is obtained by differential equations, periodicity and matching conditions, and
the Poincaré map is established. The dynamics of the system are studied with
special attention to Hopf bifurcations of the impact system in nonresonance,
weak resonance, and strong resonance cases. The Hopf bifurcation theory of
maps in R2-strong resonance is applied to reveal the existence of Hopf bifurca-
tions of the system. The theoretical analyses are verified by numerical solutions.
The evolution from periodic impacts to chaos in nonresonance, weak resonance,
and strong resonance cases, is obtained by numerical simulations. The results
show that dynamical behavior of the system in the strong resonance case is more
complicated than that of the nonresonance and weak resonance cases.

1. Introduction

An impact damper is basically a small free mass within a main mass with clearances
between the moving masses. Impact dampers in various forms have been used
successfully for controlling high-amplitude vibration systems in many practical
applications, such as in cutting tools, turbine blades and tall flexible structures
like chimneys [Ema and Marui 1996; Cheng and Wang 2003; Wang et al. 2003;
Dimentberg and Iourtchenko 2004; Chatterjee and Mallik 1995]. If an impact
damper is properly designed, the vibration system structure can be effectively
simplified and its performance will be less sensitive to the changes of the sys-
tem parameters, as compared to a conventional dynamic vibration damper. The
vibration of the primary system is controlled by the transfer of momentum to a
secondary mass through repeated impacts. Impacts occur when the amplitudes
of vibration of the system exceed critical values. Investigation of vibro-impact
problems is of significance to the optimization design of machinery with clear-
ances or gaps, and to reliability analysis and noise suppression. Since systems

Keywords: Hopf bifurcation, strong resonance, quasiperiodic motion, vibro-impact, chaos.
The authors gratefully acknowledge the support of the National Science Foundation of China (No.
10372076).
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with impact dampers are strongly nonlinear and discontinuous due to the existence
of one or more impact pairs of components, the vibro-systems can show very rich
and complicated dynamic behavior. In recent years, vibro-impact problems have
become a new subject in nonlinear dynamics. Subjects of recent research include
singularity [Chatterjee and Mallik 1996; Whiston 1992]; inelastic vibro-impacts
[Luo et al. 2001]; high codimension bifurcation [Wen 2001; Luo and Xie 2003;
Xie and Ding 2005]; Hopf bifurcations [Padmanabhan and Singh 1995; Luo and
Chen 2005; Ding et al. 2004; Luo 2004a]; and quasiperiodic impacts [Blazejczyk-
Okolewska 2001; Luo 2004b; Cone and Zadoks 1995]; and so on. Dynamics and
bifurcations of a class of single-degree-of-freedom self-excited oscillators with an
impact damper were studied by Chatterjee and Mallik [1995]. Cone and Zadoks
[1995] investigated the nonlinear behavior of an impact oscillator with the addition
of dry friction. The periodic solutions were interpreted by using bifurcation theory
and the nonlinear behavior of this system was identified as a function of both the
excitation amplitude and the excitation frequency for the two levels of dry friction
force. Many nonlinear dynamical behaviors including turning point bifurcations,
symmetry breaking pitchfork bifurcations, period-doubling bifurcation cascades,
and so on, were explained. Asfar and Akour [2005] studied the suppression of
self-excited vibrations with an impact viscous damper and used the optimization
method to determine the design parameters for suppressing self-excited vibrations.

In recent decades, nonsmooth dynamics of mechanical systems with impacts
have been a focus of several investigations; many new results were obtained and
a few new methods have been established. Holmes [1982] found small horse-
shoe maps in a mathematical model for the bouncing ball. The classical pattern
of period-doubling bifurcation cascade was observed numerically by Shaw and
Holmes [1983] and Thompson and Ghaffari [1982]. Recently, a few researchers
have begun to focus on the quasiperiodic and chaotic motions of vibro-impact
systems. Chatterjee and Mallik [1995] studied quasiperiodic vibro-impacts in a
class of single-degree-of-freedom self-excited oscillators with an impact damper.
Budd et al. [1995] studied vibro-impact of a single-degree-of-freedom system con-
tacting a single stop and proved that if the coefficient of restitution is less than
1, quasiperiodic motion cannot occur in the system. Luo and Xie [2003] inves-
tigated codimension-2 bifurcations of a single-degree-of-freedom impact oscilla-
tor and found a Hopf bifurcation of a period-2 two-impact orbit. Xie and Ding
[2005] studied Hopf bifurcations of a two-degree-of-freedom vibro-impact system
in the strong resonance, nonresonance, and weak resonance cases, and analyzed
the routes of quasiperiodic impacts to chaos. Nordmark [1991] investigated the
nonperiodic motion caused by grazing bifurcation. The normal form mapping
for such grazing phenomena was developed in [di Bernardo et al. 2001; 2002].
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Therefore, a periodically forced, piecewise, linear system with impacts is of great
interest.

In this paper, the impact damper system serves as a two-degree-of-freedom
(TDOF) vibro-impact system with a proportional damping property. We focus
our attention on Hopf bifurcation of period motions with one impact in the strong
resonance, nonresonance or weak resonance cases. Stability and bifurcation condi-
tions for periodic motion will be obtained. A Poincaré section of the vibro-impact
system with proportional damping is chosen to establish the Poincaré map, and
then periodic motion with one impact and the stability thereof are investigated by
analytical methods. Numerical simulations of periodic and chaotic motions will
be presented to validate the analytical results.

2. Mechanical model of the vibro-impact system

The mechanical model for a vibro-impact system with masses M1 and M2 is shown
in Figure 1. The main mass M1 is connected to the seat with a linear spring with
stiffness K and a linear viscous dashpot of damping constant C . In this system,
when the impact mass, or free mass, collides with the main mass during vibration,
an impulsive force acts on both and produces transfer of momentum with loss of
energy. Impact damping is used to simulate an inelastic collision with restitution
coefficient R < 1. We neglect friction and the duration of the impact between the
two masses.

The behavior of the system between any two consecutive impacts is considered.
For convenience, the time t between any two consecutive impacts is always set to
zero directly at the instant when the former impact is over, and the phase angle
is used only to make a suitable choice for the origin of time in the calculation.
Phase angle, velocities, and displacements of the system at that instant become
initial conditions in the subsequent process of the motion. Between impacts, the
differential equations of motion of the vibro-impact system are given by

M1 Ẍ1 + C Ẋ1 + K X1 = F0 sin(�T +ϕ), (1)

M2 Ẍ2 = 0 whenever |X1 − X2|< D/2, (2)

where the dot denotes differentiation with respect to time T .
Substituting the nondimensional parameters

ωn =
√

K/M1, ζ = n/ωn,

n = C/2M1, ω =�
√

M1/K ,

t = T
√

K/M1, xi = K X i/F0 (i = 1, 2),

δ = K D/2F0, µ= M2/M1
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Figure 1. Schematic diagram of the impact system.

into Equations (1) and (2) yields

ẍ1 + 2ζωn ẋ1 +ω2
nx1 = sin(ωt +ϕ), (3)

ẍ2 = 0 whenever |x1 − x2|< δ, (4)

where the dot denotes differentiation with respect to dimensionless time t .
When |x1 − x2| = δ, a collision occurs. According to the conservation law of

momentum and the definition of the restitution coefficient, we can obtain

ẋ1+ +µẋ2+ = ẋ1− +µẋ2−, (5)

ẋ2+ − ẋ1+ = R(ẋ1− − ẋ2−), (6)

where ẋi− and ẋi+ (i = 1, 2) denotes respectively, the instantaneous velocities
before and after impacts. By Equations (5) and (6), the departure velocities of the
masses M1 and M2 after impact at the instant are given by

ẋ1+ =
1 −µR
1 +µ

ẋ1− +
µ(1 + R)

1 +µ
ẋ2−,

ẋ2+ =
1 + R
1 +µ

ẋ1− +
µ− R
1 +µ

ẋ2−,

(7)

where µ= M2/M1.
The general solutions of Equations (3) and (4) are

x1(t)= e−ζωn t
(
a11 cos(ηωnt)+ b11 sin(ηωnt)

)
+ A sin(ωt + τ),

0 ≤ t ≤ t1,
x2(t)= a12 + b12t,

(8a)


x1(t)= e−ζωn(t−t1)

(
a21 cos(ηωn(t − t1))+ b21 sin(ηωn(t − t1))

)
+A sin(ωt + τ), t1 ≤ t ≤ tp,

x2(t)= a22 + b22(t − t1)
(8b)

where tp = t1 + t2, t1 and t2 are the traveling time of the impact mass M2 from
A → B and B → A in the groove. The integration constants are
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η =

√
1 − ζ 2,

γ = ω/ωn,

A = 1/ω2
n
(
(1 − γ 2)2 + (2ζγ )2

)1/2
,

τ = ϕ−ψ1,

ψ = tan−1(2ζγ /(1 − γ 2)),

aki and bki (k = 1, 2).

3. Stability of periodic motion and Poincaré map

We choose a Poincaré section σ ⊂ R4
× S, which is given by

σ =
{
(x1, ẋ1, x2, ẋ2, θ) ∈ R4

× S, ẋ1 = ẋ1+, ẋ2 = ẋ2+, x2 − x1 = δ
}
, (9)

to establish a Poincaré map

X ′
= f̃ (v, X), (10)

where θ = ωt , v ∈ R1 is a real parameter, X = X∗
+ 1X , X ′

= X∗
+ 1X ′,

1X = (1ẋ1+,1x10,1ẋ2+,1τ)
T , 1X ′

= (1ẋ ′

1+
,1x ′

10,1ẋ ′2+,1τ
′)T ,1X and

1X ′ are the disturbed vectors of X∗
· X∗

= (ẋ1+, x10, ẋ2+, τ )
T is a fixed point of

periodic impacts in Poincaré section, which corresponds to one impact during one
forcing cycle.

Under suitable system parameter conditions, the system given in Figure 1 can
exhibit 1-1-1 symmetrical periodic motion. We can characterize periodic motions
of the vibro-impact system by the symbol n-p-q, where p and q are the number
of impacts occurring at the stops A and B, respectively, and n is the number of
the forcing cycles. The periodic behavior means that if the dimensionless time t is
set to zero directly after an impact, it becomes 2π/ω just before the next impact
between the masses M1 and M2 at point location A, where the mass M2 come-and-
go motion time t1 and t2 in the groove are equal to π/ω. After the origin of the
θ -coordinate is displaced to an impact point, the determination is based on the fact
that they satisfy the following set of periodicity and matching conditions

xi (0)= −xi (π/ω)= xi0,

ẋi (2π/ω)= −ẋi−(π/ω)= ẋi−,

ẋ(0)= −ẋi+(π/ω)= ẋi+,

x2(0)− ẋ1(0)i = δ,

x2(π/ω)− x1(π/ω)= δ,

x2(2π/ω)− x1(2π/ω)= δ. (11)
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Substituting the periodicity boundary condition Equation (11) into the general so-
lution (8), we can solve for the integration constants aki , bki (k, i = 1, 2) and the
phase angle τ0. We obtain

ak1 = (−1)km(δ+ A sin τ0) ak2 = (−1)k+1(1 + m)(δ+ A sin τ0), (12)

bk1 = (−1)k+1πmn(δ+ A sin τ0) bk2 = (−1)kd(1 + m)(δ+ A sin τ0), (13)

τ0 = arccos
hq ± h

√
h2 − h2q2 + 1

1 + h2 , (14)

where

m =
sµde1

(e2
1 + 2ce1 + 1)ηωn − (se1d + ce1 + 1)µ

, d =
2ω
π
,

n =
1 + ce1

se1
, e1 = e−πζ/γ , γ = ω/ωn, s = sin ηπ/γ,

c = cos ηπ/γ, q = δ/A,

h =
(µ− R)(ω(1 + 2m)+πm(1 + 2ce1))+πmn(1 +µ)

πω(1 + R)

+
2me1(sη− cζ )− de1mn(sζ + cη)

dγ
. (15)

In Equation (14), “±” denotes that there may be two different 1-1-1 symmetrical
periodic motions under uniform system parameters. Because |cos τ0| ≤ 1, it should
be noted that the existence of periodic impacts meets the condition

h2
− h2q2

+ 1 ≥ 0,
∣∣∣∣hq ± h

√
h2 − h2q2 + 1

1 + h2

∣∣∣∣ ≤ 1. (16)

For expressing the actual motion of the system, the periodic solution must satisfy
simultaneously the conditions of existence and stability. We consider the perturbed
motion of 1-1-1 periodic motion to establish its Poincaré map. For simplicity of no-
tations, the origin of the θ -coordinate is displaced to an impact point; the solutions
of the perturbed motion are written in the form

x̃1(t)= e−ζωn t
(
ã11 cos(ηωnt)+ b̃11 sin(ηωnt)

)
+A sin(ωt + τ0 +1τ), 0 ≤ t ≤ t̃1,

x̃2(t)= ã12 + b̃12t

(17a)


x̃1(t)= e−ζωn(t−t1)

(
ã21 cos(ηωn(t − t̃1))+ b̃21 sin(ηωn(t − t̃1))

)
+A sin(ωt + τ0 +1τ), t̃1 ≤ t ≤ t̃p,

x̃2(t)= ã22 + b̃22(t − t̃1)

(17b)
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For the disturbed motion, the dimensionless time is set to zero directly after an
impact at point A between the masses M1 and M2. It becomes (2π + 1θ)/ω

just before the next impact at the same point, and the boundary conditions at two
successive impact points are given by

x̃i (0)= xi0 +1xi0, ˙̃xi (0)= ẋi+ +1ẋi+,

x̃i (t̃1)= −xi0 +1x ′

i0,
˙̃xi−(t̃1)= −ẋi− +1ẋ ′

i−,

˙̃xi+(t̃1)= −ẋi+ +1ẋ ′

i+, x̃i (t̃p)= xi0 +1x ′′

i0,

˙̃xi−(t̃p)= ẋi− +1ẋ ′′

i−,
˙̃xi+(t̃p)= ẋi+ +1ẋ ′′

i+,

(ẋ2+ +1ẋ2+)t̃1 + 2x10 +1x10 −1x ′

10 = −2δ,

(−ẋ2+ +1ẋ ′

2+
)(t̃p − t̃1)− 2x10 +1x ′

10 −1x ′′

10 = 2δ

1θ = ω(1t1 −1t2), (18)

where t̃1 = π/ω+1t1, t̃2 = π/ω+1t2.
Substituting the boundary condition Equation (12) into Equations (17a) and

(17b), we obtain

ã11 = x10 +1x10 − A sin(τ0 +1τ),

ã21 = −x10 +1x ′

10 − A sin(ωt̃1 + τ0 +1τ),

ã12 = x20 +1x20, ã22 = −x20 +1x ′

20, b̃12 = ẋ2+ +1x2+,

b̃22 = −ẋ2+ +1ẋ ′

2+
,

b̃11 = ẋ1+ +1ẋ1+ − Aω cos(τ0 +1τ)+ ζωn sin(τ0 +1τ)

+ ζωn(x10 +1x10)/ηωn,

b̃21 =

[
−ẋ1+ +1ẋ ′

1+
− Aω cos(ωt̃1 + τ0 +1τ)

− ζωn A sin(ωt̃1 + τ0 +1τ)− ζωn(x10 −1x ′

10)

]/
ηωn.

(19)

If we substitute the boundary condition Equation (18) into the perturbed solution
(Equations (17a) and (17b)) for t = te, we obtain

1x ′

10 = x̃1(te)− x10,

1ẋ ′1+ =
µ(1 + R)

1 +µ
˙̃x1(te)+

1 −µR
1 +µ

˙̃x2+(te)− ẋ1+,

1ẋ ′

2+
=
µ− R
1 +µ

˙̃x1(te)+
1 + R
1 +µ

˙̃x2(te)− ẋ2+,

1τ ′
=1τ +1θ. (20)
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Define a function w(1ẋ1+,1x10,1ẋ2+,1τ,1t1) as

w(1ẋ1+,1x10,1ẋ2+,1τ,1t1)
def
= x̃2(t̃1)− x̃1(t̃1)+ δ = 0. (21)

Assuming ∂w/∂1t1|(0,0,0,0) 6= 0, according to the implicit function theorem, Equa-
tion (21) can be solved as

1t1 =1t1(1ẋ1+,1x10,1ẋ2+,1τ).

Setting

1X = (1ẋ1+,1x10,1ẋ2+,1τ)
T

= (y1, y2, y3, y4)
T ,

we deduce the partial differentials of 1t1 with respect to 1ẋ1+,1x10,1ẋ2+ and
1τ , as follows:

∂1t1
∂y j

= −
∂w

∂y j

/
∂w

∂1t1
, j = 1, 2, 3, 4. (22)

In the same way, we define a function

h(1ẋ1+,1x10,1ẋ2+,1τ,1t1,1t2)
def
= x̃2(tp)− x̃1(tp)− δ = 0 (23)

By supposing ∂h/∂1t2|(0,0,0,0) 6= 0, based on the implicit function theorem, we
have

∂1t2
∂y j

= −

(
∂h
∂y j

+
∂h
∂1t1

∂1t1
∂y j

)/
∂h
∂1t2

. (24)

According to this analysis, we then obtain the Poincaré map, which is given by

1ẋ ′

1+
= f̃1(1ẋ1+,1x10,1ẋ2+,1τ,1θ)− ẋ1+

def
= f1(1ẋ1+,1x10,1ẋ2+,1τ),

1ẋ ′

10 = f̃2(1ẋ1+,1x10,1ẋ2+,1τ,1θ)− x10
def
= f2(1ẋ1+,1x10,1ẋ2+,1τ),

1ẋ ′

2+
= f̃3(1ẋ1+,1x10,1ẋ2+,1τ,1θ)− ẋ2+

def
= f3(1ẋ1+,1x10,1ẋ2+,1τ),

1τ ′
=1τ+1θ(1ẋ1+,1x10,1ẋ2+,1τ)

def
= f4(1ẋ1+,1x10,1ẋ2+,1τ). (25)

Letting v = ω, the Poincaré map Equation (25) can be expressed as

1X ′
= f̃ (v, X)− X∗ def

= f (v,1X), (26)

in which
f (v,1X)= ( f1, f2, f3, f4)

T ,

1X = (1ẋ1+,1x10,1ẋ2+,1τ)
T ,

1X ′
= (1ẋ ′

1+
,1x ′

10,1ẋ ′

2+
,1τ ′)T .
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We expand the function f (v,1X) as a Taylor series in the variables 1X and v, so
that it becomes

f (v,1X)=

∑
p+q≥1

Fpqv
p1Xq , (27)

Fpq =
1

p!q!

∂ p+q f (v,1X)
∂v p∂Xq

∣∣∣∣
(vc,0)

, Fp0 ≡ 0, p ≥ 1, (28)

f (v,1X)= F011X + vF111X + v2 F211X + F02[1X2
] + F03[1X3

] + · · · ,

(29)

where F02 and F03 denote the second-order and the third-order terms respectively.
Linearizing the Poincaré map at the fixed point X∗

= (ẋ1+, x10, ẋ2+, τ )
T results

in the matrix

D f (v, 0)=



∂ f1
∂1ẋ1+

∂ f1
∂1x10

∂ f1
∂1ẋ2+

∂ f1
∂1τ

∂ f2
∂1ẋ1+

∂ f2
∂1x10

∂ f3
∂1ẋ2+

∂ f4
∂1τ

∂ f3
∂1ẋ1+

∂ f3
∂1x10

∂ f3
∂1ẋ2+

∂ f3
∂1τ

∂ f4
∂1ẋ1+

∂ f4
∂1x10

∂ f4
∂1ẋ2+

∂ f4
∂1τ


(v,0,0,0,0)

. (30)

According to Equations (21) and (23), it is easy to calculate the derivatives in
the matrix Equation (30):

∂ f j

∂yi
=
∂ f̃ j

∂yi
+
∂ f̃ j

∂1t1

∂1t1
∂yi

+
∂ f̃ j

∂1t2

∂1t2
∂yi

i, j = 1, 2, 3, 4. (31)

It is possible to determine the stability of periodic impacts by the eigenvalues
of D f (v, 0). If all eigenvalues of D f (v, 0) are inside the unit circle, then the
periodic solution is stable; otherwise, it is unstable. If some of the eigenvalues of
the matrix D f (v, 0) lie on the unit circle in the complex plane when v = vc (vc is
the bifurcation value), then it is possible for bifurcations to take place. In general,
bifurcation occurs in various ways according to the number of the eigenvalues on
the unit circle and their position on the circle. When v = vc, D f (v, 0) has a pair
of simple complex conjugate eigenvalues λ1(vc) and λ̄1(vc) on the unit circle; all
other eigenvalues of D f (v, 0) are inside the unit circle. Under this circumstance,
1-1-1 symmetrical periodic motion may lead to Hopf bifurcation. In general, bifur-
cations from periodic motions to quasiperiodic ones occur under nonresonance or
resonance conditions in nonlinear dynamical systems.
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4. Hopf bifurcation in nonresonance and weak resonance cases

Consider the Poincaré map

1X ′
= f (v,1X). (32)

Let 1X∗(v) be a fixed point for the system Equation (32) for v in some neighbor-
hood of a critical value v = vc at which D f (v, 0) satisfies the following assump-
tions:

(A1) D f (v, 0) has a pair of complex conjugate eigenvalues

λ1 = λ1(vc) and λ2 = λ̄2(vc),

and satisfies |λ1(vc)| = 1. The other eigenvalues λi (vc) satisfy

|λi (vc)|< 1, i = 3, 4;

(A2) (d|λ1(vc)|dv)|v=vc > 0;

(A3) λm
1 (vc) 6= 1, m = 1, 2, 3, 4.

Let ki denote the eigenvector of D f (v, 0) corresponding to λi (v), for i = 1, 2, 3, 4.
If k3 and k4 are a complex conjugate pair of nonreal eigenvectors, define

H = (Re k1,− Im k1,Re k3,− Im k3);

otherwise,
H = (Re k1,− Im k1, k3, k4).

In some neighborhood of vc, the map Equation (32), under the change of variable

1X = HY, µ= v− vc, (33)

becomes
Y ′

= F(µ, Y ), (34)

where Y = (y1, y2, y3, y4)
T .

For the map Equation (34), there exists a local center manifold W (z, z̄;µ), on
which the local behavior of the map can be reduced to a two-dimensional map
8µ(z). This map can be presented

8µ(z)= λ(µ)z +

3∑
i+ j=2

gi j (µ)
zi z̄ j

i ! j !
+ O(|z|4), (35)

where λ(µ)= λ1(vc +µ), λ0 = λ(0), z = y1 + iy2, z̄ = y1 − iy2.
By center manifold theory, all bifurcation phenomena of F(µ, Y ) take place

on a two-dimensional manifold. Local dynamic behavior of the map Equation
(34) is equivalent to that of the two-dimensional map Equation (35) for µ in some
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neighborhood of a critical value µ= 0, so using the map Equation (35) and applying
the following lemma, we can discuss the existence of Hopf bifurcation for map
Equation (32) as v passes through vc.

Lemma 1 [Lanford 1973; Wan 1978]. Let 8µ(z) be a one-parameter family of
diffeomorphisms on R2 near z = 0, satisfying the following conditions:

(B1) 8µ(0)= 0 for all µ;

(B2) D8µ(0) has two conjugate eigenvalues λ(µ) and λ̄(µ), with |λ(0)| = 1;

(B3) (d|λ(µ)|/dµ)|µ=0 > 0;

(B4) λm(0) 6= 1, m = 1, 2, 3, 4.

Subject to assumptions (B1)–(B4), we can make a smooth µ-dependent change of
coordinates to put 8µ(z) into the normal form

8µ(z)= N8µ(z)+ O(|Y |
5). (36)

In polar co-ordinates,

N8µ(r, ϕ)= (|λ(µ)|r − f1(µ)r3, ϕ+ θ(µ)+ f3(µ)r3). (37)

If f1(0) > 0 (or f1(0) < 0), 8µ(z) has an attracting (repelling) invariant circle for
µ > 0 (or µ < 0). Suppose that the complex form of 80(z) is

80(z)= λ0z +

3∑
i+ j=2

gi j (0)
zi z̄ j

i ! j !
+ O(|z|4). (38)

Then, there is

f1(0)= Re
(
(1 − 2λ0)λ̄0

2(1 − λ0)
g20 g11

)
+

1
2 |g11|

2
+

1
4 |g02|

2
− Re

λ̄0g21

2
, (39)

where λ0 = λ(0), gi j (µ)(i + j = 2, 3) (see the Appendix).

If the Poincaré map Equation (32) satisfies the conditions (A1)–(A3), then it
is easy to show that the map Equation (35) satisfies the conditions (B1)–(B4).
If a set of system parameters can be chosen for the vibro-impact system under
which the Poincaré map Equation (32) satisfies the conditions (A1)–(A3), then by
computing f1(0), we can conclude the existence of an invariant circle for the map
Equation (35) and its stability in terms of the sign of f1(0). Because on the centre
manifold W (z, z̄;µ) the local behavior of the Poincaré map can be reduced to the
two-dimensional behavior of Equation (35), it is certain that if the map Equation
(35) has an attracting (repelling) invariant circle for µ> 0 (or µ< 0), a supercritical
(subcritical) Hopf bifurcation will take place for the vibro-impact system shown in
Figure 1 at v = vc.
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5. Numerical simulation of Hopf bifurcation and chaos
for the vibro-impact system

In this section, the analyses developed in the previous section are verified by the
numerical results for the impact system in Figure 1. The results of numerical
simulations are used to understand the rich dynamical behavior that our model
vibro-impact system exhibits. The use of these properties of chaotic systems can
offer special advantages in controlling chaotic systems. For instance, small per-
turbations can lead to large effects, and flexible switching is possible between
many different periodic orbits without changing the global configuration of the
system. Many feedback control strategies based on this general idea use small
perturbations in a control parameter to manipulate the behavior of chaotic systems.
These benefits cannot be achieved in nonchaotic systems in which large effects in
behavior typically require large changes in the control parameter.

Dynamic behavior of the vibro-impact system is shown in the projected Poincaré
sections. The Poincaré section is taken in the form 6 = {(x1, ẋ1, x2, ẋ2, θ) ∈ R4

×

S, ẋ1 = ẋ1+, ẋ2 = ẋ2+, x2 − x1 = δ}, which is four-dimensional. The section
is then projected onto the (x1, ẋ1) plane, which is called the projected Poincaré
section. Dynamic behavior of the vibro-impact system near the resonance point
can be demonstrated from those projected Poincaré sections.

5.1. Hopf bifurcation to chaotic motion in nonresonance and weak resonance
cases. Here we briefly analyze Hopf bifurcation to quasiperiodic torus and the
break of quasiperiodic torus to chaotic behavior of the model in nonresonance
and weak resonance cases. A set of parameters µ = 0.1, ωn = 0.5, ζ = 0.045,
R = 0.8, δ = 5.0 are considered. ω is taken as the control parameter, i.e. let v = ω.
The eigenvalues of D f (ω, 0) are computed for ω ∈ [0.5, 1.5]. A pair of complex
conjugate eigenvalues intersects the unit circle and the other eigenvalues are still
inside the unit circle as ω passes through ωc = 0.99176. ωc is a Hopf bifurcation
value, at which λ1,2(ωc) = 0.2730961 ± 0.9619876i , λ3,4(ωc) = 0.3047823 ±

0.2773642i , and |λ1,2(ωc)| = 1, λm
1,2(ωc) 6= 1, m = 1, 2, 3, 4. It is apparent that

the model with this set of system parameters satisfies a nonresonance or weak
resonance condition at the critical point. When ω ∈ (1.015, 1.45), the system can
exhibit stable symmetry 1-1-1 periodic motion. When ω = 1.2, the impact system
exhibits stable periodic 1-1-1 impact motion; see Figure 2(a). Figure 2(b,c) show
that the impact system exhibits unstable periodic motion, but in this case invariant
circle is not generated. Taking a theoretical fixed point of the system corresponding
to ω = 1.00857 as an initial map point, the attracting invariant circle is shown in
Figure 2(d,e,f). When the value of ω moves further away from the Hopf bifurcation
value, the invariant circle, in projected Poincaré sections, expands markedly; see
Figure 2(g,h). With further reduction in the control parameter ω, the attracting
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invariant circle is broken; see Figure 2(i,j) and gets locked into a periodic attractor
of higher period (higher than one cycle of the forcing). Subsequently, the system
becomes unstable and chaotic. The periodic attractors of higher period, via phase
locking (that is, the vibration frequencies of the oscillation system are locked in
various rational multiples of the forcing frequency), is shown for ω = 0.9817 in
Figure 2(k). The chaotic motion of the system, represented by an infinite point set
on a nonclosed curve in the projected Poincaré sections, is shown in Figure 2(l).

5.2. Quasiperiodic and chaotic behavior of the impact system in strong reso-
nance cases. There exists another route by which Hopf bifurcation leads to chaos
in the impact system shown in Figure 1. This route is characterized by a phenome-
non in which the system comes into the chaotic motion without a quasi-attracting
circle but with a single torus doubling. In order to study such a case, the dynamics
of the impact system with system parameters µ = 0.04, ωn = 0.6, ζ = 0.025,
R = 0.7, δ = 8.0 is analyzed for ω ∈ [0.93, 0.98] by numerical simulation. The
dynamic behavior of the system is shown in the projected Poincaré sections; see
Figure 4. The eigenvalues of D f (ω, 0) are computed, and the variation of the
eigenvalues is shown in Figure 3(a). When ω decreases through ωc = 0.976327,
a pair of complex conjugate eigenvalues λ1(ωc) and λ2(ωc) cross the unit circle
and all other eigenvalues λ3(ωc) and λ4(ωc) will still stay inside the unit circle.
Then ωc is a Hopf bifurcation value, and λ1,2(ωc) = −0.0000048 ± 1.000037i ,
λ4

1,2(ωc) = 1, λ3,4(ωc) = 0.2026327 ± 0.6311391i . It is obvious that the model
with this set of parameters satisfies the strong resonance condition at the critical
point.

