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In Int. J. Solids Struct. 35:23 (1998), pp. 3097–3103, we proved that localized
interaction model (LIM) for shield-impactor interaction implies independence
of the ballistic limit velocity (BLV) of spaced shield on air gaps and their widths
for conical striker. In this study, the effect of deviation from a conical shape
on ballistic properties of spaced shield is investigated using two-term LIM. It is
found that this effect is insignificant and it causes small changes (of the order
of few percent) in the magnitude of the BLV and energy absorbed by a shield.
These theoretical predictions are in agreement with the available experimental
results.

1. Introduction

Currently there is no consensus on the effect of layering and spacing on the ballistic
properties of shields, although interest in this topic has existed for a long time.

Hurlich [1950] noted that the earliest study he found on the modern use of
spaced armor was performed in 1913 for armor of naval vessels. He presented
some qualitative arguments in favor of spaced armor (mostly for tanks), a number
of tables with experimental results, some references and curious historical infor-
mation. Honda et al. [1930] investigated experimentally the impact of steel plates
by conical-nosed projectiles. It was found that a spaced shield with thicknesses of
the plates equal to the half-thickness of a monolithic shield performed better than a
monolithic shield. Marom and Bodner [1979] conducted a combined analytical and
experimental comparative study of monolithic, layered and spaced thin aluminum
shields. They found that the ballistic resistance of a monolithic shield is higher
than that of a multilayered shield with the plates in contact and lower than the
ballistic resistance of a spaced shield. Radin’s study [1988] was also based on
semi-empirical models and experimental investigations. They found a monolithic
aluminum shield to be superior to a layered shield with the same total thickness for
conical-nose and blunt projectiles, while spaced shields were less effective. Zukas
[1996] performed calculations with thick plates impacted by long rod projectiles
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moving at 1500 m/s. The calculations showed that air gaps of one and four projec-
tile diameters between plates involved the increase of projectile residual velocity
when compared to their monoblock equivalent and a shield consisting of plates
in contact. The sizes of the gaps play a minor role in determining the residual
velocity. Using experimental results obtained for aluminum and steel plates and
armor-piercing projectiles, Gupta and Madhu [1997] found that for the same im-
pact velocity the residual velocity for the spaced shield was larger than for the
plates in contact. Corran [1983a; 1983b], using experimental results on penetra-
tion of mild steel plates by impactors having “increasingly rounded nose shape”,
presented some data on perforation energy of spaced shields. Almohandes et al.
[1996] conducted a comprehensive experimental study on the perforation of mild
steel by standard 7.62 mm bullets. They investigated layered in contact, spaced and
monolithic shields with total thickness in the range 8–14 mm. The efficiencies of
shields were assessed by comparing their residual velocities for the same magnitude
of the impact velocity. Almohandes’ experimental results were used by Liang et al.
[2005] for validating their penetration model. Applying this model for comparative
analysis of shields with different structures, they concluded that an air gap slightly
influenced the resistance to perforation in multilayered shields. Elek et al. [2005]
developed a simple model to describe the perforation of monolithic and multilay-
ered thin metallic plates by a flat-ended cylindrical impactor and used their model
for the analysis of the ballistic properties of multilayered spaced shields. The main
results of this study may be summarized as follows. The suggested model predicted
that the monolithic shield will have larger resistance than any other multilayered
shield with standoff distance between layers and equivalent total mass. The anal-
ysis of penetration in a two-layered shield showed that the maximum resistance
could be obtained for very low or very high first-layer thickness (less than 20% or
more than 80% of total thickness). The increase of the number of spaced layers
of a multilayered shield, at constant total mass, caused a further decrease of the
ballistic resistance.

In [Ben-Dor et al. 1998b; 1998a; 1999], we studied analytically the influence of
air gaps between the plates on the ballistic limit velocity (BLV) of a multilayered
shield. Using the general localized interaction model (LIM). In the first of these
articles we found that the ballistic performance of the shield against 3D conical-
nosed impactors is independent of the widths of the air gaps and of the sequence
of plates in the shield and that it is determined only by the total thickness of the
plates if the plates are manufactured from the same material. The influence of air
gaps on the BLV of a shield that consisted of two plates manufactured from dif-
ferent materials was studied in [Ben-Dor et al. 1999] using the two-term localized
interaction model. They found the criterion (depending on mechanical properties
of the materials of the plates) that governs the decrease or the increase of the BLV
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Figure 1. Notations.

of the shield with increasing the air gap thickness. Using the cylindrical cavity
expansion model, we studied in [Ben-Dor et al. 1998a] the effect of air gaps on
the ballistic performance of a spaced shield comprising plates manufactured from
the same material and found that the BLV of the shield slightly increased with the
increase of the widths of air gaps. In this study we investigate the effect of air gaps
on ballistic properties of shields against nonconical impactors.

