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Most procedures for experimental stress evaluation rely on the measurement of
elastic strain followed by point-wise calculation of stress based on continuum
elasticity assumptions despite the fact that the real purpose of the investigation is
to characterise the state of stress everywhere in the object to the greatest possible
detail. Using the example of residual elastic strain measurements in a bent tita-
nium alloy bar taken by means of high energy synchrotron X-ray diffraction, an
interpretation technique is here introduced based on the variational eigenstrain
analysis. An analytical framework is presented for the solution of the direct prob-
lem of eigenstrain, that is, the calculation of residual elastic strain distribution
within an inelastically bent beam containing a known distribution of eigenstrain.
An inverse problem about closest matching between the model and experiment
is then cast in a form that allows determination of the underlying eigenstrain
distribution from a single noniterative solution of a linear system. Subsequently
the complete stress state can be reconstructed everywhere within the object in
the form of continuous functions. The value of the approach lies in the fact
that subsequent deformation modelling can be carried out with the effects of
residual stresses (and their evolution) naturally incorporated. The extension of
this approach to more complex geometries within the framework of the finite
element method is briefly discussed.

1. Introduction

Residual stresses play an important role in determining the deformation behaviour
and fatigue durability of engineering components and assemblies. It is well known,
for example, that compressive near surface residual stresses act to inhibit crack
initiation and propagation, and thus affect the fatigue life of an object. On the
other hand, residual stresses themselves are known to undergo modification dur-
ing thermal and mechanical loading, through various mechanisms related to time-
independent plasticity, creep, phase transformation, etc.

We can pursue two principal avenues in evaluating residual stress states: defor-
mation process modelling and experimental measurement.
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Numerical simulation of nonlinear deformation behaviour of solid bodies with
complex shapes is usually accomplished with the help of the finite element method.
This method allows the introduction of sophisticated constitutive laws that take
into account kinematic-isotropic nonlinear hardening, cyclic softening or ratchet-
ing, complex creep and stress relaxation behaviour [Manonukul et al. 2005], cou-
pled nonlocal damage and plasticity [Korsunsky et al. 2005], strain gradient effects
[Fleck and Hutchinson 2001], etc. Refined models of deformation processes often
involve large numbers of material parameters to be determined from experimen-
tal measurements. In order to justify the use of process modelling predictions
for undertaking practical design decisions, proper validation procedures must be
followed.

An alternative approach to residual stress evaluation is via an experimental pro-
cedure. In practice, residual stresses are only ever measured indirectly via observ-
ing relaxation or their effect on some other physical quantity, for example, bond
vibration frequency as in Raman spectroscopy. Experimental techniques for stress
evaluation can be classified into relaxation methods, physical correlation methods
and diffraction techniques [Withers and Bhadeshia 2001].

Relaxation methods rely on material removal (slitting, hole drilling, blind hole
drilling, layer removal, etc.) accompanied by the measurement of either changes in
the object shape (monitored by photogrammetry), or changes in strain measured by
means of surface mounted strain gauges, as in hole drilling. Physical correlation
methods use various physical effects (thermoelastic, magnetoelastic, ultrasound
propagation) to obtain some estimate of a stress state parameter—for example, the
hydrostatic stress component.

Diffraction is a highly versatile method for direct measurement of interplanar
spacing within the atomic lattice. Consequently residual elastic strain can be cal-
culated on the basis of knowledge of strain-free spacing. Diffraction techniques,
particularly those using high flux beams generated at synchrotrons [Korsunsky et al.
2002], can be scaled down to allow micro-diffraction and even nano-diffraction
experiments. The use of synchrotron X-ray diffraction to provide the input for the
current study is described below.

