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The isotropic elastic moduli closest to a given anisotropic elasticity tensor are
defined using three definitions of elastic distance: the standard Frobenius (Eu-
clidean) norm, the Riemannian distance for tensors, and the log-Euclidean norm.
The closest moduli are unique for the Riemannian and the log-Euclidean norms,
independent of whether the difference in stiffness or compliance is considered.
Explicit expressions for the closest bulk and shear moduli are presented for cu-
bic materials, and an algorithm is described for finding them for materials with
arbitrary anisotropy. The method is illustrated by application to a variety of
materials, which are ranked according to their distance from isotropy.

1. Introduction

The objective here is to answer the question: what is the isotropic material closest
to a given anisotropic material? In order to attempt an answer one needs a distance
or length function which measures the difference between the elastic moduli of
two materials. The Euclidean norm provides a natural definition for distance, and
using it one can find the elastic tensor of a given symmetry nearest to an anisotropic
elastic tensor [Gazis et al. 1963; Arts et al. 1991; Helbig 1996; Cavallini 1999;
Gangi 2000; Browaeys and Chevrot 2004]. The Euclidean distance function is,
however, not invariant under inversion, that is, considering compliance instead of
stiffness, and as such does not lead to a unique answer to the question posed. To
see this, let 1Ci jkl and 1Si jkl be the elements of the fourth order tensors for the
differences in elastic stiffness and compliance, respectively. Define the length of a
fourth order tensor with elements Ti jkl by (Ti jkl Ti jkl)

1/2. Then it is clear that the
length using 1Ci jkl is not simply related to that of 1Si jkl .

Recently and separately, Moakher [2006] and Arsigny et al. [2005] (see also
[Matthies and Humbert 1995]) introduced two distance functions for elasticity ten-
sors which are unchanged whether one uses stiffness or compliance. The two
measures of elastic distances, called the Riemannian distance [Moakher 2006] and
the log-Euclidean metric [Arsigny et al. 2005], each provide a means to define
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unambiguously the distance between any two elasticity tensors. The focus here is
on finding the isotropic material closest to a given arbitrarily anisotropic material.

The distance functions are first reviewed in Section 2 along with the more com-
mon Frobenius or Euclidean norm. The theory is developed in terms of matrices,
with obvious application to tensors. Preliminary results for elastic materials are
presented in Section 4, where closed-form expressions are derived for the isotropic
moduli closest to a given material of cubic symmetry. The general problem for
materials of arbitrary anisotropy is solved in Section 5, and applications to sample
materials are described in Section 6.

2. Matrix distance functions

We begin with P(n), the vector space of positive definite symmetric matrices in
Mn×n , the space of n × n real matrices. Recall that a matrix P is symmetric if
xTPy = yTPx for all x, y in Rn , and positive definite if xTPx > 0 for all nonzero
x ∈ Rn . The spectral decomposition is

P =

n∑
i=1

λi viv
T
i , (1)

where λi are the eigenvalues and vi ∈ Rn the eigenvectors, which satisfy λi > 0,
vT

i v j = δi j . Functions of P can be readily found based on the diagonalized form;
in particular, the logarithm of a matrix is defined as

Log P =

n∑
i=1

ln λi viv
T
i . (2)

Three distinct metrics for positive definite symmetric matrices are considered:
the conventional Euclidean or Frobenius metric dF , the log-Euclidean distance dL

[Arsigny et al. 2005], and the Riemannian distance dR [Moakher 2006]. Thus, for
any pair A, B ∈ P(n)

dF (A, B) = ‖A − B‖ , (3)

dL(A, B) = ‖Log(A) − Log(B)‖ , (4)

dR(A, B) =
∥∥Log(A−1/2 B A−1/2)

∥∥ , (5)

where ‖M‖ ≡ [tr(MTM)]1/2 for any M ∈ Mn×n . The distance function dR is a
consequence of the scalar product

〈M1, M2〉P ≡ tr (P−1 M1 P−1 M2), (6)

for P ∈ P(n) and symmetric M1, M2 ∈ Mn×n , and is also related to the exponen-
tial map [Lang 1998; Moakher 2006]. The metric dL is associated with the Lie
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group on P(n) defined by the following multiplication that preserves symmetry
and positive definiteness [Arsigny et al. 2005] :

P1 � P2 ≡ exp (Log(P1) + Log(P2)) , P1, P2 ∈ P(n). (7)

The three distance functions possess the properties expected of a distance func-
tion d:

(i) it is symmetric with respect to its arguments, d(A, B) = d(B, A);

(ii) it has nonnegative d(A, B) ≥ 0 with equality if and only if A = B;

(iii) it is invariant under a change of basis, d( Q A QT , Q B QT ) = d(A, B) for all
orthogonal Q ∈ Mn×n , Q QT

= QT Q = I ; and

(iv) it satisfies the triangle inequality d(A, C) ≤ d(A, B) + d(B, C) for all A,B,
C ∈ P(n).