Numerical simulation shows that the impact system exhibits an attracting invari-
ant circle in projected Poincaré section for 3561 impacts; see Figure 4(a). It is to
be noted that the attracting invariant circle is smooth in nature near the bifurcation
point. However, with a further decrease in the control parameter ω, the attracting
circle expands and the smoothness of circle is destroyed; see Figure 4(b,c). When
ω = 0.9454, the system yields 4-4-4 quasiperiodic impact motion in Figure 4(d).
Subsequently, at ω = 0.945, phase locking occurs, and the quasiperiodic motion
is locked into the periodic attractors of higher period (than one cycle of the force);
see Figure 4(e). With an increase in the control parameter ω, the invariant circle
becomes unstable and the system settles into chaotic motion. After the invariant
circle loses its stability, no tori doubling or phase locking occurs, and the circle
is quasi-attracting (map points inside the circle may be attracted to the circle and
map points on or outside the circle may stray from the circle). The chaotic motions
of system, represented by “belt-like” attractors in projected Poincaré sections, are
shown in Figure 4(f,g), and the width of the belt attractors increases with a decrease
in the control parameter. When ω= 0.9386, the chaotic motion of the system grows
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Figure 2. Projected Poincaré mapping section (x1, ẋ1+): (a) ω =

1.2, stable 1-1-1 fixed point; (b) ω = 1.01962, stable fixed point;
(c) ω = 1.0011368, unstable 1-1-1 fixed point; (d) ω=1.00857, un-
stable invariant torus; (e) ω = 1.00734, an attracting invariant cir-
cle; (f) ω = 1.00314, quasiperiodic 4-4-4 impacts; (g) ω = 0.9958,
quasiperiodic impacts; (h) ω = 0.99, quasiperiodic 10-10-10 im-
pact motions; (i) ω = 0.98193, initial break quasiperiodic in-
variant circle; (j) ω = 0.98185, break of quasiperiodic circle;
(k) ω = 0.9817, phase locked; (l) ω = 0.970453, chaotic motions
represented by a discontinuous infinite point set.
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Figure 3. The conjugate pair of eigenvalues intersecting the unit
circle for the strong resonance case.

out of the trivial attractor; see Figure 4(h). As the control parameter decreases
further, as ω = 0.937, the chaotic motion of the system disappears, and again the
system displays a stable 1-1-1 fixed point in projected Poincaré section; see Figure
4(i).

We next study the dynamic behavior of the impact system using numerical sim-
ulation, to determine the dynamics near the resonance point (λ2

1,2(ωc)= 1). The
system parameters µ= 0.05092, ζ = 0.015, ωn = 1, R = 0.7, δ = 6.0 are chosen.
The eigenvalues of D f (ω, 0) are computed for ω ∈ [0.415, 0.448] and two pairs of
complex conjugate eigenvalues λ1,2(ω) and λ3,4(ω) are obtained. The conjugate
pair of eigenvalues intersecting the unit circle is shown in Figure 3(b). When the
control parameter ω decreases to ωc = 0.43186, the complex conjugate eigenvalues
λ1,2(ωc) intersect the unit circle through the point (−1, 0), and λ3,4(ωc) remains
inside the unit circle. This ωc is the Hopf bifurcation value, at which λ1,2(ωc)=

−1.0000031 ± 0.00000272i , λ2
1,2(ωc) = 1, λ3,4(ωc) = 0.2054234 ± 0.4398154i .

Numerical simulation results in the projected Poincaré section are shown in Figure
5. After ω passes through the critical value ωc, the symmetric 1-1-1 periodic impact
motion destabilizes, which subsequently leads to a Hopf bifurcation into quasiperi-
odic motion, as seen in Figure 5(a). When ωc = 0.418, the smooth attracting
invariant circle is destroyed; see Figure 5(b). With a further decrease in ω, after
the invariant circle loses its stability, torus doubling and phase locking occur in
succession; see Figure 5(c,d). As ω is decreased further, chaotic motion arises:
Figure 5(e,f). The evolution from quasiperiodic motion to chaos is clearly shown
in the projected Poincaré map in Figure 5. This kind of route from quasiperiodic
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Figure 4. Projected Poincaré section (x1, ẋ1+): (a) ω = 0.975,
quasiperiodic motion represented by an attracting invariant circle;
(b) ω = 0.96, quasiperiodic impacts with wave of oscillation; (c)
ω = 0.9526, quasiperiodic impacts; (d) ω = 0.9454, 4-4-4 periodic
motion; (e) ω = 0.945, phased locked; (f) ω = 0.94, chaotic mo-
tion; (g) ω = 0.93998, chaotic motion; (h) ω = 0.9386, the chaotic
motion comes out the trivial attractor; (i) ω = 0.937, stable 1-1-1
fixed point.

impacts to chaos via quasi-attracting invariant circles is often observed in numerical
simulations of the dynamics of impact systems.

6. Conclusion

We studied the dynamic behavior of a two-degree-of-freedom impact system via
theoretical analysis and numerical simulation. The Poincaré map and fixed point
of period 1-1-1 impact are determined analytically. The local dynamical behavior
is discussed when the control parameters are changed near the critical point. The
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Figure 5. Projected Poincaré section (x1, ẋ1+): (a) ω = 0.4268,
an attracting invariant circle; (b) ω = 0.418, an attracting invari-
ant circle; (c) ω = 0.41754, the torus doubling; (d) ω = 0.41731,
phased locked; (e) ω = 0.41721, chaotic motion; (f) ω = 0.41719,
chaotic motion.

dynamic behavior of the system in the strong resonance case is more complicated
than in nonresonance and weak resonance cases. In the strong resonance case
λ4

1,2(ωc) = 1, the system can exhibit stable 4-4-4 periodic impact motion and
quasiperiodic motion, and the route from quasiperiodic motion to chaos is observed
by numerical simulation. In the strong resonance cases of λ2

1,2(ωc)= 1, the system
transitions from quasiperiodic impacts to chaos in a complicated way: quasiperi-
odic impacts → torus doubling → various kinds of phase locking → chaos. The
method established in the paper can be extended to some other analogous systems.
Machines and equipment whose behavior can be attempted to be modeled sy such
systems include vibration hammers, gear transmission, shakers, wheel-rail interac-
tion of high-speed coaches, and compacting machinery. However, it is necessary
to make further theoretical studies of the routes of bifurcation to chaos.
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Appendix

The relational coefficients are shown as follows:

g11 =
1
4

[
∂2 F1

∂y2
1

+
∂2 F1

∂y2
2

+ i
(
∂2 F2

∂y2
1

+
∂2 F2

∂y2
2

)]
(A1)

g02 =
1
4

[
∂2 F1

∂y2
1

−
∂2 F1

∂y2
2

− 2
∂2 F2

∂y1∂y2
+ i

(
∂2 F2

∂y2
1

−
∂2 F2

∂y2
2

+ 2
∂2 F1

∂y1∂y2

)]
(A2)

g20 =
1
4

[
∂2 F1

∂y2
1

−
∂2 F1

∂y2
2

+ 2
∂2 F2

∂y1∂y2
+ i

(
∂2 F2

∂y2
1

−
∂2 F2

∂y2
2

− 2
∂2 F1

∂y1∂y2

)]
(A3)

g21 = G21 +

n−2∑
i=1

(
2Gs

10w
s
11 + Gs

01w
s
20

)
(A4)

G21 =
1
8

[
∂3 F1

∂y3
1

+
∂3 F1

∂y1∂y2
2

+
∂3 F2

∂y2
1∂y2

+
∂3 F2

∂y3
2

+ i
(
∂3 F2

∂y3
1

+
∂3 F2

∂y1∂y2
2

−
∂3 F1

∂y2
1∂y2

−
∂3 F1

∂y3
2

)] (A5)

Gk−2
10 =

1
2

[
∂2 F1

∂y1∂yk
+

∂3 F2

∂y2∂yk
+ i

(
∂2 F2

∂y1∂yk
−

∂3 F1

∂y2∂yk

)]
(k = 3, . . . , n) (A6)

Gk−2
01 =

1
2

[
∂2 F1

∂y1∂yk
−

∂3 F2

∂y2∂yk
+ i

(
∂2 F2

∂y1∂yk
−

∂3 F1

∂y2∂yk

)]
(k = 3, . . . , n) (A7)

W11 = (I − B)−1 H11, W02 =
(
λ̄2 I − B

)−1 H02, (A8)

where W11 = (w1
11, w

2
11, . . . , w

n−2
11 )T , W02 = (w1

02, w
2
02, . . . , w

n−2
02 )T .

H k−2
11 =

1
4

(
∂2 Fk

∂y2
1

+
∂2 Fk

∂y2
2

)
(k = 3, 4) (A9)

H k−2
02 =

1
4

(
∂2 Fk

∂y2
1

−
∂2 Fk

∂y2
2

− 2i
∂2 Fk

∂y1∂y2

)
(k = 3, 4) (A10)
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VARIATIONAL EIGENSTRAIN ANALYSIS OF SYNCHROTRON
DIFFRACTION MEASUREMENTS OF RESIDUAL ELASTIC

STRAIN IN A BENT TITANIUM ALLOY BAR

ALEXANDER M. KORSUNSKY

Most procedures for experimental stress evaluation rely on the measurement of
elastic strain followed by point-wise calculation of stress based on continuum
elasticity assumptions despite the fact that the real purpose of the investigation is
to characterise the state of stress everywhere in the object to the greatest possible
detail. Using the example of residual elastic strain measurements in a bent tita-
nium alloy bar taken by means of high energy synchrotron X-ray diffraction, an
interpretation technique is here introduced based on the variational eigenstrain
analysis. An analytical framework is presented for the solution of the direct prob-
lem of eigenstrain, that is, the calculation of residual elastic strain distribution
within an inelastically bent beam containing a known distribution of eigenstrain.
An inverse problem about closest matching between the model and experiment
is then cast in a form that allows determination of the underlying eigenstrain
distribution from a single noniterative solution of a linear system. Subsequently
the complete stress state can be reconstructed everywhere within the object in
the form of continuous functions. The value of the approach lies in the fact
that subsequent deformation modelling can be carried out with the effects of
residual stresses (and their evolution) naturally incorporated. The extension of
this approach to more complex geometries within the framework of the finite
element method is briefly discussed.

1. Introduction

Residual stresses play an important role in determining the deformation behaviour
and fatigue durability of engineering components and assemblies. It is well known,
for example, that compressive near surface residual stresses act to inhibit crack
initiation and propagation, and thus affect the fatigue life of an object. On the
other hand, residual stresses themselves are known to undergo modification dur-
ing thermal and mechanical loading, through various mechanisms related to time-
independent plasticity, creep, phase transformation, etc.

We can pursue two principal avenues in evaluating residual stress states: defor-
mation process modelling and experimental measurement.

Keywords: eigenstrain theory, energy-dispersive diffraction, synchrotron, strain mapping.
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Numerical simulation of nonlinear deformation behaviour of solid bodies with
complex shapes is usually accomplished with the help of the finite element method.
This method allows the introduction of sophisticated constitutive laws that take
into account kinematic-isotropic nonlinear hardening, cyclic softening or ratchet-
ing, complex creep and stress relaxation behaviour [Manonukul et al. 2005], cou-
pled nonlocal damage and plasticity [Korsunsky et al. 2005], strain gradient effects
[Fleck and Hutchinson 2001], etc. Refined models of deformation processes often
involve large numbers of material parameters to be determined from experimen-
tal measurements. In order to justify the use of process modelling predictions
for undertaking practical design decisions, proper validation procedures must be
followed.

An alternative approach to residual stress evaluation is via an experimental pro-
cedure. In practice, residual stresses are only ever measured indirectly via observ-
ing relaxation or their effect on some other physical quantity, for example, bond
vibration frequency as in Raman spectroscopy. Experimental techniques for stress
evaluation can be classified into relaxation methods, physical correlation methods
and diffraction techniques [Withers and Bhadeshia 2001].

Relaxation methods rely on material removal (slitting, hole drilling, blind hole
drilling, layer removal, etc.) accompanied by the measurement of either changes in
the object shape (monitored by photogrammetry), or changes in strain measured by
means of surface mounted strain gauges, as in hole drilling. Physical correlation
methods use various physical effects (thermoelastic, magnetoelastic, ultrasound
propagation) to obtain some estimate of a stress state parameter—for example, the
hydrostatic stress component.

Diffraction is a highly versatile method for direct measurement of interplanar
spacing within the atomic lattice. Consequently residual elastic strain can be cal-
culated on the basis of knowledge of strain-free spacing. Diffraction techniques,
particularly those using high flux beams generated at synchrotrons [Korsunsky et al.
2002], can be scaled down to allow micro-diffraction and even nano-diffraction
experiments. The use of synchrotron X-ray diffraction to provide the input for the
current study is described below.

The objective of the present study is to provide a rational solid mechanics basis
for the analysis of residual elastic strain data obtained from state-of-the-art syn-
chrotron X-ray diffraction measurements. It must be pointed out, however, that the
method described herein possesses great generality, and can be used with equal
success to interpret relaxation method data, such as blind hole drilling or slitting
techniques. As a vehicle for the introduction of new concepts, a classical problem
of residually bent elastic-plastic beam is deliberately chosen for which an analytical
solution of the direct eigenstrain problem is available [Korsunsky 2005]. The size
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of the bent beam studied was chosen to be commensurate with the size of residu-
ally stressed objects routinely studied in the context of power generation and the
aerospace industry. The material of the sample was Ti-6Al-4V aerospace titanium
alloy used in the manufacture of fan and compressor blades of jet engines.

The article is organised as follows. In Section 2 the theoretical background for
the analysis of residual stress states is presented. In Section 3 a concise presen-
tation is given of the background to diffraction techniques for experimental strain
analysis. In Section 4 a solution is presented to the ‘direct’ problem of determina-
tion of residual elastic strain in a beam from known permanent strain (eigenstrain)
distributions. In Section 5 a framework is introduced for variational eigenstrain
determination from measured residual elastic strain values, by minimising the sum
of squares of model-experiment differences [Korsunsky et al. 2004]. In Section 6
the results of interpretation of a particular data set are presented and discussed.

2. Theoretical background

Residual stress states in arbitrarily shaped solid bodies are usually complex, and
difficult to describe, since in the general case they must be represented by the six
components of the stress tensor varying as a function of three spatial variables. It is
virtually impossible to imagine an experimental procedure that would readily and
routinely provide this level of detail. At any rate, the interpretation of point-wise
data in terms of six independent components is likely to present a serious practical
challenge.

Any residual stress state described by the tensor σ must, by definition, be self-
equilibrating. This requirement in fact establishes a relationship between gradients
of different components of the stress tensor, σ , namely

div σ = 0. (1)

Furthermore, the stress state deduced within a residually stressed object must sat-
isfy the traction-free boundary conditions, namely,

σ · n = 0, (2)

where n denotes the surface normal. However, it is not easy to enforce this re-
quirement on the deduced stress state, or to formulate the constraints that must be
imposed on the measured strain data. It is possible to develop a rational analytical
approach based on the concept of eigenstrain (stored inelastic strain) that reduces
the size of the data array needed to represent a particular residual stress state and at
the same time guarantees satisfaction of equations of equilibrium, (1), and traction-
free boundary conditions (2).
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Eigenstrain modelling is a powerful analytical technique for the representation
of residual stress states in solids [Mura 1987]. A practical approach to the use of
eigenstrain in residual stress modelling can be developed based on the following
fundamental postulates [Korsunsky 1997; 2005]:

(a) In the absence of eigenstrain (stored inelastic strain), any elastic solid is com-
pletely free from residual stress. Indeed, the very definition of elastic material
response requires that stresses and strains arise in the body upon the applica-
tion of an external load, and that they vanish completely upon load removal.

(b) Residual stresses within a solid arise in response to the introduction, through
some inelastic mechanism (plasticity, creep, cutting and pasting, phase trans-
formation, etc.), of permanent nonuniform strains within the body. Note how-
ever that the introduction of an entirely spatially uniform permanent strain
field does not, in fact, lead to the generation of residual stresses.

(c) Elastic and inelastic strains are additive, that is,

ε = ε∗
+ e, or in index notation, εi j = ε∗

i j + ei j , (3)

where εi j denotes the total strain, ei j denotes the elastic strain, and ε∗

i j denotes
eigenstrain.

(d) Total strain must be compatible, that is, it must satisfy

Inc ε = rot((rot ε)T )= 0,

leading to relationships between strain and components of the type

∂2εxx

∂y2 +
∂2εyy

∂x2 −
∂2εxy

∂x ∂y
= 0. (4)

(e) Eigenstrains (permanent inelastic strains) act as the sources of incompatibility
of displacement, and so can be thought of as appearing in the right hand of the
Saint-Venant compatibility equations. Indeed, from the compatibility equation
(4) one readily obtains the ‘incompatibility’ equation for the elastic strain, ei j ,
in the following form:

∂2exx

∂y2 +
∂2eyy

∂x2 −
∂2exy

∂x ∂y
=4, (5)

where

4=
∂2ε∗

xy

∂x ∂y
−
∂2ε∗

xx

∂y2 −
∂2ε∗

yy

∂x2 . (6)

Note from the above expression that the ‘forcing term’, 4, turns to zero for
uniform eigenstrains. In fact, it also vanishes for eigenstrains that depend
linearly on one coordinate and not at all on other coordinates, so that bodies
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containing such residual strain distributions are also free from residual elastic
strain, and hence from residual stress.

(f) The problem of determining the residual elastic fields (residual elastic strain
and residual stresses, as well as residual deformations, i.e. distortions) arising
from a given eigenstrain, ε∗

i j requires the simultaneous solution of equations
(5), (1) and (2), together with the elasticity equations (generalised Hooke’s
law),

σ = C : e, or in index notation, sigi j = Ci jkl epskl . (7)

(g) The eigenstrain problem is not in fact in any way different from the well
known thermoelastic problem, in which the forcing term 4 arises from thermal
gradients (note that an unconstrained uniformly heated body remains stress-
free). In fact, arbitrary eigenstrain distributions can be successfully simulated
by means of anisotropic thermal expansion.

Inelastic bending represents one of the most straightforward and well studied
processes that leads to the creation of residual stresses. It can be treated very
simply within the framework of beam theory whereby only longitudinal elastic
strain and stress are considered and differ only by a constant factor that is Young’s
modulus.

The stresses that arise in inelastic bending can be readily analysed [Gere and
Timoshenko 1984] provided the stress-strain behaviour of the sample material un-
der uniaxial tension and compression is known. By modelling numerically the
application of a given moment to a beam in bending, the permanent strains induced
in the beam by plastic deformation can be readily deduced. Once the externally ap-
plied moment is removed, the beam is usually thought to undergo elastic unloading,
so the residual stresses and residual elastic strains are easily found.

In the present study a different problem is addressed for which the residual
elastic strains after bending are specified in the form of experimental diffraction
measurements that may also be subject to some data scatter. The problem is to
find the unknown distribution of permanent strains responsible for giving rise to
the observed elastic strains. Furthermore, it is also possible to seek to extract
approximations to the uniaxial tensile and compressive stress-strain curves from
such residual strain data.

3. Experimental

The specimen of Ti64 was machined to the dimensions of h y = 50 mm, hx =

8.5 mm, hz = 4 mm and bent by applying a bending moment Mz of approxi-
mately 100 N·m using a 100 kN capacity, screw driven universal testing machine
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Figure 1. Illustration of plastic deformation of the bar in four
point bending.

(Hounsfield Ltd) with a four point bending attachment Figure 1. Under progres-
sively increasing applied bending moment, the lines labelled A, B and C in Figure 1
indicate the profiles of elastic strain, and hence also the longitudinal stress (for the
simple case of non-work-hardening material). The elastic strain distribution across
the bar remains linear (line A) until the first onset of yielding. Once the applied
moment exceeds the yield value (line B), the material undergoes progressive plastic
yielding from the surface. Note that the total strain remains linear across the beam,
but a proportion of it is now accommodated plastically. With the increased applied
moment (line C) the tensile and compressive plastic zones expand progressively
inwards from two surfaces. In the course of analysis carried out in this paper we
pay particular attention to the extent of the plastic zones, the deduction of the
distribution of permanent inelastic strains within these zones, and the relationship
between these distributions and the macroscopic and microscopic residual stresses.

The two principal methods for extracting residual elastic strain information
within objects with the help of X-ray diffraction are the angle-dispersive (mono-
chromatic beam) technique and the energy-dispersive (white-beam) technique.

In obtaining the data used in the present study a single bounce bent Laue mode
monochromator was employed [Laundy et al. 2004] as shown in Figure 2. Bending
the Laue monochromator crystal induces tensile and compressive strains on differ-
ent sides of the crystal, thus increasing the band pass and hence the flux incident
on the sample. In many engineering applications this is in fact an advantage, since
peak broadening is dominated by sample effects (strain spread within the gauge
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Figure 2. Schematic illustration of the relationship between lin-
ear segments of tensile and compressive eigenstrain induced by
bending (dashed lines), and the residual elastic strain distribution
(solid line) arising by the process of elastic equilibration.

volume), and no advantages are obtained by using extremely fine monochromation.

Diffraction patterns were collected by employing a detector scanning the scat-
tering angle 2θ , or a position sensitive detector capable of registering total photon
flux simultaneously at several positions along a line or over a two-dimensional
surface. This mode allows accurate determination of diffraction peak intensity,
shape and position. However, it usually requires significantly longer counting
times in comparison with the white beam mode in order to collect the data from
comparable sections of the diffraction pattern, primarily due to the reduction of
flux by monochromation, but also due to the necessity of scanning the detector.

Energy dispersive setup allows multiple diffraction peaks to be collected simul-
taneously, thus achieving particularly efficient counting statistics at energies above
30 keV [Korsunsky et al. 2002]. The accuracy of determination of individual peak
position and shape resolution in the white-beam mode is usually related to the
resolution of the energy-dispersive detector, but can in fact be several orders of
magnitude better. The accuracy of interpretation in terms of lattice parameters and
hence strain can be significantly improved by using multiple peak analysis or whole
pattern fitting [Liu et al. 2005].

The material used in the present study was a Ti-6Al-4V alloy widely used to
manufacture components located at the front of the aeroengine, such as fan and
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compressor blades and disks; it also has many other structural applications. Pro-
duction comprises vacuum arc melting above the β phase transus followed by plate
rolling in order to minimise crystallographic texture in the material which results
in anisotropy of both elastic and inelastic properties. The structure achieved by the
manufacturing process is obtained by solution treating in the middle of the α+β

phase field and air cooling. This gives a mixture of primary α and a transformation
product which comprises α and β phases. The α phase is a hexagonal close-packed
structure (hcp) which is typical of titanium at room temperature and transforms to
a body centred cubic structure, β phase, at 883◦ C. The size of the grains was
approximately 5µm.

Bragg’s law

2d sin θ = λ=
hc
E

(8)

is used to determine a lattice spacing parameter d that can be related to any partic-
ular phase and may correspond to the phase average, if pattern refinement is used,
or to the average taken over crystallites of a certain orientation within a particular
phase.

The residual elastic strain is computed using the formula

e =
d − d0

d0
. (9)

For each position of the gauge volume within the sample, peak centre positions
were determined for the reflections (00.2), (10.1), (10.2) and (11.0) from the hcp
α phase of the titanium alloy, as well as the macroscopic average computed by
Pawley refinement of a section of the diffraction profile containing multiple peaks.
Unstrained lattice spacing values d0 for each of these reflections, are also needed
to calculate strain using (9). To this end the data were collected by performing
a similar measurement for the gauge volume located at the very corner of the
sample. This choice of reference was based on the argument that the sampling
volume in such a position must be free from tractions (and hence stresses) in the
x and y directions. The gauge volume should be free from macroscopic average
stress, and hence free from macroscopic average residual elastic strain. It should
be noted that the above argument does not quite prevent the ‘corner’ gauge volume
from containing microscopic residual stresses that exist between grains of different
orientations.

In the sequel an interpretation is developed for the analysis of macroscopic resid-
ual elastic strains by employing the eigenstrain formalism. Since this development
is undertaken within the framework of continuum elastic theory, the most appro-
priate residual elastic strain value that should be used for the purpose is that of
macroscopic average.
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4. Direct problem: determination of residual elastic strain from given
eigenstrain

Consider an elastic beam occupying the region xL < x < xR , −∞ < y < ∞

and containing a distribution of eigenstrain ε∗
yy = ε∗(x). The basic framework for

evaluating the residual elastic strain (r.e.s.) distribution that arises in the beam has
been presented in [Korsunsky 2005], and will only be reproduced here in brief to
introduce some modifications to the previously published results.

The following statements provide the basis for the analysis:

(i) Total strain in the beam is given by the sum of the elastic and inelastic strain
(eigenstrain).

(ii) Following Kirchhoff’s hypothesis of straight normals, it is assumed that ma-
terial points originally lying on a line perpendicular to the beam axis remain
on a straight line, that is, any normal to the beam axis undergoes only rotation
without distortion.

(iii) Hence displacements, and therefore total strain must vary linearly through the
plate thickness, that is, they must be be given by

ε = e + ε∗
= a + bx/h, (10)

where h = xR − xL is the beam thickness. Here the parameter a characterises
the amount of axial straining experienced by the beam, and the term b char-
acterises the intensity of bending.

(iv) In the absence of external loading being applied, elastic strain e presents an
example of macroscopic residual elastic strain, such as that measured in a
diffraction experiment.

(v) From equation (10), residual elastic strain is given by

e = a + bx/h − ε∗(x), (11)

If the dependence of parameters a and b on the eigenstrain distribution ε∗(x)
is known, then the relationship between the residual elastic strain e and the
eigenstrain is established.

(vi) It will be shown (below) that parameters a and b depend solely on two integral
parameters, namely, the zeroth and first moments of the eigenstrain distribu-
tion given by

0 =
1
h

∫ xR

xL

ε∗(x) dx, 01 =
1
h2

∫ xR

xL

ε∗(x) dx . (12)

The relationship between parameters a and b, on the one hand, and 0 and 01, on
the other, is established using the requirements of force and moment balance across
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the beam, given by

F =

∫ xR

xL

[a + bx/h − ε∗(x)] dx = 0, (13)

M =

∫ xR

xL

[a + bx/h − ε∗(x)] x dx = 0. (14)

leading to the following relationships:

(xR + xL) b/2 + a(xR − xL)− (xR − xL)= 0, (15)

(x2
R + xR xL + X2

L) b/3 + (x2
R − x2

L) a/2 − (xR − xL)
201 = 0. (16)

Expressions are given explicitly in terms of the beam boundaries xL and xR for the
purposes of generality, e.g., to allow the consideration of effects of surface layer
removal.

The solution of the linear system for parameters a and b has the form

a =
601(X2

R − x2
L)− 40(x2

R + xL + X2
L)

(xR − xL)2
, (17)

b =
1201(xR − xL)− 60(xR − xL)

(xR − xL)
. (18)

Noting that the since bending component of strain in terms of beam bending radius
R and the beam curvature K is given by

e =
x
R

= x K , (19)

then from equation (8) the curvature of the bent beam is found as

K =
b
h

=
1201(xR − xL)− 60(xR − xL)

(xR − xL)2
, (20)

Equation (20) contains an expression that is useful for the analysis of beam curva-
ture as an function of the eigenstrain distribution ε∗(x).

Substituting equations (17) and (18) back into equation (11) gives the resulting
prediction for the residual elastic strain distribution in the form

e(x)=

1
(xR − xL)2

(
601(xR−xL)(2x−xR−xL)+ 20((x2

R+xR xL+x2
L)− 3x(xR+xL))

)
− ε∗(x). (21)

Equation (21) establishes the solution of the direct problem about the determination
of residual elastic strain for arbitrary given distribution of eigenstrain.



VARIATIONAL EIGENSTRAIN ANALYSIS OF SYNCHROTRON DIFFRACTION 269

Figure 1 gives an example of the above solution and shows the relationship
between the eigenstrain distribution, ε∗(x), and residual elastic strain e. This result
should be seen as the simplest illustration of the relationship between eigenstrain
and the residual elastic strain. Although in the present treatment this relationship is
established analytically for a rather trivial case, the method is not restricted to such
situations. In fact, arbitrary eigenstrain distributions can be readily incorporated
into the finite element framework through the use of virtual anisotropic thermal
expansion [Korsunsky et al. 2005; Hill 1996].

5. Inverse problem: determination of eigenstrain distribution from
measured residual elastic strain

The problem that we wish to address in the present study stands in an inverse
relationship to the one solved in the previous section. In practice it is the resid-
ual elastic strain distribution that may be known, for example, from diffraction
measurement. Alternatively, changes in the elastic strain values can be monitored,
say using strain gauges, in the course of material removal; and the underlying
eigenstrain distribution then needs to be determined.

In practice the residual elastic strain, or its increments, can only be measured
at a finite number of points. We are therefore seeking to reconstruct an unknown
functional distribution, that is, an object with infinite number of degrees of freedom,
using a finite data set. Several difficulties may arise in this situation, e.g. whether
the problem described in the previous section can be inverted; whether the inverse
problem is regular, i.e. varies in a smooth fashion depending on the data; and
whether the obtained solution is unique. In the present study we do not attempt to
answer these questions. Instead, we offer an efficient inversion procedure, leaving
the evaluation of its uniqueness and regularity for future consideration.

Consider a set of experimental data consisting of the values of residual elastic
strain (r.e.s.) y j collected at positions x j , j = 1, . . . ,m. In the present study we
assume that the data was collected from a one-dimensional scan in coordinate x .
It is worth noting, however, that the approach presented below is not in any way
limited to one-dimensional problems, and can be readily generalised to two- and
three-dimensional cases.

Denote by e(x), as in the previous section, the predicted, or modelled residual
elastic strain distribution. Evaluating e(x) at each of the measurement points gives
the predicted values e j = e(x j ). In order to measure the goodness of the prediction
we form a functional J given by the sum of squares of differences between actual
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measurements and the predicted values, with weights:

J =

m∑
j=1

w j (y j − e j )
2. (22)

The choice of weights w j is left to the modeller; for example, they could be
chosen based on the accuracy of measurements being interpreted.

Minimisation of functional J provides a rational variational basis for selecting
the most suitable model to match the measurements, in terms of the overall good-
ness of fit.

Let us now assume that the unknown eigenstrain distribution, yet to be deter-
mined, is given by a truncated series of basis distributions,

e∗(x)=

N∑
i=1

ciξi (x). (23)

Here N is the total number of basis distributions used in the prediction.
The results of the previous section contain the analytical procedure for the so-

lution of the direct problem, that is, the determination of the residual elastic strain
distribution that arises in response to an arbitrary eigenstrain distribution e∗(x).
This procedure can now be applied to each of the N basis distributions ξi (x) in
turn. As a result, a family of residual elastic strain solutions Ei (x) is obtained.

Due to the linearity of the direct problem, the predicted values of e j the residual
elastic strain arising from the eigenstrain distribution ε∗(x) of equation (23) can
themselves be written in the form of a superposition of responses to the basis
eigenstrain distributions,

e j =

N∑
i=1

ci Ei (x j )=

N∑
i=l

ci ei j , (24)

with the same coefficients ci as in equation (23).
The inverse problem of determining the unknown eigenstrain distribution ε∗(x)

has now been reduced to the problem of determination of N unknown coefficients
ci that deliver a minimum to the functional J in equation (22), which may now be
rewritten as

J =

m∑
j=1

w j

( N∑
i=1

ci ei j − y j

)2

. (25)

The above expression is quadratic and positive definite in the unknown coeffi-
cients ci . It follows that the functional has a unique minimum that is found by
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satisfying the condition

∇c J = 0, or
∂ J
∂ci

= 0, i = 1, . . . , N . (26)

Due to the quadratic nature of the functional in equation (25), the system of
equations in equation (26) is linear. Therefore, the solution for the unknown co-
efficients ci can be readily found without iteration by inverting the linear system
arising in equation (26). This system is written out explicitly below.