The objective of the present study is to provide a rational solid mechanics basis
for the analysis of residual elastic strain data obtained from state-of-the-art syn-
chrotron X-ray diffraction measurements. It must be pointed out, however, that the
method described herein possesses great generality, and can be used with equal
success to interpret relaxation method data, such as blind hole drilling or slitting
techniques. As a vehicle for the introduction of new concepts, a classical problem
of residually bent elastic-plastic beam is deliberately chosen for which an analytical
solution of the direct eigenstrain problem is available [Korsunsky 2005]. The size
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of the bent beam studied was chosen to be commensurate with the size of residu-
ally stressed objects routinely studied in the context of power generation and the
aerospace industry. The material of the sample was Ti-6Al-4V aerospace titanium
alloy used in the manufacture of fan and compressor blades of jet engines.

The article is organised as follows. In Section 2 the theoretical background for
the analysis of residual stress states is presented. In Section 3 a concise presen-
tation is given of the background to diffraction techniques for experimental strain
analysis. In Section 4 a solution is presented to the ‘direct’ problem of determina-
tion of residual elastic strain in a beam from known permanent strain (eigenstrain)
distributions. In Section 5 a framework is introduced for variational eigenstrain
determination from measured residual elastic strain values, by minimising the sum
of squares of model-experiment differences [Korsunsky et al. 2004]. In Section 6
the results of interpretation of a particular data set are presented and discussed.

2. Theoretical background

Residual stress states in arbitrarily shaped solid bodies are usually complex, and
difficult to describe, since in the general case they must be represented by the six
components of the stress tensor varying as a function of three spatial variables. It is
virtually impossible to imagine an experimental procedure that would readily and
routinely provide this level of detail. At any rate, the interpretation of point-wise
data in terms of six independent components is likely to present a serious practical
challenge.

Any residual stress state described by the tensor σ must, by definition, be self-
equilibrating. This requirement in fact establishes a relationship between gradients
of different components of the stress tensor, σ , namely

div σ = 0. (1)

Furthermore, the stress state deduced within a residually stressed object must sat-
isfy the traction-free boundary conditions, namely,

σ · n = 0, (2)

where n denotes the surface normal. However, it is not easy to enforce this re-
quirement on the deduced stress state, or to formulate the constraints that must be
imposed on the measured strain data. It is possible to develop a rational analytical
approach based on the concept of eigenstrain (stored inelastic strain) that reduces
the size of the data array needed to represent a particular residual stress state and at
the same time guarantees satisfaction of equations of equilibrium, (1), and traction-
free boundary conditions (2).
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Eigenstrain modelling is a powerful analytical technique for the representation
of residual stress states in solids [Mura 1987]. A practical approach to the use of
eigenstrain in residual stress modelling can be developed based on the following
fundamental postulates [Korsunsky 1997; 2005]:

(a) In the absence of eigenstrain (stored inelastic strain), any elastic solid is com-
pletely free from residual stress. Indeed, the very definition of elastic material
response requires that stresses and strains arise in the body upon the applica-
tion of an external load, and that they vanish completely upon load removal.

(b) Residual stresses within a solid arise in response to the introduction, through
some inelastic mechanism (plasticity, creep, cutting and pasting, phase trans-
formation, etc.), of permanent nonuniform strains within the body. Note how-
ever that the introduction of an entirely spatially uniform permanent strain
field does not, in fact, lead to the generation of residual stresses.

(c) Elastic and inelastic strains are additive, that is,

ε = ε∗
+ e, or in index notation, εi j = ε∗

i j + ei j , (3)

where εi j denotes the total strain, ei j denotes the elastic strain, and ε∗

i j denotes
eigenstrain.

