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The purpose of this paper is to illustrate a method for homogenizing masonry
with a nonperiodic microstructure. The proposed approach is based on the con-
cept of the representative volume element and on the finite-size test-window
method. First, the peculiarities of masonry as a composite continuum are high-
lighted. Then, the heterogeneity of the microstructure (elements and texture) is
modeled by statistical descriptors. To improve the classical test-window method
a probabilistic convergence criterion is coupled with the well-known mechanical
convergence criterion. Both criteria must be met in order to check the conver-
gence of the material window with the statistically equivalent representative vol-
ume element. An application shows the effectiveness of the proposed approach.

1. Introduction

Within the framework of micromechanics theory, masonry is modeled as a hetero-
geneous material composed of bricks or stones in a matrix of mortar. In dealing
with a heterogeneous continuum, homogenization techniques allow one to define
an equivalent body in order to study linear and nonlinear behavior [Christensen
1980; Suquet 1987].

The application of this approach to masonry was proposed by Pande et al. [1989],
Pietruszczak and Niu [1992], and Maier et al. [1991]. On the basis of asymptotic
analysis [Bensoussan et al. 1978; Sanchez-Palencia 1980], a rigorous application
of the homogenization theory to periodic media was developed by Anthoine [1995].
The effect of rigid or elastic blocks was analyzed by Cecchi and Sab [2002], while
failure analysis, ultimate strength, and damage models were considered in [Alpa
and Monetto 1994; De Buhan and De Felice 1997; Luciano and Sacco 1997], re-
spectively.

The hypothesis of a “periodic microstructure” in masonry has been adopted in
all previous papers. This means that the bricks and the mortar joints are assumed
to be of equal dimensions and characteristics. Moreover, these elements must be
arranged in a periodic pattern.
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However, the most interesting aspect of masonry structure analysis is related to
the maintenance and restoration of historical and monumental buildings. In these
cases the assumption of a periodic microstructure in stone masonry or brickwork
would be mistaken. In order to apply the homogenization theory to old masonry it
is necessary to use a different approach.

This aspect was considered in [Cluni and Gusella 2004], where the representa-
tive volume element of the masonry wall was determined by employing a formula-
tion based on finite-size test-windows. In analyzing a masonry wall, the homoge-
nized medium elastic stiffness tensor was obtained by considering the hierarchy of
estimates relative to essential and natural boundary conditions. An adequate linear
model for masonry is very important, because it permits one to analyze very large
structures (monumental and historical buildings), and indicates those parts that
bear the greatest stresses, where one must consider a more sophisticated nonlinear
analysis.

A different procedure was proposed by Šejnoha et al. [2004] to analyze masonry
structures with irregular geometry. This methodology, based on [Povirk 1995]
and further developed in [Zeman and Šejnoha 2001; Šejnoha and Zeman 2002],
introduces a periodic unit cell that possesses statistical proprieties similar to the
original material and can therefore be considered a reasonable approximation.

In [Cluni and Gusella 2004], the material window is considered an adequate es-
timation of the representative volume element when the difference between natural
and essential elastic moduli is limited. However, an estimation of the representative
volume element based solely on mechanical convergence may be inaccurate. It is
necessary to check that this convergence does not reflect the conditions in a specific
portion of the wall in question and that the test-window is sufficiently representative
of the masonry in terms of its constituent elements (stones and mortar joints) and
its texture.

For particular composites, this aspect was highlighted by Bochenek and Pyrz
[2004], who introduced statistical and geometrical measures and constraints to
reconstruct families of plane and spatial dispersion of inclusions resembling ref-
erence patterns and to predict overall properties. Introducing the concept of peri-
odization, the combination of mechanical and statistical criteria was also proposed
in [Sab and B. 2005].

This paper proposes an improvement of the finite-size test-window method in
order to overcome these limitations of the representative volume element estima-
tion based solely on the mechanical convergence criterion. First, the peculiarities
of masonry, which are related to the construction technique employed, are high-
lighted. Nonperiodic masonry is then analyzed within the framework of random
heterogeneous material theory, and statistical descriptors are introduced in order
to describe the random field modeling of masonry. Mechanical and probabilistic
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Figure 1. Portion of the medieval defense walls of an Italian town.
Note that the hypothesis of periodic continuum is not applicable.

criteria are used to check the convergence of the material window to the statistical
equivalent volume element. These criteria are illustrated by applying them to an
actual masonry wall.

2. Masonry as a peculiar heterogeneous material

Masonry can be considered a heterogeneous material composed of stones or bricks
in a matrix of mortar. However it is a very particular composite: taken together,
the inclusions (bricks or stones) have a much larger surface area than the matrix
(in the case of dry masonry the matrix disappears); the mortar could in fact be
regarded as merely joining the inclusions; the constituent blocks and mortar joints
have different dimensions.