2. Formulation of the problem

Consider a high speed normal penetration of a rigid sharp striker (a body of rev-
olution) into a ductile spaced shield with a finite thickness. We assume that the
conditions of penetration are determined mainly by the “ductile hole enlargement
perforation mechanism” ([Backman and Goldsmith 1978]). The basic notations
are shown in Figure 1, and it is assumed that only the nose of the cylindrical
impactor can interact with the shield. The coordinate h, the instantaneous depth
of penetration, is defined as the distance between the leading edge of the nose of
the impactor and the rear surface of the shield. The coordinate ξ is associated with
the shield. In cylindrical coordinates (x, ρ, ϑ) associated with the impactor, the
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surface of the nose is described by the equation

ρ = φ(x), 0 ≤ x ≤ L , 0 ≤ ϑ ≤ 2π,

where L is the length of the impactor’s nose and 8(x) is an increasing convex
function. Assume that the shield consists of 2µmax −1 layers including µmax plates
with the thicknesses b(1), b(3), . . . , b(2µmax−1) and air gaps between the plates with
the thicknesses b(2), b(4), . . . , b(2µmax−2). The plate with number 2µ− 1 is located
between the cross-sections ξ = ξ (2µ−2) and ξ = ξ (2µ−1), where µ= 1, 2, . . . , µmax

and ξ (0) = 0. The total thickness of the shield (the sum of the thicknesses of all
layers including the air gaps) and the sum of the thickness of all plates are denoted
b and bsum, respectively. It is assumed that the plates are manufactured from the
same material. The part of the lateral surface of the impactor between the cross-
sections x = θ(h) and x =2(h) (see Figure 1) interacts with some layers of the
shield or is in contact with some air gaps (see Figure 2, top):

θ(h)=

{
0 if 0 ≤ h ≤ b,

h − b if b ≤ h ≤ b + L ,
2(h)=

{
h if 0 ≤ h ≤ L ,

L if h ≥ L .

The equation of motion of the impactor, m(d2h/dt2)= −D, can be rewritten as

mv(dv/dh)= −D, (1)

where the velocity of the impactor v is considered to be a function of h, m is
the mass of the impactor, and D is the resistance force. We consider the range
of impact velocities vimp whereby the projectile perforates the shield. Perforation
occurs when the position of the striker is h = b + L . The ballistic limit velocity
vbl is defined as the impact velocity of the impactor required to emerge from the
shield with zero residual velocity, vres = 0.

We assume that the impactor-target interaction at a given location at the surface
of the impactor that is in contact with a plate can be represented as

d EF =
(
γ (−Ev0

· En0)2v2
+ σ

)
En0d S, (2)

where d EF is the force acting at the surface element d S of the impactor, En0 is the
inner normal unit vector at a given location on the impactor’s surface, Ev0 the unit
vector of the impactor’s velocity, the parameters γ and σ depend on the prop-
erties of the material of the shield. Equation (2) comprises most of the widely
used phenomenological models for homogenous shields (see [Recht 1990; Ben-
Dor et al. 2005] for details). In particular, in the model proposed and validated
in comprehensive experimental studies in [Vitman and Stepanov 1959], σ and γ
are the “dynamical hardness” and material density of the shield, respectively. The
values of these parameters for some materials are given in [Vitman and Ioffe 1948,
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Figure 2. Model of the spaced shield, before and after a change of variables.

Table 1]. The remark by Recht [1990] concerning similar semi-empirical models is
confirmed in this case: the parameter σ is significantly larger than the compressive
yield strength.

In order to adapt (2) for a spaced shield we define a function ε(ξ), which is
equal to 1 if the point with the coordinate ξ (Figure 1) is located in any plate and
is equal to 0 if this point is located in an air gap:

ε(ξ)= ε( j) if ξ ( j−1)
≤ ξ ≤ ξ ( j), j = 1, 2, . . . , µmax − 1,

ε(1) = · · · = ε(2µ−1)
= · · · = ε(2µmax−1)

= 1,

ε(2) = · · · = ε(2µ) = · · · = ε(2µmax−2)
= 0.
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Then (2) can be rewritten as

d EF = ε(ξ)
(
γ (−Ev0

· En0)2v2
+ σ

)
En0d S.