(d) Total strain must be compatible, that is, it must satisfy

Inc ε = rot((rot ε)T ) = 0,

leading to relationships between strain and components of the type

∂2εxx

∂y2 +
∂2εyy

∂x2 −
∂2εxy

∂x ∂y
= 0. (4)

(e) Eigenstrains (permanent inelastic strains) act as the sources of incompatibility
of displacement, and so can be thought of as appearing in the right hand of the
Saint-Venant compatibility equations. Indeed, from the compatibility equation
(4) one readily obtains the ‘incompatibility’ equation for the elastic strain, ei j ,
in the following form:

∂2exx

∂y2 +
∂2eyy

∂x2 −
∂2exy

∂x ∂y
= 4, (5)

where

4 =
∂2ε∗

xy

∂x ∂y
−

∂2ε∗
xx

∂y2 −
∂2ε∗

yy

∂x2 . (6)

Note from the above expression that the ‘forcing term’, 4, turns to zero for
uniform eigenstrains. In fact, it also vanishes for eigenstrains that depend
linearly on one coordinate and not at all on other coordinates, so that bodies
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containing such residual strain distributions are also free from residual elastic
strain, and hence from residual stress.

(f) The problem of determining the residual elastic fields (residual elastic strain
and residual stresses, as well as residual deformations, i.e. distortions) arising
from a given eigenstrain, ε∗

i j requires the simultaneous solution of equations
(5), (1) and (2), together with the elasticity equations (generalised Hooke’s
law),

σ = C : e, or in index notation, sigi j = Ci jkl epskl . (7)

(g) The eigenstrain problem is not in fact in any way different from the well
known thermoelastic problem, in which the forcing term 4 arises from thermal
gradients (note that an unconstrained uniformly heated body remains stress-
free). In fact, arbitrary eigenstrain distributions can be successfully simulated
by means of anisotropic thermal expansion.

Inelastic bending represents one of the most straightforward and well studied
processes that leads to the creation of residual stresses. It can be treated very
simply within the framework of beam theory whereby only longitudinal elastic
strain and stress are considered and differ only by a constant factor that is Young’s
modulus.

The stresses that arise in inelastic bending can be readily analysed [Gere and
Timoshenko 1984] provided the stress-strain behaviour of the sample material un-
der uniaxial tension and compression is known. By modelling numerically the
application of a given moment to a beam in bending, the permanent strains induced
in the beam by plastic deformation can be readily deduced. Once the externally ap-
plied moment is removed, the beam is usually thought to undergo elastic unloading,
so the residual stresses and residual elastic strains are easily found.

In the present study a different problem is addressed for which the residual
elastic strains after bending are specified in the form of experimental diffraction
measurements that may also be subject to some data scatter. The problem is to
find the unknown distribution of permanent strains responsible for giving rise to
the observed elastic strains. Furthermore, it is also possible to seek to extract
approximations to the uniaxial tensile and compressive stress-strain curves from
such residual strain data.

3. Experimental

The specimen of Ti64 was machined to the dimensions of h y = 50 mm, hx =

8.5 mm, hz = 4 mm and bent by applying a bending moment Mz of approxi-
mately 100 N·m using a 100 kN capacity, screw driven universal testing machine
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Figure 1. Illustration of plastic deformation of the bar in four
point bending.

(Hounsfield Ltd) with a four point bending attachment Figure 1. Under progres-
sively increasing applied bending moment, the lines labelled A, B and C in Figure 1
indicate the profiles of elastic strain, and hence also the longitudinal stress (for the
simple case of non-work-hardening material). The elastic strain distribution across
the bar remains linear (line A) until the first onset of yielding. Once the applied
moment exceeds the yield value (line B), the material undergoes progressive plastic
yielding from the surface. Note that the total strain remains linear across the beam,
but a proportion of it is now accommodated plastically. With the increased applied
moment (line C) the tensile and compressive plastic zones expand progressively
inwards from two surfaces. In the course of analysis carried out in this paper we
pay particular attention to the extent of the plastic zones, the deduction of the
distribution of permanent inelastic strains within these zones, and the relationship
between these distributions and the macroscopic and microscopic residual stresses.

The two principal methods for extracting residual elastic strain information
within objects with the help of X-ray diffraction are the angle-dispersive (mono-
chromatic beam) technique and the energy-dispersive (white-beam) technique.