Leaving aside very chaotic typologies, some regularity is imposed by the build-
ing procedure even in stone masonry (see, for example, Figure 1):

– the masonry is built with courses of blocks connected by head and bed mortar
joints;

– the bed mortar joints are continuous and more or less horizontal;
– the bed thickness is fairly constant for each course;
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– the head joints are almost always interrupted vertically by inclusions;

– the inclusions are roughly rectangular;

– blocks belonging to the same course have similar dimensions, especially the
heights, inasmuch as the bed joints are horizontal;

– there is no relation between consecutive courses, in fact their heights are pur-
posely differentiated so as to obtain good quality masonry (in practice courses
with larger stones are not grouped together but more or less evenly distributed
vertically).

These features give the masonry pattern (or masonry texture) which characterize
the mechanical behavior of the wall.

Given that the hypothesis of periodic continuum is not applicable, an important
issue, in order to define a homogeneous continuum equivalent to the masonry, is
the minimum size of the representative volume element [Drugan and Willis 1996].

Based on these observations, acceptance of a volume as being representative
requires a set of conditions which are both mechanical and probabilistic. Thus the
masonry wall must be analyzed within the framework of random field theory.

3. Masonry random field

Consider the masonry as a random heterogeneous material or simply a random
medium [Torquato 2001]. A masonry wall is a realization of this two-phase random
medium and occupies a region D ⊆ R2 that is partitioned into two disjoint random
sets or phases (we consider here the mechanical and probabilistic problems in 2-
dimensional terms; however, the proposed approach can be extended to the third
dimension).

Let D1 be the region relative to stone and D2 the region relative to mortar.
Since D1 and D2 are the complements of one another, then D1 ∪ D2 = D and
D1 ∩ D2 = ∅.

For a given realization, the indicator function (or characteristic function) χ i (x)

for the phase i = 1, 2, given x ∈ D, is defined by

χ i (x) =

{
1 if x ∈ Di ,

0 otherwise,
with χ1(x) + χ2(x) = 1. (1)

The probabilistic descriptor of χ i (x) is given by the n-point probability function
for phase i [Torquato and Stell 1982]

Si
n
(
x1, x2, . . . xn

)
= P{χ i (x1) = 1, χ i (x2) = 1, . . . χ i (xn) = 1}, (2)

which gives the probability that n points at positions x1, x2, . . . , xn are found in
phase i .
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The random medium is strictly statistically homogeneous if there is not a pre-
ferred origin in the system so that, for all n ≥ 1 and all y ∈ D

Si
n(x1, x2, . . . , xn) = Si

n(x1 + y, x2 + y, . . . , xn + y). (3)

In particular, the one-point probability function is constant and equal to the
volume fraction φi of the phase i : Si

1(x1) = φi .
From this point of view, the masonry has a locally heterogeneous microstructure,

but it can be considered homogeneous overall when a sufficiently large portion of
it is taken into account. In the following, statistical descriptors up to the second
order will be considered so that the masonry wall will be assumed to be a weakly
homogeneous random field.

If the random medium is ergodic then the result of averaging over all the real-
izations of the ensemble is equivalent to that of averaging over the surface for one
realization in the infinite-surface limit. In this way probabilistic information can
be obtained from a single realization of the infinite medium.

The masonry will be assumed, in the following, to be an ergodic medium. More-
over, it is assumed that the probabilistic characteristics of the medium can be esti-
mated by analyzing a portion of the wall. This portion must be sufficiently large
to make it adequately representative of the medium; furthermore this condition
permits one to replace the averaging in the infinite-surface limit with the numerical
approximation derived from the averaging over the surface of the portion.

3.1. Statistical descriptors of stones and mortar joints. Masonry is, as we noted
above, a very distinctive random medium, and we shall therefore introduce statisti-
cal descriptors to represent this peculiarity. These descriptors will refer to the type
of masonry shown in Figure 1, but they can be applied to a very large number of
masonry typologies.

The portion of masonry shown in Figure 1 has been taken as a representative
sample of the structure as a whole. Considering, in particular, the construction
of the wall in superimposed courses, the random field of masonry was described
using a grid that was set up as follows (Figure 2):

– The rows of the grid are horizontal lines drawn in correspondence with the
center points of the stones; rows are indicated by R j with j = 1, . . . , NR j

(NR j = 23).

– The columns are vertical lines starting from the center points of the stones of
R1; columns are indicated by C j with j = 1, . . . , NC j (NC j = 18).

– Along the rows, for each course j = 1, . . . , NR j , the widths of the stones
B j

st,k k = 1, 2, . . . and the sizes of the mortar joints B j
m,k k = 1, 2, . . . were

measured.
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Figure 2. Masonry wall with superimposed orthogonal grid; rows
R j ( j = 1, . . . , NR j ; NR j = 23) and columns C j ( j = 1, . . . , NC j ;
NC j = 18).

– The heights of the stones H j
st,k k = 1, 2, . . . and the thicknesses of the mortar

joints H j
m,k k = 1, 2, . . . were measured along each column j = 1, . . . , NC j

(note that H j
m,k represents the thickness of the bed joints, but it can, in some

cases, indicate the height of the head joint between rows).

A grid rather than image analysis with small pixels was preferred because the
former reflects the intrinsically horizontal/vertical structure of the masonry and
because the irregularities of the surface would make it extremely difficult to use
the pixels in distinguishing mortar from stone.

