
Journal of

Mechanics of
Materials and Structures

DYNAMIC RESPONSE OF MULTILAYER
CYLINDERS: THREE-DIMENSIONAL ELASTICITY

THEORY

Alexander Shupikov and Nataliya Dolgopolova

Volume 1, Nº 2 February 2006

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 1, No. 2, 2006

DYNAMIC RESPONSE OF MULTILAYER CYLINDERS:
THREE-DIMENSIONAL ELASTICITY THEORY

ALEXANDER SHUPIKOV AND NATALIYA DOLGOPOLOVA

We suggest an analytic-numerical approach to solving the problem of vibrations
of multilayer cylinders under impulse loading. The behavior of the cylinder
is described by dynamic equations of three-dimensional elasticity theory. The
number of layers in the pack and the thickness and mechanical characteristics of
each layer are selected arbitrarily. The possibilities of the approach are proposed,
and the validity of results obtained is demonstrated by numerical examples.

1. Introduction

Structural elements in the form of multilayer plates and shells are used extensively in
different branches of machine building and civil engineering. The stressed-strained
state (SSS) of real objects can be described most simply using the finite-element
method, but the development of analytic and hybrid calculation methods is the
focus of much current work.

In works where analytic and hybrid methods are used, the SSS is investigated
most often by using different 2-dimensional discrete, continuous and discrete-
continuous theories [Grigoliuk and Kogan 1972; Grigoliuk and Kulikov 1988;
Reddy 1989; 1993; Noor and Rarig 1974; Noor and Burton 1989; Noor and Burton
1990a; 1996; Smetankina et al. 1995; Shupikov and Ugrimov 1997; Shupikov et al.
2004]. Using these theories, obtaining numerical results is relatively straightforward.
In the process, one is faced with the complex problem of determining the limits
within which these theories adequately describe the behavior of the object being
investigated with a prescribed accuracy. At impulse and other nonstationary short-
time actions, the solution of this problem is yet more challenging.

The behavior of a multilayer structure can be investigated most effectively in
terms of three-dimensional elasticity theory. Pagano [1969] was one of the first to
investigate this problem. He studied the cylindrical bending of a simply supported
orthotropic infinite laminated strip under static loading. Later the exact solution of
the bending problem for a finite-dimension plate under static loading was obtained
[Pagano 1970a; 1970b; Little 1973; Noor and Burton 1990b].
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Several other works concerned with the behavior of cylindrical shells under static
loading can be mentioned. Thus, Ren [1987] studied the plane strain deformation of
an infinitely long cylindrical shell subjected to a radial load changing harmonically
along the circumference. In terms of three-dimensional elasticity theory, solutions
were obtained for finite-length, cross-ply cylindrical shells, simply supported at
both ends and subjected to transverse sinusoidal loading [Varadan and Bhaskar
1991], and for shell panels [Ren 1989] subjected to a transverse load that changes
both in the axial and circumferential directions. Subsequent works [Bhaskar and
Varadan 1993; 1994; Bhaskar and Ganapathysaran 2002; 2003] dealt with the
three-dimensional analysis of cylindrical shells subjected to different kinds of loads
acting both in the axial and circumferential directions. Liu [2000] presented static
analyses of thick rectangular plane-view laminated plates, carried out in terms of
the three-dimensional theory of elasticity using the differential quadrature element
method.

Attention has also been given to the study of vibrations of multilayer cylindrical
shells in terms of three-dimensional elasticity theory.

Noor and Rarig [1974] obtained equations of free vibrations of a simply supported
laminated orthotropic circular cylinder based on linear three-dimensional elasticity
theory. Kang and Leissa [2000] suggested a three-dimensional analysis method for
determining the free vibrations and the form of the segment of a variable-thickness
spherical shell. The displacement components in the meridional, normal, and
circumferential directions were taken to be sinusoidal with respect to time, periodic
in the circumferential direction, and were expanded into algebraic polynomials in
the meridional and normal directions.