In obtaining the data used in the present study a single bounce bent Laue mode
monochromator was employed [Laundy et al. 2004] as shown in Figure 2. Bending
the Laue monochromator crystal induces tensile and compressive strains on differ-
ent sides of the crystal, thus increasing the band pass and hence the flux incident
on the sample. In many engineering applications this is in fact an advantage, since
peak broadening is dominated by sample effects (strain spread within the gauge
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Figure 2. Schematic illustration of the relationship between lin-
ear segments of tensile and compressive eigenstrain induced by
bending (dashed lines), and the residual elastic strain distribution
(solid line) arising by the process of elastic equilibration.

volume), and no advantages are obtained by using extremely fine monochromation.

Diffraction patterns were collected by employing a detector scanning the scat-
tering angle 2θ , or a position sensitive detector capable of registering total photon
flux simultaneously at several positions along a line or over a two-dimensional
surface. This mode allows accurate determination of diffraction peak intensity,
shape and position. However, it usually requires significantly longer counting
times in comparison with the white beam mode in order to collect the data from
comparable sections of the diffraction pattern, primarily due to the reduction of
flux by monochromation, but also due to the necessity of scanning the detector.

Energy dispersive setup allows multiple diffraction peaks to be collected simul-
taneously, thus achieving particularly efficient counting statistics at energies above
30 keV [Korsunsky et al. 2002]. The accuracy of determination of individual peak
position and shape resolution in the white-beam mode is usually related to the
resolution of the energy-dispersive detector, but can in fact be several orders of
magnitude better. The accuracy of interpretation in terms of lattice parameters and
hence strain can be significantly improved by using multiple peak analysis or whole
pattern fitting [Liu et al. 2005].

The material used in the present study was a Ti-6Al-4V alloy widely used to
manufacture components located at the front of the aeroengine, such as fan and
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compressor blades and disks; it also has many other structural applications. Pro-
duction comprises vacuum arc melting above the β phase transus followed by plate
rolling in order to minimise crystallographic texture in the material which results
in anisotropy of both elastic and inelastic properties. The structure achieved by the
manufacturing process is obtained by solution treating in the middle of the α +β

phase field and air cooling. This gives a mixture of primary α and a transformation
product which comprises α and β phases. The α phase is a hexagonal close-packed
structure (hcp) which is typical of titanium at room temperature and transforms to
a body centred cubic structure, β phase, at 883◦ C. The size of the grains was
approximately 5µm.

Bragg’s law

2d sin θ = λ =
hc
E

(8)

is used to determine a lattice spacing parameter d that can be related to any partic-
ular phase and may correspond to the phase average, if pattern refinement is used,
or to the average taken over crystallites of a certain orientation within a particular
phase.

The residual elastic strain is computed using the formula

e =
d − d0

d0
. (9)

For each position of the gauge volume within the sample, peak centre positions
were determined for the reflections (00.2), (10.1), (10.2) and (11.0) from the hcp
α phase of the titanium alloy, as well as the macroscopic average computed by
Pawley refinement of a section of the diffraction profile containing multiple peaks.
Unstrained lattice spacing values d0 for each of these reflections, are also needed
to calculate strain using (9). To this end the data were collected by performing
a similar measurement for the gauge volume located at the very corner of the
sample. This choice of reference was based on the argument that the sampling
volume in such a position must be free from tractions (and hence stresses) in the
x and y directions. The gauge volume should be free from macroscopic average
stress, and hence free from macroscopic average residual elastic strain. It should
be noted that the above argument does not quite prevent the ‘corner’ gauge volume
from containing microscopic residual stresses that exist between grains of different
orientations.

In the sequel an interpretation is developed for the analysis of macroscopic resid-
ual elastic strains by employing the eigenstrain formalism. Since this development
is undertaken within the framework of continuum elastic theory, the most appro-
priate residual elastic strain value that should be used for the purpose is that of
macroscopic average.
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4. Direct problem: determination of residual elastic strain from given
eigenstrain

Consider an elastic beam occupying the region xL < x < xR , −∞ < y < ∞

and containing a distribution of eigenstrain ε∗
yy = ε∗(x). The basic framework for

evaluating the residual elastic strain (r.e.s.) distribution that arises in the beam has
been presented in [Korsunsky 2005], and will only be reproduced here in brief to
introduce some modifications to the previously published results.