The Riemannian and log-Euclidean distances have additional properties not
shared with dF :

dL ,R(a A, a B) = dL ,R(A, B) , a ∈ R+, (8)

dL ,R(Ab, Bb) = |b| dL ,R(A, B) , b ∈ R, (9)

where dL ,R signifies either dL or dR . Thus dL and dR are bi-invariant metrics, that
is, distances are invariant under multiplication and inversion. This property makes
them consistent and unambiguous metrics for elasticity tensors. Moakher [2006]
introduced another bi-invariant distance function, the Kullback–Leibler metric, but
it does not satisfy the triangle inequality, and we do not consider it here.

The distance function dR can be expressed in alternative forms by using the
property B(Log A)B−1

= Log (B AB−1), for example,

dR(A, B) =
[

tr Log2(A−1 B)
]1/2

=
[

tr Log2(B−1 A)
]1/2

, (10)

or in terms of eigenvalues, using Equations (2) and (5),

dR(A, B) =

[ n∑
i=1

(ln λi )
2
]1/2

, (11)

where λi , i = 1, 2, . . . , n are the eigenvalues of P = A−1/2 B A−1/2, or equivalently,
of the matrices A−1 B, B−1 A, AB−1, etc. Note that dR also satisfies

dR(SAST , SBST ) = dR(A, B) , for all invertible S ∈ Mn×n. (12)

3. Preliminary examples

The remainder of the paper is concerned with applications to elasticity, with n = 6.



226 ANDREW N. NORRIS

3.1. Definition of elastic moduli. 6 × 6 symmetric matrices are used to describe
elastic moduli, whether of stiffness or compliance. The matrix representation is
based on Kelvin’s [Thomson 1856] observation in 1856 that the twenty one coeffi-
cients of elasticity define a quadratic form (the energy) in the six strains, and there-
fore possess six “principal strains”. Although Kelvin did not write the elasticity
tensor explicitly as a symmetric positive definite matrix, the idea has proved useful
and has been developed extensively, notably by Rychlewski [1984] and Mehrabadi
and Cowin [1990]. The notation of Mehrabadi and Cowin is employed here. Thus,
the matrix Ĉ ∈ P(6) represents the elastic stiffness, and its inverse is the elastic
compliance, Ŝ, satisfying

Ŝ Ĉ = Ĉ Ŝ = Î, where Î = diag (1, 1, 1, 1, 1, 1). (13)

The elements of the elastic stiffness matrix are

Ĉ=



ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ12 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ13 ĉ23 ĉ33 ĉ34 ĉ35 ĉ36

ĉ14 ĉ24 ĉ34 ĉ44 ĉ45 ĉ46

ĉ15 ĉ25 ĉ35 ĉ45 ĉ55 ĉ56

ĉ16 ĉ26 ĉ36 ĉ46 ĉ56 ĉ66



=



c11 c12 c13
√

2c14
√

2c15
√

2c16

c12 c22 c23
√

2c24
√

2c25
√

2c26

c13 c23 c33
√

2c34
√

2c35
√

2c36

√
2c14

√
2c24

√
2c34 2c44 2c45 2c46

√
2c15

√
2c25

√
2c35 2c45 2c55 2c56

√
2c16

√
2c26

√
2c36 2c46 2c56 2c66



,

(14)
where ci j , i, j = 1, 2, . . . 6 are the coefficients in the Voigt notation.

Before considering materials of arbitrary anisotropy, it is instructive to examine
the distance functions for materials possessing the simplest type of anisotropy:
cubic symmetry. Materials of cubic symmetry are described by three independent
moduli: c11 = c22 = c33, c12 = c23 = c13, c44 = c55 = c66, with the rest equal to
zero. The three moduli commonly used are the bulk modulus κ and the two distinct
shear moduli µ and η, which are related to the matrix elements by

3κ = ĉ11 + 2ĉ12, 2µ = ĉ44, 2η = ĉ11 − ĉ12. (15)