The partial derivative of J with respect to the coefficient ci can be written ex-
plicitly as

∂ J
∂ci

= 2
m∑

j=1

w j ei j

( N∑
k=1

ck ek j − y j

)
= 2

( N∑
k=1

ck

m∑
j=1

w j ei j ek j −

m∑
j=1

w j ei j y j

)
= 0.

(27)
For purposes of illustration, let us now assume that the weights are equal to unity,
so that equation (27) simplifies to:

∂ J
∂ci

= 2
( N∑

k=1

ck

m∑
j=1

ei j ek j −

m∑
j=1

ei j y j

)
= 0. (28)

We introduce the following matrix and vector notation

E = {ei j }, y = {y j }, c = {ci }. (29)

Noting that notation ek j corresponds to the transpose of matrix E , the entities
appearing in (28) can be written in matrix form as:

A =

m∑
j=1

ei j ek j = EET , b =

m∑
j=1

ei j y j = Ey. (30)

Hence equation (28) assumes the form

∇c J = 2(Ac − b)= 0. (31)

The solution of the inverse problem has thus been reduced to the solution of the
linear system

Ac = b (32)

for the unknown vector of coefficients c = {ci }.
Whenever the solution of an inverse problem is sought, questions arise concern-

ing the existence and uniqueness of the solution, and also concerning the well-
posedness of the problem, that is, the continuity of the dependence of the solution
on the problem parameters, the choice of the basis functions, the number of terms
N in the truncated series, etc.



272 ALEXANDER M. KORSUNSKY

Within the present regularised formulation of the problem, for an arbitrary
choice of the family of basis functions and an arbitrary number of basis functions
N, a unique solution is guaranteed to exist. This is a consequence of the positive
definiteness of the quadratic functional J . Furthermore, it is clear that increasing
the number of terms N is guaranteed to deliver a sequence of monotonically non-
increasing values of J , in other words, the goodness of approximation will not be
diminished.

An interesting question concerns the convergence of the solution in terms of
eigenstrain distribution ε∗(x), to the ‘true’ solution in the limit N → ∞. Similarly,
the continuity in the behaviour of the solution with the choice of basis functions
deserves to be discussed. While it must be emphasised that these questions are
clearly fundamental and ought to be addressed, the focus is currently placed on
the development of a practical tool for residual strain analysis. In so far as this
is the aim of the present study, the proposed framework offers an efficient ‘one
shot’ approach to the solution of an inverse problem. Furthermore, the choice of
moderate values N , compared to the number of measurements, m, also offers a
rational procedure for smoothing the data.

Figure 2 illustrates the relationship between the simple kind of eigenstrain dis-
tribution that may be introduced by inelastic bending (shown by the dashed lines)
in tension and compression on the opposites sides of the sample, and the residual
elastic strain (shown by the solid line) that arises by the process of elastic equili-
bration in response. For simplicity, the eigenstrain distributions are assumed to be
linear in both tension and compression. This assumption corresponds to the case
of elastic-ideally plastic material. Note, however, that the depths of the plastic
zones on the two sides of the sample are allowed to be different. As a result the
residual elastic strain state that arises in the bent beam is asymmetric, and illustrates
how asymmetry of residual stress distribution is connected with the asymmetry of
material response (yielding) in tension and compression.

6. Results and discussion

The variation procedures for eigenstrain determination described in the previous
section were applied to the experimental data obtained from synchrotron diffraction
measurements. As noted earlier, the diffraction strain estimate that is obtained
by whole pattern refinement provides the most reliable estimate of the average
macroscopic residual elastic strain. These data were used in the present analysis.

The unknown eigenstrain distributions were represented by the following series:

ε∗T
=

N∑
i=1

ci (x − d)i , ε∗C(x)= −

N∑
i=1

c′

i (x − d ′)i , (33)
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Figure 3. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the prediction of the
linear eigenstrain model (dashed line).

where superscripts refer to the tensile and compressive eigenstrains, and parameters
d and d ′ denote the positions of the tensile and compressive plastic zone boundaries,
respectively.

Several versions of the variational interpretation were investigated. In the first
version a very simple interpretation was used of the type illustrated in Figure 2,
that is, with linear assumed eigenstrain profiles in both tension and compression.
Nevertheless, even with such simple assumptions it was possible to capture the
salient features of the residual elastic strain distribution. The comparison between
the model and experiment is illustrated in Figure 3, where the experimental mea-
surement points are shown by the markers, while the continuous line shows the
model prediction obtained using only the linear terms in the eigenstrain distribution.
Note that the eigenstrain interpretation provides a ‘balanced’ approximation in the
least squares sense; the model provides a ‘smoothing’ of the data at the chosen
level of detail in the description of eigenstrain distribution.

Figure 4 shows the improvement to the model prediction afforded by allowing
higher order of eigenstrain distribution functions (up to order 6): the agreement
between the model and experimental measurements shown by markers is clearly
improved. However, in the model used for this reconstruction the tensile and com-
pressive eigenstrain distributions remained linked, in that the same coefficients
were used in the expressions for the tensile and compressive eigenstrains in equa-
tion (33), that is, c′

i = ci .
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Figure 4. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the predictions of
the higher order eigenstrain model (continuous curve).

Figure 5 shows the result of interpretation, with the coefficients for the tensile
and compressive eigenstrain distributions allowed to vary independently, that is,
c′

i 6= ci . Some small improvement can be detected, although it is not thought to be
particularly significant.

Finally, in Figure 6 the order of approximation was increased to N = 10. This
clearly delivers an improvement in the apparent quality of fit, but also leads to
some oscillatory behaviour of the prediction curve. This situation might perhaps
be expected for any approximation that involves higher order polynomial represen-
tation of an unknown distribution. The problem of this type could be overcome
by representing the unknown distribution by a set of smooth radial basis functions
with bounded support.

7. Conclusions

The purpose of the present paper was to introduce a self-contained framework that
can serve as a convenient vehicle for introducing the fundamental ideas for residual
stress reconstruction using the concept of continuous distributions of eigenstrain.
Kirchhoff bending theory allows a simple analytical formulation to be developed
for the prediction of the residual elastic strain (and hence bending stress) within
inelastically bent bars due to distributions of tensile and compressive eigenstrains.
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Figure 5. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the predictions of the
higher order eigenstrain model (continuous curve) with separate
description of the tensile and compressive eigenstrain dis-
tributions.

Once these analytical formulae are established, they are used as the direct eigen-
strain problem solver within the inverse framework for variational determination
of unknown eigenstrains.

The solutions are obtained for residual elastic strain profiles measured by high
energy synchrotron X-ray diffraction. The stability of the solutions is investigated
by way of numerical experiments involving different formulation of the functional
basis and different orders of approximation. It is found that the solutions display
good stability, although the use of higher order polynomial approximations leads to
some evidence of oscillatory behaviour of the solution. An approach using radial
basis functions may be able to overcome this difficulty.

The findings of this paper are particularly relevant to the task of modelling the
effects of residual stresses on subsequent deformation behaviour of engineering
components. Assuming the residual elastic strain distribution can somehow be
measured, for example, by diffraction, the underlying eigenstrain distribution can
them be determined via an implementation of the variational approach presented
here. When once such distribution is found, it can be used to continue deformation
simulation onwards from the corresponding instant in the component’s history. It
then becomes possible not only to account accurately for the effects of residual
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Figure 6. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the predictions of
the higher order eigenstrain model (continuous curve) with high
order (N = 10) separate description of the tensile and compressive
eigenstrain distributions.

stresses on subsequent deformation, but also vice versa to observe the evolution
of the residual stress state (or, perhaps even more appropriately, of the underlying
eigenstrain distribution) under deformation.
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EFFECT OF AIR GAPS ON THE BALLISTIC RESISTANCE OF
DUCTILE SHIELDS PERFORATED BY NONCONICAL

IMPACTORS

GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

In Int. J. Solids Struct. 35:23 (1998), pp. 3097–3103, we proved that localized
interaction model (LIM) for shield-impactor interaction implies independence
of the ballistic limit velocity (BLV) of spaced shield on air gaps and their widths
for conical striker. In this study, the effect of deviation from a conical shape
on ballistic properties of spaced shield is investigated using two-term LIM. It is
found that this effect is insignificant and it causes small changes (of the order
of few percent) in the magnitude of the BLV and energy absorbed by a shield.
These theoretical predictions are in agreement with the available experimental
results.

1. Introduction

Currently there is no consensus on the effect of layering and spacing on the ballistic
properties of shields, although interest in this topic has existed for a long time.

Hurlich [1950] noted that the earliest study he found on the modern use of
spaced armor was performed in 1913 for armor of naval vessels. He presented
some qualitative arguments in favor of spaced armor (mostly for tanks), a number
of tables with experimental results, some references and curious historical infor-
mation. Honda et al. [1930] investigated experimentally the impact of steel plates
by conical-nosed projectiles. It was found that a spaced shield with thicknesses of
the plates equal to the half-thickness of a monolithic shield performed better than a
monolithic shield. Marom and Bodner [1979] conducted a combined analytical and
experimental comparative study of monolithic, layered and spaced thin aluminum
shields. They found that the ballistic resistance of a monolithic shield is higher
than that of a multilayered shield with the plates in contact and lower than the
ballistic resistance of a spaced shield. Radin’s study [1988] was also based on
semi-empirical models and experimental investigations. They found a monolithic
aluminum shield to be superior to a layered shield with the same total thickness for
conical-nose and blunt projectiles, while spaced shields were less effective. Zukas
[1996] performed calculations with thick plates impacted by long rod projectiles

Keywords: localized interaction model, ballistic limit velocity, spaced shield, nonconical impactor.

279



280 GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

moving at 1500 m/s. The calculations showed that air gaps of one and four projec-
tile diameters between plates involved the increase of projectile residual velocity
when compared to their monoblock equivalent and a shield consisting of plates
in contact. The sizes of the gaps play a minor role in determining the residual
velocity. Using experimental results obtained for aluminum and steel plates and
armor-piercing projectiles, Gupta and Madhu [1997] found that for the same im-
pact velocity the residual velocity for the spaced shield was larger than for the
plates in contact. Corran [1983a; 1983b], using experimental results on penetra-
tion of mild steel plates by impactors having “increasingly rounded nose shape”,
presented some data on perforation energy of spaced shields. Almohandes et al.
[1996] conducted a comprehensive experimental study on the perforation of mild
steel by standard 7.62 mm bullets. They investigated layered in contact, spaced and
monolithic shields with total thickness in the range 8–14 mm. The efficiencies of
shields were assessed by comparing their residual velocities for the same magnitude
of the impact velocity. Almohandes’ experimental results were used by Liang et al.
[2005] for validating their penetration model. Applying this model for comparative
analysis of shields with different structures, they concluded that an air gap slightly
influenced the resistance to perforation in multilayered shields. Elek et al. [2005]
developed a simple model to describe the perforation of monolithic and multilay-
ered thin metallic plates by a flat-ended cylindrical impactor and used their model
for the analysis of the ballistic properties of multilayered spaced shields. The main
results of this study may be summarized as follows. The suggested model predicted
that the monolithic shield will have larger resistance than any other multilayered
shield with standoff distance between layers and equivalent total mass. The anal-
ysis of penetration in a two-layered shield showed that the maximum resistance
could be obtained for very low or very high first-layer thickness (less than 20% or
more than 80% of total thickness). The increase of the number of spaced layers
of a multilayered shield, at constant total mass, caused a further decrease of the
ballistic resistance.

In [Ben-Dor et al. 1998b; 1998a; 1999], we studied analytically the influence of
air gaps between the plates on the ballistic limit velocity (BLV) of a multilayered
shield. Using the general localized interaction model (LIM). In the first of these
articles we found that the ballistic performance of the shield against 3D conical-
nosed impactors is independent of the widths of the air gaps and of the sequence
of plates in the shield and that it is determined only by the total thickness of the
plates if the plates are manufactured from the same material. The influence of air
gaps on the BLV of a shield that consisted of two plates manufactured from dif-
ferent materials was studied in [Ben-Dor et al. 1999] using the two-term localized
interaction model. They found the criterion (depending on mechanical properties
of the materials of the plates) that governs the decrease or the increase of the BLV
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Figure 1. Notations.

of the shield with increasing the air gap thickness. Using the cylindrical cavity
expansion model, we studied in [Ben-Dor et al. 1998a] the effect of air gaps on
the ballistic performance of a spaced shield comprising plates manufactured from
the same material and found that the BLV of the shield slightly increased with the
increase of the widths of air gaps. In this study we investigate the effect of air gaps
on ballistic properties of shields against nonconical impactors.

2. Formulation of the problem

Consider a high speed normal penetration of a rigid sharp striker (a body of rev-
olution) into a ductile spaced shield with a finite thickness. We assume that the
conditions of penetration are determined mainly by the “ductile hole enlargement
perforation mechanism” ([Backman and Goldsmith 1978]). The basic notations
are shown in Figure 1, and it is assumed that only the nose of the cylindrical
impactor can interact with the shield. The coordinate h, the instantaneous depth
of penetration, is defined as the distance between the leading edge of the nose of
the impactor and the rear surface of the shield. The coordinate ξ is associated with
the shield. In cylindrical coordinates (x, ρ, ϑ) associated with the impactor, the
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surface of the nose is described by the equation

ρ = φ(x), 0 ≤ x ≤ L , 0 ≤ ϑ ≤ 2π,

where L is the length of the impactor’s nose and 8(x) is an increasing convex
function. Assume that the shield consists of 2µmax −1 layers including µmax plates
with the thicknesses b(1), b(3), . . . , b(2µmax−1) and air gaps between the plates with
the thicknesses b(2), b(4), . . . , b(2µmax−2). The plate with number 2µ− 1 is located
between the cross-sections ξ = ξ (2µ−2) and ξ = ξ (2µ−1), where µ= 1, 2, . . . , µmax

and ξ (0) = 0. The total thickness of the shield (the sum of the thicknesses of all
layers including the air gaps) and the sum of the thickness of all plates are denoted
b and bsum, respectively. It is assumed that the plates are manufactured from the
same material. The part of the lateral surface of the impactor between the cross-
sections x = θ(h) and x =2(h) (see Figure 1) interacts with some layers of the
shield or is in contact with some air gaps (see Figure 2, top):

θ(h)=

{
0 if 0 ≤ h ≤ b,

h − b if b ≤ h ≤ b + L ,
2(h)=

{
h if 0 ≤ h ≤ L ,

L if h ≥ L .

The equation of motion of the impactor, m(d2h/dt2)= −D, can be rewritten as

mv(dv/dh)= −D, (1)

where the velocity of the impactor v is considered to be a function of h, m is
the mass of the impactor, and D is the resistance force. We consider the range
of impact velocities vimp whereby the projectile perforates the shield. Perforation
occurs when the position of the striker is h = b + L . The ballistic limit velocity
vbl is defined as the impact velocity of the impactor required to emerge from the
shield with zero residual velocity, vres = 0.

We assume that the impactor-target interaction at a given location at the surface
of the impactor that is in contact with a plate can be represented as

d EF =
(
γ (−Ev0

· En0)2v2
+ σ

)
En0d S, (2)

where d EF is the force acting at the surface element d S of the impactor, En0 is the
inner normal unit vector at a given location on the impactor’s surface, Ev0 the unit
vector of the impactor’s velocity, the parameters γ and σ depend on the prop-
erties of the material of the shield. Equation (2) comprises most of the widely
used phenomenological models for homogenous shields (see [Recht 1990; Ben-
Dor et al. 2005] for details). In particular, in the model proposed and validated
in comprehensive experimental studies in [Vitman and Stepanov 1959], σ and γ
are the “dynamical hardness” and material density of the shield, respectively. The
values of these parameters for some materials are given in [Vitman and Ioffe 1948,
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Figure 2. Model of the spaced shield, before and after a change of variables.

Table 1]. The remark by Recht [1990] concerning similar semi-empirical models is
confirmed in this case: the parameter σ is significantly larger than the compressive
yield strength.

In order to adapt (2) for a spaced shield we define a function ε(ξ), which is
equal to 1 if the point with the coordinate ξ (Figure 1) is located in any plate and
is equal to 0 if this point is located in an air gap:

ε(ξ)= ε( j) if ξ ( j−1)
≤ ξ ≤ ξ ( j), j = 1, 2, . . . , µmax − 1,

ε(1) = · · · = ε(2µ−1)
= · · · = ε(2µmax−1)

= 1,

ε(2) = · · · = ε(2µ) = · · · = ε(2µmax−2)
= 0.
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Then (2) can be rewritten as

d EF = ε(ξ)
(
γ (−Ev0

· En0)2v2
+ σ

)
En0d S.

The total force EF for some location of the impactor inside the shield is found by
integrating the local force over the impactor-shield contact surface area, formally
including the air gaps, that is, over the portion of the impactor’s surface S deter-
mined by the inequalities 0 ≤ ϑ ≤ 2π and θ(h)≤ x ≤2(h). Taking into account
the identity

ξ = h − x,

using the differential geometry formulas

−Ev0
· En0

=8′/
√
8′2 + 1, d S =

√
8′2 + 1 dx dυ, 8′

= d8/dx,

we obtain for the drag force D the expression

D = EF · (−Ev0)=

∫∫
S
ε(ξ)

(
γ (−Ev0

· En0)2v2
+ σ

)
(−Ev0

· En0)d S

=
m
2

(
f2(h)v2

+ f0(h)
)
, (3)

where

f2(h)=
4πγ

m

∫ 2(h)

θ(h)

ε(h − x)88′3

8′2 + 1
dx, f0(h)=

4πσ
m

∫ 2(h)

θ(h)
ε(h − x)88′dx .

Substituting D from (3) into (1) we obtain, after some algebra, an ordinary linear
differential equation with respect to v2:

dv2/dh + f2(h)v2
+ f0(h)= 0.

The solution of this equation with the initial condition v(0) = vimp, which corre-
sponds to the beginning of the motion of the impactor with the impact velocity vimp

reads

v2(h)=
1

q(h)

(
v2

imp − g(h)
)
, (4)

(see [Kamke 1959]), where

q(h)= exp
( ∫ h

0
f2(η) dη

)
, g(h)=

∫ h

0
f0(H)q(H)d H .

Equation (4) yields formulas for the residual velocity, vres = v(b + L), and the
ballistic limit velocity, vbl:

v2
res =

1
q(b + L)

(
v2

imp − g(b + L)
)
, v2

bl = g(b + L). (5)



AIR GAPS AND BALLISTIC RESISTANCE 285

We now prove that q(b + L) does not depend on the widths of the air gaps. To
this end, we change the variables (Figure 2, bottom), x → x , h → x + ξ , in the
integral in the expression for q(b + L):

m
4πγ

ln(q(b + L))=

∫ b+L

0
dh

∫ 2(h)

θ(h)
ε(h − x)ψ(x) dx

=

∫ L

0
ψ(x) dx

∫ b

0
ε(ξ) dξ = bsum

∫ L

0
ψ(x) dx,

where ψ(x)=88′3/(8′2
+ 1).

For further analysis it is convenient to rewrite the expression for vbl in dimen-
sionless variables where L is chosen as a characteristic length:

vbl =
√
χ 9(α), (6)

where function 9 depends also on structure of the shield and the shape of the
impactor, and

9(α)=

√
α

∫ b̄+1

0
Q(h̄) dh̄

∫ 2̄(h̄)

θ̄(h̄)
ε̄(h̄ − x̄)8̄8̄′dx̄,

α =
4πL3

m
γ, x̄ =

x
L
, 8̄=

8

L
, 8̄′

=
d8̄
dx̄
, h̄ =

h
L
,

Q(h̄)= exp
(
α

∫ h̄

0
d H̄

∫ 2̄(H̄)

θ̄(H̄)

ε̄(H̄ − x̄)88′
3

8̄′
2
+ 1

dx̄
)
, ε̄(ξ̄ )= ε(L ξ̄ ),

θ̄ (h̄)=

{
0 if 0 ≤ h̄ ≤ b̄,

h̄ − b̄ if b̄ ≤ h̄ ≤ b̄ + 1,
2̄(h̄)=

{
h̄ if 0 ≤ h̄ ≤ 1,

1 if h̄ ≥ 1.

Let v0
bl be the BLV of the shield that consists of the plates in contact with the

same total thickness bsum. Clearly, the latter structure is equivalent to a monolithic
shield with the total thickness bsum. Equation (6) implies that the ratio δ = vbl/v

0
bl

depends on the dimensionless parameter α as well as on the shape of the impactor
and the dimensionless thicknesses of the layers (plates and air gaps). In our pre-
vious investigation it was found that spacing does not affect ballistic properties of
shields against conical impactors [Ben-Dor et al. 1998b]. In the next section, using
the obtained expression for the BLV we study numerically the effect of spacing on
the BLV of the shields for nonconical impactors.
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3. Result of numerical calculations and discussion

We performed calculations for two impactors (cylindrical bodies of revolution with
different nose shapes). The first impactor (Impactor A) is the cylinder with a semi-
spherical nose. The generatrix of the nose of the second impactor (Impactor B) is
the broken line consisting of segments between three points with the dimension-
less coordinates (x̄, ρ̄): (0, 0); (0.3, 0.7); (1, 1). The validity of this model for
blunt, thick impactors against shield with a finite thickness is questionable, and,
consequently, Impactor A can be considered only as a model.

In the following analysis, we use dimensionless variables. We show in Figure
3 plots of function 9 for a monolithic plate. Using (6), one can determine the
ranges of variation of parameters b̄sum and α that correspond to a given range of
BLVs for a shield manufactured from a given material (for some materials one can
use Table 1). The plots in Figure 3 correspond to Impactor A, and they differ only
insignificantly from those obtained for Impactor B.

The top halves of Figures 4–10 correspond to Impactor A, while the bottom
parts correspond to Impactor B.

Figure 4 shows the dependence of the parameter δ= vbl/v
0
bl versus α for different

widths of the gap (case with two plates). Inspection of these figures shows that
ballistic efficiency of the shield decreases when the width of the gap between the
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Figure 4. Effect of the thickness of the air gap on ballistic proper-
ties of a two-layer shield.
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Number Material Dynamical Density γ χ = σ/γ

hardness σ (N/m2) (kg/m3) (m2/s2)

1 Aluminum 350 · 106 2765 0.127 · 106

2 Soft steel 1850 · 106 7830 0.236 · 106

3 Copper 910 · 106 8930 0.102 · 106

4 Duraluminum 1330 · 106 2765 0.481 · 106

Table 1. Parameters of the model. (Based on [Vitman and Ioffe 1948]).

plates is increased (the larger is parameter b̄(2), the lower is the curve). The rate of
change of parameter δ that characterizes ballistic efficiency sharply reduces with
increase of b̄(2). Thus, for instance, inspection of Figure 4 shows that increase of
b̄(2) from 0.4 to 0.5 and from 0.5 to 1.0 is accompanied by approximately the same
change of δ. The effect of gaps on δ becomes more pronounced as the parameter
α increases. Analysis of Figure 5 allows us to arrive at similar conclusions. In
this figure we showed the results obtained for a shield consisting of three plates
whereby the widths of air gaps between the first and the second plate and between
the second and the third plate are varied but remain equal. Therefore the maximum
negative effect of spacing (which is the most interesting) occurs for large air gaps
equal to the length of the impactor’s nose since in the framework of the used model,
further increase of the air gap width does not change the BLV of the shield. Our
further analysis is performed exactly for this width of air gap (b̄(2) ≥ 1).

In Figure 6, we show the plots of function δ(α) for the case of two identical
plates and for different magnitudes of the total width of the shield, b̄sum. Inspection
of these plots shows that the effect of air gaps is more pronounced for large α. It
must be noted that some curves in Figure 6 intersect, that is, for two shields with
different total thicknesses parameter δ can be larger for the first shield than for a
second one for one magnitude of the parameter α, and it can become smaller than
for the second shield for a different value of parameter α. The same dependencies
are observed in the case when a plate is separated into three identical plates with
equal widths of the gaps between the plates (Figure 7).

In Figures 8 and 9, we show the plots of δ(λ) for b̄sum = 1 and b̄sum = 2, respec-
tively, and for different values of parameter α (λ is the ratio of the width of the first
plate to the total width, λ = b(1)/bsum). Inspection of these figures suggests that
the shape of the impactor affects the plots only weakly, and that for every value of
parameter α the curves δ(λ) are concave; that is, initially the increase in relative
thickness of the first plate causes an increase in the negative effect of spacing, until
some maximum value is attained, and then it starts to decrease; the magnitude of λ
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Figure 5. Effect of the thickness of the air gap on ballistic proper-
ties of a three-layer shield.
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where the negative effect of spacing is maximum depends upon the total thickness,
and it increases with the increase of parameter α.

Figure 10 compares the results obtained for a spaced shield consisting of three
plates with different relative thicknesses of the plates with a constant total thickness,
b̄sum, for b̄sum = 1 and b̄sum = 2. Calculations were performed for three sets of the
relative thicknesses of the plates, b(1) : b(2) : b(3), namely, 1 : 2 : 3, 1 : 1 : 1 and 3 : 2 : 1.
The results show that the negative effect of spacing is minimum for configuration
1 : 2 : 3, and it depends on α for two other configurations.

Therefore, in the framework of the employed model, the effect of spacing on
the BLV of the nonconical impactors is of the order of several percent. The results
of the calculations showed that for slender projectiles this effect becomes even
smaller.

4. Discussion of experimental results

Experimental data that allow us to compare directly the BLV of spaced shields and
shields with plates in contact are not available. However we can use the results of
the experiments performed with spaced and nonspaced shields for the same magni-
tudes of the impact velocity, vimp. These data were published in [Almohandes et al.
1996] for 7.62 mm bullets perforating a mild steel shield. First, using the model,
we analyze the connection between the value of energy absorbed and the value of
BLV of the spaced and nonspaced shields for the same magnitude vimp.

Using relationships for the impact energy Eimp and residual energy Eres of the
impactor,

Eimp =
1
2 mv2

imp, Eres =
1
2 mv2

res,

and Equation (5) rewritten as

v2
res =

1
q∗

[
v2

imp − v2
bl
]
, q∗ = q(b + L)= Q(b̄ + 1),

we obtain for the relative energy absorbed by the spaced shield:

eabs =
Eimp − Eres

Eimp
=

q∗ − 1
q∗

+
1
q∗

(
vbl

vimp

)2

. (7)

Since q∗ is the same for the spaced and nonspaced shield (see below), we may
write an equation similar to (7) for the spaced shield:

e0
abs =

Eimp − E0
res

Eimp
=

q∗ − 1
q∗

+
1
q∗

(
v0

bl

vimp

)2

.

Then

eabs − e0
abs =

1
q∗

(
v0

bl

vimp

)2[(
vbl

v0
bl

)2

− 1
]
. (8)
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Taking into account that for |vbl/v
0
bl − 1| = |δ− 1| � 1,(

vbl

v0
bl

)2

− 1 ≡ (δ− 1)2 + 2(δ− 1)≈ 2(δ− 1),

we can rewrite (8) as follows:

eabs − e0
abs ≈ k(1 − δ), k =

2
q∗

(
v0

bl

vimp

)2

.

Since v0
bl ≤ vimp and q∗ > 1, then k < 2. Moreover, when α increases, the

magnitude of q∗ increases (see Figure 11), which compensates for a certain increase
in δ discussed above. Therefore, the model predicts insignificant change of the
absorbed energy in the whole practical range of variation of parameter α. Since the
predicted magnitude of the change lies within the range of experimental error and
model uncertainty, it is conceivable that experimentally observed v0

bl and vbl will
be different by several percent, and that there will be situations when v0

bl < vbl, and
when v0

bl > vbl. The latter conclusion is supported by the data in Table 2, compiled
from experimental results of Almohandes et al. [1996]. The table shows, for each
shield configuration and each impact velocity, the percent impact energy absorbed
by a spaced shield, and the corresponding percentage for a shield consisting of the
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Structure vimp =

# (sizes in mm) 706.0 754.5 775.4 804.5 826.2

1 4 46
52.2
52.5

49.6
50.0

47.4
46.5

35.9
36.1

34.5
34.8

2 2 66
54.9
54.3

52.2
53.6

50.7
49.8

42.1
42.7

37.4
36.5

3 6 26
54.4
55.5

52.0
52.1

49.7
51.7

41.5
41.4

35.1
37.3

Table 2. Relative energy absorption, in percent. For each struc-
ture, the top row indicates the percent absorption for the spaced
shield, and the second, for a shield with plates in contact. Based
on experimental results from [Almohandes et al. 1996].

Structure vimp =

# (sizes in mm) 706.0 754.5 775.4 804.5 826.2

1 2 66 54.9
54.4

52.2
52.0

50.7
49.7

42.1
41.5

37.4
35.1

2 2 66 42
51.3
50.9

49.0
48.4

44.0
44.3

33.8
36.0

32.4
32.7

3 1 66 61 53.0
54.7

49.1
54.3

46.8
52.1

35.9
37.2

34.7
36.4

4 1 66 1 46161 44.2
46.0

42.3
46.3

38.4
37.5

34.0
32.6

31.5
33.2

Table 3. Comparison of the relative energy absorption, in percent,
caused by the interchange of the order of the plates. For each struc-
ture the first row describes entry from the left and the second, entry
from the right. Based on experimental results from [Almohandes
et al. 1996].

same plates in the same order but without air gaps. Table 3 shows that reversing
the order of the plates in a spaced shield does not cause significant changes in the
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absorbed energy. In the table one also observes cases where v0
bl < vbl and where

v0
bl > vbl.

5. Concluding remarks

Using an approximate model that takes into account the plastic deformation of the
shield during perforation, we analyzed the effect of air gaps upon ballistic proper-
ties of the shield against nonconical rigid impactors. It was found that nonconical
shape of the impactor causes insignificant change (in the range of several percent)
of BLV and energy absorbed by a shield. The obtained results are supported by
available experimental data.
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OBSERVATIONS OF ANISOTROPY EVOLUTION
AND IDENTIFICATION OF PLASTIC SPIN PARAMETERS

BY UNIAXIAL TENSILE TESTS

YANGWOOK CHOI, MARK E. WALTER, JUNE K. LEE AND CHUNG-SOUK HAN

Micromechanical effects such as the development of crystallographic texture and
of dislocation structures lead to evolution of material anisotropy during plastic
deformation. The anisotropy of sheet metals is commonly quantified by its
R-values. The R-value is defined as the ratio of the transverse strain to the
thickness strain at a certain longitudinal strain, and it changes if the anisotropy
changes. Conventional hardening models do not account for the evolution of
anisotropy along an arbitrary orientation. Therefore, although R-values are mea-
sured from experiments, predictions of hardening behavior based on R-values
using conventional hardening models do not reproduce the experiments for ar-
bitrary orientation. The R-value evolution for large strains can be observed in
simple uniaxial tension tests by measuring the transverse and longitudinal strains
continuously up to large strains. A digital image correlation (DIC) method is
introduced as superior to strain gages for measuring large strains. To model the
experimental response, a rotational-isotropic-kinematic (RIK) hardening model
is investigated. Because of this model’s ability to represent the rotational evo-
lution of the anisotropy, it can predict the hardening behavior for non-RD and
non-TD directions. Methods to identify the plastic spin and kinematic hardening
parameters are also discussed.