The total force EF for some location of the impactor inside the shield is found by
integrating the local force over the impactor-shield contact surface area, formally
including the air gaps, that is, over the portion of the impactor’s surface S deter-
mined by the inequalities 0 ≤ ϑ ≤ 2π and θ(h)≤ x ≤2(h). Taking into account
the identity

ξ = h − x,

using the differential geometry formulas

−Ev0
· En0

=8′/
√
8′2 + 1, d S =

√
8′2 + 1 dx dυ, 8′

= d8/dx,

we obtain for the drag force D the expression

D = EF · (−Ev0)=

∫∫
S
ε(ξ)

(
γ (−Ev0

· En0)2v2
+ σ

)
(−Ev0

· En0)d S

=
m
2

(
f2(h)v2

+ f0(h)
)
, (3)

where

f2(h)=
4πγ

m

∫ 2(h)

θ(h)

ε(h − x)88′3

8′2 + 1
dx, f0(h)=

4πσ
m

∫ 2(h)

θ(h)
ε(h − x)88′dx .

Substituting D from (3) into (1) we obtain, after some algebra, an ordinary linear
differential equation with respect to v2:

dv2/dh + f2(h)v2
+ f0(h)= 0.

The solution of this equation with the initial condition v(0) = vimp, which corre-
sponds to the beginning of the motion of the impactor with the impact velocity vimp

reads

v2(h)=
1

q(h)

(
v2

imp − g(h)
)
, (4)

(see [Kamke 1959]), where

q(h)= exp
( ∫ h

0
f2(η) dη

)
, g(h)=

∫ h

0
f0(H)q(H)d H .

Equation (4) yields formulas for the residual velocity, vres = v(b + L), and the
ballistic limit velocity, vbl:

v2
res =

1
q(b + L)

(
v2

imp − g(b + L)
)
, v2

bl = g(b + L). (5)
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We now prove that q(b + L) does not depend on the widths of the air gaps. To
this end, we change the variables (Figure 2, bottom), x → x , h → x + ξ , in the
integral in the expression for q(b + L):

m
4πγ

ln(q(b + L))=

∫ b+L

0
dh

∫ 2(h)

θ(h)
ε(h − x)ψ(x) dx

=

∫ L

0
ψ(x) dx

∫ b

0
ε(ξ) dξ = bsum

∫ L

0
ψ(x) dx,

where ψ(x)=88′3/(8′2
+ 1).

For further analysis it is convenient to rewrite the expression for vbl in dimen-
sionless variables where L is chosen as a characteristic length:

vbl =
√
χ 9(α), (6)

where function 9 depends also on structure of the shield and the shape of the
impactor, and

9(α)=

√
α

∫ b̄+1

0
Q(h̄) dh̄

∫ 2̄(h̄)

θ̄(h̄)
ε̄(h̄ − x̄)8̄8̄′dx̄,

α =
4πL3

m
γ, x̄ =

x
L
, 8̄=

8

L
, 8̄′

=
d8̄
dx̄
, h̄ =

h
L
,

Q(h̄)= exp
(
α

∫ h̄

0
d H̄

∫ 2̄(H̄)

θ̄(H̄)

ε̄(H̄ − x̄)88′
3

8̄′
2
+ 1

dx̄
)
, ε̄(ξ̄ )= ε(L ξ̄ ),

θ̄ (h̄)=

{
0 if 0 ≤ h̄ ≤ b̄,

h̄ − b̄ if b̄ ≤ h̄ ≤ b̄ + 1,
2̄(h̄)=

{
h̄ if 0 ≤ h̄ ≤ 1,

1 if h̄ ≥ 1.

Let v0
bl be the BLV of the shield that consists of the plates in contact with the

same total thickness bsum. Clearly, the latter structure is equivalent to a monolithic
shield with the total thickness bsum. Equation (6) implies that the ratio δ = vbl/v

0
bl

depends on the dimensionless parameter α as well as on the shape of the impactor
and the dimensionless thicknesses of the layers (plates and air gaps). In our pre-
vious investigation it was found that spacing does not affect ballistic properties of
shields against conical impactors [Ben-Dor et al. 1998b]. In the next section, using
the obtained expression for the BLV we study numerically the effect of spacing on
the BLV of the shields for nonconical impactors.
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3. Result of numerical calculations and discussion

We performed calculations for two impactors (cylindrical bodies of revolution with
different nose shapes). The first impactor (Impactor A) is the cylinder with a semi-
spherical nose. The generatrix of the nose of the second impactor (Impactor B) is
the broken line consisting of segments between three points with the dimension-
less coordinates (x̄, ρ̄): (0, 0); (0.3, 0.7); (1, 1). The validity of this model for
blunt, thick impactors against shield with a finite thickness is questionable, and,
consequently, Impactor A can be considered only as a model.