Isotropic materials have only two independent moduli, κ , µ, and are of the same
form as for cubic materials with the restriction ĉ11 − ĉ12 − ĉ44 = 0, or equivalently,
η = µ.
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A concise notation is used for isotropic and cubic matrices, based upon Wal-
pole’s [Walpole 1984] general scheme for performing algebra with elasticity ten-
sors. Define the matrices Ĵ , K̂ , L̂ and M̂ by

K̂ = Î − Ĵ, Ĵ = uuT , where u =

( 1
√

3
,

1
√

3
,

1
√

3
, 0, 0, 0

)T
, (16)

M̂ = K̂ − L̂, L̂ = diag (0, 0, 0, 1, 1, 1) . (17)

Note that Î and Ĵ correspond, respectively, to the fourth order isotropic symmetric
tensors with components Ii jkl = (δikδ jl + δilδ jk)/2 and Ji jkl = (1/3)δi jδkl . Elastic
moduli of isotropic and cubic materials are of the generic form

Ĉ iso(3κ, 2µ) ≡ 3κ Ĵ + 2µ K̂ , κ, µ > 0, (18)

Ĉcub(3κ, 2µ, 2η) ≡ 3κ Ĵ + 2µ L̂ + 2η M̂, κ, µ, η > 0. (19)

The isotropic matrices {Ĵ, K̂ } are idempotent and their matrix product vanishes:
Ĵ2

= Ĵ , K̂ 2
= K̂ , Ĵ K̂ = K̂ Ĵ = 0. Similarly, it may be checked that the three

basis matrices for cubic materials {Ĵ, L̂, M̂} are idempotent and have zero mutual
products. The algebra of matrix multiplication for isotropic and cubic materials
follows from these basic multiplication tables:

Ĵ
K̂

∣∣∣∣∣∣∣
Ĵ K̂
Ĵ 0
0 K̂

Ĵ
L̂
M̂

∣∣∣∣∣∣∣∣∣
Ĵ L̂ M̂
Ĵ 0 0
0 L̂ 0
0 0 M̂

.

Thus, the inverses are

Ŝcub = Ĉ−1
cub = Ĉcub

( 1
3κ

,
1

2µ
,

1
2η

)
, Ŝiso = Ĉ iso

( 1
3κ

,
1

2µ

)
,

and the products are

Ĉ−1
iso (3κ1, 2µ1) Ĉ iso (3κ2, 2µ2) ≡

κ2

κ1
Ĵ +

µ2

µ1
K̂ , (20)

Ĉ−1
cub(3κ1, 2µ1, 2η1) Ĉcub (3κ2, 2µ2, 2η2) ≡

κ2

κ1
Ĵ +

µ2

µ1
L̂ +

η2

η1
M̂. (21)

Results for isotropic materials follow from those for cubic with η = µ. For the
sake of simplicity and brevity we therefore focus on properties for cubic materials
in the next subsection.

3.2. Elastic distance for cubic and isotropic materials. Consider two cubic ma-
terials with moduli Ĉ1 = Ĉcub(3κ1, 2µ1, 2η1) and Ĉ2 = Ĉcub (3κ2, 2µ2, 2η2).
The Euclidean distance function of Equation (3) follows from the above properties
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and the relations tr Ĵ = 1, tr L̂ = 3, tr M̂ = 2. Similarly, the Riemannian and
log-Euclidean distances follow from the identities

Log (Ĉ2)−Log (Ĉ1) = Log Ĉ−1
1 Ĉ2 = ln

(κ2

κ1

)
Ĵ + ln

(µ2

µ1

)
L̂ + ln

(η2

η1

)
M̂ . (22)

Thus, the distances functions are

dF ( Ĉ1, Ĉ2) =
[(

3κ1 − 3κ2
)2

+ 3
(
2µ1 − 2µ2

)2
+ 2

(
2η1 − 2η2

)2]1/2
, (23)

dL ,R( Ĉ1, Ĉ2) =

[(
ln

κ2

κ1

)2
+ 3

(
ln

µ2

µ1

)2
+ 2

(
ln

η2

η1

)2
]1/2

. (24)

It is clear that dL and dR are invariant under inversion,

dL ,R ( Ŝ1, Ŝ2) = dL ,R ( Ĉ1, Ĉ2).

