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Fiber-metal laminates (FML) are hybrid materials that consist of alternating lay-
ers of metal and fiber-reinforced prepreg. The classical plane-stress theory has
difficulty in dealing with the fatigue fracture of such materials where the crack
only grows in the metal layers, while the prepreg layers remain intact. In this
paper, a new theoretical treatment is given to FML under generalized plane-stress
conditions. The new theory introduces a harmonic anti-plane-stress potential p
to describe the interlaminar stresses near the crack tips and the “bridging” effect
of the unbroken fibers along the crack wakes. An analytical solution is derived
for GLARE-3 (3/2) containing collinear cracks with length 2a0 (the initial crack
length) in the prepreg and length 2a in the aluminum layer. The effective stress
intensity factor is obtained in a closed form, and the theoretical prediction is
compared with the experimental behavior obtained from fatigue crack growth
testing of center-notched specimens.

1. Introduction

Fiber-metal laminates (FML) consisting of alternating layers of aluminum and
fiber-reinforced prepreg are being considered as a potential alternative to replace
traditional aluminum alloys for more light-weight and damage tolerant aerospace
structural applications [Gunnink et al. 1982]. FML have excellent fatigue crack
growth resistance plus improved impact and corrosion resistances because the fiber
reinforcement plays a role in crack bridging and also insulates the inner metal from
any corrosive species. It has been recognized that the damage tolerance character-
istics of FML are largely attributed to the load transfer mechanism via interfacial
shear stresses from the cracked aluminum layers to fiber-reinforced (unbroken)
prepregs [Gunnink et al. 1982; Roebroeks 1994]. Regarding the fiber-bridging
effect, Marissen [1988] assumed that a constant “bridging stress” exists in the fibers
along the crack wake. Guo and Wu [1999] offered a numerical method to derive the
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“bridging stress” based on the displacement condition at the boundary of delamina-
tion. Their treatment rests on two assumptions: (i) each fiber within the delamina-
tion region is individually under uniform tension, and (ii) the displacement profile
at the delamination boundary is equal to the crack opening displacement along the
crack wake. The error associated with the assumed displacement condition would
be proportional to the size of delamination (that is, 1v ∝ ε f (x), where f (x) is the
delamination boundary away from the crack line y = 0), if a constant strain existed
across the region. The aforementioned theoretical treatments attempted to patch the
shortcomings of the classical crack mechanics for monolithic materials, but they
were not derived from the stress equilibrium and compatibility equations of elas-
ticity. For laminated materials, the existence of parallel cracks of different length
in different layers poses a significant challenge to the classical two-dimensional
theories dealing with plates and laminates, and the general solution has not been
found.

Traditionally, composite materials are considered as homogeneous and aniso-
tropic materials and hence are solved with the classical theory [Tsai and Hahn
1980; Whitney 1987; Ashbee 1993], where the anti-plane shear stresses are ab-
sent because of the simplification. Except for some 3D or quasi-3D numerical
methods—such as the finite element method, the hybrid and displacement super-
position method [Pagano 1978; Iarve and Pagano 2001]—that could be used to
describe cracks in FML where layer-to-layer interaction cannot be ignored, there
is no analytical theory to formulate stresses in cracked FML. It is the intention of
this paper to present such a theory.

A higher-order theory has been developed for generalized plane-stress states in
isotropic materials with the introduction of two conjugated harmonic stress poten-
tials for anti-plane stresses by the requirement of 3D strain compatibility [Wu and
Cheng 1999]. This theory is now extended to FML whereby the interlaminar stress
interaction is reduced to equivalent body forces. As an example, the boundary-
value problem of fatigue crack growth in GLARE-3 (3/2) is solved, using the
complex variable method. The effective stress intensity factor of a crack in FML,
propagating only in the aluminum layers, is obtained in a closed form and the
prediction is then compared with the experimental behavior observed from fatigue
crack growth testing of center-notched specimens.