1. Introduction

In sheet metal forming and springback processes, incorporating evolution of ma-
terial anisotropy is important in order to obtain accurate predictions. Cold rolled
sheet metals are known to have initial anisotropy, incurred during the rolling pro-
cess. The anisotropy causes different flow stresses with respect to the orientation
that is measured from the rolling direction (RD). The different flow stresses have
significant effects on the forming process: different earing of edges, punch force-
displacements, and springback, etc. To address the material anisotropy, anisotropic
yield functions such as those of [Hill 1948; 1990] and [Barlat et al. 1991; 1997;
2003] have been developed. Hill’s quadratic yield function [Hill 1948] is known to

Keywords: Anisotropy evolution, R-value evolution, DIC measurements, rotational hardening.
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be appropriate for BCC materials such as mild steel, while Barlat’s yield function
[Barlat et al. 1991; 1997; 2003] is good for FCC materials such as aluminum
alloys. However, these yield functions do not account for the evolution of material
anisotropy during the plastic deformation.

The evolution of anisotropy has been observed by both micromechanical and
macromechanical experiments [Boehler and Koss 1991; Bunge and Nielsen 1997;
Kim and Yin 1997; Peeters et al. 2001]. At a micromechanics level, the anisotropy
evolution is generally considered to be the result of the crystallographic texture
development, which changes the preferred orientation of grain aggregates, and
the development of substructures [Peeters et al. 2001]. Using micromechanical
approaches, the evolution of anisotropy has been observed and modeled by many
investigators [Agnew and Weertman 1998; Asaro 1983; Beaudoin et al. 1994;
Kocks et al. 1998; Nakamachi and Doug 1997]. On the other hand, the anisotropy
evolution has been observed and modeled by using macromechanical approaches
that rely on phenomenological descriptions [Boehler and Koss 1991; Kim and Yin
1997; Kuroda 1997; Dafalias 2000; Han et al. 2002].

For sheet metals, R-values in several directions are used to represent the planar
anisotropy and to compare the anisotropy between different materials. The R-value
is defined as the ratio of transverse strain to thickness strain at a certain longitudinal
strain. Since R-values are different for different longitudinal strains, R-values are
usually provided along with the longitudinal strain at which the transverse strains
were measured.

Even though the R-values are used to define the anisotropic relationship of the
hardening curve between a certain direction and the RD, the computed hardening
curve may not properly predict the experiment results for orientations not in the RD
or TD (transverse direction) when conventional hardening models are used. The
computed hardening curves in three directions are compared with the experimental
results in Figure 1. The computed curves were generated by ABAQUS/Standard us-
ing Hill’s quadratic yield function and an isotropic hardening model. The material
is deep drawing quality (DDQ) mild steel which is used for the NUMISHEET 2002
benchmark problem [Yang et al. 2002]. The curves of the RD and TD correlate
quite well with the experimental results. However, the computed 45◦ orientation
curve overestimates the experiment when constant R-values are used: R0 = 2.64,
R45 = 1.57, and R90 = 2.17.

The use of constant R-values is effective for characterizing the flow stresses
in RD and TD. However, it is not capable of modeling the flow stress in the 45◦

orientation. It is assumed that the unexpected higher estimation of the hardening at
45◦ in Figure 1 can be explained by the evolution of anisotropy and the subsequent
R-value evolution for the orientation. In addition, Hill’s yield criterion [1948] has
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Figure 1. Flow stresses in three orientations, compared to mea-
sured data from NUMISHEET 2002 [Yang et al. 2002]. ABAQUS/
Standard was used to compute the curves by using constant R-
values. The flow stress at 45◦ overestimates the experiments, while
the others correlate with experiments relatively well.

major drawbacks in predicting flow stress curves that depend on the loading orien-
tation. In other words, the dependence of the yield stress on orientation is poorly
predicted by the conventional theory [Banabic et al. 2000]. These shortcomings are
usually interpreted to be the result of not incorporating the evolution of anisotropy
during the plastic deformation.

Understanding the evolution of anisotropy is critical for predicting material be-
havior in large strain deformation. It is also essential to be able to represent the
anisotropy evolution in multiaxial and multipath loading. To model the multiaxial
and multipath elastoplastic deformation of planar anisotropic materials, an RIK
(rotational-isotropic-kinematic) hardening model [Choi et al. 2006a] is proposed
to incorporate rotation of the yield surface with the isotropic combined kinematic
hardening model. To measure anisotropy evolution, tensile tests for RD, TD, and
45◦ orientations were performed.

A simple method to measure the rotation of the symmetry axes is suggested
with the following assumptions: the anisotropy of the yield surface shape can be
described by the rotation of the orthogonal symmetry axes, and the symmetry axes
will not rotate if the loading is along the symmetry axes. The method requires
tensile experiments with continuous measurement of R-values for specimens cut
at 45◦ to the RD. According to the theory, the symmetry axes do not rotate for
the deformation along the RD or TD. To measure the strains continuously up to
large strains, we used the DIC (digital image correlation) method developed by
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Sutton et al. [1983]. DIC is a technique that compares digital images of a spec-
imen surface before and after deformation to deduce its two-dimensional surface
displacement field and strains; see, for example, [Vendroux and Knauss 1998]. In
spite of its low accuracy at small strains, DIC can be used at large strains and is
simple to implement. Although large strains were measured using digital images
of grid marks on uniaxial sheet metal specimens by Rao and Mohan [2001], the
grid deformation was not used to determine R-values. The authors are not aware
of any other investigations that use the DIC method to determine R-values.

Here we present a DIC-based experimental method for determining anisotropy
evolution and demonstrates how the material parameters for the RIK hardening
model can be determined from the simple tensile experiments.

2. Definition of the R-value

The definition of the R-value for a planar anisotropic material is the ratio of trans-
verse strain (εw) to thickness strain (εt) and is therefore given by Hill [1950] as

R =
εw

εt
. (1)

Because the specimen thickness is generally small compared to the other dimen-
sions, an accurate measurement of the strain in the thickness direction for sheet
metals is difficult. By applying the constant volume condition for plastic deforma-
tion, Equation (1) can be reformulated using the longitudinal strain (εl) as

R =
εw

εt
= −

εw/εl

(1 + εw/εl)
,

which is widely used to measure R-values. With these formulas the R-values are
determined by fitting the slope (εw/εl) of the εw − εl (transverse strain versus
longitudinal strain) curve of experiments. An example for DDQ material used in
NUMISHEET 2002 benchmark problem [Yang et al. 2002] is shown in Figure
2 (left). For DDQ, the TD and RD lines are very relatively straight. It should
be noted that although the 45◦ response appears to be linear, it has measurable
nonlinearity. Given the linear and nonlinear responses, the anisotropy in the RD
and TD expressed through R-values remains constant, as seen in Figure 2 (right),
while the R-value evolves for tensile tests in the 45◦ orientation.

This is consistent with the assumptions stated in the introduction that no rotation
of the anisotropy axes will occur for the loading along the RD or TD. As shown
in Figure 3, Stout and Kocks have obtained similar R-value evolution on a cube of
copper with rolling texture [Kocks et al. 1998].

It is evident that R45 evolves with the strain. However, the current industry
practice is to measure an R-value at a certain longitudinal strain (15–20%) and
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Figure 3. R-value measurements for rolled copper in compres-
sion experiments. Particularly R45 shows significant changes.
>From [Kocks et al. 1998].

use it as a constant. A suitable modeling method for the anisotropy evolution is
addressed by Choi et al. [2006a].

3. Experimental setup

Experiments were performed on an MTS Model 810 servohydraulic load frame
with an Instron 8500 digital controller. Figure 4 shows the experimental setup.
The controller was operated in displacement control mode. Load was measured
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Figure 4. Schematic diagram of the experimental setup.

from a 25 MT load cell and was subsequently converted to true stress. For some
experiments, strain gages were used to verify the accuracy of the DIC strain mea-
surement.

Large strains were measured using DIC, the required images being acquired by
a Pulnix TMC-9701 digital CCD camera with a resolution of 768 × 472 pixels at
a continuous rate of 4 frames per second. To minimize intensity change during
the experiment, a Schott KL1500 directed light source was used to illuminate the
specimen.

Specimens used in the experiments were cut from sheet metal at 0◦, 45◦, and
90◦ to the RD direction. Specimens were 1 inch wide and 0.039 inch (1 mm) thick.
Since the view of the CCD camera is fixed and only the lower grip of the load frame
moves, the region of interest has significant downward displacement. Therefore,
the size of the specimen must be carefully chosen to ensure that a significant portion
of the originally undeformed image remains inside the camera’s view for all sub-
sequent deformation. For this reason, 1.5 inch gage length specimens were used.
FEM simulations were performed to confirm that the region where strains were
measured was far enough away from the grips to avoid grip effects. The results of
these FEM simulations are shown in Figure 5(a). By comparing transverse strain
versus longitudinal strain curves for four locations along the specimen centerline —
see Figure 5(a) — no significant differences were observed in the curves shown in
Figure 5(b). Hence, end effects do not influence the region of interest.

The DIC method works best when the starting image contains a random pattern
that can carry the specimen deformation exactly. To create such a random pattern
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(a) (b)

Figure 5. FEM validation of specimen dimensions to avoid grip
effects: (a) strain measurement locations; (b) computed strains.

on the current specimens, spray paint was used. First white paint provided a bright
background and then black spray paint gave a high contrast speckle pattern. The
black paint was applied by spraying parallel to the specimen surface and letting
paint droplets fall randomly on the specimen. Examples of the random pattern
before and after deformation are shown in Figure 6.

The DIC program was set to measure incremental transverse and longitudinal
strain between subsequent images. For random patterns such as the one shown in
Figure 6, the best subset size was 100 × 100 pixels, corresponding to 4.2 × 4.2 mm.

                                                                                                                              

(a) (b)

Figure 6. The random pattern sprayed on the specimen and cap-
tured by the CCD camera (a) before and (b) after deformation. The
small rectangles highlight a 100 × 100 pixel subset of the image
that has been deformed.
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Figure 7. (a) Comparison of stress-strain measurement by DIC
(symbols) and strain gauge (lines) for tensile test on RD spec-
imens; (b) comparison of strain measurement by DIC and NU-
MISHEET 2002 data.

The displacement was measured at 25 equally spaced points in the subset. Since the
subset used for correlation at the beginning of the loading has undergone significant
translation by the end the deformation, it was necessary to devise an algorithm to
track the approximate position of each subset used for correlation. Total strain
was obtained by adding the incremental strains. In order to reduce measurement
error, the correlation was performed on all 25 points in the subset, and then strain
values that were beyond one standard deviation were eliminated. The average
strain was then determined from the remaining strain values. The original DIC
program was written in FORTRAN and C by Vendroux and Knauss [1998]. The
modifications to track the overall displacement of the subsets and to treat the strain
measurements statistically were done by the authors. The accuracy of the DIC
method for strain measurements is demonstrated by comparison with a strain gage
for smaller strains and with the data provided by NUMISHEET 2002 [Yang et al.
2002] for larger strains. The results are shown in Figure 7. The strain measurement
with DIC has poor resolution at lower strains but shows quite good correlation with
the NUMISHEET 2002 data at higher strains. Usually it is difficult to measure
large strains with a strain gage, but DIC can measure 25–30% strains with relative
ease. The limitation at strains greater than 30% is related to the loss of adherence
of the applied speckle pattern to the specimen surface.
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4. Hardening model

The procedure for modeling isotropic, kinematic and rotational hardening is rather
complex. Since this article is mainly concerned with experimental findings, the
theory is only briefly introduced in this section. For a more detailed description
of the applied RIK (rotational-isotropic-kinematic) hardening model the interested
reader is referred to [Choi et al. 2006a].

For the isotropic hardening, we chose a description based on [Chaboche 1989],
modified to improve the agreement between experiments and predictions for tensile
stress-strain curves [Chun et al. 2002]. The magnitude of the yield stress corre-
sponding to isotropic hardening is described as

σ̄y = σ̄0 + K (1 − eNs)−
c1

b1
(1 − eb1s)− c2s,

where s is the effective plastic strain, σ̄0 is the initial yield stress, K and N are fit
parameters of the hardening curve in monotonic loading in RD, and c1, c2, b1 are
parameters associated with the kinematic hardening and coupling the isotropic to
the kinematic hardening.

A related kinematic hardening model with permanent softening, similar to that
of [Armstrong and O. 1966], is defined with different backstress terms whose evo-
lution equations are given by

α∇

1 =
c1

β
(τ − α)ṡ − b1ṡα1, α∇

2 = k
c2

β
(τ − α)ṡ, (2)

where τ denotes the Kirchhoff stress, α = α1 + α2 is total backstress of the back-
stress components α1,α2, and the variable β is defined by

β =

√
2
3

∥∥∥∥∂φ∂τ
∥∥∥∥.

The Oldroyd rate ( · )∇ is applied for the stress and backstress evolution equations
as suggested in [Haupt and Tsakmakis 1986] and [Han et al. 2003].

The rotational hardening is expressed by the rotation of the symmetry axes of
anisotropy, eφi , defining the orientation of the anisotropic yield function φ. The
rotation of the symmetry axes is described by

ėφi = θφeφi ,

where the constitutive spin θφ is implicitly determined by the material spin w

describing rigid body rotations and the plastic spin ωp, in the following manner:

θφ = w − ωφp.
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With the introduction of the plastic spin into the model, the anisotropy axes
are allowed to rotate relative to the rigid body rotations. Several expressions have
been suggested in the literature to describe plastic spin, for example, [Dafalias
1993; 2000; 2001]. Here we consider the expressions suggested in [Han et al.
2002], which describe the experimentally determined rotations of [Kim and Yin
1997] fairly well with

ωφp =
a
σ̄y

tan(ϑ)(τ ε̇ p − ε̇ pτ ), (3)

where a is the only material parameter needed to describe the plastic spin. This
parameter can be identified with the evolution of R45, the R-value for specimens
at 45◦ to the RD.

Assuming that the anisotropy axes remain orthogonal during deformation, all
these components can be incorporated into the yield function

8= φ− σ̄ 2
y ,

where φ = (τ − α) · Kφ(τ − α) characterizes a Hill-type yield surface with the
fourth order tensor Kφ reflecting the anisotropy and the total backstress is obtained
as α = α1 +α2. For plane stress problems the initial matrix form of the fourth order
tensor Kφ can be given in vector notation as

P0
=

 1 −β12 0
−β12 β22 0

0 0 β66

 , τ =

τ11

τ22

τ12

 , α =

α11

α22

α12

 ,
where the components are related to R-values through

β12 =
R0

1 + R0
, β22 =

R0(1 + R90)

R90(1 + R0)
, β66 =

(R0 + R90)(1 + 2R45)

R90(1 + R0)
;

see [Valliappan et al. 1976].
The mechanical tests and texture analysis illustrated in [Boehler and Koss 1991]

indicate that the rotation of the anisotropy axes can be related to texture develop-
ment and rotation of grains. The grain rotation in turn will also affect the back-
stresses and kinematic hardening as back stresses are usually related to dislocation
substructures. The mechanisms of backstresses are however not very well under-
stood. One difficulty may be seen in the different length scales backstresses are
associated with; for example, Barton et al. [1999] pointed out that Bauschinger
effects can in part be explained by texture development but it is also well known
that grain boundaries, dislocation cells [Hughes et al. 2003] and dislocation struc-
tures within grains and cells [Feaugas 1999] can have significant influence on the
kinematic hardening.
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Here the rotation of anisotropy axes is assumed to have an influence on the
backstress and an interrelation is suggested here by assuming that the function k
in equation (2) depends on the loading directions and anisotropy axes; specifically,
k is suggested to have the form

k(ϕ, ϑ)=

{
1 + κϑ for initial loading, ϕ ≤ ±90◦,

κϑ for reversal loading, ϕ >±90◦,
(4)

where ϑ is the angle between the direction of the symmetry axes and direction of
straining as shown in Figure 8 and ϕ is the angle between the directions of the
previous and current loadings. The angle ϑ ∈ (0, π/4) is defined by

ϑ = min
(

cos−1 eφi · n

|eφi | |n|

)
,

where eφi is the direction vector of the anisotropy axes and n is one of the eigen-
vectors of the strain tensor closer to eφi , and angle ϕ is defined by

ϕ = cos−1 ε̇∗
p · ε̇ p∣∣ε̇∗
p

∣∣∣∣ε̇ p
∣∣ ,

where ε̇∗
p is the plastic strain increment of the previous load step and ε̇ p is the

plastic strain increment of the current loading step. Other approaches where the
interaction between kinematic and rotational hardening has been considered are
found in [Dafalias 1993; 1998; Tsakmakis 2004].

9

RD

TD

eφ1
eφ2

ϑ

η

ε∗

Figure 8. Definition of the angles used in formulation: 9 is the
initial orientation to the RD, η the rotation angle of the symmetry
axes of anisotropy, and ϑ =9−η the difference between the major
strain direction and the symmetry axes.
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The nonlinear kinematic hardening parameters c1, b1, and c2 in equations (2) are
identified by using an inverse method, which optimizes the parameters using the
results of three-point bend experiments [Zhao and Lee 1999; 2000]. If rotational
hardening is ignored, a and κ can be set to zero. Then the RIK hardening model
reduces to Chun’s ANK model [Chun et al. 2002]. The hardening model reduces
to Chaboche’s model [1989] if c2 is set to zero, and to a regular isotropic hardening
model if c1 and b1 are set to zero. It should be noted that the description of k in
Equation (4) could theoretically result in a discontinuous response. In numerical
tests however such discontinuities have never occurred — neither in implicit nor
explicit finite element simulations [Choi et al. 2006a; 2006b].

5. Experimental results and material parameters

The experimental results, the determination of the plastic spin parameters, and
the corresponding predictions are discussed in this section. All experimental re-
sults presented in this paper are averages over three different tensile tests. The
investigated materials are mild steels for deep drawing quality (DDQ) and drawing
quality (DQ) and a high strength steel (HSS). The results for DDQ and DQ are
shown in Figure 9. The transverse strain values are fit to the longitudinal strain
by εw = {a ln(εl)+ b}εl . The procedure to determine the plastic spin parameters
will be described for the DDQ steel material in the following. The determination
of the plastic spin parameters involves the results of experiments described in the
previous sections or, alternatively, experimental data given in the proceedings of
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strain measurement for 45◦ orientation tensile tests: (a) DDQ;
(b) DQ.
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Material Elastic Anisotropy Isotropic Kinematic Rotational

DDQ
(Exp.)

E = 210 GPa
ν = 0.3

R0 = 2.137
R45 = 0.93
R90 = 1.508

σ0 = 152.22 MPa
K = 222.01 MPa
N = −7.87

c1 = 3.0 GPa
b1 = 300
c2 = 70.0 MPa

a = −155
κ = 50.0

DDQ
(NS2002)

E = 210 GPa
ν = 0.3

R0 = 2.722
R45 = 1.474
R90 = 2.169

σ0 = 152.0 MPa
K = 235.81 MPa
N = 9.23

c1 = 3.0 GPa
b1 = 300
c2 = 70.0 MPa

a = −57
κ = 1.8

DQ
E = 180 GPa
ν = 0.3

R0 = 1.60
R45 = 1.010
R90 = 1.46

σ0 = 198.0 MPa
K = 242.47 MPa
N = 9.95

c1 = 3.3 GPa
b1 = 220
c2 = 103 MPa

a = −100
κ = 1.5

HSS
E = 210 GPa
ν = 0.3

R0 = 0.832
R45 = 1.185
R90 = 0.560

σ0 = 332.22 MPa
K = 430.55 MPa
N = 1.7

c1 = 3.0 GPa
b1 = 150
c2 = 80 MPa

a = 0
κ = 0

Table 1. Material properties of RIK hardening model for DDQ,
DQ and HSS.

NUMISHEET 2002. The experimental results for the other materials are shown
with fitted curves, and the parameters for all materials are summarized in Table 1.

DDQ (Experiment with DIC). The DDQ sheet metal tested in the experiments
is the same material as in the NUMISHEET 2002 benchmark problems [Yang
et al. 2002]. The measured transverse strain versus longitudinal strain curves for
the RD, TD and 45◦ to RD direction are shown in Figure 10, together with the
corresponding flow curves. Also shown in Figure 10(b) are simulation results of
conventional models without rotational hardening. When the rotational evolution
of the anisotropy is not considered and R45 is fixed at a value measured between 0%
and 5% strain, the strain-strain relation for the 45◦ orientation prediction is higher
than the experimental results. The estimated flow curve for the 45◦ orientation
differs from the experimental results after approximately 5% strain. The ratio of
stress evolution between 0% and 5% strain correlates well with the experiment. For
larger deformations, better results can be obtained when an averaged R45 value is
applied which is computed from the linear fit of the strain-strain relation from 0%
to 20% strain.

Comparisons of experiments and predictions of a conventional hardening model
using the averaged R45 value are given in Figure 11. Even though the predicted
stress level is much closer to the experimental result than the prediction using initial
anisotropy values in Figure 10(b), the rate of stress evolution does not correlate with
the experimental results for the whole strain range.
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With conventional hardening models, the anisotropy of the yield function re-
mains unchanged during the deformation process. Therefore, the evolution of the
anisotropy in 45◦ to the RD cannot be predicted with qualitatively or quantitatively
satisfying accuracy. As can be seen in Figure 12(a), this evolution of R45 value
is present for DDQ material and can be captured with the appropriate rotational
hardening parameter. The corresponding flow stresses of tensile tests in the 45◦ to
RD evolve with an abrupt change in stress as the symmetry axes rotate, obeying the
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Figure 10. Comparing simulation and experimental results of the
initial R-value for 45◦ orientation: (a) in transverse strain versus
longitudinal strain; (b) in the flow stresses.
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Figure 12. Sensitivity of plastic spin parameter: (a) R45 evolu-
tion; (b) flow stresses of 45◦ orientation. The softening due to the
rotational hardening will be compensated for by backstress.

plastic spin description for the rotation of anisotropy axes. The corresponding flow
stress results of experiments and predictions with various values for the parameter
a are shown in Figure 12(b).
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Figure 13. Simulation with the RIK hardening model and com-
parison with experimental results: (a) transverse strain versus lon-
gitudinal strain, (b) flow stresses in each orientation. For the 45◦

orientation the flow stress loss due to the rotational hardening is
recovered by the backstress.
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The diagrams related to stretch tests in RD and TD are omitted because there
is no rotation in these two directions and the predictions in these directions are
identical to those without rotational hardening. A plastic spin parameter of a =

−155 is found to be the best fit for the experimental R45 data in Figure 12(a). The
differences between experimental and computed flow stress curves in Figure 12(b)
are then corrected by adding kinematic hardening through equation (4). As shown
in Figure 13, kinematic hardening improves the fit to the experimental flow stress
curves without changing the slope of the strain-strain curves.

DDQ (NUMISHEET 2002 Data). Figure 1 showed the flow stress versus strain
curves of the DDQ material from NUMISHEET 2002, and Figure 2 the transverse
strain versus longitudinal strain curves. As discussed on page 304, conventional
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Figure 14. Results for DDQ mild steel using data from NU-
MISHEET 2002: (a) transverse strain versus longitudinal strain;
(b) flow stress curves in each orientation; (c) R45 evolution.
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models without rotational hardening overestimate the flow stress by applying the
average R-value for the 45◦ orientation stretch tests.

Figure 14 plots the predictions obtained with the RIK hardening model together
with the experimental results. Parts (a) and (b) show there is good agreement in
the case of transverse strain versus longitudinal strain and stress versus strain. By
applying a plastic spin parameter, a = −155, the change of R45 is reasonably well
represented, as shown in Figure 14(c).

DQ mild steel. In addition to DDQ mild steel, drawing quality (DQ) mild steel was
also examined. The same procedure applied to DDQ mild steel was performed for
DQ mild steel. The strain-strain, strain-stress at 45◦ to RD and strain-R45 results
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Figure 15. Results for DQ mild steel: (a) Transverse strain versus
longitudinal strain; (b) Flow stresses of the RD, 45◦ and the TD;
(c) R45 evolution.
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from experiments and simulations are illustrated in Figure 15. Experiments and
predictions show excellent agreement for a wide range of applied strains.

HSS. High strength steel (HSS) is a material widely used in the automotive in-
dustry and, like the mild steels discussed above, it is subject to large strain in
the forming processes. This material was also tested for rotational hardening. In
contrast to the mild steels described earlier, HSS does not show much rotation,
since its R45-values do not significantly change during deformation. Consequently,
the spin parameter is set to zero for this material, which corresponds to anisotropy
axes aligned with the material axes. Experimental and computational results are
compared in Figure 16.

6. Discussion

By comparing the R-values of the different materials, it can be concluded that only
the HSS material has a R45-value higher than the R-values in RD and TD. Thus, the
HSS material in the 45◦ orientation does not exhibit rotation of the anisotropy axes
toward the straining direction as in the DDQ and DQ materials. Furthermore, for
HSS, the flow curves are actually modeled with good agreement by applying initial
R-values determined from the transverse strain versus longitudinal strain curves.
Therefore, it may be assumed that the rotational hardening in HSS is very small.
For these tests, the anisotropy of HSS hardly evolves with the deformation. This
may be due to a pronounced texture that is not severely affected by the deformation
of the tensile tests. To verify this interpretation, we recall the results of Boehler
and Koss [1991] and Bunge and Nielsen [1997] who determined symmetry axes
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Figure 16. Results for HSS: (a) transverse strain versus longitudi-
nal strain; (b) flow stresses of the RD, 45◦, and the TD.
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by texture analysis via orientation distribution function (ODF). In the first of these
references, significant rotations of the symmetry axes for mild steel were observed
in pole figures, whereas in the second, the rotation of the symmetry axes is quite
small for cold rolled aluminum, where the texture is quite pronounced. The same
may be true for HSS; this would have to be confirmed by monitoring the texture.

The R-values are used to compare the anisotropy of materials in a quantitative
manner. The R-values measured in tensile experiments are useful for predicting
the rotational evolution of anisotropy. On the other hand, R̄ and 1R, which are
defined as

R̄ =
R0 + 2R45 + R90

4
, 1R =

R0 − 2R45 + R90

2
,

are also used to judge the formability (R̄) and the earing pattern (1R) in applied
problems like the circular cup drawing. Formability increases as R̄ increases. For
mild steel with rotational hardening, R̄ changes with respect to R45 during defor-
mation, in agreement with experimental results. Therefore, it may be concluded
that models with rotational hardening can describe the formability better than non-
rotational hardening models.

The plastic spin in sheet metals implicitly defines the planar rotation of the sym-
metry axes of anisotropy, and 1R is known to be related to the planar anisotropy.
Therefore, there must be a relationship between the parameters of the plastic spin
and the planar anisotropy 1R. The plastic spin and planar anisotropy values for
the tested materials are shown in Table 1. As shown in Figure 17, there is evidence
that the plastic spin may be linearly related to 1R. Detailed experimental deter-
mination of the rotation of the symmetry axes of anisotropy would help to verify
these results. In Figure 17 the comparison between the plastic spin parameter
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Figure 17. Plastic spin parameter a versus planar anisotropy 1R.
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using the measured data of the rotation of the symmetry axes [Kim and Yin 1997]
shows good correlation. Therefore, it may be possible to determine the unknown
plastic spin parameter from the R-values (1R) for mild steel. More experiments
are required to verify this methodology for other alloys and crystal structures.

7. Concluding remarks

For two mild steels and a high strength steel sheet metal, experimental results of
conventional flow stress curves and transverse versus longitudinal strain curves of
two orientations relative to the RD have been presented. Assuming that rotation
of the anisotropy axes can describe the evolution of anisotropy qualitatively, the
material parameters for the plastic spin and for correcting the kinematic harden-
ing description can be identified from tensile tests. Using the DIC method, it is
relatively easy to measure large strains. The DIC method was applied to generate
experimental transverse strain versus longitudinal strain for simple tensile tests.
The evolution of anisotropy is then correlated with the slope of the transverse strain
versus longitudinal strain curve. Only the plastic spin parameter allows a change
to the slope of the computed transverse strain versus longitudinal strain curve. The
flow stress results can further be improved by incorporating the kinematic hard-
ening. The parameters for the RIK model can be determined by three-point bend
tests [Zhao and Lee 1999; 2001] and tensile tests for three directions: RD, TD, and
45◦. With the aid of the rotational evolution of the anisotropy axes, the RIK model
can essentially capture anisotropic plastic hardening behavior with Hill’s quadratic
yield criteria. For mild steel, a linear relationship between the planar anisotropy
1R and the plastic spin parameter a has been determined.
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THE ESHELBY TENSOR IN NONLOCAL ELASTICITY AND IN
NONLOCAL MICROPOLAR ELASTICITY

MARKUS LAZAR AND HELMUT O. K. KIRCHNER

The Eshelby tensor is formulated for anisotropic linear nonlocal elasticity and
nonlocal micropolar elasticity in a nonhomogeneous medium. The divergence of
this tensor gives the configurational forces on geometric and physical defects in
such a medium. Some examples of the Peach–Koehler force and the Mathison–
Papapetrou force between dislocations and/or disclinations are given.

1. Introduction

We consider anisotropic nonlocal elasticity and anisotropic nonlocal micropolar
elasticity for a medium of arbitrary inhomogeneity. Such nonlocal theories can
predict dispersion relations in the entire Brillouin zone; they suppress nonphysical
singularities: crack tip singularities do not occur, and the stresses of dislocations
are finite [Eringen 2002]. These results are features of linear nonlocal theories
which cannot be obtained in linear elasticity and linear micropolar elasticity. They
agree very well with those predicted by atomistic theories and experiments.

The aim of this paper is to derive the Eshelby tensor [Eshelby 1951;1975] in the
theories of nonlocal elasticity and nonlocal micropolar elasticity. This represents
a vast generalization of this tensor written for local, linear elasticity by [Morse
and Feshbach 1953]. The Eshelby tensor, which is the static energy-momentum
tensor, is of fundamental importance in any field theory, and in particular in the
field theory of generalized elasticity. The divergence of the Eshelby tensor gives
the configurational forces on the sources of the field. Few results are known about
the Peach–Koehler force and conservation laws in nonlocal elasticity [Kovács and
Vörös 1979; Vukobrat and Kuzmanović 1992; Lazar 2005]. This is one motivation
for the investigations in the present paper. We will derive all configurational forces
felt by topological defects (dislocations and disclinations), physical sources (body
force, body moment) and all others due to inhomogeneities in nonlocal elasticity
and nonlocal micropolar elasticity. We calculate the J -integral for these nonlocal
theories, relevant in fracture mechanics of nonlocal materials. In addition, we
will present some examples of interaction forces between dislocations as well as
disclinations in nonlocal theories.