In the following analysis, we use dimensionless variables. We show in Figure
3 plots of function 9 for a monolithic plate. Using (6), one can determine the
ranges of variation of parameters b̄sum and α that correspond to a given range of
BLVs for a shield manufactured from a given material (for some materials one can
use Table 1). The plots in Figure 3 correspond to Impactor A, and they differ only
insignificantly from those obtained for Impactor B.

The top halves of Figures 4–10 correspond to Impactor A, while the bottom
parts correspond to Impactor B.

Figure 4 shows the dependence of the parameter δ= vbl/v
0
bl versus α for different

widths of the gap (case with two plates). Inspection of these figures shows that
ballistic efficiency of the shield decreases when the width of the gap between the
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Figure 4. Effect of the thickness of the air gap on ballistic proper-
ties of a two-layer shield.
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Number Material Dynamical Density γ χ = σ/γ

hardness σ (N/m2) (kg/m3) (m2/s2)

1 Aluminum 350 · 106 2765 0.127 · 106

2 Soft steel 1850 · 106 7830 0.236 · 106

3 Copper 910 · 106 8930 0.102 · 106

4 Duraluminum 1330 · 106 2765 0.481 · 106

Table 1. Parameters of the model. (Based on [Vitman and Ioffe 1948]).

plates is increased (the larger is parameter b̄(2), the lower is the curve). The rate of
change of parameter δ that characterizes ballistic efficiency sharply reduces with
increase of b̄(2). Thus, for instance, inspection of Figure 4 shows that increase of
b̄(2) from 0.4 to 0.5 and from 0.5 to 1.0 is accompanied by approximately the same
change of δ. The effect of gaps on δ becomes more pronounced as the parameter
α increases. Analysis of Figure 5 allows us to arrive at similar conclusions. In
this figure we showed the results obtained for a shield consisting of three plates
whereby the widths of air gaps between the first and the second plate and between
the second and the third plate are varied but remain equal. Therefore the maximum
negative effect of spacing (which is the most interesting) occurs for large air gaps
equal to the length of the impactor’s nose since in the framework of the used model,
further increase of the air gap width does not change the BLV of the shield. Our
further analysis is performed exactly for this width of air gap (b̄(2) ≥ 1).

In Figure 6, we show the plots of function δ(α) for the case of two identical
plates and for different magnitudes of the total width of the shield, b̄sum. Inspection
of these plots shows that the effect of air gaps is more pronounced for large α. It
must be noted that some curves in Figure 6 intersect, that is, for two shields with
different total thicknesses parameter δ can be larger for the first shield than for a
second one for one magnitude of the parameter α, and it can become smaller than
for the second shield for a different value of parameter α. The same dependencies
are observed in the case when a plate is separated into three identical plates with
equal widths of the gaps between the plates (Figure 7).

In Figures 8 and 9, we show the plots of δ(λ) for b̄sum = 1 and b̄sum = 2, respec-
tively, and for different values of parameter α (λ is the ratio of the width of the first
plate to the total width, λ = b(1)/bsum). Inspection of these figures suggests that
the shape of the impactor affects the plots only weakly, and that for every value of
parameter α the curves δ(λ) are concave; that is, initially the increase in relative
thickness of the first plate causes an increase in the negative effect of spacing, until
some maximum value is attained, and then it starts to decrease; the magnitude of λ
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Figure 5. Effect of the thickness of the air gap on ballistic proper-
ties of a three-layer shield.
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Figure 9. Effect of the thicknesses of plates on ballistic properties
of two-layer shield with large air gap and b̄sum = 2.
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Figure 10. Effect of the thicknesses of plates on ballistic proper-
ties of three-layer shield with large air gaps.
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where the negative effect of spacing is maximum depends upon the total thickness,
and it increases with the increase of parameter α.

Figure 10 compares the results obtained for a spaced shield consisting of three
plates with different relative thicknesses of the plates with a constant total thickness,
b̄sum, for b̄sum = 1 and b̄sum = 2. Calculations were performed for three sets of the
relative thicknesses of the plates, b(1) : b(2) : b(3), namely, 1 : 2 : 3, 1 : 1 : 1 and 3 : 2 : 1.
The results show that the negative effect of spacing is minimum for configuration
1 : 2 : 3, and it depends on α for two other configurations.

Therefore, in the framework of the employed model, the effect of spacing on
the BLV of the nonconical impactors is of the order of several percent. The results
of the calculations showed that for slender projectiles this effect becomes even
smaller.