2. The theory of FML

Consider a typical fiber-metal laminate, which consists of alternating metal (iso-
tropic) and prepreg (orthotropic) layers. The configuration of GLARE-3 (3/2) is
shown in Figure 1. The reference coordinate system is also given in 1 by way of



A HIGHER-ORDER THEORY FOR CRACK GROWTH 433

x

y

z

o

Notch

Prepreg layer (0/90)
Aluminum layer

Figure 1. Schematic configuration of GLARE-3 (3/2) consisting
of three layers of 2024-T3 aluminum alloy and two layers of glass
fiber-epoxy prepreg.

describing the problem. For the panel, the thickness of the laminate is small com-
pared to the planar dimensions. The body forces are ignored and the stress normal
to the laminate, σz , is zero. In the following, we shall derive the stress formulation
for metal and prepreg layers separately and then consider their interactions by the
requirement of displacement continuity across the interface.

2.1. The metal layer. Under the generalized plane stress condition, the stress equi-
librium in the metal layer can be expressed as

∂σx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
= 0, (1a)

∂τxy

∂x
+
∂σy

∂y
+
∂τyz

∂z
= 0, (1b)

∂τxz

∂x
+
∂τyz

∂y
= 0. (1c)

It has been shown that the three-dimensional stress equilibrium and strain com-
patibility conditions can be all met when the in-plane and anti-plane shear stresses
are expressed as [Wu and Cheng 1999]

σx =
∂29

∂y2 + p, σy =
∂29

∂x2 + p, τxy = −
∂29

∂x ∂y
, (2)

τxz = −z
∂p
∂x

= −z
∂q
∂y
, τyz = −z

∂p
∂y

= z
∂q
∂x
, (3)
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where 9 is a bi-harmonic function (∇49 = 0), p and q are conjugated harmonic
functions (∇2 p = 0 and ∇

2q = 0, satisfying the Cauchy–Riemann condition).
For each individual layer, the neutral plane (z = 0) is set at either the free surface,

for a surface metal layer, or the median plane for a middle layer. Therefore, the
free surface is truly free of any anti-plane shear traction. Alternatively, the laminate
can also be viewed as a portion of periodical stacking of the constituent lamina, in
which the surface layer becomes an inner layer with twice the thickness. When the
lay-up is symmetrical, as in GLARE 3, the net anti-plane shear stress across the
laminate is zero, and the laminate is under the generalized plane-stress condition.
When the lay-up is asymmetrical, a coupled bending is induced, because the net
anti-plane shear is not always zero. Here we consider only the former case. For that,
the inter-laminar shear stresses at the interfaces of metal/prepreg can be obtained
from Equation (3) as

τ i
xz = ∓

hi

2
∂pi

∂x
, τ i

yz = ∓
hi

2
∂pi

∂y
, i = 1, 3, 5, . . . , (4)

where hi is the thickness of the i-th layer. The detailed lay-up is shown in Figure
2 and the sign convention is observed accordingly.

2.2. The prepreg layer. For a prepreg layer between metal layers (i = 2, 4, 6, . . . ),
the action of the inter-laminar shear stresses would produce an effect equivalent to
that of the in-plane body forces, as defined by

X i = −
τ i+1

xz − τ i−1
xz

hi
= −

1
2hi

∂

∂x

(
hi+1 pi+1 + hi−1 pi−1

)
= −

∂U
∂x
, (5a)

Yi = −
τ i+1

yz − τ i−1
yz

hi
= −

1
2hi

∂

∂y

(
hi+1 pi+1 + hi−1 pi−1

)
= −

∂U
∂y
, (5b)

where U is defined as the equivalent body-force potential:

U =
1

2hi

(
hi+1 pi+1 + hi−1 pi−1

)
. (5c)

Therefore, the equilibrium equations for the prepreg reduce to

∂σx

∂x
+
∂τxy

∂y
+ X i = 0, (6a)

∂τxy

∂x
+
∂σy

∂y
+ Yi = 0. (6b)
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Figure 2. Schematic of inter-laminar shear stress distribution
through the thickness of an FML.