Considering the previous values the following samples were obtained: {Bst} and
{Hst} for the widths and heights of the stones, and {Bm} and {Hm} for the sizes of
bed and head mortar joints.

The portion of the wall considered, shown in Figure 2, was sufficiently large
(432 × 341 cm) that the previous samples were assumed to be statistically rep-
resentative of the geometric characteristics of the inclusions and of the matrix.
These samples were therefore taken to be the statistical descriptors of the masonry
continuum.
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Figure 3. Comparison among the probability density functions of
the width of the stones PBst, the heights of the stones PHst, the
gamma (dashed line), and the log-normal curve (continuous line).

These samples were analyzed to determine their statistical moments up to the
second order:

(a) the mean values of the width and height of the stones: EBst and EHst, respec-
tively;

(b) the mean values of the mortar joint dimensions: EBm and EHm, respectively;

(c) the standard deviation values for the same samples: 6Bst, 6Hst, 6Bm and 6Hm.

These values are reported in Table 3.
The comparison among the probability density functions of the width of the

stones PBst, the gamma curve, and the log-normal curve are shown in Figure 3 (A).
The same comparison for the probability density functions of the height of the
stones PHst is reported in Figure 3 (B). Note that both gamma and log-normal laws
are not rejected by the chi-square test.

The probability density functions of the characteristics of the mortar joints PBm

and PHm are reported in Figure 4 (A) and (B). In these figures the probability
density functions are compared only with the log-normal curve, since the gamma
law was rejected.

3.2. Statistical descriptors of the masonry wall texture. The previous statistical
descriptors give information only about stones and mortar joints. Conversely, the
mechanical behavior of a masonry wall is influenced by its texture.

We use the following approach to describe this feature.
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Figure 4. Comparison between the probability density functions
of the characteristics of the mortar joints: PBm and PHm, and the
log-normal curve.

Let R j (x) be the characteristic function relative to the row R j j = 1, . . . , NR j :
if the point, with abscissa x , belongs to the “stone phase”, the function assumes
the value 1; if the point belongs to the “mortar phase”, the function value is 0:

R j (x) =

{
1 x ∈ stone phase,

0 x ∈ mortar phase,
(4)

where 0 ≤ x ≤ L R j and L R j =
∑

k (B j
st,k + B j

m,k) is the total length of the row R j .
Let C j (y) be the characteristic function relative to the column

C j j = 1, . . . , NC j :

C j (y) =

{
1 y ∈ stone phase,

0 y ∈ mortar phase,
(5)

where 0 ≤ y ≤ LC j and LC j =
∑

k (H j
st,k + H j

m,k) is the total length of the column
C j .

In order to estimate the second-order characteristics of R j (x), the “shifted-area
function” (SAF) AR j,R j (ξ) was introduced. Given ξ ∈ R, this function AR j,R j (ξ)

corresponds to the mean square value of the area below the curve expressing the
difference between the shifted function R j (x + ξ) and the function R j (x):

AR j,R j (ξ) = lim
1x→∞

1
1x

∫ 1x

0

[
R j (x + ξ) − R j (x)

]2 dx . (6)
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In the application the integral is replaced by a summation extended on the row.
This function gives immediate information about periodic texture (Figure 5)

because it assumes null value for ξ = 0 and ξ = nX , where X ∈ R is the period
and n = 1, 2, . . . (see Figure 5, where the shifted-area function is normalized to
its maximum value).
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Figure 5. Courses in masonry with different periodic textures
(measured in cm). Characteristic functions (CF), normalized
shifted-area functions (SAF) (top) and autocorrelation functions
(bottom).
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Given the ergodicity hypothesis, the shifted-area function AR j,R j (ξ) is related
to the autocorrelation function ACR j,R j (ξ) of R j (x) by

AR j,R j (ξ) = lim
1x→∞

1
1x

∫ 1x

0
[R j (x + ξ)]2dx

−2 lim
1x→∞

1
1x

∫ 1x

0
R j (x + ξ)R j (x) dx + lim

1x→∞

1
1x

∫ 1x

0
[R j (x)]2 dx

= 2 lim
1x→∞

1
1x

∫ 1x

0
[R j (x)]2 dx − 2ACR j,R j (ξ). (7)

We then have

ACR j,R j (ξ) = lim
1x→∞

1
1x

∫ 1x

0
R j (x + ξ)R j (x) dx =

2E2
R j − AR j,R j (ξ)

2
, (8)
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Figure 6. Characteristic functions (CF) and autocorrelation func-
tions relative to the first four rows R j ( j = 1, . . . , 4) of the masonry
wall in Figure 2.
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where

E2
R j = lim

1x→∞

1
1x

∫ 1x

0
[R j (x)]2 dx (9)

is the mean square value of R j (x).
Given Equation (7), E2

R j is the ratio of stone to stone plus mortar for the row
R j ; moreover ACR j,R j (ξ) = E2

R j for ξ = 0.
The autocorrelation functions for periodic patterns are illustrated in Figure 5.
For the masonry wall in Figure 2, the characteristic functions R j (x) and the

autocorrelation functions ACR j,R j (ξ) relative to the first four rows ( j = 1, 2, 3, 4)

are reported in Figure 6.
Figure 7 shows the autocorrelation functions ACR j,R j (ξ) for j = 1, . . . ,11.
Higher autocorrelation functions are observed in the courses with larger stones

(the largest correlation corresponds to the case indicated by (A) in Figure 7 relative
to row R7(x)); a weaker correlation is observed in courses with smaller stones
(these cases are indicated by (C) in Figure 7).