Keywords: Eshelby tensor, J-integral, nonlocal elasticity.
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2. Nonlocal elasticity

The goal of this section is the construction of the Eshelby tensor and the related con-
figurational forces for nonlocal elasticity. In nonlocal elasticity the elastic energy
is given by [Kröner and Datta 1966]

W =
1
2

∫ ∫
Ci jkl(x, x′)βi j (x)βkl(x′) d3x d3x′, (2.1)

where Ci jkl(x, x′) is the tensor of nonlocal elastic constants and βi j (x) denotes the
elastic distortion. For simplicity, we assume a linear relationship. The nonlocal
constitutive law for full anisotropy reads:

ti j (x)=

∫
Ci jkl(x, x′)βkl(x′) d3x′. (2.2)

The tensor of nonlocal elastic constants possesses the symmetry

Ci jkl(x, x′)= Ckli j (x′, x). (2.3)

The equilibrium condition is given by

∂ j ti j (x)+ fi (x)= 0, (2.4)

where f (x) denotes the body force in nonlocal elasticity. The incompatibility
condition reads

ε jkl∂kβil(x)= αi j (x). (2.5)

Here αi j is the dislocation density tensor, divergence free in the second index.
The field (2.4) and the incompatibility condition (2.5) have the same form as in
local elasticity; the generalization to nonlocal elasticity occurs through Hooke’s law
(2.2). By multiplying Equation (2.5) with εmnj one finds for the elastic distortion

∂mβin(x)− ∂nβim(x)= εmnjαi j (x). (2.6)

If no dislocations are present, the elastic distortion is just the gradient of a displace-
ment ui (x): βi j (x)= ∂ j ui (x).

Following the procedure of [Kirchner 1999], we construct the Eshelby (or static
energy-momentum) tensor for nonhomogeneous nonlocal elasticity. Let us take an
arbitrary infinitesimal functional derivative δW of the elastic energy density. From
Equation (2.1) we get

δW =
1
2

∫ ∫ {
Ci jkl(x, x′)[δβi j (x)]βkl(x′)+ Ci jkl(x, x′)βi j (x)[δβkl(x′)]

+[δCi jkl(x, x′)]βi j (x)βkl(x′)
}

d3x d3x′. (2.7)
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Using the symmetry (2.3) and Hooke’s law (2.2) for nonlocality, there remains

δW =

∫
ti j (x)[δβi j (x)] d3x +

1
2

∫ ∫
βi j (x)[δCi jkl(x, x′)]βkl(x′) d3x d3x′. (2.8)

Since we want to obtain configurational forces, we specify the functional derivative
to be translational:

δ = (δxk)∂k . (2.9)

On the left hand side of Equation (2.7) we write

δW =

∫
δw(x) d3x

=

∫
[∂kw(x)](δxk) d3x

=

∫
∂i [w(x)δik](δxk) d3x, (2.10)

with the energy density

w(x)=
1
2 ti j (x)βi j (x). (2.11)

On the right hand side of Equation (2.7) we obtain with (2.3)

δW =

∫ {
ti j (x)[∂kβi j (x)− ∂ jβik(x)] + ti j (x)[∂ jβik(x)]

}
(δxk) d3x

+
1
2

∫ ∫
βi j (x)[∂kCi jmn(x, x′)]βmn(x′)(δxk) d3x d3x′, (2.12)

where the second and third terms have been subtracted and added. The purpose is
to obtain the square bracket with the meaning of Equation (2.6). The third term
may be written with (2.4) as

ti j (x)[∂ jβik(x)] = ∂ j [ti j (x)βik(x)] − [∂ j ti j (x)]βik(x)
= ∂ j [ti j (x)βik(x)] + fi (x)βik(x). (2.13)

By equating (2.10) and (2.12), using Equations (2.11) and (2.13) we obtain the
expression∫
∂i

(
w(x)δik−tli (x)βlk(x)

)
d3x =

∫ (
εk jl ti j (x)αil(x)+ fi (x)βik(x)

+
1
2

∫
βi j (x)[∂kCi jmn(x, x′)]βmn(x′)d3x′

)
d3x

= Jk . (2.14)
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The second integral contains the sources of the elastic fields: the dislocation density,
the body force and the inhomogeneity of the material. The integrand of the first
integral in Equation (2.14) is the divergence of the Eshelby tensor of nonlocal
elasticity

Pki (x)=
[
w(x)δik − tli (x)βlk(x)

]
. (2.15)

It may be transformed into a surface integral

Jk =

∫
Pki (x)ni d2x. (2.16)

Equation (2.16) is the J -integral in nonlocal elasticity. Notice that in terms of
energy, stresses and distortions, it is of the same form as in local elasticity. This is
because the field (2.4) and the incompatibility condition (2.5) have the same form
in local and nonlocal elasticity. The configurational force density is the divergence
of the Eshelby tensor

∂i Pki = Fk (2.17)

with

Fk = εk jl ti j (x)αil(x)+ fi (x)βik(x)

+
1
2

∫
βi j (x)[∂kCi jmn(x, x′)]βmn(x′) d3x′. (2.18)

The first term is the configurational force on a dislocation density like the Peach–
Koehler force in local elasticity [Peach and Koehler 1950]. We have obtained the
Peach–Koehler force generalized to nonlocal elasticity. The second term is the con-
figurational force on a body force fi (x) in presence of an elastic distortion βik(x)—
it is the nonlocal generalization of the Cherepanov force [Cherepanov 1981]. The
third term is the material force on the inhomogeneity ∂kCi jmn(x, x′) in nonlocal
elasticity—the nonlocal generalization of the Eshelby force [Eshelby 1951].

For a homogeneous defect-free and source-free material the Eshelby tensor
(2.15) reduces to

Pki (x)=
[
w(x)δik − tli (x)∂kul(x)

]
, (2.19)

which is divergenceless. Then the J -integral (2.16) is zero.
On the other hand, if we use the dislocation density of a single straight disloca-

tion

αi j = b′

i n j δ(x − x ′)δ(y − y′), (2.20)
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we obtain the expression for the Peach–Koehler force in nonlocal elasticity as fol-
lows:

FPK
k = εk jlb′

i nl ti j . (2.21)

Here bi is the Burgers vector and n j the tangent line element of the dislocation,
in agreement with the formula given by [Kovács and Vörös 1979]. These authors
did not use the concept of the Eshelby tensor and configurational force in their
calculation. They gave just a formal derivation of Equation (2.21).

From invariance arguments it follows that in an isotropic nonlocal medium the
tensor of nonlocal elastic moduli must be of the form

Ci jkl(x, x′)=
{
λδi jδkl +µ(δikδ jl + δilδ jk)

}
G(|x − x′

|), (2.22)

where G(|x − x′
|) is called the nonlocal kernel [Eringen 2002].

In the following, we choose the two-dimensional nonlocal kernel (see, for ex-
ample, [Eringen 2002])

G(|x − x′
|)=

1
2πε2 K0

(√
(x − x ′)2 + (y − y′)2

ε

)
, ε ≥ 0, (2.23)

which is the Green function of the two-dimensional Helmholtz-equation and ε is
the parameter of nonlocality. Here Kn denotes the modified Bessel function of the
second kind and n is the order of this function.

With Equation (2.22) we obtain for the Peach–Koehler force of two parallel
screw dislocations (nz = 1)

FPK
r = b′

ztzϕ, (2.24)

where

tzϕ =
µbz

2π
1
r

{1 −
r
ε

K1(r/ε)}, (2.25)

with r =
√

x2 + y2. Due to the nonlocal theory the 1/r -singularity has disappeared.
This force is zero at r = 0. It has an extremum value of 0.399µb′

zbz/[2πε] at
r ' 1.114ε (see Figure 1).

The Peach–Koehler force between two parallel edge dislocations has been found
by [Lazar 2005] in the framework of nonlocal elasticity. Unlike in classical elastic-
ity, both for screw and edge dislocations the Peach–Koehler forces are finite and
nonsingular in nonlocal elasticity.

3. Nonlocal micropolar elasticity

The aim of this section is to derive the Eshelby tensor and the corresponding
configurational forces for nonlocal micropolar elasticity, another generalization of
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Figure 1. Peach–Koehler force FPK
r between two screw disloca-

tions. FPK
r is given in units of µb′

zbz/[2πε]. The dashed curve
represents the classical result.

classical elasticity. For linear anisotropic nonlocal micropolar elasticity, the strain
energy density is given as follows [Eringen 2002]

W =
1
2

∫ ∫ {
γi j (x)Ci jkl(x, x′)γkl(x′)+ κi j (x) Ai jkl(x, x′)κkl(x′)

+ 2γi j (x) Bi jkl(x, x′)κkl(x′)
}

d3x d3x′, (3.1)

where γi j (x) and κi j (x) denote the relative distortion tensor and the wryness tensor,
respectively. The nonlocal constitutive moduli possess the symmetries

Ai jkl(x, x′)= Akli j (x′, x), Ci jkl(x, x′)= Ckli j (x′, x). (3.2)

In nonlocal micropolar elasticity, the force stress tensor ti j (x) and the couple stress
tensor mi j (x) are given in integral form by the nonlocal constitutive relations:

ti j (x)=

∫ {
Ci jkl(x, x′)γkl(x′)+ Bi jkl(x, x′)κkl(x′)

}
d3x′, (3.3)

mi j (x)=

∫ {
Bkli j (x, x′)γkl(x′)+ Ai jkl(x, x′)κkl(x′)

}
d3x′. (3.4)

The force and the moment equilibrium conditions read

∂ j ti j (x)+ fi (x)= 0, (3.5)

∂ j mi j (x)− εi jk t jk(x)+ li (x)= 0, (3.6)
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where fi (x) and li (x) are the body force and the body couple, respectively. The
incompatibility conditions in micropolar elasticity [Eringen 1999] are the defini-
tions for the dislocation density tensor αi j (x) and the disclination density tensor
2i j (x):

ε jkl [∂kγil(x)+ εikmκml(x)] = αi j (x), (3.7)

ε jkl∂kκil(x)=2i j (x). (3.8)

Again, the form of Equations (3.5)–(3.8) is the same as in local micropolar elastic-
ity. If no dislocations and disclinations are present, the micropolar strain quantities
are of the form: γi j (x) = ∂ j ui (x)+ εi jkϕk(x) and κi j (x) = ∂ jϕi (x). Here ϕk(x)
denotes the micro-rotation.

Using the same procedure for the calculation of the Eshelby tensor in nonlocal
micropolar elasticity as in Section 2 for the Eshelby tensor in nonlocal elasticity,
we obtain

Pki (x)=
[
w(x)δik − tli (x)γ̄ lk(x)− mli (x)κlk(x)

]
, (3.9)

where γ̄ lk = γlk − εlkmϕm and

w(x)=
1
2 ti j (x)γi j (x)+ 1

2 mi j (x)κi j (x). (3.10)

Equation (3.9) is the Eshelby tensor for nonlocal micropolar elasticity. Using the
Noether theorem, in fact the translational invariance, it is the generalization of
the Eshelby tensor for micropolar elasticity given by [Kluge 1969] to nonlocality
and, on the other hand, it is the generalization of the Eshelby tensor for nonlocal
elasticity derived in Section 2 to micropolarity. With Equation (3.9) we obtain a
surface integral

Jk =

∫
Pki (x)ni d2x. (3.11)

Equation (2.16) is the J -integral in nonlocal micropolar elasticity. The divergence
of the Eshelby tensor (3.9) gives the configurational force density:

Fk(x)= ∂i Pki (x), (3.12)

with

Fk(x)= εk jl ti j (x)αil(x)+ εk jlmi j (x)2il(x)
− εk jl t j i (x)κP

li (x)+ fi (x)γ̄ ik(x)+ li (x)κik(x)

+
1
2

∫ {
γi j (x)[∂kCi jmn(x, x′)]γmn(x′)+ κi j (x)[∂k Ai jmn(x, x′)]κmn(x′)

+ 2γi j (x)[∂k Bi jmn(x, x′)]κmn(x′)
}

d3x′. (3.13)
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It can be seen that Equation (3.13) is a sum of several configurational force densities
in nonlocal micropolar elasticity:

(i) the Peach–Koehler force density on a dislocation density αil(x) in the pres-
ence of the force stress ti j (x) [Kluge 1969];

(ii) the force density on a disclination density 2il(x) in the presence of the couple
stress mi j (x), which is called a generalized Mathisson–Papapetrou type force
density [Gairola 1981; Maugin 1993; Hehl et al. 1995];

(iii) a Cherepanov force density on a body force fi (x) in the presence of a distor-
tion γ̄ ik(x);

(iv) a force density on a body couple li (x) in presence of the elastic wryness
κik(x);

(v) a force density on the force stress tj i (x) in presence of the plastic wryness
κP

li (x);

(vi) three force densities on inhomogeneities: ∂kCi jmn(x, x′), ∂k Ai jmn(x, x′) and
∂k Bi jmn(x, x′).

For a homogeneous defect-free and source-free micropolar material, the Eshelby
tensor (3.9) simplifies to

Pki (x)=
[
w(x)δik − tli (x)∂kul(x)− mli (x)∂kϕl(x)

]
, (3.14)

which is divergenceless. Then the J -integral (3.11) is zero. The formula (3.14) is
the nonlocal generalization of the Eshelby tensor for micropolar elasticity given
by [Lubarda and Markenscoff 2003]. The corresponding Eshelby tensor for finite
local polar elasticity has been given by [Maugin 1998].

If we use the dislocation density tensor of a straight dislocation and the discli-
nation density tensor of a straight disclination

αi j = b′

i n j δ(x − x ′)δ(y − y′), (3.15)

2i j =�′

i n j δ(x − x ′)δ(y − y′), (3.16)

we obtain for the Peach–Koehler force and the Mathisson–Papapetrou force, re-
spectively,

FPK
k = εk jlb′

i nl ti j , (3.17)

FMP
k = εk jl�

′

i nlmi j . (3.18)

Here �i denotes the Frank vector (the topological charge of a disclination).
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For isotropic nonlocal micropolar elasticity the nonlocal elastic moduli must be
of the form

Ci jkl(x, x′)=
{
λδi jδkl+µ(δikδ jl+δilδ jk)+µc(δikδ jl − δilδ jk)

}
G(|x−x′

|), (3.19)

Ai jkl(x, x′)=
{
αδi jδkl+β(δikδ jl+δilδ jk)+γ (δikδ jl−δilδ jk)

}
G(|x−x′

|), (3.20)

Bi jkl(x, x′)=0, (3.21)

in terms of six material constants λ, µ, µc, α, β, γ , characteristic for the medium
under consideration. Again, G(|x − x′

|) is the nonlocal kernel. If we use the six
material constants of micropolar elasticity, two characteristic lengths l and h can
be defined by [Nowacki 1986]

l2
=
(µ+µc)(β + γ )

4µµc
, h2

=
α+ 2β

4µc
. (3.22)

In the following, we use the two-dimensional nonlocal kernel (2.23). Then the
Peach–Koehler force for two parallel screw dislocations in a micropolar medium
is

FPK
r = b′

ztzϕ, (3.23)

with [Lazar et al. 2005]

tzϕ =
bz

2π
1
r

{
µ

[
1 −

r
ε

K1(r/ε)
]
+

µc h2

h2 − ε2

[ r
h

K1(r/h)−
r
ε

K1(r/ε)
]}
. (3.24)

The force (3.23) is nonsingular. It is zero at r = 0 and has an extremum value which
depends on the coefficients ε and h (see Figure 2). In addition, it can be seen that
the Peach–Koehler force between two screw dislocations in nonlocal micropolar
elasticity is slightly different from the force in nonlocal elasticity (2.24).

Another interesting situation is the interaction of two parallel wedge disclina-
tions. The Mathisson–Papapetrou force for two parallel wedge disclinations in a
micropolar medium is

FMK
r =�′

zmzϕ, (3.25)

with [Lazar and Maugin 2004]

mzϕ =
(β +µc)�z

2π
1
r

{
1 −

r
ε

K1(r/ε)
}
. (3.26)

It is zero at r = 0 and has an extremum value of 0.399(β + µc)�
′
z�z/[2πε] at

r ' 1.114ε. It is similar in form to the Peach–Koehler force between two screw
dislocations (2.24).



334 MARKUS LAZAR AND HELMUT KIRCHNER

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

r/ε

FPK
r

Figure 2. Peach–Koehler force FPK
r between two screw disloca-

tions in nonlocal micropolar elasticity. Fr is given in units of
µbz/[2πε] with h = 2ε and µ= 3η. The dashed curve represents
the micropolar result.

The Peach–Koehler force between an edge dislocation and the force stress pro-
duced by a wedge disclination is given by

FPK
x = b′

x txy, (3.27)

FPK
y = −b′

x txx , (3.28)

where [Lazar and Maugin 2004]

txx=
µ�z

2π(1−ν)

{
ln r+

y2

r2 +K0(r/ε)+

(
x2

−y2
)
ε2

r4

(
2−

r2

ε2 K2(r/ε)
)}
, (3.29)

txy= −
µ�z

2π(1 − ν)

xy
r2

{
1−

2ε2

r2

(
2−

r2

ε2 K2(r/ε2)
)}
. (3.30)

FPK
x is zero at x = 0 and y = 0 and has extremum values at x = y. On the other

hand FPK
y has a finite extremum at r = 0 (see Figure 3). FPK

x is the glide force
and FPK

y is the climb force for the edge dislocation caused by the stress field of the
wedge disclination.

The Mathisson–Papapetrou force between a wedge disclination and the couple
stress produced by an edge dislocation reads

FMP
x =�′

zmzy, (3.31)

FMP
y = −�′

zmzx , (3.32)
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Figure 3. Peach–Koehler force between an edge dislocation and
a wedge disclination: (a) FPK

x and (b) FPK
y are given in units of

µb′
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with the couple stress [Lazar and Maugin 2004]

mzx =
(β + γ )bx

2π

{
x2

− y2

r4

(
1 −

1
l2 − ε2

[
lr K1(r/ l)− εr K1(r/ε)

])
−

x2

r2

1
l2 − ε2

[
K0(r/ l)− K0(r/ε)

]}
, (3.33)



336 MARKUS LAZAR AND HELMUT KIRCHNER

mzy =
(β + γ )bx

2π
xy
r4

{
2
(

1 −
1

l2 − ε2

[
lr K1(r/ l)− εr K1(r/ε)

])
−

r2

l2 − ε2

[
K0(r/ l)− K0(r/ε)

]}
. (3.34)

FMP
x is zero at x = 0 and y = 0 and has extremum values at x = y. FMP

y has a
finite extremum at r = 0 (see Figure 4).

The main feature in nonlocal micropolar elasticity is that the Peach–Koehler and
the Mathisson–Papapetrou forces are nonsingular and they have finite extremum
values unlike the results obtained in micropolar elasticity.
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TEMPERATURE DEPENDENCE OF A NiTi SHAPE MEMORY
ALLOY’S SUPERELASTIC BEHAVIOR AT A HIGH STRAIN

RATE

WEINONG CHEN AND BO SONG

The temperature dependence of the dynamic compressive stress-strain behavior
of a NiTi shape memory alloy (SMA) has been determined at a strain rate of
4.35 × 102 s−1 with a split Hopkinson pressure bar (SHPB) modified for obtain-
ing the dynamic stress-strain loops at constant strain rates. The environmental
temperature was varied from 0 to 50◦ C, where the SMA exhibits superelastic be-
havior through stress-induced martensite (SIM). Experimental results show that
both the loading and unloading portions of the stress-strain loop are significantly
temperature dependent. Shape memory effect below the austenite finish transi-
tion temperature, A f , and superelastic behavior above A f are also observed at
the high strain rate.

1. Introduction

Engineering and medical applications of shape memory alloys (SMA) have attrac-
ted research efforts to reveal the mechanical responses of these materials. Recent
research in the field is extensively reviewed, for example, by [Birman 1997], [Ot-
suka and Wayman 1988], [James and Hane 2000], and [Bhattacharya and James
2005]. Reversible martensitic phase transformations provide SMA’s with the ca-
pabilities of shape memory and superelastic deformation. An SMA possesses an
austenite phase at high temperature and a martensitic phase at low temperature.
There is a range of transition temperatures over which temperature-induced phase
transformation occurs. An object that appears to be permanently deformed at low
temperature in its martensitic phase will return to its original shape in austenite
phase when heated above the transition temperature, because of a solid phase
transformation from martensitic back to austenite. Two-way shape memory has
also been proposed where the alloy remembers its shapes at both low and high
temperatures [Wayman 1993]. It has been proposed that the shape memory effects
may be utilized to build small-scale machines [Bhattacharya and James 2005].

In addition to the temperature-induced phase transformations, martensitic trans-
formation can be induced by mechanical stress in a certain temperature range. The

Keywords: shape memory alloy, high strain rate behavior, dynamic hysteresis, SHPB, Nitinol.
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range starts just above the temperature-induced phase transformation region (typ-
ically marked by the austenite finish transformation temperature A f ) and ends at
a temperature above which stress-induced martensitic transformation is no longer
possible, Md [Stoeckel and Yu 1991; Wayman 1993; Duerig and Pelton 1994].
The alloy is austenite in this temperature range when stress-free. When the applied
stress exceeds a threshold level, called the on-set stress for stress-induced marten-
site (SIM), the austenite crystal structure will transform into a martensitic phase.
Therefore, martensitic transformation in the material can occur at much higher
temperatures when assisted by mechanical stress. This SIM-induced deformation
is achieved by detwinning [Bhattacharya 2003; Liu et al. 2002], which requires
much less energy than to deform the austenite by conventional metal deformation
mechanisms. It takes a stress level an order of magnitude higher to deform the
austenite material than the martensite at the same strain [Wayman 1993]. The
detwinning in the martensitic phase can accumulate up to 10% strain, which can
be recovered completely by the reverse transformations back to austenite when the
applied stress is removed. This large but reversible deformation is named supere-
lasticity, a distinct property of SMA’s.

When the temperature is in the superelasticity range, A f < T < Md , the typical
stress-strain curve of an SMA obtained under quasistatic loading conditions at en-
gineering strain rate, ε̇ = 1.2 × 10−4/s is shown in Figure 1 [Song and Chen 2004].

Figure 1. A quasistatic stress-strain curve of a NiTi SMA.
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The compressive stress-strain curve contains two plateaus. The upper plateau cor-
responds to the loading portion where mechanical stress drives the austenite to
transform into martensite and where detwinning occurs in the newly formed SIM.
The lower plateau represents the stress-strain behavior of the SMA during the un-
loading process where the SIM is transforming back to austenite. Thermal energy is
needed to assist this reverse transformation. This stress-strain curve indicates that,
even though the mechanical behavior is termed superelastic because there is hardly
any permanent deformation upon unloading, part of the mechanical energy used to
deform the alloy is lost during unloading. Therefore, the loading/unloading cycle
on the SMA leaves no permanent deformation, but dissipates mechanical energy.
The volume density of the lost energy in a loading/unloading cycle can be computed
from the area within the hysteresis loop on the stress-strain curve shown in Figure 1.
Such an energy loss over a loading/unloading cycle makes it possible for the shape
memory alloy to be used as a shock/vibration absorption medium. In fact, SMA’s
have been described as “quiet” alloys [Schetky and Perkins 1978]. In order to
properly use the SMA’s as an energy-absorbing member in applications subjected
to high-rate loading, it is essential to quantitatively determine and understand the
constitutive behavior of these alloys under dynamic loading conditions.

Considerable research efforts have been focused on the dynamic mechanical
responses of SMA’s under high rates of loading. Ogawa [1988] used a conventional
split Hopkinson pressure bar (SHPB) and characterized a shape memory alloy over
a temperature range of 201 K to 363 K. Lin et al. [1996] and Wayman [1993] stud-
ied the rate effects on the mechanical behavior of a NiTi alloy within the quasistatic
range. Chen et al. [2001] determined the compressive behavior of a NiTi SMA over
the strain rate range of 0.001–750 s−1. A modified SHPB was used to control the
loading profile such that the loading portion of the stress-strain curve was obtained
at a constant strain rate. It was found that the on-set stress for SIM depends on the
strain rate, and that the strain history in the specimen lags behind the stress history.
Similar high-rate experimental results have also been reported recently in com-
pression by Nemat-Nasser et al. [2005] and Nakayama et al. [2005], and in tension
by Liu et al. [2002]. By using a smaller specimen to achieve higher strain rates in
their dynamic compression experiments, Nemat-Nasser et al. [2005] found that the
stress-strain relation of their NiTi SMA differs from that achieved at a moderately
high strain rate. By comparing the shape memory effects produced by different
rates of loading, Belyaev et al. [2002] discovered that an increase in strain rate
can lead to an increase in shape memory effect. At even higher strain rates, Millett
et al. [2002] studied the shock response of NiTi SMA. Dai et al. [2004] investigated
the propagation of macroscopic phase boundaries under impact loading analytically
and numerically, and found that the thermal effect should be taken into account due
to the temperature coupling nature of the phase transition process. The effects of
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loading conditions other than one-dimensional were explored recently [McNaney
et al. 2003]. Besides the experimental research, analytical modeling is also under
intensive development; examples include [Lagoudas et al. 2003], [Iadicola and
Shaw 2004], and [Lovey et al. 2004].

Although the mechanical behavior of SMA’s has been experimentally explored
recently at high strain rates, most dynamic experiments have been performed in
a controlled manner only during the loading portions of the stress-strain curves.
The unloading portions have been left uncontrolled due to difficulties in dynamic
experimentation. However, since both of the loading and unloading portions of
stress-strain curves for an SMA are important in determining the energy absorbing
capacity of the material at high rates, it is desirable that the loading conditions
during both loading and unloading stages in a dynamic experiment be precisely
controlled to produce dynamic loading and unloading stress-strain loops at constant
strain rates. Furthermore, most of the dynamic experiments are performed at room
temperature. Since the superelastic behavior of SMA’s only exists within a certain
temperature range, it is important to determine the high-rate behavior over this
temperature range. In this paper, we employ a recently developed SHPB technique,
which produces dynamic compression experimental results for a stress-strain loop
at a common constant strain rate over both loading and unloading portions [Song
and Chen 2004], to conduct the dynamic compressive experiments on a NiTi SMA
at a high strain rate over a temperature range where superelastic behavior is clearly
observed.

A valid SHPB experiment requires that the specimen undergo homogeneous
deformation under dynamic stress equilibrium [Gray 2000; Song et al. 2003]. In
addition, a constant strain rate is convenient for the purpose of developing more
accurate constitutive models based on experimental results. To ensure that these
conditions were satisfied when dynamically testing the SMA specimens using a
SHPB in this study, pulse shaping techniques were employed to control both the
loading and unloading portions of the incident pulse so that the specimen was
deformed under valid dynamic testing conditions. The dynamic stress equilibrium
in the specimen was monitored using 1-wave/2-wave analysis [Gray 2000] on the
nearly nondispersive waves created by the pulse-shaping technique. Experiments
were conducted on Nitinol SE508 SMA. The following sections briefly describe
the experiments and then present the results for the NiTi alloy.

2. Experimental setup and specimen preparation

2.1. Experimental setup of the modified SHPB. To study the dynamic compres-
sive loading/unloading behavior of the SMA, a SHPB with pulse shaping on both
loading and unloading stages [Song and Chen 2004] was used to conduct dynamic
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Figure 2. A schematic of the modified split Hopkinson pressure bar.

compressive experiments. A temperature chamber covered the testing section of
the SHPB. A schematic of the modified SHPB facility is shown in Figure 2. In
addition to the striker, incident and transmission bars included in a standard SHPB,
the modified SHPB apparatus consists of front and rear pulse shapers in association
with a momentum trapping system to facilitate constant strain-rate loading and
unloading on the specimen. The front pulse-shaper is attached at the impact end of
the incident bar to control the loading profile in the incident pulse; the rear pulse-
shapers are placed on the surface of the rigid mass. A gap between the flange,
which is screwed on the impact end of the incident bar, and the rigid mass, through
which the incident bar passes, is precisely preset. Upon the impact of the striker
during an experiment, the front pulse shaper is extensively compressed, generating
a desired incident loading profile to deform the specimen at a constant strain rate
under dynamic stress equilibrium over the loading phase of the experiment. In
the meantime, a compression wave is also generated and then propagates in the
striker. This compression wave is reflected back as an unloading wave (tension
wave) when it arrives at the free end of the striker. The unloading pulse from the
striker travels into and then passes through the incident bar to unload the specimen.
In this momentum trap design, the gap between the flange and the rigid mass is
precisely controlled to close before the unloading pulse travels into the incident
bar. The rear pulse shapers on the surface of the rigid mass are compressed by the
flange, generating a desired unloading profile in the incident bar. The unloading
pulse is well designed by varying the dimensions of the rear pulse shapers to ensure
that the specimen recovers at the same constant strain rate under dynamic stress
equilibrium during unloading. Thus, a dynamic stress-strain loop is obtained at the
same constant loading and unloading strain rate.
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In the modified SHPB, a heating/cooling chamber is placed between the incident
bar and the transmission bar (around the specimen) to create environmental temper-
atures that are monitored with an embedded thermocouple inside the heater/cooler
chamber. Heating is automatically controlled by a temperature controller, manufac-
tured by WATLOW (96A0-DAAA-00RG), while cooling is manually controlled
by pouring liquid nitrogen into a surrounded 6.0 mm diameter brass tube inside
the heater/cooler. The environmental temperature inside the chamber is controlled
through the flow rate control of liquid nitrogen inside the brass tube when testing
below room temperature. This temperature chamber was used in SHPB experi-
ments on other materials and its details were described in a previous paper [Song
et al. 2005]. Furthermore, besides the environmental temperature, the adiabatic
temperature rising and falling during the forward and reverse SIM in the specimen
is monitored by a small thermocouple embedded in one of the specimens. The
specimen temperature measuring technique was also previously employed and a
detailed description of it can be found in a previous publication [Song et al. 2003].

The lengths of the VascoMax maraging steel bars used for the experiments were
1830, 762, and 305 mm for the incident, transmission, and striker bars, respectively,
with a common diameter of 12.3 mm. The strain signals sensed by strain gages
from the incident and transmission bar surfaces were recorded using a high-speed
digital storage oscilloscope. Since the temperature variation range (0–50◦ C) in the
chamber is not significant enough to affect the stress-wave propagation through the
temperature gradient along the bar length, the temperature gradient effects on the
wave propagation in the bars are neglected in data reduction.

2.2. Materials and specimens. The SMA investigated in this research is NDC
(Nitinol Devices & Components, Fremont, CA) SE508, nominally 55.8% nickel
by weight and the balance titanium. The specified density is 6.5 g/cm3, with
an austenite finish transition temperature A f of 5–18◦ C and a melting point of
1310◦ C, as provided by the manufacturer. The temperature above which stress-
induced martensitic transformation is no longer possible, Md , for SE508 is ap-
proximately 150◦ C. The temperature range for this alloy to exhibit superelasticity
(the capability of returning to its original shape upon unloading after a substantial
deformation) is 15–150◦ C. In a previous study [Chen et al. 2001], it was found
that the strain far lagged behind the stress during the dynamic unloading stages
in experiments performed at room temperature (close to A f ), indicating that there
may exist unique dynamic deformation phenomena in the alloy during high-rate
unloading near room temperature. However, the unloading paths were uncontrolled
in those experiments. Therefore, the choice of the temperature range in this study
reflects the effort to focus on the behavior near A f (0–50◦ C) under much better
controlled experimental conditions.