By satisfying the equilibrium conditions, the in-plane stresses in a prepreg can
be obtained as

σx =
∂2 F
∂y2 + U, σy =

∂2 F
∂x2 + U, τxy = −

∂2 F
∂x ∂y

, (7)

where F is the stress potential of the prepreg and should satisfy the compatibility
condition for an orthotropic material [Lekhnitskiı̆ 1981]:

a22
∂4 F
∂x4 + (a66 + 2a12)

∂4 F
∂x2 ∂y2 + a11

∂4 F
∂y4

= −(a22 + a12)
∂2U
∂x2 − (a11 + a12)

∂2U
∂y2 , (8)

where ai j are the compliance coefficients of the prepreg.
For FML of symmetrical layout, the anti-plane shear stresses counteract each

other across the entire thickness of the laminate such that the net result is zero.
Thus, the stress-state of FML, as defined by the stress functions 9, F , U , p and q ,
falls into the category of the generalized plane stress.
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In summary, the stresses in a metal (isotropic) layer can be obtained from the
stress function 9 and either of the conjugated harmonic functions p and q; the
stresses in a prepreg (orthotropic) layer can be obtained from the stress functions
F and U . The inter-laminar stresses can be calculated using Equation (4). These
stress potentials, when satisfying the necessary compatibility conditions, should
lead to a complete description of the stresses in the laminate. By the theorem of
unique solution of elasticity, the stress potentials should represent the true stress-
state of the laminate under a given generalized plane-stress condition. The problem,
then, reduces to finding stress functions (or potentials) that meet the boundary-
value conditions of the particular loading configuration. The mathematical ap-
proach to seeking such solutions is discussed along with the presentation of solving
a practical case of fatigue crack growth in GLARE-3 (3/2) in the section below.

3. The complex variable solution for GLARE-3 containing a crack

Consider a GLARE-3 (3/2) panel containing central collinear cracks of length 2a
in the aluminum and 2a0in the prepreg. The panel is remotely subjected to uniform
tension, as shown schematically in Figure 3. The crack in the prepreg represents

σ 

2a0

2a

y

x

σ 

Figure 3. Schematic of a FML panel containing a center-located
crack: a0 is the half-length of the initial through-the-thickness
crack; a is the half-length of the crack in the metal layer.
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the initial notch, the ones in the metal layers extend to the current length a due to
fatigue crack growth. As such, the crack wakes in the region [a0,a] are bridged with
unbroken fibers. The aluminum layers are 2024-T3 sheets, which are considered to
be isotropic materials. The prepreg layers in GLARE-3 have equal volume fraction
of 0◦/90◦ cross-ply glass fibers, and therefore are also treated as a quasi- isotropic
material, for simplicity. This greatly reduces the complexity of the problem and al-
lows one set of stress potential functions to be used for both aluminum and prepreg
in GLARE-3, as detailed below. For other FML with anisotropic prepregs, the
solution has to be obtained by solving Equation (8).

First, the Westergaard function is adopted as the in-plane stress potential ψ , as
defined by

ψ = Re
≈

Z(ξ)+ y Im
∼

Z(ξ), (9)

where ξ = x + iy is the complex coordinate variable and

∼

Z =

∫
Z(ξ) dξ,

≈

Z =

∫
∼

Z (ξ) dξ =

∫∫
Z(ξ) dξ dξ.

(10)

Then, a new analytic function χ(ξ) is introduced to express the anti-plane shear
stress potential p as

2p = χ(ξ)+ χ̄(ξ̄ )= ϕ′(ξ)+ ϕ̄′(ξ̄ ), (11)

where ξ̄ denotes the conjugate of ξ , and the same meaning also applies to complex
functions.