The following statements provide the basis for the analysis:

(i) Total strain in the beam is given by the sum of the elastic and inelastic strain
(eigenstrain).

(ii) Following Kirchhoff’s hypothesis of straight normals, it is assumed that ma-
terial points originally lying on a line perpendicular to the beam axis remain
on a straight line, that is, any normal to the beam axis undergoes only rotation
without distortion.

(iii) Hence displacements, and therefore total strain must vary linearly through the
plate thickness, that is, they must be be given by

ε = e + ε∗
= a + bx/h, (10)

where h = xR − xL is the beam thickness. Here the parameter a characterises
the amount of axial straining experienced by the beam, and the term b char-
acterises the intensity of bending.

(iv) In the absence of external loading being applied, elastic strain e presents an
example of macroscopic residual elastic strain, such as that measured in a
diffraction experiment.

(v) From equation (10), residual elastic strain is given by

e = a + bx/h − ε∗(x), (11)

If the dependence of parameters a and b on the eigenstrain distribution ε∗(x)

is known, then the relationship between the residual elastic strain e and the
eigenstrain is established.

(vi) It will be shown (below) that parameters a and b depend solely on two integral
parameters, namely, the zeroth and first moments of the eigenstrain distribu-
tion given by

0 =
1
h

∫ xR

xL

ε∗(x) dx, 01 =
1
h2

∫ xR

xL

ε∗(x) dx . (12)

The relationship between parameters a and b, on the one hand, and 0 and 01, on
the other, is established using the requirements of force and moment balance across
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the beam, given by

F =

∫ xR

xL

[a + bx/h − ε∗(x)] dx = 0, (13)

M =

∫ xR

xL

[a + bx/h − ε∗(x)] x dx = 0. (14)

leading to the following relationships:

(xR + xL) b/2 + a(xR − xL) − (xR − xL) = 0, (15)

(x2
R + xR xL + X2

L) b/3 + (x2
R − x2

L) a/2 − (xR − xL)201 = 0. (16)

Expressions are given explicitly in terms of the beam boundaries xL and xR for the
purposes of generality, e.g., to allow the consideration of effects of surface layer
removal.

The solution of the linear system for parameters a and b has the form

a =
601(X2

R − x2
L) − 40(x2

R + xL + X2
L)

(xR − xL)2 , (17)

b =
1201(xR − xL) − 60(xR − xL)

(xR − xL)
. (18)

Noting that the since bending component of strain in terms of beam bending radius
R and the beam curvature K is given by

e =
x
R

= x K , (19)

then from equation (8) the curvature of the bent beam is found as

K =
b
h

=
1201(xR − xL) − 60(xR − xL)

(xR − xL)2 , (20)

Equation (20) contains an expression that is useful for the analysis of beam curva-
ture as an function of the eigenstrain distribution ε∗(x).

Substituting equations (17) and (18) back into equation (11) gives the resulting
prediction for the residual elastic strain distribution in the form

e(x) =

1
(xR − xL)2

(
601(xR−xL)(2x−xR−xL) + 20((x2

R+xR xL+x2
L) − 3x(xR+xL))

)
− ε∗(x). (21)

Equation (21) establishes the solution of the direct problem about the determination
of residual elastic strain for arbitrary given distribution of eigenstrain.
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Figure 1 gives an example of the above solution and shows the relationship
between the eigenstrain distribution, ε∗(x), and residual elastic strain e. This result
should be seen as the simplest illustration of the relationship between eigenstrain
and the residual elastic strain. Although in the present treatment this relationship is
established analytically for a rather trivial case, the method is not restricted to such
situations. In fact, arbitrary eigenstrain distributions can be readily incorporated
into the finite element framework through the use of virtual anisotropic thermal
expansion [Korsunsky et al. 2005; Hill 1996].