When we consider the characteristic function C j (y), we obtain the shifted-area
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Figure 7. Autocorrelation functions of the first eleven rows R j

( j = 1, . . . , 11) of the masonry wall in Figure 2.
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function:

AC j,C j (η) = lim
1y→∞

1
1y

∫ 1y

0
[C j (y + η) − C j (y)]2 dy, (10)

ACC j,C j (η) = lim
1y→∞

1
1y

∫ 1y

0
C j (y + η)C j (y) dy =

2E2
C j − AC j,C j (η)

2
, (11)

E2
C j = lim

1y→∞

1
1y

∫ 1y

0
[C j (y)]2 dy. (12)

The characteristic functions C j (x) and the autocorrelation functions ACC j,C j (η)

relative to the first four columns ( j = 1, 2, 3, 4) of the masonry wall are reported
in Figure 8.

Figure 9 shows the autocorrelation functions ACC j,C j (η) for j = 1, . . . , 11.
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Figure 8. Characteristic functions (CF) and the autocorrelation
functions relative to the first four columns C j ( j = 1, . . . , 4) of
the masonry wall in Figure 2.
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Figure 9. Autocorrelation functions of the first eleven columns
C j , j = 1, . . . , 11 of the masonry wall in Figure 2.

These functions exhibit analogous behaviors and show a weaker correlation than
that of the Figure 7 courses. This is as we expected; in fact, good building practice
dictates the use of stones with similar dimensions (width and height) within a sin-
gle row. Moreover, the head-joint thicknesses are limited, and, conversely, within
columns stones differ in height and bed-mortar joints are thicker. These conditions
imply that the correlation is stronger within the courses than within the columns.
The autocorrelation functions relative to the rows ACR j,R j (ξ) and to the columns
ACC j,C j (η) are taken to be the statistical descriptors of the masonry’s texture.

The autocorrelation functions ACR j,R j (ξ) and ACC j,C j (η) were used to check
the correctness of the weakly homogeneous random field hypothesis. In fact, using
different origins to compute the space lags ξ and η showed that the differences
among these functions were very limited, both for the rows and for the columns.

Further information about texture can be evinced by:

– the cross-correlation function CCR j,Rk(ξ) between rows:

CCR j,Rk(ξ) = lim
1x→∞

1
1x

∫ 1x

o
R j (x + ξ)Rk(x) dx

=
E2

R j + E2
Rk − AR j,Rk(ξ)

2
, (13)
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where

AR j,Rk(ξ) = lim
1x→∞

1
1x

∫ 1x

0
[R j (x + ξ) − Rk(x)]2 dx; (14)

– the cross-correlation function CCC j,Ck(ξ) between columns:

CCC j,Ck(η) = lim
1y→∞

1
1y

∫ 1y

0
C j (y + η)Ck(y)dy

=
E2

C j + E2
Ck − AC j,Ck(η)

2
, (15)

where

AC j,Ck(η) = lim
1y→∞

1
1y

∫ 1y

0
[C j (y + η) − Ck(y)]2dy; (16)

– the cross-correlation function CCR j,Ck(ξ) between rows and columns:

CCR j,Ck(ξ) = lim
1x→∞

1
1x

∫ 1x

0
R j (x + ξ)Ck(y) dx

=
E2

R j + E2
Ck − AR j,Ck(ξ)

2
, (17)

where

AR j,Ck(ξ) = lim
1x→∞

1
1x

∫ 1x

0
[R j (x + ξ) − Ck(y)]2 dx . (18)

The column pairs and row-column pairs show patterns that are less strongly cross-
correlated than those of the row pairs (Figure 10).

4. Convergence criteria

In order to determine the elastic moduli of the homogeneous continuum equivalent
to the masonry it is necessary to estimate the representative volume element. Fol-
lowing [Cluni and Gusella 2004], this estimate can be performed by using the finite-
size test-window method. Here this method is improved, however, by coupling
the classical mechanical convergence criterion with a probabilistic convergence
criterion which considers the statistical descriptors introduced above.

Consider a “material window” with a representative size L placed at any given
point in the wall. This window plays the role of the L-Volume Element (VEL ).