Hence, according to Equations (2) and (3), the stress components can be ob-
tained as

σx + σy = 2 Re
[
Z(ξ)+χ(ξ)

]
,

σy − σx + i2τxy = −i2y Z ′(ξ),

τxz + iτyz = ∓
h
2
χ̄ ′

(
ξ̄
)
.

(12)

The displacements (at z = 0) can be obtained as

2G(u + iv)=
2

1 +µ

∼

Z(ξ)− Re
∼

Z(ξ)− iy Z̄(ξ̄ )+
1 −µ

1 +µ
ϕ(ξ). (13)
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Because of symmetry, the solution for the half plane x > 0 can be tentatively
represented by the following functions:

Z(ξ)=
Aξ√
ξ 2 − a2

,

χ(ξ)=
B

√
ξ − a

,

(14)

where A and B are constants to be determined by the stress boundary conditions
and displacement compatibility conditions.

Substituting Equation (14) into Equations (12) and (13), we obtain the in-plane
stresses as

σx =
∂2ψ

∂y2 + p = Re
[
Z(ξ)+χ(ξ)

]
− y Im Z ′(ξ),

σy =
∂2ψ

∂x2 + p = Re
[
Z(ξ)+χ(ξ)

]
+ y Im Z ′(ξ),

τxy = −y Re Z ′(ξ),

(15)

and the displacements as

u =
1

2G

(
1 −µ

1 +µ
Re

[∼

Z(ξ)+ϕ(ξ)
]
− y Im Z(ξ)

)
, (16a)

v =
1

2G

(
2

1 +µ
Im

∼

Z(ξ)− y Re Z(ξ)+
1 −µ

1 +µ
Imϕ(ξ)

)
. (16b)

It is easy to verify that the crack surface condition, that is, τxy = σy = 0, at
y = 0, |x |< a, is satisfied and the displacement v along the line of (x > a, y = 0)
is zero. To satisfy the remote stress condition, A = σ∞. These stress/displacement
formulations will be used to deal with two cracks in an FML: one crack of length
2a0 in the prepreg and one of length 2a in the aluminum.

For displacement continuity, it is assumed that the crack opening displacements
at the center of both cracks in metal and prepreg are equal, due to the perfect
bonding condition. Mathematically, this condition can be expressed as: v(1) = v(2)

at the point (x = 0, y = 0). In the rest of the plane of the interface, displacement
discontinuities or sliding may occur, particularly around the crack tips. The as-
sumed condition is a simplification for the convenience of deriving a closed-form
solution as shown in the following, yet it adheres to the fact that delamination does
not occur at the center point. The above description is only a two-dimensional
simplification of the delamination problem in a real case, a complete description
of which would have to be based on a 3D theory.
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From Equation (16b), the crack-center opening displacements in the metal (with
a crack of half-length a) and prepreg (with a crack of half-length a0) can be ob-
tained, respectively, as

v(1) =
1

G1

(
A(1)a
1 +µ

+
(1 −µ)B(1)

√
a

1 +µ

)
,

v(2) =
1

G2

(
A(2)a0

1 +µ
+
(1 −µ)B(2)

√
a0

1 +µ

)
,

(17)

where v(1) and v(2) are the displacements in the y direction for the metal and prepreg
layers. A(1), B(1) and A(2), B(2) are constants for metal and prepreg layers, respec-
tively. Since both layers are subjected to remote uniform tension, A(1) = σ (1) and
A(2) = σ (2), where σ (1) and σ (2) are the remote stresses in the metal and prepreg
layer, respectively. Then, only the constants B(1) and B(2) need to be determined
to complete the solution.