Weingarten and Reismann [1974] gave solutions for nonaxisymmetrical nonsta-
tionary vibrations of a uniform finite-length cylinder. They considered vibrations
of uniform cylindrical shells within the framework of the three-dimensional theory
of elasticity, and compared the results obtained with those given by other theories
of shells. They showed that none of the two-dimensional theories could describe
satisfactorily the wave-like character of the initial strain phase. Philippov et al.
[1978] solved a similar problem, providing an analytic solution to the problem
of axisymmetrical vibrations of a uniform infinite-length cylinder subjected to an
impulse load.

Shupikov and Ugrimov [1999] have suggested an analytic-numerical method
for solving the three-dimensional problem in the elasticity theory of nonstationary
vibrations of multilayer plates subjected to impulse loads. The displacements in
the tangential direction are expanded into a double Fourier series, and the partial
derivatives in the transverse coordinate are replaced by their finite-difference version.
As a result of these transformations, the problem of nonstationary vibration of a



DYNAMIC RESPONSE OF MULTILAYER CYLINDERS 207

multilayer plate under the action of an impulse load is reduced to integrating a
system of ordinary differential equations with constant coefficients.

The objective of this work is to develop and generalize further the approach
suggested by [Shupikov and Ugrimov 1999], and to investigate the vibrations of a
thick multilayer closed cylindrical shell subjected to an impulse load.

2. Problem formulation

We consider a multilayer cylindrical shell of finite length A and radius R0, which is
composed of I uniform constant-thickness isotropic layers. The shell is referenced
to the right-hand system of orthogonal curvilinear coordinates z, θ, r .

The coordinate surface is linked to the outer surface of the first layer, R0 is the
radius of inner surface of the shell (Figure 1). Contact between layers prevents their
delamination and mutual slipping.

The behavior of each layer is described by Lamé’s equations [Novatsky 1975]:
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Figure 1. Multilayer cylindrical shell.



208 ALEXANDER SHUPIKOV AND NATALIYA DOLGOPOLOVA

where ∇
2
= ∂2/∂r2

+ (1/r)∂/∂r + (1/r2)∂2/∂θ2
+ ∂2/∂z2.

This system of equations is solved with the boundary conditions on the external
surfaces of the first and I -th layers, namely

σ 1
zr = σ 1

rθ = 0, σ 1
rr = −q− for r = R0,

σ I
zr = σ I

rθ = 0, σ I
rr = −q+ for r = R0 + ξ I , ξ i

=

i∑
j=1

h j
;

(2)

the boundary conditions at the ends,

σ i
zz = ui

r = ui
θ = 0 for z = 0, L , i = 1, I ; (3)

the contact conditions at adjacent layers,
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Here i is the layer number, λi , µi are Lamé’s coefficients, ρi is the specific density,
and ui
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z} is the displacement vector of a point in the i-th layer.

The stress tensor components are calculated from

σ i
jk = 2µiεi

jk + λiδ jk1
i , (6)
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Lamé’s coefficients are linked to Young’s modulus E i and Poisson’s coefficient νi

by the relations
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3. Solution method

The displacements and the external load are expanded into double Fourier series
with respect to the complete scheme of orthogonal functions satisfying the boundary
conditions (3):
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for i = 1, I , where B1mn(z, θ) = sin
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A
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and
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The partial derivatives of the functions 8i
kmn(r, t), k = 1, 2, 3, with respect to

the coordinate r are replaced with their finite-difference presentations. For this we
build a regular grid in each layer:
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Here L i is the number of nodes in the finite-difference grid in the i-th layer, i = 1, I .
The number of series terms M, N retained in expansion (8), and the number

of nodes in the finite-difference grid in each of the layers L i , is selected so as to
ensure convergence of numeric results.

We set
8
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For approximation of partial derivatives, a three-point template is used [Forsythe
and Wasov 1960]
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Conditions (2), (4), and (5) become
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all for i = 1, I .