5. Inverse problem: determination of eigenstrain distribution from
measured residual elastic strain

The problem that we wish to address in the present study stands in an inverse
relationship to the one solved in the previous section. In practice it is the resid-
ual elastic strain distribution that may be known, for example, from diffraction
measurement. Alternatively, changes in the elastic strain values can be monitored,
say using strain gauges, in the course of material removal; and the underlying
eigenstrain distribution then needs to be determined.

In practice the residual elastic strain, or its increments, can only be measured
at a finite number of points. We are therefore seeking to reconstruct an unknown
functional distribution, that is, an object with infinite number of degrees of freedom,
using a finite data set. Several difficulties may arise in this situation, e.g. whether
the problem described in the previous section can be inverted; whether the inverse
problem is regular, i.e. varies in a smooth fashion depending on the data; and
whether the obtained solution is unique. In the present study we do not attempt to
answer these questions. Instead, we offer an efficient inversion procedure, leaving
the evaluation of its uniqueness and regularity for future consideration.

Consider a set of experimental data consisting of the values of residual elastic
strain (r.e.s.) y j collected at positions x j , j = 1, . . . , m. In the present study we
assume that the data was collected from a one-dimensional scan in coordinate x .
It is worth noting, however, that the approach presented below is not in any way
limited to one-dimensional problems, and can be readily generalised to two- and
three-dimensional cases.

Denote by e(x), as in the previous section, the predicted, or modelled residual
elastic strain distribution. Evaluating e(x) at each of the measurement points gives
the predicted values e j = e(x j ). In order to measure the goodness of the prediction
we form a functional J given by the sum of squares of differences between actual
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measurements and the predicted values, with weights:

J =

m∑
j=1

w j (y j − e j )
2. (22)

The choice of weights w j is left to the modeller; for example, they could be
chosen based on the accuracy of measurements being interpreted.

Minimisation of functional J provides a rational variational basis for selecting
the most suitable model to match the measurements, in terms of the overall good-
ness of fit.

Let us now assume that the unknown eigenstrain distribution, yet to be deter-
mined, is given by a truncated series of basis distributions,

e∗(x) =

N∑
i=1

ciξi (x). (23)

Here N is the total number of basis distributions used in the prediction.
The results of the previous section contain the analytical procedure for the so-

lution of the direct problem, that is, the determination of the residual elastic strain
distribution that arises in response to an arbitrary eigenstrain distribution e∗(x).
This procedure can now be applied to each of the N basis distributions ξi (x) in
turn. As a result, a family of residual elastic strain solutions Ei (x) is obtained.

Due to the linearity of the direct problem, the predicted values of e j the residual
elastic strain arising from the eigenstrain distribution ε∗(x) of equation (23) can
themselves be written in the form of a superposition of responses to the basis
eigenstrain distributions,

e j =

N∑
i=1

ci Ei (x j ) =

N∑
i=l

ci ei j , (24)

with the same coefficients ci as in equation (23).
The inverse problem of determining the unknown eigenstrain distribution ε∗(x)

has now been reduced to the problem of determination of N unknown coefficients
ci that deliver a minimum to the functional J in equation (22), which may now be
rewritten as

J =

m∑
j=1

w j

( N∑
i=1

ci ei j − y j

)2

. (25)

The above expression is quadratic and positive definite in the unknown coeffi-
cients ci . It follows that the functional has a unique minimum that is found by
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satisfying the condition

∇c J = 0, or
∂ J
∂ci

= 0, i = 1, . . . , N . (26)

Due to the quadratic nature of the functional in equation (25), the system of
equations in equation (26) is linear. Therefore, the solution for the unknown co-
efficients ci can be readily found without iteration by inverting the linear system
arising in equation (26). This system is written out explicitly below.