Note that the first identity in (22) is a consequence of the fact that Ĉ1 and Ĉ2

commute, which is not true in general for material symmetries lower than cubic.
What is the isotropic material closest to a given cubic material? The answer

may be found by considering the distance functions between an arbitrary cubic
stiffness Ĉcub(3κ, 2µ, 2η) and the isotropic stiffness Ĉ iso(3κ∗, 2µ∗). The same
question will also be considered for the compliances. Minimizing with respect to
the isotropic moduli κ∗, µ∗ yields

min
κ∗, µ∗

dL ,R
(

Ĉcub, Ĉ iso(3κ∗, 2µ∗)
)
= min

κ∗, µ∗

dL ,R
(

Ŝcub, Ŝiso
)
=

√
6
5

∣∣∣∣ln µ

η

∣∣∣∣ , (25)

min
κ∗, µ∗

dF
(

Ĉcub, Ĉ iso(3κ∗, 2µ∗)
)
=

√
6
5

|2µ − 2η| , (26)

min
κ∗, µ∗

dF
(

Ĉ−1
cub, Ĉ−1

iso (3κ∗, 2µ∗)
)
=

√
6
5

∣∣∣∣ 1
2µ

−
1

2η

∣∣∣∣ . (27)

Denote the values of the closest isotropic moduli by (κL , µL), (κR, µR) for dL , dR ,
and (κA, µA) or (κH , µH ) for dF depending on whether the stiffness (A) or its
inverse (H) is used. Thus,

κL ,R,A,H = κ, µL ,R = (µ3η2)1/5, µA =
3
5
µ +

2
5
η,

1
µH

=
3

5µ
+

2
5η

. (28)

Equations (25) and (28) show clearly that the “closest” isotropic material using the
Frobenius metric is ambiguous because it depends on whether one uses stiffness
or compliance. Each gives a different isotropic material since µH < µL ,R < µA

for µ− η 6= 0. The Riemannian and log-Euclidean metrics give the same unique
“closest” isotropic material, regardless of whether the stiffness or the compliance
is used. The fact that they agree is particular to the case of cubic symmetry, as
noted above, and is not true in general.
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In summary, the closest isotropic material to a given cubic material, in the sense
of dR and dL , is defined by moduli

κR = κL =
1
3 (ĉ11 + 2ĉ12)

and
µR = µL =

1
2

[
ĉ3

44 (ĉ11 − ĉ12)
2]1/5

,

and the distance from isotropy is

dL ,R =

√
6
5

∣∣∣∣ln ĉ11 − ĉ12

ĉ44

∣∣∣∣ .
These results will be generalized to materials of arbitrary anisotropy next.

4. Closest isotropic moduli

We now turn to the more general question of finding the isotropic material closest
to a given anisotropic material characterized by Ĉ or its inverse Ŝ. The solution
using the Euclidean metric is relatively simple, and is considered first.

4.1. Minimum Frobenius distances. The closest isotropic elastic moduli are as-
sumed to be of general isotropic form Ĉ iso(3κ, 2µ); see Equations (18)–(19). The
bulk and shear moduli are found by minimizing dF (Ĉ iso, Ĉ), which implies

3κ tr Ĵ = tr Ĵ Ĉ, 2µ tr K̂ = tr K̂ Ĉ . (29)

Using suffix A to indicate that the minimization is in the arithmetic sense (in line
with [Moakher 2006]),

9κA = ĉ11 + ĉ22 + ĉ33 + 2(ĉ23 + ĉ31 + ĉ12) ,

30µA = 2(ĉ11 + ĉ22 + ĉ33 − ĉ23 − ĉ31 − ĉ12) + 3(ĉ44 + ĉ55 + ĉ66) ,
(30)

which are well known; see, for example, [Fedorov 1968]. Similarly, the closest
isotropic elastic compliance can be determined by minimizing

dF (Ĉ−1
iso , Ĉ−1

).

Denoting the isotropic moduli with the suffix H for harmonic,

1/κH = ŝ11 + ŝ22 + ŝ33 + 2(ŝ23 + ŝ31 + ŝ12) ,

15/(2µH ) = 2(ŝ11 + ŝ22 + ŝ33 − ŝ23 − ŝ31 − ŝ12)+3(ŝ44 + ŝ55 + ŝ66) .
(31)

The Euclidean distance does not provide a unique closest isotropic material, al-
though the values in Equations (30) and (31) are sometimes considered as bounds.
Equations (29) and (30) also agree with the special case discussed above for cubic
materials, Equation (28).