For pairs (m, n) with n = 1, N and m = 1, M , we have instead the following
form for system (1):
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For the same pairs (n, m), conditions (2), (4), and (5) become
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with
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= 0 for k = 1, 2, 3, i = 1, I .

The boundary conditions at the ends of the cylinder (3) are satisfied exactly by
selecting the coordinate functions Bkmn of (8), which correspond to simply supported
conditions.

Conditions (12) allow us to exclude the values 8
i(−1)
km0 and 8

i(L i
+1)

km0 (i = 1, I ,
k = 1, 3, n = 0, m = 1, M) of the sought-for functions in “extra-contour” points
from system (10)–(11); and conditions (14)–(15) allow us to exclude the values
8

i(−1)
kmn and 8

i(L i
+1)

kmn (i = 1, I , k = 1, 2, 3, n = 1, N , m = 1, M) of the sought-for
functions in “extra-contour” points from system (13).

Hence, the solution of problems (1)–(5) on oscillations of a multilayer cylindrical
shell subjected to an impulse load is reduced for each pair of values (m, n) to
integrating a system of ordinary differential equations with constant coefficients. In
this paper, the system obtained is integrated by Taylor expansion [Bakhvalov 1975;
Shupikov et al. 2004] as described in the Appendix.
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4. Numerical results

We illustrate with examples the method’s feasibility and the validity of its results.
Consider an infinite uniform cylinder with R0 = 0.08 m, h1 = 0.04 m, E1 =

2.06 · 108 kPa, ρ1 = 7.9 · 103 kg/m3, and ν1 = 0.25, subject to an impulse load
applied to the inner surface, the load being a uniformly distributed pressure changing
with respect to time according to the law

q−(θ, z, t) = q−

0 exp(−t/τ), q+(θ, z, t) = 0,

with loading intensity q−

0 = 1.49 · 108 Pa and load action time τ = 14.2 · 10−6 s.
Figures 2 and 3 show data obtained using the exact solution from [Philippov

Figure 2. Circumferential stresses of infinite cylinder under im-
pulse loading: dots, exact solution; solid line, present method.
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et al. 1978], together with the results obtained with the method of this paper. For
the calculations we took L1

= 160. We observe surges at times of stress σ 1
θ (R∗, t)

and σ 1
r (R∗, t). For radial stresses σ 1

r (R∗, t), such surges are more prominent than
for circumferential ones σ 1

θ (R∗, t), and they have a dramatic impact on both the
absolute values of the stresses σ 1

r (R∗, t) and on their change in sign. Stress surges
in time correspond to instances of arrival of waves reflected from the outer surface
(r = R0 + h1) to the surface considered with the coordinate r = R∗

= 0.085 m.
The interval t1 corresponds to the time required for the wave to travel the distance
s1 = R∗

− R0 = 5 mm, and it corresponds to the same value obtained from the

Figure 3. Radial stresses of infinite cylinder under impulse load-
ing: dots, exact solution; solid line, present method.
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exact formula
t1 =

s1

V
≈ 0.9 µs,

where V is the expansion wave [Novatsky 1975]

V =

√
λ1 + µ1

ρ1 ≈ 5.52 · 103 m/s.

Interval t2 corresponds to the time required for the wave to travel the distance
s2 = 2h1 − (R∗

− R0) = 7.5 mm, and it corresponds to the same value obtained
from the exact formula

t2 =
s2

V
≈ 1.36 · 10−6 s.

In the problem considered, the uniform shell was presented in the form of a
one-, two-, and three-ply shell. In all cases, we observed a satisfactory matching
of results obtained with the help of the given technique and the analytic solution
[Philippov et al. 1978].