A NITI ALLOY’S SUPERELASTIC BEHAVIOR AT A HIGH STRAIN RATE 345

Figure 3. Typical oscilloscope records of a conventional SHPB
experiment on an SMA.

Cylindrical specimens of 5.94 mm diameter by 6.10 mm long were sliced from
a heat-treated Nitinol rod with a water-jet cooled abrasive saw. Chilled water was
continuously sprayed on the contact area of the cutting blade and the Nitinol bar
to keep the temperature low in the NiTi alloy during machining.

2.3. Dynamic experimental technique for the SMA. When the SHPB is used in
its conventional configuration, there are high-frequency oscillations riding on the
base incident pulse as shown in Figure 3. These oscillations in the loading pulse
profile, which are the results of wave dispersion due to radial inertia effects when
the wave propagates in the bars, cause complications in the loading conditions
in the specimen. The nature of stress-induced phase transformation makes the
specimen sensitive to alternations of loading and unloading. Figure 3 shows a typi-
cal oscilloscope record of an SMA undergoing dynamic loading by a conventional
SHPB. There is no plateau in the reflected pulse shown in Figure 3, which indicates
that the specimen does not deform at a constant strain rate. The oscillations in the
reflected pulse also indicate that the specimen experiences a complicated deforma-
tion process. The point-wise dynamic material properties extracted by averaging
the response over the specimen’s volume cannot be expected to be accurate and
reliable when the specimen is undergoing such a complicated deformation.
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In order to obtain reliable dynamic material behavior from an SHPB experiment
for the SMA, the rapid oscillations in the incident pulse must be avoided. Further-
more, efforts must be made to ensure that a dynamic equilibrium stress state is
reached in the specimen during the experiment and to maintain a constant strain
rate in the specimen. A homogeneously-deforming specimen under a dynamic
equilibrium state of stress makes the volume-average of the specimen’s behavior
representative of the point-wise material properties. A constant strain rate during
an experiment makes it convenient to report the stress-strain response as a function
of strain rates, which is necessary to fit material constants in constitutive models.
To obtain the stress-strain loop of an SMA at a constant strain rate, it is also de-
sirable to maintain the same strain rate during both loading and unloading phases
of the experiment. These requirements pose significant challenges in the dynamic
experiment design.

To eliminate the oscillations in the loading pulse and to ensure that the specimen
deforms at a constant strain rate in dynamic equilibrium, a pulse shaper was placed
on the impact end of the incident bar to control the shape of the loading pulse
(Figure 2). There are a variety of pulse-shaping devices. For example, Duffy
et al. [1971] used a pulse-shaper in the form of a concentric tube to smooth pulses
generated by explosive loading in a torsional Hopkinson bar. Ravichandran and
Chen [1991] and Frew et al. [2002] used copper pulse shapers to achieve ramp
loading profiles when testing ceramics and rocks using SHPB. Togami et al. [1996]
used a pulse shaper in a modified SHPB to control the loading pulse shape and
to filter out high-frequency components in the incident pulse for accelerometer
calibrations up to 200,000 g. In the present research, annealed C11000 copper
disks were used to control the shape of the loading pulse during both loading and
unloading phases. The diameters and the thickness of the pulse shapers necessary
to control the strain rate in the SMA specimen at a desired and constant level
were difficult to determine since the dynamic behavior of the SMA was unknown
before the experiments. Trial experiments were conducted to select a proper pulse
shaper for each combination of desired strain rate, environmental temperature, and
maximum strain.

3. Experiments and Results

3.1. Dynamic experiments with the modified SHPB. A typical set of incident,
reflected, and transmitted signals recorded with the oscilloscope for an SHPB
experiment on the NiTi SMA at 23◦ C with shaped pulses is shown in Figure 4.
The dashed line is the transmitted pulse, which records the stress history in the
specimen. The first pulse in the solid line is the incident pulse, whereas the second
and third are the reflected pulses associated with the deformations during loading
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Figure 4. Oscilloscope records of a pulse-shaping SHPB experi-
ment on a NiTi SMA.

and unloading in the specimen. If the specimen’s mechanical impedance (ρcA,
where ρ is the mass density, c the bar wave velocity, and A the cross-sectional
area) is less than that of the bar, the incident and first reflected pulses are opposite
in sign, as seen in Figure 4. Furthermore, the second reflected pulse indicates the
strain rate of the recovery deformation in the specimen and has an opposite sign
from the first reflected pulse. Although the first and second reflected pulses have
opposite signs, the magnitudes are nearly the same, which indicates that the strain
rates at both the loading and unloading stages are nearly the same. We also note that
the magnitudes of the reflected pulses are nearly constant in each of the reflected
pulses, which indicates that the loading and unloading strain rates are nearly the
same constant. This is a necessary condition to obtain a dynamic stress-strain loop
or hysteretic loop at a certain strain rate. A comparison between the incident and
reflected pulses of Figures 3 and 4 indicates that the shape of the incident pulse in
the pulse-shaped experiment shown in Figure 4 is very different from that obtained
in a conventional SHPB experiment (Figure 3). The high-frequency oscillations on
the incident pulse shown in Figure 3 are eliminated after pulse shaping, as shown in
Figure 4. The nearly flat and equal plateaus on the first and second reflected pulses
shown in Figure 4 indicate that the specimen deformed at a nearly constant strain
rate during both loading and unloading on the NiTi SMA specimen in a pulse-
shaped SHPB experiment. The transmitted pulses were used to calculate stress
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Figure 5. Dynamic loading and unloading strain histories in the
NiTi Specimen.

history in the NiTi specimen according to conventional SHPB theory based on 1-D
wave propagation theory [Kolsky 1949; Lindholm 1964; Follansbee 1985; Gray
2000]. The strain rate in the experiment was determined by the average magnitude
of the plateau in the reflected pulses.

The dynamic strain history in the specimen is shown in Figure 5. An examina-
tion of Figure 5 shows that both the loading (rising) and unloading (descending)
portions of the strain histories are nearly straight lines, indicating constant rates of
deformation. The slope of the loading portion, that is, the loading strain rate, is
observed to be 440/s, whereas that for the unloading portion is 430/s. Therefore,
the strain rates during both loading and unloading stages may be considered as the
same constant. It should be noted that the dynamic strain history in a NiTi SMA
lags behind the dynamic stress [Chen et al. 2001; Song and Chen 2004], which
needs to be taken into account in the pulse shaper design.

In SHPB experiments, dynamic stress equilibrium in the specimen is a funda-
mental requirement for valid data processing because equilibrium is one of the
basic assumptions upon which SHPB theory is built [Meyers 1994; Gray 2000].
When dynamic equilibrium is impossible to reach, the constitutive behavior may
be still found using a hybrid approach assisted by computer simulation if the form
of the stress-strain relation is known. However, in the case of the NiTi SMA, the
dynamic stress-strain relations need to be determined by the SHPB experiments.
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Figure 6. Dynamic equilibrium analysis by 1-wave/2-wave method.

Dynamic equilibrium must be achieved such that the volume average of the stress-
strain behavior over the entire specimen may be used as the point-wise material
responses at a certain strain rate. It is therefore critical to ensure that the dynamic
equilibrium conditions are satisfied in order to obtain valid experimental results.

In our experiments, we checked stress equilibrium by comparing the transmitted
signal (1-wave) with the difference between the incident and reflected signals (2-
wave) [Gray et al. 1997; Wu and Gorham 1997; Gray 2000]. The incident waves
created in our experiments by pulse shaping are nearly nondispersive since there
are few high-frequency components associated with the main loading pulses. The
results on stress equilibrium from 1-wave, 2-wave analysis are thus considered to
be reliable. Figure 6 shows the results of such an analysis on the stress pulses
of Figure 4. There are two nearly overlapping curves shown in Figure 6. One is
the transmitted pulse profile (1-wave), and the other is the difference between the
incident and the reflected pulses (2-wave). The 2-wave curve represents the axial
force history on the face of the specimen that is in contact with the incident bar
[Gray et al. 1997; Wu and Gorham 1997]. The 1-wave curve, which is used to
calculate the stress history in SHPB data reduction, is the axial force history on the
face of the SMA specimen that is in contact with the transmission bar during an
experiment. Dynamic stress equilibrium in the specimen requires that the 1-wave
and the 2-wave are the same over the duration of the SHPB experiment. Figure 6
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Figure 7. Dynamic compressive stress-strain curves of the NiTi SMA.

shows that the 1-wave curve nearly overlaps the 2-wave curve in this pulse-shaped
experiment, which indicates that dynamic equilibrium stress state in the specimen
has been achieved. It is noted that the fluctuations are observed in the 2-wave curve
in Figure 6 within the first 20 µs. The slight wave dispersion, even though the pulse
shaping technique was employed, may result in fluctuations in the subtraction of
the reflected pulse from the incident pulse. However, the fluctuations do not affect
the examination of the stress equilibration process in the specimen, as shown in
Figure 6. The amplitude of the reflected pulses is nearly constant as shown in
Figure 5, which indicates a constant strain rate over the duration of the experiment,
including both loading and unloading phases. Therefore the SHPB experiment
recorded in Figure 4 is a valid dynamic experiment. Such analysis was performed
on every experiment presented in this paper.

3.2. Dynamic stress-strain loops at various temperatures for the SMA. Figure 7
summarizes the dynamic compressive stress-strain curves at a common dynamic
compression strain rate of 430/s for the Nitinol SE508 SMA at environmental tem-
peratures of 0◦, 14◦, 23◦, 35◦, and 50◦. The stress-strain curves are plotted in the
units of engineering stress and strain, which are nearly identical to true stress and
strain curves, since the maximum strain (∼ 6%) experienced by the specimens
is small. As shown in Figure 7, the shape of the dynamic stress-strain curves
has similarities and differences as compared to those obtained under quasistatic
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loading conditions. The quasistatic compressive stress-strain curve obtained at a
temperature well above A f is typically in the form presented in Figure 1 (23◦

in this case). After a linearly elastic region, the stress-strain curve bends into
a plateau-like region caused by stress induced martensite starting at a strain of
∼ 1.5–2%. If the deformation is too large (for example, > 4.5% strain), significant
work-hardening in this SMA drives a steep rise in the stress-strain curve. The
reverse transformation from martensite to austenite upon unloading takes place
at a smaller stress, which is schematically displayed by the lower plateau in the
stress-strain loop. At the dynamic strain rate of 430/s, we can examine one of the
stress-strain curves (for example, at 23◦) to illustrate its similarities and differences
from its quasistatic behavior. Similar to the quasistatic case, the dynamic stress-
strain curve also exhibits a linear initial portion up to a strain of ∼ 1.7–2%, where
a transition in the stress-strain curve occurs (on-set stress for SIM). However, in-
stead of following a plateau-like stress-induced martensite transformation region,
the dynamic stress-strain curve displays a work-hardening behavior after the SIM
on-set stress. A similar behavior is observed on the unloading branch of the stress-
strain loop. There is no plateau observed for the reverse phase transformation.
Instead, a delayed unloading curve that is nearly parallel to the loading curve is
observed. This clear difference from quasistatic behavior may be an indication
that SIM phenomena are rate dependent. Adiabatic temperature change in the
specimen under high-rate deformation is considered to be one of the parameters
that depicts this shape change in stress-strain curve from quasistatic to dynamic
loading conditions. The discussion on this point will be continued after results on
the adiabatic temperature change are presented.

The results shown in Figure 7 also clearly illustrate the effects of temperature
on the high-rate mechanical response of the SMA. Although the environmental
temperature was varied only within a rather narrow range, the resultant stress-strain
responses show clear temperature dependence. As the environmental temperature
decreases from 50◦ to 0◦ C, the slopes of both the loading and unloading portions
of the stress-strain loops decrease. When the environmental temperature is below
room temperature, i.e., 14◦ C and 0◦ C, the strain does not return to zero when the
specimen is completely unloaded, as indicated by the residual strain in the unload-
ing stress-strain curves at these temperatures. The specimen eventually recovers
all strains at room temperature. This phenomenon indicates that, under high-rate
deformation, the reverse phase transformation, which needs thermal energy input,
may not be as fast as the forward SIM, which is driven by mechanical stress wave
loading. Furthermore, when the environmental temperature is close to A f of the
alloy, the drawing of heat from the specimen to assist the reverse transformation
may be so much that the temperature in the specimen is actually below A f during
the unloading, which stops the reverse transformation until more heat is drawn from
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Figure 8. Local temperature variations in the NiTi SMA during
dynamic deformation.

the environment around the specimen to drive the specimen temperature back above
A f . It is also observed that, although 0◦ C is below A f of the SMA, superelastic-
ity is still reached. This indicates that the forward SIM driven by stress actually
releases heat into the specimen, resulting in the actual specimen temperature above
A f during the superelastic deformation in the specimen. A similar phenomenon
was also observed in a previous study, although the testing conditions were not
controlled during the unloading stages of the dynamic experiments [Chen et al.
2001].

3.3. Temperature variation in specimen during dynamic tests. To better under-
stand the temperature effects on the mechanical response of the NiTi SMA, be-
sides the variations in environmental temperature, the temperature change in the
specimen during dynamic deformation needs to be monitored. To accurately mon-
itor the local temperature change during high-rate deformation, a small hole was
drilled along the centerline of the cylindrical specimen from one end, and a small
thermocouple was placed inside [Song et al. 2003]. The temperature variation
during one experiment from the base room temperature is shown in Figure 8. The
results in Figure 8 indicate that the specimen temperature rises with increasing
strain in the specimen during early stages of loading. The forward SIM driven by
mechanical stress waves clearly releases heat as evidenced by the temperature rise.
Partly due to the small superelastic strain achieved in the experiments, the ampli-
tude of the temperature rise is rather small. A distinctive and interesting feature
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recorded in the temperature history is that the temperature starts to decrease before
the maximum strain is reached. In the records shown in Figure 8, the specimen
temperature recorded by the small thermocouple starts to decrease at only half of
the maximum strain. This repeatable phenomenon in experiments indicates that
the deformation in the specimen may not be uniform. With a small hole drilled to
accommodate the thermocouple, there are inevitable stress concentrations around
the hole, where the SIM driven by the locally concentrated stresses occurs much
earlier than the rest of the specimen, resulting in locally higher temperature around
the hole. At half of the average maximum strain experienced by the entire specimen,
the SIM near the hole is completed. Without further thermal energy released from
the SIM, the heat in the specimen actually flows from near the hole to the rest of
the specimen, resulting in a decrease in local temperature even though the entire
specimen is still under compression. Iadicola and Shaw [2004] showed analytically
that SIM occurs at localized transformation fronts even in samples without stress
concentrations. The results in Figure 8 also clearly show the existence of specimen
temperature changes during dynamic deformation of the SMA. This fluctuation in
temperature may drive the specimen material above A f even though the starting
temperature is below A f . On the other hand, during the reverse transformation,
the specimen temperature may drop below A f to stop the reverse transformation.
These results indicate that, depending on the environmental temperature, there is a
frequency range where the SMA may be used for dynamic energy dissipation. If the
loading/deformation frequency in the application is too high, the transformations—
in particular, the reverse transformation in the alloy—may not be fast enough to
satisfy the impact/vibration energy dissipation requirements. Furthermore, the tem-
perature variation in the specimen causes a changing temperature behind a specific
dynamic stress-strain curve. This nonisothermal testing condition during stress-
wave loading causes the shape of the resultant stress-strain curves to deviate from
the typical curves obtained under quasistatic loading conditions.

4. Conclusions

A new SHPB technique was employed to determine the dynamic compressive
stress-strain behavior of a Nitinol SE508 SMA in its superelasticity phase at a
dynamic strain rate of 430/s over an environmental temperature range of 0◦ to
50◦ C. The experimental technique had pulse shapers to control both the dynamic
loading and unloading profiles to control the loading on the specimen so that the
specimen deformed under dynamic stress equilibrium at a constant strain rate dur-
ing both the loading and unloading stages of the experiments. Local temperature in
the specimen was also monitored during dynamic deformation to record the effects
of adiabatic heating and cooling associated with the high-rate deformation of the
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specimen. Valid dynamic testing conditions were checked for each experiment to
ensure that the experiments were valid and the results accurate.

Experimental results show that the compressive stress-strain behavior of the
SMA is dependent on both temperature and strain rate. The higher the environmen-
tal temperature within the range explored in this study, the stiffer the stress-strain
behavior. The shape of the dynamic stress-strain loops obtained over the entire en-
vironmental temperature range differs from those obtained quasistatically. Under
dynamic loading conditions, the forward and reverse SIM plateaus are inclined,
mainly due to temperature variations in the specimen caused by adiabatic heating
and cooling during dynamic loading and unloading. The unloading portions of
the dynamic compressive stress-strain curves obtained below room temperature
exhibit residual strains after the specimen is completely unloaded. This is because
the reverse transformation may be stopped when the specimen temperature drops
below A f during unloading.
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RANDOM FIELD AND HOMOGENIZATION FOR MASONRY
WITH NONPERIODIC MICROSTRUCTURE

VITTORIO GUSELLA AND FEDERICO CLUNI

The purpose of this paper is to illustrate a method for homogenizing masonry
with a nonperiodic microstructure. The proposed approach is based on the con-
cept of the representative volume element and on the finite-size test-window
method. First, the peculiarities of masonry as a composite continuum are high-
lighted. Then, the heterogeneity of the microstructure (elements and texture) is
modeled by statistical descriptors. To improve the classical test-window method
a probabilistic convergence criterion is coupled with the well-known mechanical
convergence criterion. Both criteria must be met in order to check the conver-
gence of the material window with the statistically equivalent representative vol-
ume element. An application shows the effectiveness of the proposed approach.

1. Introduction

Within the framework of micromechanics theory, masonry is modeled as a hetero-
geneous material composed of bricks or stones in a matrix of mortar. In dealing
with a heterogeneous continuum, homogenization techniques allow one to define
an equivalent body in order to study linear and nonlinear behavior [Christensen
1980; Suquet 1987].

The application of this approach to masonry was proposed by Pande et al. [1989],
Pietruszczak and Niu [1992], and Maier et al. [1991]. On the basis of asymptotic
analysis [Bensoussan et al. 1978; Sanchez-Palencia 1980], a rigorous application
of the homogenization theory to periodic media was developed by Anthoine [1995].
The effect of rigid or elastic blocks was analyzed by Cecchi and Sab [2002], while
failure analysis, ultimate strength, and damage models were considered in [Alpa
and Monetto 1994; De Buhan and De Felice 1997; Luciano and Sacco 1997], re-
spectively.

The hypothesis of a “periodic microstructure” in masonry has been adopted in
all previous papers. This means that the bricks and the mortar joints are assumed
to be of equal dimensions and characteristics. Moreover, these elements must be
arranged in a periodic pattern.

Keywords: masonry, random heterogeneous material, homogenization.
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However, the most interesting aspect of masonry structure analysis is related to
the maintenance and restoration of historical and monumental buildings. In these
cases the assumption of a periodic microstructure in stone masonry or brickwork
would be mistaken. In order to apply the homogenization theory to old masonry it
is necessary to use a different approach.

This aspect was considered in [Cluni and Gusella 2004], where the representa-
tive volume element of the masonry wall was determined by employing a formula-
tion based on finite-size test-windows. In analyzing a masonry wall, the homoge-
nized medium elastic stiffness tensor was obtained by considering the hierarchy of
estimates relative to essential and natural boundary conditions. An adequate linear
model for masonry is very important, because it permits one to analyze very large
structures (monumental and historical buildings), and indicates those parts that
bear the greatest stresses, where one must consider a more sophisticated nonlinear
analysis.

A different procedure was proposed by Šejnoha et al. [2004] to analyze masonry
structures with irregular geometry. This methodology, based on [Povirk 1995]
and further developed in [Zeman and Šejnoha 2001; Šejnoha and Zeman 2002],
introduces a periodic unit cell that possesses statistical proprieties similar to the
original material and can therefore be considered a reasonable approximation.

In [Cluni and Gusella 2004], the material window is considered an adequate es-
timation of the representative volume element when the difference between natural
and essential elastic moduli is limited. However, an estimation of the representative
volume element based solely on mechanical convergence may be inaccurate. It is
necessary to check that this convergence does not reflect the conditions in a specific
portion of the wall in question and that the test-window is sufficiently representative
of the masonry in terms of its constituent elements (stones and mortar joints) and
its texture.

For particular composites, this aspect was highlighted by Bochenek and Pyrz
[2004], who introduced statistical and geometrical measures and constraints to
reconstruct families of plane and spatial dispersion of inclusions resembling ref-
erence patterns and to predict overall properties. Introducing the concept of peri-
odization, the combination of mechanical and statistical criteria was also proposed
in [Sab and B. 2005].

This paper proposes an improvement of the finite-size test-window method in
order to overcome these limitations of the representative volume element estima-
tion based solely on the mechanical convergence criterion. First, the peculiarities
of masonry, which are related to the construction technique employed, are high-
lighted. Nonperiodic masonry is then analyzed within the framework of random
heterogeneous material theory, and statistical descriptors are introduced in order
to describe the random field modeling of masonry. Mechanical and probabilistic
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Figure 1. Portion of the medieval defense walls of an Italian town.
Note that the hypothesis of periodic continuum is not applicable.

criteria are used to check the convergence of the material window to the statistical
equivalent volume element. These criteria are illustrated by applying them to an
actual masonry wall.

2. Masonry as a peculiar heterogeneous material

Masonry can be considered a heterogeneous material composed of stones or bricks
in a matrix of mortar. However it is a very particular composite: taken together,
the inclusions (bricks or stones) have a much larger surface area than the matrix
(in the case of dry masonry the matrix disappears); the mortar could in fact be
regarded as merely joining the inclusions; the constituent blocks and mortar joints
have different dimensions.

Leaving aside very chaotic typologies, some regularity is imposed by the build-
ing procedure even in stone masonry (see, for example, Figure 1):

– the masonry is built with courses of blocks connected by head and bed mortar
joints;

– the bed mortar joints are continuous and more or less horizontal;
– the bed thickness is fairly constant for each course;
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– the head joints are almost always interrupted vertically by inclusions;

– the inclusions are roughly rectangular;

– blocks belonging to the same course have similar dimensions, especially the
heights, inasmuch as the bed joints are horizontal;

– there is no relation between consecutive courses, in fact their heights are pur-
posely differentiated so as to obtain good quality masonry (in practice courses
with larger stones are not grouped together but more or less evenly distributed
vertically).

These features give the masonry pattern (or masonry texture) which characterize
the mechanical behavior of the wall.

Given that the hypothesis of periodic continuum is not applicable, an important
issue, in order to define a homogeneous continuum equivalent to the masonry, is
the minimum size of the representative volume element [Drugan and Willis 1996].

Based on these observations, acceptance of a volume as being representative
requires a set of conditions which are both mechanical and probabilistic. Thus the
masonry wall must be analyzed within the framework of random field theory.

3. Masonry random field

Consider the masonry as a random heterogeneous material or simply a random
medium [Torquato 2001]. A masonry wall is a realization of this two-phase random
medium and occupies a region D ⊆ R2 that is partitioned into two disjoint random
sets or phases (we consider here the mechanical and probabilistic problems in 2-
dimensional terms; however, the proposed approach can be extended to the third
dimension).

Let D1 be the region relative to stone and D2 the region relative to mortar.
Since D1 and D2 are the complements of one another, then D1 ∪ D2 = D and
D1 ∩ D2 = ∅.

For a given realization, the indicator function (or characteristic function) χ i (x)
for the phase i = 1, 2, given x ∈ D, is defined by

χ i (x)=

{
1 if x ∈ Di ,

0 otherwise,
with χ1(x)+χ2(x)= 1. (1)

The probabilistic descriptor of χ i (x) is given by the n-point probability function
for phase i [Torquato and Stell 1982]

Si
n
(
x1, x2, . . . xn

)
= P{χ i (x1)= 1, χ i (x2)= 1, . . . χ i (xn)= 1}, (2)

which gives the probability that n points at positions x1, x2, . . . , xn are found in
phase i .
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The random medium is strictly statistically homogeneous if there is not a pre-
ferred origin in the system so that, for all n ≥ 1 and all y ∈ D

Si
n(x1, x2, . . . , xn)= Si

n(x1 + y, x2 + y, . . . , xn + y). (3)

In particular, the one-point probability function is constant and equal to the
volume fraction φi of the phase i : Si

1(x1)= φi .
From this point of view, the masonry has a locally heterogeneous microstructure,

but it can be considered homogeneous overall when a sufficiently large portion of
it is taken into account. In the following, statistical descriptors up to the second
order will be considered so that the masonry wall will be assumed to be a weakly
homogeneous random field.

If the random medium is ergodic then the result of averaging over all the real-
izations of the ensemble is equivalent to that of averaging over the surface for one
realization in the infinite-surface limit. In this way probabilistic information can
be obtained from a single realization of the infinite medium.

The masonry will be assumed, in the following, to be an ergodic medium. More-
over, it is assumed that the probabilistic characteristics of the medium can be esti-
mated by analyzing a portion of the wall. This portion must be sufficiently large
to make it adequately representative of the medium; furthermore this condition
permits one to replace the averaging in the infinite-surface limit with the numerical
approximation derived from the averaging over the surface of the portion.

3.1. Statistical descriptors of stones and mortar joints. Masonry is, as we noted
above, a very distinctive random medium, and we shall therefore introduce statisti-
cal descriptors to represent this peculiarity. These descriptors will refer to the type
of masonry shown in Figure 1, but they can be applied to a very large number of
masonry typologies.

The portion of masonry shown in Figure 1 has been taken as a representative
sample of the structure as a whole. Considering, in particular, the construction
of the wall in superimposed courses, the random field of masonry was described
using a grid that was set up as follows (Figure 2):

– The rows of the grid are horizontal lines drawn in correspondence with the
center points of the stones; rows are indicated by R j with j = 1, . . . , NR j

(NR j = 23).

– The columns are vertical lines starting from the center points of the stones of
R1; columns are indicated by C j with j = 1, . . . , NC j (NC j = 18).

– Along the rows, for each course j = 1, . . . , NR j , the widths of the stones
B j

st,k k = 1, 2, . . . and the sizes of the mortar joints B j
m,k k = 1, 2, . . . were

measured.
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Figure 2. Masonry wall with superimposed orthogonal grid; rows
R j ( j = 1, . . . , NR j ; NR j = 23) and columns C j ( j = 1, . . . , NC j ;
NC j = 18).

– The heights of the stones H j
st,k k = 1, 2, . . . and the thicknesses of the mortar

joints H j
m,k k = 1, 2, . . . were measured along each column j = 1, . . . , NC j

(note that H j
m,k represents the thickness of the bed joints, but it can, in some

cases, indicate the height of the head joint between rows).

A grid rather than image analysis with small pixels was preferred because the
former reflects the intrinsically horizontal/vertical structure of the masonry and
because the irregularities of the surface would make it extremely difficult to use
the pixels in distinguishing mortar from stone.

Considering the previous values the following samples were obtained: {Bst} and
{Hst} for the widths and heights of the stones, and {Bm} and {Hm} for the sizes of
bed and head mortar joints.

The portion of the wall considered, shown in Figure 2, was sufficiently large
(432 × 341 cm) that the previous samples were assumed to be statistically rep-
resentative of the geometric characteristics of the inclusions and of the matrix.
These samples were therefore taken to be the statistical descriptors of the masonry
continuum.
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Figure 3. Comparison among the probability density functions of
the width of the stones PBst, the heights of the stones PHst, the
gamma (dashed line), and the log-normal curve (continuous line).

These samples were analyzed to determine their statistical moments up to the
second order:

(a) the mean values of the width and height of the stones: EBst and EHst, respec-
tively;

(b) the mean values of the mortar joint dimensions: EBm and EHm, respectively;

(c) the standard deviation values for the same samples: 6Bst, 6Hst, 6Bm and 6Hm.

These values are reported in Table 3.
The comparison among the probability density functions of the width of the

stones PBst, the gamma curve, and the log-normal curve are shown in Figure 3 (A).
The same comparison for the probability density functions of the height of the
stones PHst is reported in Figure 3 (B). Note that both gamma and log-normal laws
are not rejected by the chi-square test.

The probability density functions of the characteristics of the mortar joints PBm

and PHm are reported in Figure 4 (A) and (B). In these figures the probability
density functions are compared only with the log-normal curve, since the gamma
law was rejected.

3.2. Statistical descriptors of the masonry wall texture. The previous statistical
descriptors give information only about stones and mortar joints. Conversely, the
mechanical behavior of a masonry wall is influenced by its texture.

We use the following approach to describe this feature.
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Figure 4. Comparison between the probability density functions
of the characteristics of the mortar joints: PBm and PHm, and the
log-normal curve.

Let R j (x) be the characteristic function relative to the row R j j = 1, . . . , NR j :
if the point, with abscissa x , belongs to the “stone phase”, the function assumes
the value 1; if the point belongs to the “mortar phase”, the function value is 0:

R j (x)=

{
1 x ∈ stone phase,

0 x ∈ mortar phase,
(4)

where 0 ≤ x ≤ L R j and L R j =
∑

k (B
j

st,k + B j
m,k) is the total length of the row R j .

Let C j (y) be the characteristic function relative to the column
C j j = 1, . . . , NC j :

C j (y)=

{
1 y ∈ stone phase,

0 y ∈ mortar phase,
(5)

where 0 ≤ y ≤ LC j and LC j =
∑

k (H
j

st,k + H j
m,k) is the total length of the column

C j .
In order to estimate the second-order characteristics of R j (x), the “shifted-area

function” (SAF) AR j,R j (ξ) was introduced. Given ξ ∈ R, this function AR j,R j (ξ)

corresponds to the mean square value of the area below the curve expressing the
difference between the shifted function R j (x + ξ) and the function R j (x):

AR j,R j (ξ)= lim
1x→∞

1
1x

∫ 1x

0

[
R j (x + ξ)− R j (x)

]2 dx . (6)
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In the application the integral is replaced by a summation extended on the row.
This function gives immediate information about periodic texture (Figure 5)

because it assumes null value for ξ = 0 and ξ = nX , where X ∈ R is the period
and n = 1, 2, . . . (see Figure 5, where the shifted-area function is normalized to
its maximum value).
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Figure 5. Courses in masonry with different periodic textures
(measured in cm). Characteristic functions (CF), normalized
shifted-area functions (SAF) (top) and autocorrelation functions
(bottom).
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Given the ergodicity hypothesis, the shifted-area function AR j,R j (ξ) is related
to the autocorrelation function ACR j,R j (ξ) of R j (x) by

AR j,R j (ξ)= lim
1x→∞

1
1x

∫ 1x

0
[R j (x + ξ)]2dx

−2 lim
1x→∞

1
1x

∫ 1x

0
R j (x + ξ)R j (x) dx + lim

1x→∞

1
1x

∫ 1x

0
[R j (x)]2 dx

= 2 lim
1x→∞

1
1x

∫ 1x

0
[R j (x)]2 dx − 2ACR j,R j (ξ). (7)

We then have

ACR j,R j (ξ)= lim
1x→∞

1
1x

∫ 1x

0
R j (x + ξ)R j (x) dx =

2E2
R j − AR j,R j (ξ)

2
, (8)
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Figure 6. Characteristic functions (CF) and autocorrelation func-
tions relative to the first four rows R j ( j = 1, . . . , 4) of the masonry
wall in Figure 2.
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where

E2
R j = lim

1x→∞

1
1x

∫ 1x

0
[R j (x)]2 dx (9)

is the mean square value of R j (x).
Given Equation (7), E2

R j is the ratio of stone to stone plus mortar for the row
R j ; moreover ACR j,R j (ξ)= E2

R j for ξ = 0.
The autocorrelation functions for periodic patterns are illustrated in Figure 5.
For the masonry wall in Figure 2, the characteristic functions R j (x) and the

autocorrelation functions ACR j,R j (ξ) relative to the first four rows ( j = 1, 2, 3, 4)
are reported in Figure 6.