230 ANDREW N. NORRIS

4.2. Minimum log-Euclidean distance. The isotropic elasticity Ĉ iso(3κL , 2µL)

is found using the same methods as above by replacing Ĉ iso and Ĉ with Log(Ĉ iso)

and Log(Ĉ), respectively. Thus,

log(3κL) = tr Ĵ Log(Ĉ), 5 log(2µL) = tr K̂ Log(Ĉ) . (32)

Adding the two equations and using Ĵ + K̂ = Î , implies the identity

det(Ĉ iso) = det(Ĉ). (33)

Thus, we have explicit formulae for the closest moduli,

κL =
1
3 exp

(
tr Ĵ Log(Ĉ)

)
, µL =

1
2 exp

( 1
5 tr K̂ Log(Ĉ)

)
. (34)

4.3. The minimum Riemannian distance. We look for moduli of the form

Ĉ iso(3κR, 2µR) = 3κR Ĵ + 2µR K̂ , (35)

which minimize
d2

R(Ĉ iso, Ĉ) = tr
[

Log2(Ĉ−1
iso Ĉ)

]
. (36)

This is achieved using the following result (Proposition 2.1 of [Moakher 2005]) for
any invertible matrix X(t) that does not have negative real-valued eigenvalues,

d
dt

tr
[

Log2 X(t)
]
= 2 tr

[
Log X(t)X−1(t)

d
dt

X(t)
]
. (37)

Differentiating (36) with respect to κR and µR separately, implies respectively

tr
[
Ĉ−1

iso Ĵ Log (Ĉ−1
iso Ĉ)

]
= 0, tr

[
Ĉ−1

iso K̂ Log (Ĉ−1
iso Ĉ)

]
= 0. (38)

Further simplification yields

tr
[
Ĵ Log (Ĉ−1

iso Ĉ)
]
= 0, tr

[
K̂ Log (Ĉ−1

iso Ĉ)
]
= 0. (39)

These conditions, which are necessary for a minimum, can be simplified as follows.
Define the eigenvalues and associated eigenvectors by the diagonalization

Ĉ−1/2
iso Ĉ Ĉ−1/2

iso =

n∑
i=1

λi viv
T
i . (40)

Adding the two conditions (39) using the identity Î = Ĵ + K̂ , along with the
expression (2) for the logarithm of a matrix, yields

n∏
i=1

λi = 1 . (41)
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A second condition follows by direct substitution from (40) into the first of (39),
giving

n∏
i=1

λ
αi
i = 1 , αi ≡ vT

i Ĵvi , i = 1, 2, . . . n. (42)

Note that 0 ≤ αi ≤ 1 and αi form a partition of unity,

n∑
i=1

αi = 1 . (43)

This follows from the representation Ĵ = uuT where the unit 6 vector u is defined
in Equation (16). Thus, the minimal isotropic moduli are found by satisfying the
two simultaneous Equations (41) and (42). We now show how the first of these
two conditions can be met, leaving one condition to satisfy.

Let
Ĉ iso = 3κR

(
Ĵ + ρ−2 K̂

)
, (44)

where ρ ≥ 0 is defined by

ρ2
=

3κR

2µR
=

1 + νR

1 − 2νR
, (45)

and νR is the Poisson’s ratio of the minimizer. We choose this form for Ĉ iso so that
Ĉ−1/2

iso = (3κR)−1/2
(
Ĵ + ρ K̂

)
. Hence, the eigenvalues of (40) are of the form

λi =
λ̄i (ρ)

3κR
, (46)

where the normalized eigenvectors λ̄i = λ̄i (ρ) and the (unchanged) eigenvectors
vi , i = 1, 2, . . . , n = 6 are defined by

3κR Ĉ−1/2
iso Ĉ Ĉ−1/2

iso =
(

Ĵ + ρ K̂
)

Ĉ
(

Ĵ + ρ K̂
)
=

n∑
i=1

λ̄i viv
T
i . (47)

Turning to the first condition, (41), it is automatically satisfied if the bulk mod-
ulus is given by

3κR =

( n∏
i=1

λ̄i

)1/n

. (48)

It remains to determine ρ from the second stationary condition, Equation (42),
which can be expressed in terms of the modified eigenvalues as

n∏
i=1

λ̄
(αi −1/n)

i = 1 . (49)
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Equation (49) involves the eigenvectors v through the inner products αi . However,
αi vanishes identically for eigenvectors of deviatoric form—in fact the definition
of a deviatoric eigenvector is αi = 0 [Mehrabadi and Cowin 1990]. Conversely,
αi = 1 for purely dilatational eigenvectors [Mehrabadi and Cowin 1990], that is,
eigenvectors parallel to u of Equation (16).