For a uniform finite-length cylinder with parameters A = 0.5 m, R0 = 0.095 m,
h1

= 0.01 m, E1
= 6.67 · 104 MPa, ρ1

= 2.5 · 103 kg/m3, and ν1
= 0.3, subjected

to an external radially directed load applied instantaneously to the outer surface,
we give a comparison of the results obtained by the analytic method in [Weingarten
and Reismann 1974], and those obtained by implementing the given approach.

A load with intensity q+

0 is applied instantaneously radially outside the cylinder,
and distributed over a small area on the outer surface of the shell. The dimensions
of the loading areas are ε rad in the direction of axis θ , and λ in the direction of
axis z. The centre of the loading area has the coordinates θ = 0, z = L/2, i.e., the
load is distributed symmetrically with respect to the circumferential coordinate, and
it has the following form:

q+(θ, z, t) = q+

0 f (θ)g(z)H(t), q−(θ, z, t) = 0,

f (θ) =

{
0, |θ | > ε/2

1, |θ | ≤ ε/2
, f (θ + 2π) = f (θ),

g(z) =


0, 0 ≤ z < (L − λ)/2

1, (L − λ)/2 ≤ z ≤ (L + λ)/2,

0, (L + λ)/2 < z ≤ λ

λ = 0.5 R, R = 0.1 m, ε = 0.5 rad.

Here q+

0 is the loading intensity (0.1 MPa); f (θ) is the load distribution over
coordinate θ ; g(z) is the load distribution over coordinate z, and H(t) is Heaviside’s
function.
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Figure 4 shows the cylinder’s response to dynamic loading. The dots show the
analytic solution, and the lines represent the solution obtained by using the given
analytic-numerical method. For the calculations we took L1

= 150. The top graph
shows the change in radial displacement on the median surface as a function of
time. The bottom graph shows the change in circumferential stresses on the outer
surface of the shell as a function of time. The abscissa is dimensionless time, which
is normed by the value of the time of travel of the shear wave over the shell radius,
τ ∗

= tV/R0,

V =

√
µ1

ρ1 ≈ 3.203 · 103 m/s.

Figure 4. Response of a finite-length cylinder to dynamic loading:
dots, analytic solution; solid line, present method.
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R0(m) i Designation in Fig. hi (m) E i (MPa) νi ρi (kg/m3)

0.08 1 0.01 5.59 · 103 0.38 1.2 · 103

2 0.02 6.67 · 104 0.22 2.5 · 103

Table 1. Parameters of multilayer shell.

These examples show good agreement between the results obtained with the
present method and analytic solutions obtained by other authors.

The process of propagation of the disturbance during impulse loading has been
investigated. An infinite two-ply cylindrical shell, whose parameters are given in
Table 1, is considered.

The load applied to the inner surface is a uniformly distributed pressure that
changes with time according to the law

q−(θ, z, t) = q−

0 H(t), q+(θ, z, t) = 0,

where q−

0 = 1.49 · 108 Pa and H(t) is Heaviside’s function.
Figure 5 shows the distribution diagrams for stresses σ i

r (r, t) at different times.
The symbols

and

show the direction of propagation of stress waves. For the calculations we took
L1 = 70 and L2 = 100. The figures presented demonstrate the wavelike pattern of
the process. Besides, one can see the effect of wave reflection from the boundary
between the layers and external surfaces.

Hence, we have shown the possibility of investigating wave processes in thick
uniform and multilayer cylindrical shells. Such an approach can be practical for
evaluating the area of applicability of two-dimensional theories when it is necessary
to investigate the process of propagation of elastic waves, and when the SSS of the
object being investigated has an essentially three-dimensional character.

5. Conclusions

The present work suggests an analytic-numerical method of investigating vibrations
in a multilayer closed cylindrical shell in terms of the three-dimensional theory
of elasticity. The given method allows investigating the behavior of uniform and
multilayer cylindrical shells subjected to impulse loading.