Let T e
i j,L (T e

L in matrix notation) indicate the elastic stiffness components ob-
tained under essential boundary conditions applied to an VEL , and let Sn

i j,L (Sn
L)

indicate the elastic compliance components obtained under natural conditions. The
T n

i j,L natural elastic stiffness components are obtained by inversion: T n
L = [Sn

L ]
−1.
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Figure 10. Cross-correlation functions between rows and col-
umns for the wall in Figure 2. Top: rows R1 and R j ( j = 2, . . . , 6);
middle: columns C1 and C j ( j = 2, . . . , 6); bottom: row R1 and
columns C j ( j = 1, . . . , 5).
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We consider the statistical descriptors relative to the inclusions and texture of
the VEL :

– the samples of stone sizes {BL
st } and {H L

st } with mean values, standard devi-
ations, and probability density functions: E L

Bst, E L
Hst, 6L

Bst, 6L
Hst, P L

Bst, P L
Hst,

respectively;

– the samples of mortar joint sizes {BL
m} and {H L

m }, with mean values, standard
deviations, and probability density function E L

Bm, E L
Hm, 6L

Bm, 6L
Hm, P L

Bm, P L
Hm,

respectively;

– the autocorrelation functions relative to the rows AC L
R j,R j (ξ) and the columns

AC L
C j,C j (η).

Consider increasing the size of the material window

Lk k = 1, . . . , i, j, . . . N ( j > i → L j > L i )

thus obtaining the sequence VELk .
In order to check that the larger window VEL̂ , with L̂ = L N , is an adequate

estimate of the representative volume element, the following mechanical conver-
gence criterion can be utilized: Given 1c ∈ R+, the sequence VELk converges to
the representative volume element when the differences between the natural and
essential elastic stiffness of the larger material window VEL̂ are limited:

max
i j

∣∣∣∣∣T e
i j,L̂

− T n
i j,L̂

T 1
i j

∣∣∣∣∣ ≤ 1c, (19)

where

T 1
i j =

∣∣T e
i j,L1

− T n
i j,L1

∣∣. (20)

The exclusively mechanical approach can, nonetheless, introduce an incorrect
estimate; in fact 1c is an arbitrary value and the convergence is not uniform (see
the following application on the masonry wall in Figure 1).

In order to overcome this limitation the following probabilistic convergence cri-
terion can be used: The sequence VELk converges to the representative volume
element when the statistical descriptors relative to the elements and the texture
of the larger material window VEL̂ comply with the statistical descriptors of the
random field model relative to the masonry wall as a whole. In other words, the
material window VEL̂ must be statistically similar to the random medium model
of the masonry as obtained by analyzing the entire wall.

With regard to the statistical descriptors introduced above, the similarity in stone
and mortar joint characteristics is checked by minimizing the differences among
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mean values, standard deviations, and probability density functions:∣∣∣65 j − 6 L̂
5 j

∣∣∣ ≤ 1c65 j , (21)∫ ∣∣∣P5 j − P L̂
5 j

∣∣∣ d5 j ≤ 1cP5 j , (22)

where 5 = B, H and j = st, m.
Similarity in texture is checked by minimizing the differences among correla-

tion functions. Let ĀCR R(ξ) be the mean autocorrelation function obtained by
averaging, for any space lag ξ , the autocorrelation function of the rows of the
masonry wall; let ĀCC,C(η) be the mean autocorrelation function relative to the
columns. Let ĀC L̂

R,R(ξ) and ĀC L̂
C,C(η) be the same quantities relative to the rows

and columns of the material window. The similarity is then checked by:∫ ∣∣∣ ĀCR j,R j (ξ) − ĀC L̂
R j,R j (ξ)

∣∣∣dξ ≤ 1cR j , (23)∫ ∣∣∣ ĀCC j,C j (η) − ĀC L̂
C j,C j (η)

∣∣∣dη ≤ 1cC j . (24)

If these mechanical and probabilistic convergence criteria are met, then the ma-
terial window VEL̂ is an adequate estimate of the statistically equivalent represen-
tative volume element. In this case the elastic stiffness components T hom

i j = T RVE
i j

of the equivalent homogeneous continuum can be estimated by T ∗

i j,L̂
:

T hom
i j = T RVE

i j = T ∗

i j,L̂
=

T e
i j,L̂

+ T n
i j,L̂

2
. (25)

We mention that the linear properties of random composites can be accurately
estimated using volumes subjected to periodic boundary conditions. The periodic
boundary conditions give an estimation of the effective elastic moduli which are
intermediate between those deriving from displacement and those from traction
boundary conditions, as demonstrated numerically by Terada et al. [2000] and
theoretically by Sab and B. [2005]. These conditions could be used to improve
the approach proposed in the present paper, however, as will be highlighted in the
numerical application, the difference between essential and natural evaluations of
the elastic moduli decrease very quickly as L increases.

5. Application

The previous method has been applied in estimating the elastic stiffness compo-
nents of the homogeneous continuum equivalent to the masonry wall in Figure 1.
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Figure 11. Square material window with L = 80 cm and finite
element model.

A sequence of square material windows of size L was located in the bottom-
left portion. Given the ergodicity hypothesis, the position of the test-windows is
arbitrary. The 80 cm window is shown, as an example, in Figure 11.

These windows, which contain both of the composite phases, were modeled by
the finite element method using membrane elements measuring 5 × 5 mm (these fi-
nite elements were defined by superimposing a 5×5 mm grid onto the photograph).
The mechanical properties of stone and mortar were assumed to be deterministic
and are reported in Table 1.