The solution to Equation (49) may be found numerically by searching for the
zero over the permissible range for the Poisson’s ratio: −1 < νR < 1/2. The
minimizing moduli κR and µR then follow from Equations (48) and (45), or more
directly,

3κR = ρ5/3 (
det Ĉ

)1/6
, 2µR = ρ−1/3 (

det Ĉ
)1/6

, (50)

and the minimal distance between Ĉ iso and Ĉ is given by

dR( Ĉ iso, Ĉ ) =
1
n

[ n∑
i=1

ln2
(

( λ̄i )
−n

n∏
j=1

λ̄ j

)]1/2

(n = 6). (51)

We next demonstrate the application of the above procedure to the case of a
given elasticity matrix of cubic symmetry.

4.4. Example: cubic materials. By substituting the assumed form Ĉ = Ĉcub from
Equation (19) into the explicit formulae of Equation (34) for the closest moduli
in the log-Euclidean sense, it is a straightforward matter to show that the latter
reproduce the results determined directly, in Equation (28). Regarding the closest
moduli using the Riemannian distance, the matrix in Equation (47) follows by
using the algebra for cubic matrices,(

Ĵ + ρ K̂
)

Ĉ
(
ρ Ĵ + ρ K̂

)
= 3κ Ĵ + 2µρ2 L̂ + 2ηρ2 M̂ . (52)

Thus, λ̄1 = 3κ , λ̄2 = λ̄3 = λ̄4 = 2µρ2, λ̄5 = λ̄6 = 2ηρ2, and the eigenvectors are
either pure dilatational (α1 = 1) or deviatoric (αi = 0, i = 2, 3, . . . , 6). Therefore,
Equation (49) becomes(

3κ
)5/6 (

2µ
)−1/2 (

2η
)−1/3

ρ−5/3
= 1. (53)

Solving for the intermediate variable ρ, and evaluating µR and κR from Equations
(48) and (45), respectively, gives κR = κ and µR = (µ3η2)1/5, again in agreement
with Equation (28).

5. Applications and discussion

Table 1 lists the computed distance from isotropy of various anisotropic materi-
als, using data from Musgrave [2003]. Materials of cubic (cub), hexagonal (hex),
tetragonal (tet) and orthotropic (ort) symmetry are considered. In each case the
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moduli of the closest isotropic material were found using the algorithm described
above. The resulting bulk modulus κR and Poisson’s ratio νR are tabulated.

Table 1 ranks the materials in terms of the Riemannian distance dR of the origi-
nal anisotropic moduli from the closest isotropic material. The second column of
numbers lists the distance between the closest isotropic materials found using the
Riemannian and log-Euclidean distances. That is,

dL R ≡ dL ,R
(

Ĉ iso(3κR, 2µR), Ĉ iso(3κL , 2µL)
)

=

[(
ln

κL

κR

)2
+ 5

(
ln

µL

µR

)2
]1/2

,
(54)

which is identically zero for cubic materials. The arithmetic (κA, µA) and har-
monic (κH , µH ) moduli minimizing the Euclidean distances were also computed,
and the Riemannian distance between these two is denoted dH A. The distances dR A

and dRH are the distances between the closest isotropic material (κR, µR) and the
arithmetic and harmonic isotropic approximants, respectively. All distances listed
in Table 1 are based on the Riemannian metric.

Note that the distance between the closest materials using dR and dL is less than
0.05 except for the extremely anisotropic spruce. In order to gain some appreciation
for the magnitude of the nondimensional distances in Table 1, consider the distance
of any P ∈ P(n) from a multiple of itself:

dR
(

P, a P
)
= dL

(
P, a P

)
=

√
n |log a| , a ∈ R+ . (55)

Small values of the elastic distance can be identified with values of a close to unity,
specifically

a = 1 ±
1

√
6

dL ,R + O(d2
L ,R) ≈ 1 ± 0.4 dL ,R . (56)

Note that the distance dH A between the arithmetic and harmonic approximations
is generally less than the distance from isotropy dR . This is more so for those
materials that are closer to isotropy—at the top of Table 1. As the material gets
further from isotropy - the lower half of Table 1—the magnitude of dH A relative to
dR grows as the latter increases. The two distances are of comparable magnitude
for the highly anisotropic materials at the very bottom of the table, such as oak and
spruce.