The partial derivative of J with respect to the coefficient ci can be written ex-
plicitly as

∂ J
∂ci

= 2
m∑

j=1

w j ei j

( N∑
k=1

ck ek j − y j

)
= 2

( N∑
k=1

ck

m∑
j=1

w j ei j ek j −

m∑
j=1

w j ei j y j

)
= 0.

(27)
For purposes of illustration, let us now assume that the weights are equal to unity,
so that equation (27) simplifies to:

∂ J
∂ci

= 2
( N∑

k=1

ck

m∑
j=1

ei j ek j −

m∑
j=1

ei j y j

)
= 0. (28)

We introduce the following matrix and vector notation

E = {ei j }, y = {y j }, c = {ci }. (29)

Noting that notation ek j corresponds to the transpose of matrix E , the entities
appearing in (28) can be written in matrix form as:

A =

m∑
j=1

ei j ek j = EET , b =

m∑
j=1

ei j y j = Ey. (30)

Hence equation (28) assumes the form

∇c J = 2(Ac − b) = 0. (31)

The solution of the inverse problem has thus been reduced to the solution of the
linear system

Ac = b (32)

for the unknown vector of coefficients c = {ci }.
Whenever the solution of an inverse problem is sought, questions arise concern-

ing the existence and uniqueness of the solution, and also concerning the well-
posedness of the problem, that is, the continuity of the dependence of the solution
on the problem parameters, the choice of the basis functions, the number of terms
N in the truncated series, etc.
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Within the present regularised formulation of the problem, for an arbitrary
choice of the family of basis functions and an arbitrary number of basis functions
N, a unique solution is guaranteed to exist. This is a consequence of the positive
definiteness of the quadratic functional J . Furthermore, it is clear that increasing
the number of terms N is guaranteed to deliver a sequence of monotonically non-
increasing values of J , in other words, the goodness of approximation will not be
diminished.

An interesting question concerns the convergence of the solution in terms of
eigenstrain distribution ε∗(x), to the ‘true’ solution in the limit N → ∞. Similarly,
the continuity in the behaviour of the solution with the choice of basis functions
deserves to be discussed. While it must be emphasised that these questions are
clearly fundamental and ought to be addressed, the focus is currently placed on
the development of a practical tool for residual strain analysis. In so far as this
is the aim of the present study, the proposed framework offers an efficient ‘one
shot’ approach to the solution of an inverse problem. Furthermore, the choice of
moderate values N , compared to the number of measurements, m, also offers a
rational procedure for smoothing the data.

Figure 2 illustrates the relationship between the simple kind of eigenstrain dis-
tribution that may be introduced by inelastic bending (shown by the dashed lines)
in tension and compression on the opposites sides of the sample, and the residual
elastic strain (shown by the solid line) that arises by the process of elastic equili-
bration in response. For simplicity, the eigenstrain distributions are assumed to be
linear in both tension and compression. This assumption corresponds to the case
of elastic-ideally plastic material. Note, however, that the depths of the plastic
zones on the two sides of the sample are allowed to be different. As a result the
residual elastic strain state that arises in the bent beam is asymmetric, and illustrates
how asymmetry of residual stress distribution is connected with the asymmetry of
material response (yielding) in tension and compression.

6. Results and discussion

The variation procedures for eigenstrain determination described in the previous
section were applied to the experimental data obtained from synchrotron diffraction
measurements. As noted earlier, the diffraction strain estimate that is obtained
by whole pattern refinement provides the most reliable estimate of the average
macroscopic residual elastic strain. These data were used in the present analysis.

The unknown eigenstrain distributions were represented by the following series:

ε∗T
=

N∑
i=1

ci (x − d)i , ε∗C(x) = −

N∑
i=1

c′

i (x − d ′)i , (33)
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Figure 3. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the prediction of the
linear eigenstrain model (dashed line).

where superscripts refer to the tensile and compressive eigenstrains, and parameters
d and d ′ denote the positions of the tensile and compressive plastic zone boundaries,
respectively.