Figure 7 shows the autocorrelation functions ACR j,R j (ξ) for j = 1, . . . ,11.
Higher autocorrelation functions are observed in the courses with larger stones

(the largest correlation corresponds to the case indicated by (A) in Figure 7 relative
to row R7(x)); a weaker correlation is observed in courses with smaller stones
(these cases are indicated by (C) in Figure 7).

When we consider the characteristic function C j (y), we obtain the shifted-area

0 20 40 60 80 100 120 140 160 180 200

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

space lag (cm)

A
ut

oc
or

re
la

tio
n

C

B

A

Figure 7. Autocorrelation functions of the first eleven rows R j

( j = 1, . . . , 11) of the masonry wall in Figure 2.
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function:

AC j,C j (η)= lim
1y→∞

1
1y

∫ 1y

0
[C j (y + η)− C j (y)]2 dy, (10)

ACC j,C j (η)= lim
1y→∞

1
1y

∫ 1y

0
C j (y + η)C j (y) dy =

2E2
C j − AC j,C j (η)

2
, (11)

E2
C j = lim

1y→∞

1
1y

∫ 1y

0
[C j (y)]2 dy. (12)

The characteristic functions C j (x) and the autocorrelation functions ACC j,C j (η)

relative to the first four columns ( j = 1, 2, 3, 4) of the masonry wall are reported
in Figure 8.

Figure 9 shows the autocorrelation functions ACC j,C j (η) for j = 1, . . . , 11.
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Figure 8. Characteristic functions (CF) and the autocorrelation
functions relative to the first four columns C j ( j = 1, . . . , 4) of
the masonry wall in Figure 2.
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Figure 9. Autocorrelation functions of the first eleven columns
C j , j = 1, . . . , 11 of the masonry wall in Figure 2.

These functions exhibit analogous behaviors and show a weaker correlation than
that of the Figure 7 courses. This is as we expected; in fact, good building practice
dictates the use of stones with similar dimensions (width and height) within a sin-
gle row. Moreover, the head-joint thicknesses are limited, and, conversely, within
columns stones differ in height and bed-mortar joints are thicker. These conditions
imply that the correlation is stronger within the courses than within the columns.
The autocorrelation functions relative to the rows ACR j,R j (ξ) and to the columns
ACC j,C j (η) are taken to be the statistical descriptors of the masonry’s texture.

The autocorrelation functions ACR j,R j (ξ) and ACC j,C j (η) were used to check
the correctness of the weakly homogeneous random field hypothesis. In fact, using
different origins to compute the space lags ξ and η showed that the differences
among these functions were very limited, both for the rows and for the columns.

Further information about texture can be evinced by:

– the cross-correlation function CCR j,Rk(ξ) between rows:

CCR j,Rk(ξ)= lim
1x→∞

1
1x

∫ 1x

o
R j (x + ξ)Rk(x) dx

=
E2

R j + E2
Rk − AR j,Rk(ξ)

2
, (13)
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where

AR j,Rk(ξ)= lim
1x→∞

1
1x

∫ 1x

0
[R j (x + ξ)− Rk(x)]2 dx; (14)

– the cross-correlation function CCC j,Ck(ξ) between columns:

CCC j,Ck(η)= lim
1y→∞

1
1y

∫ 1y

0
C j (y + η)Ck(y)dy

=
E2

C j + E2
Ck − AC j,Ck(η)

2
, (15)

where

AC j,Ck(η)= lim
1y→∞

1
1y

∫ 1y

0
[C j (y + η)− Ck(y)]2dy; (16)

– the cross-correlation function CCR j,Ck(ξ) between rows and columns:

CCR j,Ck(ξ)= lim
1x→∞

1
1x

∫ 1x

0
R j (x + ξ)Ck(y) dx

=
E2

R j + E2
Ck − AR j,Ck(ξ)

2
, (17)

where

AR j,Ck(ξ)= lim
1x→∞

1
1x

∫ 1x

0
[R j (x + ξ)− Ck(y)]2 dx . (18)

The column pairs and row-column pairs show patterns that are less strongly cross-
correlated than those of the row pairs (Figure 10).

4. Convergence criteria

In order to determine the elastic moduli of the homogeneous continuum equivalent
to the masonry it is necessary to estimate the representative volume element. Fol-
lowing [Cluni and Gusella 2004], this estimate can be performed by using the finite-
size test-window method. Here this method is improved, however, by coupling
the classical mechanical convergence criterion with a probabilistic convergence
criterion which considers the statistical descriptors introduced above.

Consider a “material window” with a representative size L placed at any given
point in the wall. This window plays the role of the L-Volume Element (VEL ).

Let T e
i j,L (T e

L in matrix notation) indicate the elastic stiffness components ob-
tained under essential boundary conditions applied to an VEL , and let Sn

i j,L (Sn
L)

indicate the elastic compliance components obtained under natural conditions. The
T n

i j,L natural elastic stiffness components are obtained by inversion: T n
L = [Sn

L ]
−1.
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Figure 10. Cross-correlation functions between rows and col-
umns for the wall in Figure 2. Top: rows R1 and R j ( j = 2, . . . , 6);
middle: columns C1 and C j ( j = 2, . . . , 6); bottom: row R1 and
columns C j ( j = 1, . . . , 5).



372 VITTORIO GUSELLA AND FEDERICO CLUNI

We consider the statistical descriptors relative to the inclusions and texture of
the VEL :

– the samples of stone sizes {BL
st } and {H L

st } with mean values, standard devi-
ations, and probability density functions: E L

Bst, E L
Hst, 6

L
Bst, 6

L
Hst, P L

Bst, P L
Hst,

respectively;

– the samples of mortar joint sizes {BL
m} and {H L

m }, with mean values, standard
deviations, and probability density function E L

Bm, E L
Hm, 6L

Bm, 6L
Hm, P L

Bm, P L
Hm,

respectively;

– the autocorrelation functions relative to the rows AC L
R j,R j (ξ) and the columns

AC L
C j,C j (η).

Consider increasing the size of the material window

Lk k = 1, . . . , i, j, . . . N ( j > i → L j > L i )

thus obtaining the sequence VELk .
In order to check that the larger window VEL̂ , with L̂ = L N , is an adequate

estimate of the representative volume element, the following mechanical conver-
gence criterion can be utilized: Given 1c ∈ R+, the sequence VELk converges to
the representative volume element when the differences between the natural and
essential elastic stiffness of the larger material window VEL̂ are limited:

max
i j

∣∣∣∣∣T e
i j,L̂

− T n
i j,L̂

T 1
i j

∣∣∣∣∣ ≤1c, (19)

where

T 1
i j =

∣∣T e
i j,L1

− T n
i j,L1

∣∣. (20)

The exclusively mechanical approach can, nonetheless, introduce an incorrect
estimate; in fact 1c is an arbitrary value and the convergence is not uniform (see
the following application on the masonry wall in Figure 1).

In order to overcome this limitation the following probabilistic convergence cri-
terion can be used: The sequence VELk converges to the representative volume
element when the statistical descriptors relative to the elements and the texture
of the larger material window VEL̂ comply with the statistical descriptors of the
random field model relative to the masonry wall as a whole. In other words, the
material window VEL̂ must be statistically similar to the random medium model
of the masonry as obtained by analyzing the entire wall.

With regard to the statistical descriptors introduced above, the similarity in stone
and mortar joint characteristics is checked by minimizing the differences among
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mean values, standard deviations, and probability density functions:∣∣∣65 j −6 L̂
5 j

∣∣∣ ≤1c65 j , (21)∫ ∣∣∣P5 j − P L̂
5 j

∣∣∣ d5 j ≤1cP5 j , (22)

where 5= B, H and j = st,m.
Similarity in texture is checked by minimizing the differences among correla-

tion functions. Let ĀCR R(ξ) be the mean autocorrelation function obtained by
averaging, for any space lag ξ , the autocorrelation function of the rows of the
masonry wall; let ĀCC,C(η) be the mean autocorrelation function relative to the
columns. Let ĀC L̂

R,R(ξ) and ĀC L̂
C,C(η) be the same quantities relative to the rows

and columns of the material window. The similarity is then checked by:∫ ∣∣∣ ĀCR j,R j (ξ)− ĀC L̂
R j,R j (ξ)

∣∣∣dξ ≤1cR j , (23)∫ ∣∣∣ ĀCC j,C j (η)− ĀC L̂
C j,C j (η)

∣∣∣dη ≤1cC j . (24)

If these mechanical and probabilistic convergence criteria are met, then the ma-
terial window VEL̂ is an adequate estimate of the statistically equivalent represen-
tative volume element. In this case the elastic stiffness components T hom

i j = T RVE
i j

of the equivalent homogeneous continuum can be estimated by T ∗

i j,L̂
:

T hom
i j = T RVE

i j = T ∗

i j,L̂
=

T e
i j,L̂

+ T n
i j,L̂

2
. (25)

We mention that the linear properties of random composites can be accurately
estimated using volumes subjected to periodic boundary conditions. The periodic
boundary conditions give an estimation of the effective elastic moduli which are
intermediate between those deriving from displacement and those from traction
boundary conditions, as demonstrated numerically by Terada et al. [2000] and
theoretically by Sab and B. [2005]. These conditions could be used to improve
the approach proposed in the present paper, however, as will be highlighted in the
numerical application, the difference between essential and natural evaluations of
the elastic moduli decrease very quickly as L increases.

5. Application

The previous method has been applied in estimating the elastic stiffness compo-
nents of the homogeneous continuum equivalent to the masonry wall in Figure 1.
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Figure 11. Square material window with L = 80 cm and finite
element model.

A sequence of square material windows of size L was located in the bottom-
left portion. Given the ergodicity hypothesis, the position of the test-windows is
arbitrary. The 80 cm window is shown, as an example, in Figure 11.

These windows, which contain both of the composite phases, were modeled by
the finite element method using membrane elements measuring 5 × 5 mm (these fi-
nite elements were defined by superimposing a 5×5 mm grid onto the photograph).
The mechanical properties of stone and mortar were assumed to be deterministic
and are reported in Table 1.

Phase Material Young’s Poisson’s T11 T12 T22 T33

module E coefficient ν (MPa) (MPa) (MPa) (MPa)

1 Stone 12500 0.20 13021 2604 13021 10417
2 Mortar 1200 0.30 1319 396 1319 923

Table 1. Mechanical properties of the masonry phases: stone and mortar.

5.1. Mechanical convergence. Two types of boundary conditions were applied to
the material windows:
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(a) Essential, in terms of displacements ui (Dirichlet, displacement-controlled),

ui = ε0
i j x j , (26)

where ε0
i j are constant strains and x j are point coordinates, or

(b) Natural, in terms of tractions ti (Neumann, or stress-controlled),

ti = σ 0
i j n j , (27)

where σ 0
i j are constant stresses and n j are the components of the unit vector

outward from the boundary. The average values of the strain in condition
(a) are ε̄i j = ε0

i j , while the average values of the stress in condition (b) are
σ̄i j = σ 0

i j , where

ε̄i j =
1
V

∫
V
εi j dV σ̄i j =

1
V

∫
V
σi j dV . (28)

According to Hill [1963], when the volume considered is the representative volume
element, then the relation between average stress and strain is the same for both
types of boundary conditions (a) and (b).

The masonry is composed of two phases, so that:

σ̄i j = c1σ̄
(1)
i j + c2σ̄

(1)
i j = c1T (1)

i jkl ε̄
(1)
kl +c2T (1)

i jkl ε̄
(1)
kl , (29)

ε̄i j = c1ε̄
(1)
i j + c2ε̄

(1)
i j = c1S(1)i jkl σ̄

(1)
kl +c2S(1)i jkl σ̄

(1)
kl , (30)

where c1 and c2 are the fractional concentrations by volume (c1 + c2 = 1), T (1)
i jkl

and T (1)
i jkl are the elastic stiffness constants, and S(1)i jkl and S(1)i jkl are the elastic com-

pliances of the two phases.
Combining the previous equation we obtain:

T e
i jklε

0
kl = T (1)

i jkl(ε
0
kl−c2ε̄

(1)
kl )+c2T (1)

i jkl ε̄
(1)
kl =T (1)

i jklε
0
kl+c2(T

(1)
i jkl−T (1)

i jkl)ε̄
(1)
kl , (31)

Sn
i jklσ

0
kl = S(1)i jkl(σ

0
kl−c2σ̄

(1)
kl )+c2S(1)i jkl σ̄

(1)
kl =S(1)i jklσ

0
kl+c2(S

(1)
i jkl−S(1)i jkl)σ̄

(1)
kl , (32)

where T e
i jkl are the stiffness components under essential conditions and Sn

i jkl are
the compliance components under natural conditions.

Applying displacement boundary conditions such that ε0
= Imn (Imn is the

symmetrical matrix with all its components set to 0, except the component mn,
which is set to 1) it becomes possible to determine the columns of the stiffness
matrix T e.

Applying traction boundary conditions such that σ 0
= Imn , it becomes possible

to determine the columns of the compliance matrix Sn . The stiffness matrix relative
to natural conditions is obtained from T n

= [Sn
]
−1.
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We adopted an orthotropic equivalent continuum:σ11

σ22

τ12

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 ε11

ε22

γ12

 =

2G11 + λ λ 0
λ 2G22 + λ 0
0 0 G12

 ε11

ε22

γ12

 , (33)

ε11

ε22

γ12

 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 σ11

σ22

τ12

 =

 1/E11 −ν12/E22 0
−ν21/E11 1/E22 0

0 0 1/G12

 σ11

σ22

τ12

 , (34)

where 1 ≡ x , 2 ≡ y, Ti j = T j i ↔ Si j = S j i , Gi j , λ are Lamé’s constants, Ei j and
νi j are Young’s constants and Poisson’s coefficients, respectively:

E11 =
(2G11 + λ)(2G22 + λ)− λ2

2G22 + λ
; E22 =

(2G11 + λ)(2G22 + λ)− λ2

2G11 + λ
;

ν21 =
λ

2G11 + λ
; ν12 =

λ

2G22 + λ
;

ν12

E22
=
ν21

E11
. (35)

In order to determine the three columns of the essential stiffness matrix, the
following strains and boundary displacements were applied (for details see [Cluni
and Gusella 2004]):

ε0
1 =

1
0
0

 ↔

(
u1

u2

)
=

(
x
0

)
, ε0

2 =

0
1
0

 ↔

(
u1

u2

)
=

(
0
y

)
,

ε0
3 =

0
0
1

 ↔

(
u1

u2

)
=

(
x
y

)
.

(36)

In order to determine the three columns of the natural compliance matrix, the
following stresses and boundary tractions were applied

σ 0
1 =

1
0
0

 ↔

(
t1
t2

)
=

(
1
0

)
, σ 0

2 =

0
1
0

 ↔

(
t1
t2

)
=

(
0
1

)
,

σ 0
3 =

0
0
1

 ↔

(
t1
t2

)
=

(
1
1

)
.

(37)

Since an L-size window is used, the essential stiffness is designated T e
L and the

natural stiffness is designated T n
L .
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Introducing

T ∗

i j,L =
T e

i j,L + T n
i j,L

2

[
T∗

L =
(
T e

L + T n
L
)
/2

]
, (38)

we have [Huet 1990; Sab 1992; Ostoja-Starzewski 1998]:

T R
L ≤ T n

L ≤ T∗

L ≤ T e
L ≤ T V

L , (39)

where T R
L and T V

L are the Reuss and Voigt bounds, respectively (A ≤ B means
that vTAv ≤ vT Bv for all v 6= 0).

As the size L of the window increases, the difference between T e
L and T n

L de-
creases. As L goes to infinity, the VEL converges with the representative volume
element, and T∗

L converges with the stiffness matrix of the nonrandom equivalent
homogeneous continuum T RVE

= T hom [Sab 1992]

lim
L→∞

T ∗

L = T RVE
= T hom. (40)

In effective applications, the window has a finite size which increases, giving
the sequence: Lk k = 1, . . . , N with i > j → L j > L i . Applying the mechanical
convergence criterion introduced above the material window with L̂ = Ln is an
adequate estimate of the representative volume element when the equation (3) is
verified:

max
i j

∣∣∣∣∣T e
i j,L̂

− T n
i j,L̂

T 1
i j

∣∣∣∣∣ ≤1c, (41)

where T 1
i j = |T e

i j,L1
− T n

i j,L1
| and 1c ∈ R+ is a fixed admissible error.

In the present application the size L was increased from 20 cm to 130 cm (the
130 cm window is shown in Figure 12).

At first, the numerical results confirmed the hypothesis in Equations (33) and
(34); in fact the stiffness components Ti3 i = 1, 2 and the compliance components
Si3 i = 1, 2 were negligible with respect to the others. Table 2 reports the Young’s
moduli and Lamé constants relative to essential and natural conditions. The con-
vergence of these characteristics is shown in Figure 13. Poisson’s coefficients con-
verge very quickly (for the window with L = 130 cm: ν21 = 0.199, ν12 = 0.203 for
essential conditions, and ν21 = 0.178, ν12 = 0.180 for natural conditions).

5.2. Probabilistic convergence. The previous mechanical convergence does not
permit us to state with adequate reliability that the test-window is a good approx-
imation of the representative volume element. Differences between essential and
natural evaluations of the elastic moduli decrease very quickly as L increases. The
convergence could be accelerated by averaging over several samples of the same
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L Essential Boundary Conditions Natural Boundary Conditions
(cm) E11 (MPa) E22 (MPa) G12 (MPa) E11 (MPa) E22 (MPa) G12 (MPa)

20 7807.03 7698.80 3271.50 6408.04 6338.20 2487.00
30 7890.46 7752.42 3162.00 7086.51 6665.78 2710.50
40 7929.02 7852.14 3255.50 7214.07 7290.57 2883.00
50 7894.35 7290.79 3049.50 7401.59 6709.97 2724.00
60 7840.72 7079.91 2917.51 7504.52 6584.28 2625.44
80 7937.80 7055.86 2893.87 7658.00 6601.37 2655.77

100 7813.77 6929.10 2816.60 7543.66 6677.43 2657.16
120 8095.70 7290.24 2932.05 7879.92 7058.18 2784.91
130 8143.23 7282.57 2940.33 7958.80 7046.80 2801.83

Table 2. Mechanical characteristics obtained under essential and
natural boundary conditions as L , the side of the square window,
increases.

Figure 12. Square material window with L = 130 cm and finite
element model.

size, as noted in [Cluni and Gusella 2004]; the averaging over samples with dif-
ferent sizes is not appropriate because these samples have different and unknown
statistical weights.
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Figure 13. (A), (B) and (C): behavior of the mechanical proper-
ties of the test-window as L increases: “×” essential, “◦” natural,
“∗” mean value; (D) normalized differences between essential and
natural evaluations for E11, E22, and G12.

Even with a single 80 cm window, the differences between essential and natural
moduli are limited. However, for the 130 cm window these differences are quite
similar to those noted above, whereas the values of essential and natural elastic
moduli and their mean values are significantly different from those of the 80 cm
window (Figure 13 (A)–(C)).

This discrepancy can be explained by observing that the 80 cm window does not
adequately represent the masonry wall because it does not contain a representative
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Bst Hst Bm Hm

Entire wall EBst 6Bst EHst 6Hst EBm 6Bm EHm 6Hm

18.87 5.86 11.69 4.73 4.20 4.22 1.81 1.29

VEL E L
Bst 6L

Bst E L
Hst 6L

Hst E L
Bm 6L

Bm E L
Hm 6L

Hm

80 × 80 21.61 3.45 13.34 5.02 2.79 1.56 2.06 1.62
130 × 130 19.90 5.57 12.75 4.98 3.70 3.48 1.83 1.25

Table 3. Mean E and standard deviation 6 of the width and the
height of the stones, head and bed mortar joints, for the portion
of wall shown in Figure 2 and for the material windows with L =

80 cm (Figure 11) and L = 130 cm (Figure 12).

sample of stones: for example, the course with very large stones (row R7 in Figure
2) is not taken into account.

It should, therefore, be noted that as the size of the test-window increases, the
differences between the essential and natural components decrease, but the conver-
gence to the equivalent homogeneous continuum components is not uniform. In
order to overcome this limitation the probabilistic convergence criterion introduced
above was applied, taking into account Equations (21), (22), (23) and (25).

Excluding windows with L < 60 cm, because the number of stones and joints
was too small, the means and standard deviations of the sample relative to the stone
and mortar joint sizes were compared with those of the entire wall (see Table 3).

Moreover, for L ≥ 80 cm, the probability density functions of these samples
were compared with those of the entire wall. Comparisons relative to the width and
height of the stones in the windows with L = 80 cm, the window with L = 130 cm,
and the wall as a whole, are shown in Figure 14. Comparisons relative to the mortar
joint sizes are shown in Figure 15.

The window with L = 130 cm is adequately representative of the statistical dis-
tribution of stones and mortar joints in the masonry (only the sample of the bed
joint thickness should be improved). In fact, the differences (Table 3) in statisti-
cal moments (mean and standard deviation) and in probability density functions
(Figures 14 and 15) between the 130 cm window and the entire wall were found to
be sufficiently limited.

Moreover, it is necessary to check that the pattern of the window is representative
of the entire wall. This was done by analyzing the autocorrelation functions of the
rows and columns. The results relative to the 130 cm window are shown in Figure
16. These functions match those relative to the entire wall (Figure 7 and Figure 9).
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Figure 14. Comparison among probability density functions
(PDF) of the width and the height of the stones relative to the
windows (blue bars) with L = 80 cm and with L = L̂ = 130 cm,
the entire masonry wall (red bars), and the log-normal curve (see
Figure 3).

In particular, the difference in mean autocorrelation functions of the rows be-
tween the 130 cm window ĀC L̂

R,R(ξ) and the entire wall ĀCR R(ξ) proved to be
limited; see Figure 16 (A).

A similar result was obtained for the difference in mean autocorrelation func-
tions of the columns: ĀC L̂

C,C(η) and ĀCC,C(η), respectively; see Figure 16 (B).
Further studies would be necessary to gauge the importance of higher-order

statistical properties. In any case, the elastic moduli of the equivalent homoge-
neous continuum are related to the average values of the strain and stress, and,
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Figure 15. Comparison among probability density functions
(PDF) of the characteristics of the mortar joints relative to the
windows (blue bars) with L = 80 cm and with L = L̂ = 130 cm,
the entire masonry wall (red bars), and the log-normal curve (see
Figure 4).

consequently, the checks based on the proposed statistical descriptors would seem
to be adequate.

Finally, by taking into account the mechanical and statistical results presented
above, it becomes possible to consider the 130 cm window an adequate estimate
of the statistically equivalent representative volume element, so that

T hom
i j = T RVE

i j = T ∗

i j,L̂
=

T e
i j,L̂

+ T n
i j,L̂

2
, L̂ = 130 cm. (42)
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Figure 16. (A) Autocorrelation functions of the rows of the win-
dow with L̂ = 130 cm; mean autocorrelation functions: ĀC L̂

R,R(ξ)

for the window (blue line), ĀCR R(ξ) for the wall (red line); (B)
Autocorrelation functions relative to the columns of the window
with L̂ = 130 cm; mean autocorrelation functions: ĀC L̂

C,C(η) for
the window (blue line), ĀCC,C(η) for wall (red line).

6. Conclusions

This paper deals with the homogenization of masonry with nonperiodic micro-
structures. The masonry is treated as a random heterogeneous material and statis-
tical descriptors are introduced. On the basis of observations concerning masonry
construction, an orthogonal grid of rows and columns is used to determine the
geometric characteristics of stones and of head- and bed-mortar joints. This allows
one to estimate the statistical moments and the probability density function of these
geometrical characteristics.

It is well known that the mechanical behavior of masonry is significantly influ-
enced by its texture. In order to describe this feature, indicator (or characteristic)
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functions are introduced to describe the random alternation of stone and mortar in
the rows and columns of the orthogonal grid. Moreover, shifted-area functions and
correlation functions are taken into account to highlight the random features of the
masonry texture.

The modeling of the masonry as a random field was introduced to permit one to
improve the finite-size test-window method in estimating the representative volume
and the elastic moduli of the equivalent homogeneous medium. Since the classic
mechanical criterion, which requires that differences between moduli evaluated
under essential and natural conditions be limited, does not assure a uniform con-
vergence of the test-window to the representative volume element, a probabilistic
criterion is introduced.

This convergence criterion requires that the material window be statistically simi-
lar to the complete masonry wall, where this similarity is assured by the minimizing
of differences among the statistical descriptors relative to the window and the entire
masonry wall.

When both of these criteria are respected, the window can be considered an
adequate estimate of the statistical equivalent representative volume, and the homo-
geneous continuum moduli can be obtained by averaging those relative to essential
and natural boundary conditions.

A numerical application highlights the importance of applying the two criteria
jointly and the effectiveness of the method proposed.
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THE STRESS-MINIMIZING HOLE IN AN ELASTIC PLATE
UNDER REMOTE SHEAR

SHMUEL VIGDERGAUZ

Conformal mappings provide an elegant formulation for planar elastostatic prob-
lems. Here, the mapping function coefficients are used in a new manner as design
variables in the genetic-algorithm (GA) approach to find a piecewise smooth
optimal shape of a single traction-free hole in an elastic plate that minimizes
the local stresses under remote shear. This scheme is sufficiently fast and accu-
rate to numerically show that the sought-for shape generates tangential stress of
constant absolute value, equal to 30% less than the stress concentration factor
(SCF) for the commonly used circular hole. The shape has four symmetrically
located corners, and the stress changes sign while remaining finite as it rounds
each corner. This is the same shape as the energy-minimizing contour identified
in 1986 by the author and Cherkaev for the same load. Other nontrivial exam-
ples are given to demonstrate the potential of the approach. Methodologically,
this article continues the optimization study first conducted by the author and
Cherkaev (J. Appl. Math. Mech. 50:3 (1986), 401–404) and subsequently by
Cherkaev et al. (Internat. J. Solids Structures (35):33, 4391–4410).

1. Introduction

Designing elastic structures to diminish the stresses around construction holes in
flat plates remains an actual problem in spite of intensive studies carried out in the
area over the last decades. Various stress-reducing technologies, such as auxiliary
unloading holes, reinforcement rings and others are known so far, each posing
its own elastostatic problem. In most applications, the hole area matters much
more than its shape, which thus permits a certain freedom in design. Prompted
by this, our concern here is with optimization of the hole shapes to minimize the
stress concentration factor (SCF), denoted by K, and defined as the maximum
modulus of the tangential stress along the holes, at unit remote load. The lesser
the factor, the stronger the hole-weakened construction will be. Technologically,
only piecewise smooth holes with a finite number of corner points may be used as
stress-minimizers. This is assumed in what follows.

Keywords: plane elasticity problem, Kolosov–Muskhelishvili potentials, shape optimization,
effective energy, extremal elastic structures, genetic algorithm.
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The SCF, though local in nature, is obtainable only from full-scale elastic stress
solutions, which are rarely known in a closed form. A nontrivial example is a
uniform stress distribution

σττ = Const (1)

occurring at specifically shaped interfaces [Cherepanov 1974]. Here τ stands for
the contour unit tangent. These equistress shapes do exist in an infinite plane in any
number and mutual arrangement, provided the remote deviatoric load is relatively
small, as stated accurately in the next section. In particular, pure bulk gives K = 2
independently of the geometry of the hole set. The equistress condition not only
prevents the stress concentration at the hole but also provides the global minimum
of K over all shapes at given bulk-type loading [Vigdergauz 1976].

In the opposite case of pure shear, the K-optimal shapes are yet unknown, even
for the simplest configuration of a single traction-free hole. To make progress
in this stubborn problem, we replaced the local criterion K in [Vigdergauz and
Cherkayev 1986] by the less severe global criterion of minimizing the hole-induced
energy perturbation δW , taken at unit load and related to the hole area. In the ef-
fective medium theory, a minimum in δW corresponds to maximum shear rigidity
of a dilute planar composite when the holes are far apart and have little influence
on each other (see [Torquato 2002], for instance). Derived variationally, this op-
timality condition then implies constancy of the absolute value of the tangential
stresses along the sought-for contour

|σττ | = Const. (2)

In contrast to the equistress condition (1), the less restrictive identity (2) may be
compatible with remote shear load, provided the stresses change sign across a
finite number of angular points. Using this assumption, the resultant near-square
hole shape is found numerically [Vigdergauz and Cherkayev 1986] with δW =

3.714 . . . .
Conversely, (2) is an immediate result of (1); hence equistress K-optimal shapes,

when they exist, also minimize the energy perturbation δW under a fixed load.
Though similar, identities (1) and (2) work differently. The second one is used as

a prerequisite in directly finding the energy-minimizing shapes at any far load (see
details in [Cherkaev et al. 1998]), while K-optimality of the equistress condition
(1) is revealed only a posteriori [Vigdergauz 1976]. The proof is based on the
maximum module principle, which is not applicable to the shear-type stress field
associated with (2). This brings up the following inverse problem:

Among all possible continuous curves, find the shape of a single hole in an
elastic plate so as to minimize the factor K under pure shear at infinity.
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The challenge is very interesting mathematically, and its practical importance is
in providing the theoretical bound of material behavior. The latter is significant to
the designer, who can determine how far the actual structure is from the theoretical
optimum. As excellent sources on the direct problem of finding K for various
shapes, we refer to the classical monograph [Savin 1961] and the recently reprinted
[Pilkey 1997].

In the absence of the K-optimal precondition, semianalytical and numerical
global optimization are the methods of choice in solving the problem. The purpose
of this paper is twofold: to present a new numerical optimization scheme, and to
produce new optimal solutions not available in the literature.