The examples given for different kinds of loading (Figures 2–4) show good
agreement between the results obtained with the present method and analytic
solutions obtained by other authors.
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Figure 5. The propagation of stress waves of a two-layer cylindri-
cal shell.
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The plots in Figures 2, 3 and 5 demonstrate the possibility of investigating wave
processes in thick uniform and multilayer cylindrical shells.

Hence, the given method can be used for verifying the validity of results based
on different two-dimensional theories applied to analyzing vibrations of multilayer
cylindrical shells, as well as for investigating wave processes in cylindrically shaped
elastic bodies.

Appendix: A modified method of solution expansion into Taylor series

A modified method of solution expansion in Taylor series is applied to integrate a
system of ordinary differential equations with constant coefficients.

The initial system of differential equations is written in the form

[�mn
]
¨8mn + [3mn

]8mn = Qmn.

By replacing variables and straightforward transforms, it is reduced to the form

˙Gmn = [Rmn
]
˙Gmn + H mn. (A.1)

The integration interval [0, t] is divided into s sections, each with a length of 1t
so that t = s1t. We denote Gmn (s1t) = Gmns .

At each integration step 1t , the solution is represented as a Taylor series:

Gmns = Gmns−1 +

˙Gmns−1

1!
1t +

¨Gmns−1

2!
1t2

+ · · · . (A.2)

It is assumed that, within the integration step,

H mn(t) = H mns, (s − 1)1t ≤ t ≤ s1t. (A.3)

In this case, given (A.1) and (A.3), the derivatives in series (A.2) can be presented
as

(k)

G mn = [Rmn
]
k Gmn + [Rmn

]
k−1 H mn. (A.4)

An example of calculating the derivatives is given here:

¨Gmn =
d
dt

˙Gmn =
d
dt

(
[Rmn

]Gmn + H mn
)
= [Rmn

]
˙Gmn =

= [Rmn
]
(
[Rmn

]Gmn + H mn
)
= [Rmn

]
2Gmn + [Rmn

]H mn.

Substituting the expressions for derivatives (A.4) into (A.2), we obtain the following
expressions for solving the system at the s-th step:

Gmns = [K mn
]Gmns−1 + [T mn

]H mns . (A.5)
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Here

[Kmn] = [E] +
[Rmn

]

1!
1t +

[Rmn
]
2

2!
1t2

+ · · · ,

[Tmn] =
[E]

1!
1t +

[Rmn
]

2!
1t2

+
[Rmn

]
2

3!
1t3

+ · · · ,

where [E] is the unit matrix.
To refine the solution, the interval [ts−1, ts] is divided into r sections with the

length of 1τ = 1t/r . In each section, the function Gmn is calculated using (A.5):

Gmn

(
ts−1 +

1t
r

)
= [K̂ mn

]Gmns−1 + [T̂ mn
]H mns,

...

Gmn

(
ts−1+

i1t
r

)
=[K̂ mn

]
i
Gmns−1+

(
[K̂ mn

]
i−1

+[K̂ mn
]
i−2

+· · ·+[E]
)
[T̂ mn

]H mns

for i = 1, r .

The matrices [K̂ mn
] and [T̂ mn

] are derived from matrices [K mn
] and [T mn

] by
replacing 1t with 1τ .

At i = r , Gmn(ts−1 + 1t) = Gmns , the system solution takes its final form

Gmns = [Mmn
]Gmns−1 + [J mn

]H mns,

where

[Mmn
] = [K̂ mn

]
r
;

[J mn
] =

(
[K̂ mn

]
r−1

+ [K̂ mn
]
r−2

+ · · · + [E]
)
[T̂ mn

].

Hence, integrating a system of ordinary differential equations is reduced to calcu-
lating the load vector H mns and multiplying matrices by vectors. The matrices are
calculated once for each pair of values m and n.

In this paper, to ensure stability of the process of numerically integrating a system
of ordinary differential equations, the step of integration with respect to time 1t is
taken to be equal to the time of strain wave travel between adjacent nodes of the
finite-difference grid according to the Courant–Hilbert conditions.
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