As a numerical check on the computations, the triangle inequality

dH A ≤ dR A + dRH (57)
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Material Symm dR 100dL R dR A dRH dH A νR κR

magnesium hex 0.18 0.00 0.01 0.01 0.02 0.29 3.53
diamond cub 0.21 0 0.01 0.01 0.02 0.07 44.20
aluminum cub 0.21 0 0.01 0.01 0.02 0.35 7.69
beryllium hex 0.22 0.01 0.01 0.01 0.02 0.05 11.44
sodium fluoride cub 0.29 0 0.02 0.02 0.04 0.24 4.86
ice (H2O) 257◦K hex 0.31 0.00 0.02 0.02 0.04 0.33 0.89
β-quartz (SiO2) hex 0.35 0.02 0.03 0.03 0.05 0.21 5.64
beryllium hex 0.37 0.23 0.03 0.03 0.06 0.26 14.41
caesium iodide cub 0.37 0 0.03 0.03 0.06 0.27 1.29
sodium chloride cub 0.40 0 0.04 0.03 0.07 0.25 2.45
sodium iodide cub 0.43 0 0.04 0.04 0.08 0.25 1.46
sodium bromide cub 0.44 0 0.04 0.04 0.09 0.25 1.94
caesium bromide cub 0.45 0 0.05 0.04 0.09 0.27 1.59
silicon cub 0.49 0 0.05 0.05 0.11 0.22 9.78
cobalt hex 0.51 0.00 0.07 0.05 0.12 0.31 19.03
silver bromide cub 0.52 0 0.06 0.06 0.12 0.40 4.06
germanium cub 0.56 0 0.07 0.07 0.14 0.21 7.52
caesium chloride cub 0.58 0 0.08 0.07 0.15 0.27 1.83
gallium antimonide cub 0.64 0 0.09 0.10 0.18 0.25 5.64
α-uranium ort 0.68 0.37 0.10 0.10 0.20 0.20 11.28
silver chloride cub 0.70 0 0.11 0.10 0.22 0.41 4.42
apatite hex 0.72 0.11 0.10 0.13 0.22 0.21 8.43
indium antimonide cub 0.75 0 0.12 0.13 0.25 0.29 4.69
potassium fluoride cub 0.75 0 0.13 0.12 0.25 0.28 3.19
benzophenone ort 0.85 1.92 0.15 0.14 0.29 0.30 5.14
zircon tet 0.98 0.74 0.21 0.18 0.39 0.13 1.99
sulphur ort 0.98 4.13 0.20 0.18 0.39 0.34 1.88
iron cub 0.99 0 0.20 0.23 0.43 0.30 17.05
nickel cub 1.01 0 0.21 0.23 0.44 0.29 18.04
cadmium hex 1.04 3.43 0.20 0.24 0.44 0.30 5.40
rutile (TiO2) tet 1.07 0.79 0.21 0.28 0.49 0.27 21.49
potassium chloride cub 1.08 0 0.27 0.24 0.50 0.28 1.78
barium titanate tet 1.13 3.20 0.26 0.27 0.52 0.36 17.67
potassium bromide cub 1.14 0 0.30 0.26 0.56 0.29 1.58
gold cub 1.16 0 0.27 0.31 0.58 0.42 17.28
Rochelle salt ort 1.17 0.97 0.24 0.34 0.59 0.31 1.97
zinc hex 1.18 2.58 0.24 0.34 0.57 0.24 6.61
white tin tet 1.18 0.04 0.24 0.38 0.62 0.35 5.50
ammon. dihyd. phos. tet 1.19 0.95 0.36 0.25 0.61 0.33 2.70
silver cub 1.21 0 0.29 0.33 0.63 0.37 10.36
potassium iodide cub 1.25 0 0.36 0.31 0.67 0.30 1.20
copper cub 1.28 0 0.32 0.37 0.70 0.35 13.71
potass. dihyd. phos. tet 1.34 0.01 0.40 0.38 0.78 0.26 2.67
α-brass cub 1.46 0 0.41 0.48 0.90 0.34 11.96
indium tet 1.57 0.01 0.50 0.54 1.04 0.44 4.16
oak ort 2.30 1.75 0.96 1.09 2.05 0.08 0.17
β-brass cub 2.34 0 0.94 1.19 2.13 0.36 11.62
spruce ort 5.66 59.5 7.16 3.33 10.45 0.23 0.09

Table 1. Distance from isotropy for some materials - data from
[Musgrave 2003]. κR units 1010 N/m2.
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was confirmed for each material in Table 1. Since the three vertices of the triangle
are isotropic materials, the inequality may be written, using (24), as

[
(ln

κA

κH
)2

+ 5(ln
µA

µH
)2]1/2

≤
[
(ln

κA

κR
)2

+ 5(ln
µA

µR
)2]1/2

+
[
(ln

κR

κH
)2

+ 5(ln
µR

µH
)2]1/2

. (58)