4. Discussion of experimental results

Experimental data that allow us to compare directly the BLV of spaced shields and
shields with plates in contact are not available. However we can use the results of
the experiments performed with spaced and nonspaced shields for the same magni-
tudes of the impact velocity, vimp. These data were published in [Almohandes et al.
1996] for 7.62 mm bullets perforating a mild steel shield. First, using the model,
we analyze the connection between the value of energy absorbed and the value of
BLV of the spaced and nonspaced shields for the same magnitude vimp.

Using relationships for the impact energy Eimp and residual energy Eres of the
impactor,

Eimp =
1
2 mv2

imp, Eres =
1
2 mv2

res,

and Equation (5) rewritten as

v2
res =

1
q∗

[
v2

imp − v2
bl
]
, q∗ = q(b + L)= Q(b̄ + 1),

we obtain for the relative energy absorbed by the spaced shield:

eabs =
Eimp − Eres

Eimp
=

q∗ − 1
q∗

+
1
q∗

(
vbl

vimp

)2

. (7)

Since q∗ is the same for the spaced and nonspaced shield (see below), we may
write an equation similar to (7) for the spaced shield:

e0
abs =

Eimp − E0
res

Eimp
=

q∗ − 1
q∗

+
1
q∗

(
v0

bl

vimp

)2

.

Then

eabs − e0
abs =

1
q∗

(
v0

bl

vimp

)2[(
vbl

v0
bl

)2

− 1
]
. (8)
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Figure 11. Function q∗(α) for different values of b̄.

Taking into account that for |vbl/v
0
bl − 1| = |δ− 1| � 1,(

vbl

v0
bl

)2

− 1 ≡ (δ− 1)2 + 2(δ− 1)≈ 2(δ− 1),

we can rewrite (8) as follows:

eabs − e0
abs ≈ k(1 − δ), k =

2
q∗

(
v0

bl

vimp

)2

.

Since v0
bl ≤ vimp and q∗ > 1, then k < 2. Moreover, when α increases, the

magnitude of q∗ increases (see Figure 11), which compensates for a certain increase
in δ discussed above. Therefore, the model predicts insignificant change of the
absorbed energy in the whole practical range of variation of parameter α. Since the
predicted magnitude of the change lies within the range of experimental error and
model uncertainty, it is conceivable that experimentally observed v0

bl and vbl will
be different by several percent, and that there will be situations when v0

bl < vbl, and
when v0

bl > vbl. The latter conclusion is supported by the data in Table 2, compiled
from experimental results of Almohandes et al. [1996]. The table shows, for each
shield configuration and each impact velocity, the percent impact energy absorbed
by a spaced shield, and the corresponding percentage for a shield consisting of the
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Structure vimp =

# (sizes in mm) 706.0 754.5 775.4 804.5 826.2

1 4 46
52.2
52.5

49.6
50.0

47.4
46.5

35.9
36.1

34.5
34.8

2 2 66
54.9
54.3

52.2
53.6

50.7
49.8

42.1
42.7

37.4
36.5

3 6 26
54.4
55.5

52.0
52.1

49.7
51.7

41.5
41.4

35.1
37.3

Table 2. Relative energy absorption, in percent. For each struc-
ture, the top row indicates the percent absorption for the spaced
shield, and the second, for a shield with plates in contact. Based
on experimental results from [Almohandes et al. 1996].

Structure vimp =

# (sizes in mm) 706.0 754.5 775.4 804.5 826.2

1 2 66 54.9
54.4

52.2
52.0

50.7
49.7

42.1
41.5

37.4
35.1

2 2 66 42
51.3
50.9

49.0
48.4

44.0
44.3

33.8
36.0

32.4
32.7

3 1 66 61 53.0
54.7

49.1
54.3

46.8
52.1

35.9
37.2

34.7
36.4

4 1 66 1 46161 44.2
46.0

42.3
46.3

38.4
37.5

34.0
32.6

31.5
33.2

Table 3. Comparison of the relative energy absorption, in percent,
caused by the interchange of the order of the plates. For each struc-
ture the first row describes entry from the left and the second, entry
from the right. Based on experimental results from [Almohandes
et al. 1996].

same plates in the same order but without air gaps. Table 3 shows that reversing
the order of the plates in a spaced shield does not cause significant changes in the
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absorbed energy. In the table one also observes cases where v0
bl < vbl and where

v0
bl > vbl.

5. Concluding remarks

Using an approximate model that takes into account the plastic deformation of the
shield during perforation, we analyzed the effect of air gaps upon ballistic proper-
ties of the shield against nonconical rigid impactors. It was found that nonconical
shape of the impactor causes insignificant change (in the range of several percent)
of BLV and energy absorbed by a shield. The obtained results are supported by
available experimental data.
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