Phase Material Young’s Poisson’s T11 T12 T22 T33

module E coefficient ν (MPa) (MPa) (MPa) (MPa)

1 Stone 12500 0.20 13021 2604 13021 10417
2 Mortar 1200 0.30 1319 396 1319 923

Table 1. Mechanical properties of the masonry phases: stone and mortar.

5.1. Mechanical convergence. Two types of boundary conditions were applied to
the material windows:
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(a) Essential, in terms of displacements ui (Dirichlet, displacement-controlled),

ui = ε0
i j x j , (26)

where ε0
i j are constant strains and x j are point coordinates, or

(b) Natural, in terms of tractions ti (Neumann, or stress-controlled),

ti = σ 0
i j n j , (27)

where σ 0
i j are constant stresses and n j are the components of the unit vector

outward from the boundary. The average values of the strain in condition
(a) are ε̄i j = ε0

i j , while the average values of the stress in condition (b) are
σ̄i j = σ 0

i j , where

ε̄i j =
1
V

∫
V

εi j dV σ̄i j =
1
V

∫
V

σi j dV . (28)

According to Hill [1963], when the volume considered is the representative volume
element, then the relation between average stress and strain is the same for both
types of boundary conditions (a) and (b).

The masonry is composed of two phases, so that:

σ̄i j = c1σ̄
(1)
i j + c2σ̄

(1)
i j = c1T (1)

i jkl ε̄
(1)
kl +c2T (1)

i jkl ε̄
(1)
kl , (29)

ε̄i j = c1ε̄
(1)
i j + c2ε̄

(1)
i j = c1S(1)

i jkl σ̄
(1)
kl +c2S(1)

i jkl σ̄
(1)
kl , (30)

where c1 and c2 are the fractional concentrations by volume (c1 + c2 = 1), T (1)
i jkl

and T (1)
i jkl are the elastic stiffness constants, and S(1)

i jkl and S(1)
i jkl are the elastic com-

pliances of the two phases.
Combining the previous equation we obtain:

T e
i jklε

0
kl = T (1)

i jkl(ε
0
kl−c2ε̄

(1)
kl )+c2T (1)

i jkl ε̄
(1)
kl =T (1)

i jklε
0
kl+c2(T (1)

i jkl−T (1)
i jkl)ε̄

(1)
kl , (31)

Sn
i jklσ

0
kl = S(1)

i jkl(σ
0
kl−c2σ̄

(1)
kl )+c2S(1)

i jkl σ̄
(1)
kl =S(1)

i jklσ
0
kl+c2(S(1)

i jkl−S(1)
i jkl)σ̄

(1)
kl , (32)

where T e
i jkl are the stiffness components under essential conditions and Sn

i jkl are
the compliance components under natural conditions.

Applying displacement boundary conditions such that ε0
= Imn (Imn is the

symmetrical matrix with all its components set to 0, except the component mn,
which is set to 1) it becomes possible to determine the columns of the stiffness
matrix T e.

Applying traction boundary conditions such that σ 0
= Imn , it becomes possible

to determine the columns of the compliance matrix Sn . The stiffness matrix relative
to natural conditions is obtained from T n

= [Sn
]
−1.
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We adopted an orthotropic equivalent continuum:σ11

σ22

τ12

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 ε11

ε22

γ12

 =

2G11 + λ λ 0
λ 2G22 + λ 0
0 0 G12

 ε11

ε22

γ12

 , (33)

ε11

ε22

γ12

 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 σ11

σ22

τ12

 =

 1/E11 −ν12/E22 0
−ν21/E11 1/E22 0

0 0 1/G12

 σ11

σ22

τ12

 , (34)

where 1 ≡ x , 2 ≡ y, Ti j = T j i ↔ Si j = S j i , Gi j , λ are Lamé’s constants, Ei j and
νi j are Young’s constants and Poisson’s coefficients, respectively:

E11 =
(2G11 + λ)(2G22 + λ) − λ2

2G22 + λ
; E22 =

(2G11 + λ)(2G22 + λ) − λ2

2G11 + λ
;

ν21 =
λ

2G11 + λ
; ν12 =

λ

2G22 + λ
;

ν12

E22
=

ν21

E11
. (35)

In order to determine the three columns of the essential stiffness matrix, the
following strains and boundary displacements were applied (for details see [Cluni
and Gusella 2004]):

ε0
1 =

1
0
0

 ↔

(
u1

u2

)
=

(
x
0

)
, ε0

2 =

0
1
0

 ↔

(
u1

u2

)
=

(
0
y

)
,

ε0
3 =

0
0
1

 ↔

(
u1

u2

)
=

(
x
y

)
.

(36)

In order to determine the three columns of the natural compliance matrix, the
following stresses and boundary tractions were applied

σ 0
1 =

1
0
0

 ↔

(
t1
t2

)
=

(
1
0

)
, σ 0

2 =

0
1
0

 ↔

(
t1
t2

)
=

(
0
1

)
,

σ 0
3 =

0
0
1

 ↔

(
t1
t2

)
=

(
1
1

)
.