For cubic materials κA = κH = κR , and consequently the triangle is a straight line:

dH A = dR A + dRH for cubic materials only. (59)

The quantity (dR A+dRH −dH A)/dH A was found to be very small for all the cases
considered (and numerically zero for the cubic examples), less than 10−3 for all
materials considered except barium titanate (1.2 × 10−3) and spruce (2.8 × 10−3).
The “triangle” is almost flat, indicating that the closest moduli (κR, µR) are in
some sense optimally centered between the arithmetic and harmonic approxima-
tions. Note however, that κR , µR are not equal to the Riemannian mean [Moakher
2006] of the arithmetic and harmonic approximations, denoted as κAH , µAH . The
Riemannian mean of two elasticity matrices Ĉ1 and Ĉ2 is Ĉ1( Ĉ−1

1 Ĉ2)
1/2 [Moakher

2006], and consequently the means of the arithmetic and harmonic moduli are
κAH = (κAκH )1/2, µAH = (µAµH )1/2. By considering the case of cubic materi-
als, for which all these quantities have explicit expressions, it may be shown that
(µR − µAH )(η − µ) > 0 for η − µ 6= 0.

6. Conclusions

We have presented a method for finding the isotropic elastic moduli closest to a
given material of arbitrary symmetry based on three different metrics. Unlike the
Frobenius (Euclidean) distance, the Riemmanian and log-Euclidean metrics pro-
vide unique isotropic moduli. The values obtained according to these two metrics
are identical if the comparison medium has cubic symmetry, and are otherwise
relatively close. The procedures developed here for finding the closest isotropic
moduli can be generalized to find the closest material of lower symmetry. The
solution for cubic symmetry with the cube axes given is presented in the Appendix,
and other, lower symmetries will be considered elsewhere. Another generalization
of the present problem is that of determining the closest material of cubic or lower
symmetry where the symmetry axes are unrestrained. These and other challenging
questions make this an interesting topic for some time to come.
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Appendix: The closest cubic material

The cubic stiffness (compliance) closest to Ĉ (Ŝ) in the Euclidean metric dF has
moduli κA, µA, ηA (κH , µH and ηH ), where κA and κH are given by Equations
(30) and (31), and

6µA = ĉ44 + ĉ55 + ĉ66, 6ηA = ĉ11+ĉ22+ĉ33 − ĉ23 − ĉ31 − ĉ12, (A.1)

3
2µH

= ŝ44 + ŝ55 + ŝ66,
3

2ηH
= ŝ11+ŝ22+ŝ33 − ŝ23 − ŝ31 − ŝ12. (A.2)

Using the method for deriving Equation (34), we find the following for the log-
Euclidean distance,

κL =
1
3 exp

(
tr Ĵ Log( Ĉ )

)
,

µL =
1
2 exp

( 1
3 tr L̂ Log( Ĉ )

)
,

ηL =
1
2 exp

( 1
2 tr M̂ Log( Ĉ )

)
.

(A.3)

Note the identity, similar to Equation (33),

det( Ĉcub) = det( Ĉ ). (A.4)

For the Riemannian distance dR we find that the closest cubic material Ĉcub of
the form Equation (19) is determined by three equations:

n∏
i=1

λi = 1 ,

n∏
i=1

λ
αi
i = 1 ,

n∏
i=1

λ
βi
i = 1 , (A.5)

where
αi ≡ vT

i Ĵvi , βi ≡ vT
i L̂vi , i = 1, 2, . . . n, (A.6)

and {λi , vi } are the eigenvalues and eigenvectors of

Ĉ−1/2
cub ĈĈ−1/2

cub .

The parameters αi satisfy the same properties as before, including the fact that they
sum to unity. Since {vi } form an orthonormal basis, it follows that

n∑
i=1

βi = dim L̂ = 3.

Furthermore, βi = 0 if the eigenvector is dilatational. The three equations (A.5)
may be reduced to two by assuming the unknown moduli are of the form

Ĉcub = 3κR
(

Ĵ + ρ−2
1 L̂ + ρ−2

2 M̂
)
.
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Define the modified eigenvalues λ̄i = λ̄i (ρ1, ρ2) to be the eigenvalues of(
Ĵ + ρ1 L̂ + ρ2M̂

)
Ĉ

(
Ĵ + ρ1 L̂ + ρ2M̂

)
,

then κR is given by the formula (48), while ρ1, ρ1 solve the simultaneous equations

n∏
i=1

λ̄
(αi −1/n)

i = 1,

n∏
i=1

λ̄
(βi −1/n)

i = 1 . (A.7)
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