Several versions of the variational interpretation were investigated. In the first
version a very simple interpretation was used of the type illustrated in Figure 2,
that is, with linear assumed eigenstrain profiles in both tension and compression.
Nevertheless, even with such simple assumptions it was possible to capture the
salient features of the residual elastic strain distribution. The comparison between
the model and experiment is illustrated in Figure 3, where the experimental mea-
surement points are shown by the markers, while the continuous line shows the
model prediction obtained using only the linear terms in the eigenstrain distribution.
Note that the eigenstrain interpretation provides a ‘balanced’ approximation in the
least squares sense; the model provides a ‘smoothing’ of the data at the chosen
level of detail in the description of eigenstrain distribution.

Figure 4 shows the improvement to the model prediction afforded by allowing
higher order of eigenstrain distribution functions (up to order 6): the agreement
between the model and experimental measurements shown by markers is clearly
improved. However, in the model used for this reconstruction the tensile and com-
pressive eigenstrain distributions remained linked, in that the same coefficients
were used in the expressions for the tensile and compressive eigenstrains in equa-
tion (33), that is, c′

i = ci .
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Figure 4. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the predictions of
the higher order eigenstrain model (continuous curve).

Figure 5 shows the result of interpretation, with the coefficients for the tensile
and compressive eigenstrain distributions allowed to vary independently, that is,
c′

i 6= ci . Some small improvement can be detected, although it is not thought to be
particularly significant.

Finally, in Figure 6 the order of approximation was increased to N = 10. This
clearly delivers an improvement in the apparent quality of fit, but also leads to
some oscillatory behaviour of the prediction curve. This situation might perhaps
be expected for any approximation that involves higher order polynomial represen-
tation of an unknown distribution. The problem of this type could be overcome
by representing the unknown distribution by a set of smooth radial basis functions
with bounded support.

7. Conclusions

The purpose of the present paper was to introduce a self-contained framework that
can serve as a convenient vehicle for introducing the fundamental ideas for residual
stress reconstruction using the concept of continuous distributions of eigenstrain.
Kirchhoff bending theory allows a simple analytical formulation to be developed
for the prediction of the residual elastic strain (and hence bending stress) within
inelastically bent bars due to distributions of tensile and compressive eigenstrains.
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Figure 5. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the predictions of the
higher order eigenstrain model (continuous curve) with separate
description of the tensile and compressive eigenstrain dis-
tributions.

Once these analytical formulae are established, they are used as the direct eigen-
strain problem solver within the inverse framework for variational determination
of unknown eigenstrains.

The solutions are obtained for residual elastic strain profiles measured by high
energy synchrotron X-ray diffraction. The stability of the solutions is investigated
by way of numerical experiments involving different formulation of the functional
basis and different orders of approximation. It is found that the solutions display
good stability, although the use of higher order polynomial approximations leads to
some evidence of oscillatory behaviour of the solution. An approach using radial
basis functions may be able to overcome this difficulty.

The findings of this paper are particularly relevant to the task of modelling the
effects of residual stresses on subsequent deformation behaviour of engineering
components. Assuming the residual elastic strain distribution can somehow be
measured, for example, by diffraction, the underlying eigenstrain distribution can
them be determined via an implementation of the variational approach presented
here. When once such distribution is found, it can be used to continue deformation
simulation onwards from the corresponding instant in the component’s history. It
then becomes possible not only to account accurately for the effects of residual
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Figure 6. The measured profile of residual elastic strains in the
bent Ti-6Al-4V bar (markers) compared with the predictions of
the higher order eigenstrain model (continuous curve) with high
order (N = 10) separate description of the tensile and compressive
eigenstrain distributions.

stresses on subsequent deformation, but also vice versa to observe the evolution
of the residual stress state (or, perhaps even more appropriately, of the underlying
eigenstrain distribution) under deformation.
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