(37)

Since an L-size window is used, the essential stiffness is designated T e
L and the

natural stiffness is designated T n
L .
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Introducing

T ∗

i j,L =
T e

i j,L + T n
i j,L

2

[
T∗

L =
(
T e

L + T n
L
)
/2

]
, (38)

we have [Huet 1990; Sab 1992; Ostoja-Starzewski 1998]:

T R
L ≤ T n

L ≤ T∗

L ≤ T e
L ≤ T V

L , (39)

where T R
L and T V

L are the Reuss and Voigt bounds, respectively (A ≤ B means
that vTAv ≤ vT Bv for all v 6= 0).

As the size L of the window increases, the difference between T e
L and T n

L de-
creases. As L goes to infinity, the VEL converges with the representative volume
element, and T∗

L converges with the stiffness matrix of the nonrandom equivalent
homogeneous continuum T RVE

= T hom [Sab 1992]

lim
L→∞

T ∗

L = T RVE
= T hom. (40)

In effective applications, the window has a finite size which increases, giving
the sequence: Lk k = 1, . . . , N with i > j → L j > L i . Applying the mechanical
convergence criterion introduced above the material window with L̂ = Ln is an
adequate estimate of the representative volume element when the equation (3) is
verified:

max
i j

∣∣∣∣∣T e
i j,L̂

− T n
i j,L̂

T 1
i j

∣∣∣∣∣ ≤ 1c, (41)

where T 1
i j = |T e

i j,L1
− T n

i j,L1
| and 1c ∈ R+ is a fixed admissible error.

In the present application the size L was increased from 20 cm to 130 cm (the
130 cm window is shown in Figure 12).

At first, the numerical results confirmed the hypothesis in Equations (33) and
(34); in fact the stiffness components Ti3 i = 1, 2 and the compliance components
Si3 i = 1, 2 were negligible with respect to the others. Table 2 reports the Young’s
moduli and Lamé constants relative to essential and natural conditions. The con-
vergence of these characteristics is shown in Figure 13. Poisson’s coefficients con-
verge very quickly (for the window with L = 130 cm: ν21 = 0.199, ν12 = 0.203 for
essential conditions, and ν21 = 0.178, ν12 = 0.180 for natural conditions).

5.2. Probabilistic convergence. The previous mechanical convergence does not
permit us to state with adequate reliability that the test-window is a good approx-
imation of the representative volume element. Differences between essential and
natural evaluations of the elastic moduli decrease very quickly as L increases. The
convergence could be accelerated by averaging over several samples of the same
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L Essential Boundary Conditions Natural Boundary Conditions
(cm) E11 (MPa) E22 (MPa) G12 (MPa) E11 (MPa) E22 (MPa) G12 (MPa)

20 7807.03 7698.80 3271.50 6408.04 6338.20 2487.00
30 7890.46 7752.42 3162.00 7086.51 6665.78 2710.50
40 7929.02 7852.14 3255.50 7214.07 7290.57 2883.00
50 7894.35 7290.79 3049.50 7401.59 6709.97 2724.00
60 7840.72 7079.91 2917.51 7504.52 6584.28 2625.44
80 7937.80 7055.86 2893.87 7658.00 6601.37 2655.77

100 7813.77 6929.10 2816.60 7543.66 6677.43 2657.16
120 8095.70 7290.24 2932.05 7879.92 7058.18 2784.91
130 8143.23 7282.57 2940.33 7958.80 7046.80 2801.83

Table 2. Mechanical characteristics obtained under essential and
natural boundary conditions as L , the side of the square window,
increases.

Figure 12. Square material window with L = 130 cm and finite
element model.

size, as noted in [Cluni and Gusella 2004]; the averaging over samples with dif-
ferent sizes is not appropriate because these samples have different and unknown
statistical weights.
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Figure 13. (A), (B) and (C): behavior of the mechanical proper-
ties of the test-window as L increases: “×” essential, “◦” natural,
“∗” mean value; (D) normalized differences between essential and
natural evaluations for E11, E22, and G12.

Even with a single 80 cm window, the differences between essential and natural
moduli are limited. However, for the 130 cm window these differences are quite
similar to those noted above, whereas the values of essential and natural elastic
moduli and their mean values are significantly different from those of the 80 cm
window (Figure 13 (A)–(C)).

This discrepancy can be explained by observing that the 80 cm window does not
adequately represent the masonry wall because it does not contain a representative
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Bst Hst Bm Hm

Entire wall EBst 6Bst EHst 6Hst EBm 6Bm EHm 6Hm

18.87 5.86 11.69 4.73 4.20 4.22 1.81 1.29

VEL E L
Bst 6L

Bst E L
Hst 6L

Hst E L
Bm 6L

Bm E L
Hm 6L

Hm

80 × 80 21.61 3.45 13.34 5.02 2.79 1.56 2.06 1.62
130 × 130 19.90 5.57 12.75 4.98 3.70 3.48 1.83 1.25

Table 3. Mean E and standard deviation 6 of the width and the
height of the stones, head and bed mortar joints, for the portion
of wall shown in Figure 2 and for the material windows with L =

80 cm (Figure 11) and L = 130 cm (Figure 12).

sample of stones: for example, the course with very large stones (row R7 in Figure
2) is not taken into account.