Computationally, any optimization process involves two main ingredients: the
solution of a given direct boundary value problem, which has to be repeated many
times, and a minimization scheme. As the first ingredient, we choose the Kolosov–
Muskhelishvili potentials ϕ(z) and ψ(z) [Muskhelishvili 1963], together with the
conformal mapping of the sought-for contour onto a circle. Thanks to the power
of complex variable techniques, this combination provides an effective numerical
solver of the direct problem. Especially relevant here is the scheme by Kalandiya
[1975], in which the contour stresses are solved from an infinite system of linear
algebraic system with easy-to-compute coefficients. In practice, the system size
and the Laurent series expansion of the mapping function are both truncated at dif-
ferent finite orders. We have substantially improved the algorithmic performance
of the scheme in the following two aspects. First, we show that a finite mapping ex-
pansion generates exactly a finite-size system, thus allowing to avoid the additional
truncation error. Second, the analytical manipulations over σττ are performed to
the maximum extent resulting in a simple rational expression. The latter provide
evaluation of the local-type function K with sufficient accuracy to be incorporated
into the genetic algorithm (GA) optimization process rapidly gaining use in elas-
ticity. For design variables we choose coefficients of the mapping function instead
of the contour nodal points, used in [Vigdergauz 2001b; 2001a; 2002]. This dras-
tically reduces the number of design variables and allows the analytic calculation
of all the integrals that occur. On this basis, the energy-minimizing shapes (2) are
numerically shown to remain K-optimal under pure shear as in the equistress case
(1) under bulk load. We also calculate the energy-maximizing holes for a small
number of mapping coefficients, to illustrate the “worst” possible situation.

In Section 2 we recall basic facts of complex variable theory applied to plane
elasticity. Section 3 states the optimization problem and details the mixed GA/con-
formal mapping solving technique. Section 4 details the novel scheme of eval-
uating tangential stresses along the hole shape. Numerical comparison with the
less accurate approach of Cherkaev et al. [1998] is performed in Section 5. Some
analytical consequences are deduced in Section 6. They serve as a benchmark
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for GA testing and calibration (Section 7). The numerical results are given and
discussed in Section 8. Section 9 contains some final remarks.

2. The Kolosov–Muskhelishvili approach in plane elasticity

Consider the setup in Figure 1. Let an infinite elastic plane E be weakened by a
hole with a piecewise smooth boundary L enclosing the origin of xy-plane. The
curve L divides the plane in the hole region S1 of finite area f1 and the outside
region S2 = E \ S1, filled with a linearly elastic phase. Let the plate be remotely
loaded by uniform nontangential stresses

σ 0
xx = P, σ 0

yy = Q, σ 0
xy = 0. (3)

Let S2 be conformally mapped onto the exterior 62 of the unit circle 61 with the
boundary l in the auxiliary plane F = 61 ∪62 of the complex variable ζ . Up to
a scaling factor, the mapping function ω(ζ ) : S2 + L →62 + l is represented as a

x

y

Q Q

P

P

S1

S2

L

Figure 1. An infinite plate with a traction-free hole under uniform
stresses. The cases P = Q and P = −Q correspond to remote
bulk and shear, respectively. The piecewise smooth boundary of
the hole has a certain rotational symmetry and possibly a finite
number of corners.
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Laurent series

ω(ζ )= ζ +

∞∑
k=1

dkζ
−k, (4)

with

f1 = π

(
1 −

∞∑
k=1

k|dk |
2
)
. (5)

(See [Ahlfors 1978] for this and subsequent background facts from complex func-
tion theory.) Since the map ω(ζ ) must be one-to-one, its coefficients fall in the
intervals

−
1

√
m

≤ dm ≤
1

√
m
, m = 1, 2, . . . . (6)

The Airy stress function remains biharmonic under the map and hence is expressed
through the Kolosov–Muskhelishvili (KM) potentials 80(ζ ),90(ζ ), analytic in 62

[Muskhelishvili 1963], with far field asymptotics governed by (3):

80(ζ )= B +8(ζ), 90(ζ )= 0+9(ζ); ζ ∈62, 8(ζ ), 9(ζ )= O
(
|ζ |−2) ,

(7a)

4B = Q + P, 20 = Q − P, Im B = Im0 = 0. (7b)

As in (4), they also have convergent series expansions (the summation begins with
n = 2 to match the asymptotics (7a)):

8(ζ)=

∞∑
k=2

akζ
−k, 9(ζ )=

∞∑
k=2

bkζ
−k

; ζ ∈62 + l, (8)

with (see for instance Vigdergauz [2001b])

δW = 2π f −1
1

(
20a2 + Bb2

)
. (9)

For simplicity, suppose that the hole boundary is traction-free. Then the stresses
σ%%(ξ) and σ%θ (ξ) vanish along it: ξ = exp iθ , % = 1 in the plane F , thus forming
the boundary condition for the KM potentials

−
2
ξ 2ω

′(ξ)Re80(ξ)+ω(ξ)80
′(ξ)+ω′(ξ)90(ξ)= 0; ξ ∈ l. (10)

The nonzero stress component σττ (t (ξ)) ≡ σθθ (ξ) along l possesses the form
[Muskhelishvili 1963]

σθθ (ξ)= 4Re80(ξ)= 4B + 4
∞∑

k=2

ak cos(kθ); ξ ∈ l. (11)

Of course, the stresses and strains at any point inside 62 are also expressed in
80(ζ ),90(ζ ) [Muskhelishvili 1963]. We omit the formulas here to save room.
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Identities (7) and (10) form the boundary value problem in the KM potentials.
This problem is uniquely solvable [Muskhelishvili 1963], at least for any piecewise
smooth inclusion shape L , which is therefore the only factor defining the problem’s
solving complexity. Specifically, the equistress principle (1) yields σ%θ (ξ)= 4B,
and hence (see [Cherepanov 1974])

80(ζ )= B, ω(ζ )= ζ − κζ−1, ω′(ζ )90(ζ )= −B
κζ 2

+ 1
ζ 2 + κ

; κ ≡
0

2B
.

The equistress shape appears to be an ellipse that exists if and only if

|κ| ≡ |d1|< 1,

or equivalently, thanks to (3) and (7b),

σ 0
xxσ

0
yy ≥ 0.

3. Problem reformulation, design variables and basic GA scheme

In contrast, under the shear-dominated far field (3) when σ 0
xx , σ

0
yy are of opposite

signs, the K-optimal hole shape cannot be found in a closed form. Thus, numerical
methods are called for. In computational practice, the expansion (4) is necessarily
truncated at a finite number N of first terms. With this in view, our optimization
problem is reformulated as follows:

At a given finite number N of mapping coefficients and pure shear field B = 0,
find the K-optimal hole shape on which

K ≡ max
t∈L N

|σττ (t)| ≡ max
ξ∈l

|σθθ (ξ)| −−−−−−−→
{L N }

min, (12)

where {L N } denotes the set of all curves mapped onto the unit circle by ω(ζ ) with
any admissible finite set {dm, m = 1, . . . , N }, and dm = 0,m > N .

In our opinion, the N -parametric nonlinear optimization problem (12) with the
linear restrictions (6) is well suited to be solved by the genetic algorithm advanced
in [Holland 1975]. This heuristic method performs a nongradient stochastic search
for the global optimum by mimicking the Darwinian principal of survival of the
fittest through blind mutation and natural selection over successive generations;
see [Gen and Cheng 1997] for a state-of-the-art review and many references. GA
specifics, as applied to shape optimization in planar elasticity, are illustrated in
[Vigdergauz 2001b; 2001a; 2002] where the radii of nodal points equally spaced
along the sought-for contour are directly taken as the GA design variables without a
conformal premapping. This scheme helps find the δW -optimal hole shapes, but is
not sufficiently accurate to handle the local criterion K. For this reason, optimized
contours are represented here through a set of mapping coefficients rather than
through nodal points. This not only dramatically reduces the number of required
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design variables but also allows the development of an efficient fitness evaluation
scheme (see the next sections) which is easily included into a standard GA config-
uration.

On the other hand, in contrast to the nodal-based shape encoding, a mapped
contour may have self-intersections even assuming inequalities (6) on the mapping
coefficients. Other uniqueness conditions imply that all the roots of the polynomial
PN+1(ζ )= ζ N+1ω′(ζ ) lie strictly inside the unit circle (see [Ahlfors 1978]):

PN+1(ζ )= ζ N+1
−

N∑
m=1

mdmζ
N−m

=

N+1∏
m=1

(ζ − λm);

|λm |< 1, m = 1, . . . , N + 1. (13)

Though more restrictive than (6) these bounds are also only necessary but not
sufficient to avoid self-intersections. Mathematically, this is because for N > 1,
such inequalities provide a one-to-one mapping only locally rather than globally,
as exemplified in Figure 2, where the mapping terms are strictly inside the intervals
(6).

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 x

y

Figure 2. Two-term conformal mapping of the unit circle onto
a self-crossing line with square symmetry: d3 ≈ 0.24451093,
d7 ≈ 0.15696709, the largest root modulus is approximately
1.47730100 is outside the circle (the solid line), and d3 ≈

−0.54182861, d7 ≈ −0.09122962, with all the roots inside the
circle (the dotted line). The loop areas enter identity (5) with a
negative sign.
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To exclude self-intersections, we use the geometric fact that a closed curve

ω(ξ)= ρ(ξ) exp iϑ(ξ), ξ = exp iθ ∈ l, (14)

with p-fold rotational symmetry is intersection-free if and only if ϑ(ξ) is an increas-
ing function of θ in the interval 0 < θ < π/p. Though seemingly cumbersome,
this condition is quickly checked over a discrete set of points along the irreducible
part of mapped curves with penalizing their fitness to the extent by which (14) is
violated at the first point so detected.

(We note in passing that the nonmonotony of finite-term mappings produces
a closed loop of a negative area. This formally results in zero-area curves with
self-intersections rather than in physically reasonable zero-area slits. The trivial
exception is the case p = 1, when the function ω(ζ )= ζ + ζ−1 maps the unit circle
to a rectilinear slit

L : −2 ≤ t ≤ 2

at the x-axis of the physical plane E . In Section 8 this note is used to explain the
numerically found behavior of the energy-maximizing hole shapes.)

Another difficulty of the proposed scheme is that a relatively small number N
of mapping coefficients smoothes the shape corners and hence may yield too con-
servative an optimum. However, it is physically clear that the stresses should be
bounded at the “true” corners of the optimal shape, which makes only an infinitely
small contribution to the minimized criterion value. Earlier work [Vigdergauz and
Cherkayev 1986] and our current results show that this is the case.

4. Fast stress-evaluation scheme

We now refer back to the direct boundary problem (7), (10), the solution of which
gives the value of K for an arbitrarily shaped hole. Our concern here is to maximally
extend the analytical transformations before resorting to numerical calculations. To
this end, we rework the boundary condition (10) with (7a) as

−
2B
ξ 2 ω

′(ξ)+0ω′(ξ)−
2
ξ 2ω

′(ξ)Re8(ξ)+ω(ξ)8′(ξ)= −ω′(ξ)9(ξ); ξ ∈ l.

(15)
The left-hand side of (15) is the boundary value of an 62-holomorphic function
tending to zero at infinity. In turn, this means that its series expansion involves no
nonnegative powers in ζ . Substituting (4) and (8) in (15) and zeroing the resulting
coefficients of ζ n , n ≥ 0, gives an infinite linear algebraic system in ak , k ≥ 2:

am+2 −

m∑
k=1

(m − k + 1)d̄m−k+1ak − (m + 1)
∞∑

k=1

d̄m+k+1āk = Am; m = 0, 1, . . . ,
(16a)

A0 = 2B −0, A1 = 0, Am = −2B(m + 1)d̄m+1, m ≥ 2. (16b)
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The first sum is omitted in (16a) when m = 0, 1.
Remarkably, the second potential 9(ζ) remains outside the system, thus allow-

ing us to separate out the coefficients ak , which are only needed to compute the
boundary stresses σθθ (ξ) via (11). In numerical practice, the mapping expansion
(4) and the system size are truncated to finite numbers.

This scheme was proposed by Kalandiya [1975] three decades ago and since
then, to the author’s best knowledge, it has not yet been studied analytically. Our
aim now is to prove that the double truncation is unnecessary, because by taking
only the N first items in the mapping expansion (4) the actual system size already
shrinks to the same finite value of N .

To make the algebra simpler, assume that the unit far field is only shear (B = 0,
0 = 1) and that the hole shape L is symmetric about the x-axis. Then the coeffi-
cients {ak, bk, dk} are real and hence

δW = πa2 f −1
1 . (17)

Independently of these assumptions, we further note that with dn = 0, n > N the
second sum disappears in all equations (16a) from m = N − 1 on. Beginning with
m = N they form an infinite linear system of finite differences

am+2 −

N∑
k=1

kdkam−k+1 = 0; m = N , N + 1, . . . , (18)

with constant coefficients 1, 0,−d1,−2d2, . . . ,−NdN which define the finite Lau-
rent expansion of ω′(ζ ). For this reason, the characteristic roots of (18) coincide
with the set of roots {λk} of (13); see [Levy and Lessman 1958]. This is the key
point for further analysis.

Suppose first that all the roots of PN+1(z) are different. Then the general solution
to the homogeneous system (18) takes the form

am = D1λ
m
1 + D2λ

m
2 + . . .+ DN+1λ

m
N+1, m = 1, 2, . . . , (19)

where the arbitrary constants D1, . . . , DN+1 are to be found by plugging (19) into
(16). Substitution of (19) into (8) results in infinite geometrical progressions in ζ ,
which converge by virtue of inequalities (13). Summing them we get, in view of
(13),

8(ζ)=

N+1∑
m=1

Dmλ
2
m

ζ(ζ − λm)
. (20)

In order to avoid the polynomial roots calculation, we exclude them by performing
summation in (20) over m:

8(ζ)=
RN (ζ )

ζω′(ζ )
. (21)
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Here RN (ζ ) is a new polynomial of degree N in ζ ,

RN (ζ )= rN ζ
N

+ rN−1zN−1
+ . . .+ r0. (22)

It is easy to see that the coefficients rm , m = 0, . . . , N are specified by

rm = (−1)m
N+1∑
j=1

D jλ j p j
m, (23)

where p j
m stands for all the possible products of m different roots λk excluding λ j

and p j
0 ≡ 1.

Writing out p j
m through the coefficients (13) of the polynomial PN+1(ζ ) and

making use of (19) we obtain finally

r0 = a1 = 0, r1 = a2,

rm = am+1 +

m−1∑
j=1

(−1)m− j (m − j + 1)dm− j+1a j ; m ≥ 2.
(24)

Therefore, the net expression (21) for the potential 8(ζ) does not explicitly contain
the roots λm . Lastly, the second potential 9(ζ) is algebraically found from (15).

For the multiple roots λm , analogous manipulations lead to the same formulas,
(21) and (24). Note that the s-repeated root λm enters expression (19) for am as

D1
kλk + k D2

kλ
2
k + . . .+ Ds−1

k λs
k; (25)

see [Levy and Lessman 1958]. Substitution of (25) into (8) results in convergent
sums of the type

Sm =

m∑
i=1

im x i , |x |< 1,

which are found recurrently. Indeed, it is evident that S0 = x(1 − x)−1, while for
m ≥ 1,

Sm =
x

1 − x

(
1 +

m−1∑
j=1

(m
j

)
S j

)
,

as follows from the chain of identities

Sm =

m∑
i=1

im x i
= x +

m∑
i=1

(i + 1)m x i+1
= x + x

m∑
j=1

(m
j

)
S j .

Further simplification is made by assuming a possible stress field symmetry
which permits the unknowns to be partially eliminated. Say, for a square-symmetric
hole (dk = 0 when k 6= 4 j − 3) and pure shear, only a4k−2, k = 1, 2, . . . , differ
from zero.
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5. Comparison with the truncated expansion solution

For clarity, we repeat the basic steps of the proposed evaluation scheme.
First, the map function (4) is assumed to contain only a finite number N of

terms.
Next, the linear algebraic system of the first N equations from (16) is solved to

find the N lowest coefficients of 8(ζ). We remark again that the higher coefficients
do not enter the system, which hence is exact with no truncation needed. The first
term a2 so found gives the energy increment δW via (9). The more general energy-
related Pólya–Szegő matrices are derived in [Movchan and Serkov 1997] exactly
in this way.

The final and novel component is finding the function 8(ζ) or, equivalently, the
tangential stress distribution σθθ (ξ) along the hole shape by the exact summation
of the infinite tail in expansion (8). This is not done in [Cherkaev et al. 1998],
where the truncated series

8(ζ)=

N∑
k=2

akζ
−k (26)

is used instead. This brings up the question of assessing the resultant truncation
error in the local stresses in dependence on N . To this end we borrow the δW -
optimal mapping terms for n = 3, 7, 11, 15 found in [Cherkaev et al. 1998] for
square symmetry and use (22)–(24) and (26) to compute the exact and truncated K.
At a given {dk} (Table 1), the discrepancy between the values (Table 2) is entirely
due to the system truncation. The relative error 1K is seen to decrease rather
slowly with increasing N . In addition, the truncation leads to spurious oscillations
as exemplified in Figure 3 for N = 23. This validates the proposed K-evaluation
scheme against (26).

N d3 d7 d11 d15 d19 δWmin

3 −0.13807 3.72792
7 −0.14251 0.01575 3.71725

11 −0.14372 0.01652 −0.00513 3.71532
15 −0.14420 0.01683 −0.00539 0.00239 3.71473
19 −0.14445 0.01699 −0.00521 0.00251 −0.00134 3.71449

Table 1. A single square-symmetric hole under remote shear: the
optimal mapping coefficients and the global criterion δWmin for
different values of N , taken from [Cherkaev et al. 1998].
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Exact Summation Truncation
N value angle value angle 1K(%)

3 3.29603 31.5 3.51472 0.0 6.63
7 3.26002 37.3 3.32372 22.9 1.95

11 3.25179 39.6 3.29671 30.3 1.38
15 3.24801 40.9 3.28945 34.0 1.27
19 3.24623 41.6 3.28690 36.3 1.25

Table 2. Values of K and angular locations along the δW -optimal
hole shape, under exact summation (Eqs. (22)–(24)) and under
truncation (Eq. (26)). See Table 1 for the mapping coefficients.
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Figure 3. The tangential stress distribution along the δW -optimal
hole shape (A) at N = 23: Exact summation (the solid line) versus
truncation (the dotted line)

6. Analytical consequences of the main formula

In principle, the first N equations (16) with ease-to-compose coefficients can be
solved analytically even for rather large N but we consider here only the simplest
cases of one- and two-term mappings under pure shear (B = 0, 0 = 1).



THE STRESS-MINIMIZING HOLE IN AN ELASTIC PLATE UNDER REMOTE SHEAR 399

One-term mapping. Let a hole with (p+1)-fold rotational symmetry (p ≥ 1) be
mapped by the function ω(ζ ) = ζ + dpζ

−p. At N = p, the resolving N × N
system (16) reduces to one or two equations, with RN (ζ ) becoming a monomial
or binomial, respectively. Indeed, with (18), (24) and (11), a little algebra applied
to (16) yields the following formulas:

Two- and three-fold symmetry (p = 1, 2):

a2 = 1, δW2 =
4

(1 − pd2
p)

: min
dp
δWp = 4, d(min)

p = 0, (27a)

σθθ (ξ)= 4
cos 2θ − pdp cos(p−1)θ

1 − 2pdp cos(p+1)θ + p2d2
p
. (27b)

Square symmetry (p = 3):

a2 =
1

1 − d3
, δW3 =

4
(1 − d3)(1 − 3d2

3 )
: min

d3
δW3 =

9
√

2 + 1
, d(min)

3 =
1 −

√
2

3
,

σθθ (ξ)=
4(1 − 3d3) cos 2θ

(1 − d3)(1 − 6d3 cos 4θ + 9d2
3 ).

Higher symmetry (p ≥ 4):

a2 =
1

1 − (p − 2)d2
p
, ap−1 =

dp(p − 2)
1 − (p − 2)d2

p
, δWp =

4
(1 − (p − 2)d2

p)(1 − pd2
p)
,

min
dp
δWp = 4, d(min)

p = 0,

σθθ (ξ)= 4
a2(cos 2θ − pdp cos(p−1)θ)+ ap−1(cos(p + 2)θ − pdp cos 2θ)

1 − 2pdp cos(p+1)θ + p2d2
p

.

Excepting the square-symmetric case p = 3, the energy minimizing hole under
remote shear appears to be a circle with K

(
d(min)

p
)
= 4. Most likely, this is true not

only for the one-term approximation but in general too. For triangular (p = 2) and
hexagonal (p = 5) symmetry this fact was conjectured by Torquato et al. [1998]
and is verified in Section 8, where the physical reasons behind the specifics of the
square-symmetric optimal hole are also discussed.

Next, the value p = 3 yields

K
(
d(min)

3

)
= max

θ

∣∣σθθ(ξ, d(min)
3

)∣∣
= σθθ

(
θ0, d(min)

3

)
=

4α(1 − 3d(min)
3 )(

1 − d(min)
3

)(
(1 + 3d(min)

3 )2 − 12α2d(min)
3

) ;

α =

√
1
2(

√
2 − 1), θ0 =

1
2 arccosα.

(28)
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Analytical optimization of K(dp) over the mapping term dp, though routine, is too
lengthy. Numerical GA optimization is performed instead (see Section 8).

Further we note that for any p, the energy maximum invariably occurs on the
map univalency bound (13)

max
dp

d(max)
p =

1
p
; ωp(ζ )= ζ+

1
pζ−p ; δWp =


8, p = 2,

9, p = 3,
4p3

(p2−p+2)(p−1)
, p ≥ 4.

(29)

Therefore, the “worst” (shear energy maximizing) single hole as mapped by one-
term function (29) is the (p+1)-cusped hypocycloid shown in Section 8. It has
(p+1) entrant angles where the tangential stress σθθ (ξ) goes to infinity.

The multi-term worst shapes reveal more complex behavior, which is analyzed
numerically and displayed graphically in Section 8.

Two-term mapping. Here, we focus only on the square-symmetric case with p = 3,
when

ω(ζ )= ζ + d3ζ
−3

+ d7ζ
−7.

Solving the 2 × 2 system of the first nontrivial equations (16) yields

a2 =
1

1 − d3 − 3d3d7 − 5d2
7
, a6 =

3d3 + 5d7

1 − d3 − 3d3d7 − 5d2
7
,

δW3 =
4

(1 − d3 − 3d3d7 − 5d2
7 )(1 − 3d2

3 − 7d2
7 )
.

The routinely obtained δW3-minimum conditions take the form

3d3(3d3 + 10d7)= 7d7(1 + 3d7), (30a)

6d3(5d2
7 + 3d3d7 + d3 − 1)= (1 + 3d3)(1 − 3d2

3 − 7d2
7 ). (30b)

Together with more explicit analytics like (28) and (29), they serve as a benchmark
to configure the GA scheme.

7. Testing and calibration of the optimization scheme

The numerical accuracy of the proposed algorithm has been verified by reproduc-
ing the δW -related results. They fully coincide with those obtained differently
in [Cherkaev et al. 1998] (Table 1). The corresponding evolution of the optimal
square-like shape with N is not shown here; see the same reference.

We mention that the design variables dm , m = 1, . . . , N , are encoded using
a discrete n-bit procedure when each coefficient dm is approximated in view of
(6) only by 2n separate values in the continuous search space [−1/

√
m; 1/

√
m].
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These values are decoded from a randomly generated integer P ∈ [−2n−1
; 2n−1

]

as dk P = P/(2n−1√m). The genes for different coefficients are concatenated
into a binary string of length Nn, or chromosome, which encodes the shape to
be evaluated. The constant-size chromosome group so formed is then randomly
subject to bitwise crossover and mutations that lead the initial population to the
global optimum.

In this context it is of interest to evaluate the GA accuracy in dependence on
the number of bits n by comparing with the analytical relations (27a), (29), (30).
The results are collected in Table 3. This validates the approach and allows us
to calibrate the heuristic GA parameters involved, such as population size and
mutation rate. Typical GA settings chosen for the further K-optimizations are given
in Table 4.

Relation Two bytes (16 bits) Four bytes (32 bits)

(27a) < 2.1 × 10−11 < 4.4 × 10−18

(29), p = 3 < 7.4 × 10−8 < 2.0 × 10−14

(29), p = 5 < 3.8 × 10−9 < 4.8 × 10−15

(30a) < 4.1 × 10−6 < 5.7 × 10−9

(30b) < 5.8 × 10−5 < 1.6 × 10−8

Table 3. Absolute error produced by GA optimization in cases of
known analytical identities: two-byte versus four-bytes encoding.

Gene Integer ∈ [−231, 231
] Individual Interface shape

Population size 800 Number of genes 6
Initial population Random Selection format Tournament
Elitism Four best individuals Termination 1200 iterations
Crossover 1-point with rate 0.90
Creep mutation Randomly change a bit with rate 0.35
Jump mutation Add random integer ±64 with rate 0.35

Table 4. Typical GA setup used in our K-optimizations.

8. Numerical results

We now present numerical results of the proposed method for a more complicated
K-optimization. Figures 4 and 5 exhibit the N -related evolution of the optimal hole
shape and associated stress distributions, respectively. Table 5 shows the optimal
parameters in dependence on increasing N . Comparison with the corresponding
columns in Tables 1 and 2 indicates that δW - and K-optimizations give rather simi-
lar values of the energy increment, while the maximum stresses differ significantly
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Figure 4. A quarter of the K-optimal hole: evolution with increas-
ing N (N = 3, 11, 22). The δW -optimal shape for N = 23 is added
for comparison (dotted line).
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holes (solid and dotted lines, respectively) for N = 3, 11, 23.
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N d3 d7 d11 d15 d19 d23 Kmin δW

3 –0.09000 3.07165 3.76112
7 –0.11162 0.00751 2.90563 3.73211

11 –0.12182 0.01044 –0.00200 2.84110 3.72304
15 –0.12732 0.01210 –0.00293 0.00076 2.80824 3.71959
19 –0.13049 0.01293 –0.00340 0.00112 –0.00032 2.78843 3.71773
23 –0.13059 0.01292 –0.00338 0.00116 –0.00041 0.00010 2.77936 3.71770

Table 5. A single square-symmetric hole under remote shear: the
conformal mapping coefficients and the local criterion Kmin re-
sulted from the GA optimization process for different values of N .
The corresponding global criterion δW is also shown to compare
with its optimal values in Table 1.

(the relative discrepancies being respectively 0.086% and 16.8% at N = 23). How-
ever, close inspection of the stress distribution along optimal shapes of both types
in Figure 5 shows that the discrepancy is concentrated near the forming angular
point at θ = π/4. In either case the stresses tend to obey the same identity (2).
The different nature of the criteria defines the different convergence behavior of
the optimal solutions: δW forms the angular point more rapidly, whereas the local
K-criterion allows no high-frequency peaks. This is clearly seen in Figure 4. With
some caution, we conclude that both optimal solutions are the same, though an
analytical proof would be very desirable. This is beyond our scope at the moment.

For triangular and hexagonal symmetry, similar computations lead to an inter-
esting conclusion:

Under remote shear, the δW - and K-optimal hole shape is a circle with δWmin = 4
and Kmin = 4.

In the absence of angular points, this has been verified with to extremely high
accuracy.

The stress distribution along a circle is readily expressed as

80(ζ )=8(ζ)= ζ−2
: σθθ (ξ)= 4 cos 2θ, ξ = exp iθ ∈ l,

(see [Muskhelishvili 1963]) with the sign-changing points lying on the bisectors
of the quadrants

θ =
π(2 j − 1)

4
, j = 1, . . . , 4,

as in the square-symmetric case.
Geometrically, it is clear that other points location compatible with the remote

shear antisymmetry may exist only for (8p − 4)-symmetric shapes, p = 2, 3, . . . ,
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with an odd number of the points in a quadrant. However, GA optimization spe-
cially performed for p = 2 (dodecagonal symmetry) and p = 3 (icosagonal sym-
metry) bring us back to a circle.

Therefore, the prescribed square symmetry gives the only nontrivial example of
the optimal shape where the angular points substantially reduce the values of both
considered criteria as compared to a circle. The bottom row in Table 5 shows that
1(K)= 1 − 2.77936/4.0 = 30.5% and 1(δW )= 1 − 3.71449/4.0 = 7.1%.

Finally, the energy-maximization results are presented in Table 6 and Figure 6.
At the first glance on the shapes it seems that the energy increment δW increases
rapidly witn N due to the distinctive corner points which make finite contribution
to the coefficient a2 in (17). However, the most effective strategy really performed
here by the GA is to minimize the hole area entering in (17) as a denominator.
Indeed, as noted in the end of Section 3, finite-term mapping may not give a zero-
area curve for p ≥ 2. Therefore, as the only possible compromise between the
finite number N of mapping terms and prohibited self-intersections the algorithm
identifies the limiting case of the optimal shapes containing entrant angles that are
of pure geometrical nature with no optimization resort. It is supported by the fact
that the coefficient a2 in Table 6 does not diminish with increasing N .

When N tends to infinity, the optimal mapping should then approximate a cross-
like cut with (p+1) equal arms as exemplified in Figure 6 for p = 3. This is the
analitically known case [Ahlfors 1978] with

ω(ζ )= ζ
(
1+ζ−n)2/n

= ζ+

∞∑
k=1

q(q−1) . . . (q−k+1)ζ−(p+1)k+1

k!
;

q =
1

(p+1)
. (31)

N d3 d7 d11 d15 d19 a2 f1/π δW

1 0.33333 1.50000 0.66667 9.00000
2 0.42857 –0.14286 1.53139 0.30615 20.00833
3 0.43301 –0.14193 0.0631 1.56067 0.25450 24.52922
4 0.45091 –0.11683 0.0738 –0.0470 1.60610 0.20225 31.76542
5 0.46864 –0.11875 0.05391 –0.04401 0.02510 1.61902 0.16943 38.22265
∞ 0.5 –0.125 0.0625 –0.03906 0.02734 0.0 ∞

Table 6. A single square-symmetric hole under remote shear: the
maximal mapping coefficients, the global criterion δWmax and its
components a2, f1 found by the GA approach. The first row
emerges analytically from (29) at p = 3. The last row contains
the limiting data of the cross-like slit (31).
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Figure 6. The energy-maximizing hole under square symmetry
and remote shear: evolution to the limiting cross-like slit with
increasing N . For N = 3 we have a four-cusped hypocycloid (29).

This reasoning is justified by the additional calculations in which the hole area was
optimized instead of the energy. The resultant mapping terms practically coincide
with those in Table 6. In turn, the latter converge, though slowly, to the cross-like
limit (31).

9. Concluding remarks

The main goal of this work was to try a new GA scheme of shape optimization
in plane elasticity when the conformal mapping is used instead of the direct nodal
representation. In combination with the advanced fitness evaluation the proposed
approach has enabled us to obtain new and significant results. This encoding
may be also effective in other optimization problems governed by the conformal-
invariant Laplace equation such as those in electrostatics. On the other hand, the
current results are confined to the particular model with a single inhomogeneity.
It is still unknown how this GA configuration will work in in the more realistic
situation of multiple inclusions whose interaction hampers both the analytical and
numerical manipulations. We hope to pursue this problem in further publications.
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