It should, therefore, be noted that as the size of the test-window increases, the
differences between the essential and natural components decrease, but the conver-
gence to the equivalent homogeneous continuum components is not uniform. In
order to overcome this limitation the probabilistic convergence criterion introduced
above was applied, taking into account Equations (21), (22), (23) and (25).

Excluding windows with L < 60 cm, because the number of stones and joints
was too small, the means and standard deviations of the sample relative to the stone
and mortar joint sizes were compared with those of the entire wall (see Table 3).

Moreover, for L ≥ 80 cm, the probability density functions of these samples
were compared with those of the entire wall. Comparisons relative to the width and
height of the stones in the windows with L = 80 cm, the window with L = 130 cm,
and the wall as a whole, are shown in Figure 14. Comparisons relative to the mortar
joint sizes are shown in Figure 15.

The window with L = 130 cm is adequately representative of the statistical dis-
tribution of stones and mortar joints in the masonry (only the sample of the bed
joint thickness should be improved). In fact, the differences (Table 3) in statisti-
cal moments (mean and standard deviation) and in probability density functions
(Figures 14 and 15) between the 130 cm window and the entire wall were found to
be sufficiently limited.

Moreover, it is necessary to check that the pattern of the window is representative
of the entire wall. This was done by analyzing the autocorrelation functions of the
rows and columns. The results relative to the 130 cm window are shown in Figure
16. These functions match those relative to the entire wall (Figure 7 and Figure 9).
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Figure 14. Comparison among probability density functions
(PDF) of the width and the height of the stones relative to the
windows (blue bars) with L = 80 cm and with L = L̂ = 130 cm,
the entire masonry wall (red bars), and the log-normal curve (see
Figure 3).

In particular, the difference in mean autocorrelation functions of the rows be-
tween the 130 cm window ĀC L̂

R,R(ξ) and the entire wall ĀCR R(ξ) proved to be
limited; see Figure 16 (A).

A similar result was obtained for the difference in mean autocorrelation func-
tions of the columns: ĀC L̂

C,C(η) and ĀCC,C(η), respectively; see Figure 16 (B).
Further studies would be necessary to gauge the importance of higher-order

statistical properties. In any case, the elastic moduli of the equivalent homoge-
neous continuum are related to the average values of the strain and stress, and,
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Figure 15. Comparison among probability density functions
(PDF) of the characteristics of the mortar joints relative to the
windows (blue bars) with L = 80 cm and with L = L̂ = 130 cm,
the entire masonry wall (red bars), and the log-normal curve (see
Figure 4).

consequently, the checks based on the proposed statistical descriptors would seem
to be adequate.

Finally, by taking into account the mechanical and statistical results presented
above, it becomes possible to consider the 130 cm window an adequate estimate
of the statistically equivalent representative volume element, so that

T hom
i j = T RVE

i j = T ∗

i j,L̂
=

T e
i j,L̂

+ T n
i j,L̂

2
, L̂ = 130 cm. (42)
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Figure 16. (A) Autocorrelation functions of the rows of the win-
dow with L̂ = 130 cm; mean autocorrelation functions: ĀC L̂

R,R(ξ)

for the window (blue line), ĀCR R(ξ) for the wall (red line); (B)
Autocorrelation functions relative to the columns of the window
with L̂ = 130 cm; mean autocorrelation functions: ĀC L̂

C,C(η) for
the window (blue line), ĀCC,C(η) for wall (red line).

6. Conclusions

This paper deals with the homogenization of masonry with nonperiodic micro-
structures. The masonry is treated as a random heterogeneous material and statis-
tical descriptors are introduced. On the basis of observations concerning masonry
construction, an orthogonal grid of rows and columns is used to determine the
geometric characteristics of stones and of head- and bed-mortar joints. This allows
one to estimate the statistical moments and the probability density function of these
geometrical characteristics.

It is well known that the mechanical behavior of masonry is significantly influ-
enced by its texture. In order to describe this feature, indicator (or characteristic)
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functions are introduced to describe the random alternation of stone and mortar in
the rows and columns of the orthogonal grid. Moreover, shifted-area functions and
correlation functions are taken into account to highlight the random features of the
masonry texture.

The modeling of the masonry as a random field was introduced to permit one to
improve the finite-size test-window method in estimating the representative volume
and the elastic moduli of the equivalent homogeneous medium. Since the classic
mechanical criterion, which requires that differences between moduli evaluated
under essential and natural conditions be limited, does not assure a uniform con-
vergence of the test-window to the representative volume element, a probabilistic
criterion is introduced.

This convergence criterion requires that the material window be statistically simi-
lar to the complete masonry wall, where this similarity is assured by the minimizing
of differences among the statistical descriptors relative to the window and the entire
masonry wall.

When both of these criteria are respected, the window can be considered an
adequate estimate of the statistical equivalent representative volume, and the homo-
geneous continuum moduli can be obtained by averaging those relative to essential
and natural boundary conditions.

A numerical application highlights the importance of applying the two criteria
jointly and the effectiveness of the method proposed.
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