There are two stress singularity points in the FML containing a fiber-bridged
crack—one at x = a0 and the other at x = a—which may cause local delamination
due to incompatibility. This has indeed been observed in numerous experiments.
At remote locations, however, it is believed that the bonding between the prepreg
and the metal layers should remain intact such that the antiplane shear stresses are
continuous across the interface. Thus, at the interface between the surface metal
layer and an immediate inner prepreg layer, it should hold that

−h1χ̄1
′(ξ̄ )=

h2

2
χ̄2

′(ξ̄ ), (ξ → ∞), (18)

where h1 and h2 are the thickness of the surface metal layer and the immediate
prepreg layer, respectively. Equation (18) will hold true when r = |ξ | � a0 and a,
only if

2h1 B(1) = −h2 B(2). (19)

Then, by solving the displacement continuity condition at the crack center, that is,
v(1) = v(2) (at x = 0, y = 0), with the substitution of Equation (19) into Equation
(17), we obtain

B(1) =
1

1 −µ

A(2)a0 −
G2
G1

A(1)a
G2
G1

√
a + 2 h1

h2

√
a0

= −
h2

2h1
B(2). (20)

We note here that the displacement continuity condition imposed at the crack-
center is obviously an approximation of the more complicated interfacial continu-
ity/discontinuity conditions around the crack in the real laminates. However, the
major mechanical characteristics of the simplified condition agree with the real
case, as elucidated in a later section.
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From stress expression, Equation (15), the stress intensity factor in the metal
layer can be obtained as:

Keff = lim
x1→0
y=0

√
2πx1σ

(1)
y = K (1)

∞
−

√
2

1 −µ

K (1)
∞ −

G1
G2

√
a0
a K (2)

∞

1 + 2 G1h1
G2h2

√
a0
a

, (21)

where, x1 = x − a, and

K (1)
∞

= A(1)
√
πa = σ (1)

∞

√
πa, K (2)

∞
= A(2)

√
πa0 = σ (2)

∞

√
πa0.

σ
(1)
∞ and σ (2)∞ are the remote stresses in the metal layer and prepreg layer.

4. Experiment

GLARE-3 3/2 specimens, which consist of three sheets of 2024-T3 aluminum
alloy (0.3 mm thick) and two layers of glass/epoxy prepreg (0.25 mm thick) with
a stacking sequence of (0◦/90◦), were machined (water-jet cut) in the form of
center-crack tension specimen (CCT) configuration. The specimen has a length
of 300 mm in the loading direction, a width of 100 mm and it contains a 24 mm
long central notch with a notch root radius of 0.2 mm. The total thickness of the
specimen is 1.4 mm. Fatigue crack growth rate testing was performed according to
the ASTM-E647 standard. The testing was conducted at room temperature using
a computer-controlled MTS servohydraulic testing machine under constant ampli-
tude sinusoid loading with a frequency of 5 Hz and stress ratio R = 0.1. The crack
length was measured using a traveling microscope (±0.01 mm). Fatigue testing
was automatically stopped at a predetermined cycle interval to take measurements
of the half-crack length on both sides of the specimen. An a-N curve is shown in
Figure 4 (a). Details of the testing program were reported elsewhere [Zhang et al.
2002].

5. Discussion

Fatigue crack growth in FML has been investigated by many researchers, using
semi-empirical approaches [Marissen 1988], experimental methods [Ritchie et al.
1989] and numerical methods [Guo and Wu 1998]. All these treatments used the
concept of bridging stress to account for the reduction of stress intensity factor in
FML, but it is empirically introduced. According to the present higher-order theory,
it is the interlaminar shear stress that provides the bridging effect, as opposed to the
in-plane “bridging stress” acting along the crack wake. The existence of these anti-
plane shear stresses modifies the in-plane stresses through the interaction of stress
potentials, as expressed in Equations (2) and (3). As a result, the stress intensity
factor of the crack in the metal layer is changed, as shown in Equation (21), in
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comparison with the solution for monolithic materials. Apparently, (21) can be
broken into two parts, as

Keff = Km − Kbr , (22)

where Km is the apparent stress intensity factor as if in the monolithic metal, and
Kbr is the stress intensity reduction due to fiber-bridging, as defined by

Kbr =

√
2

1 −µ

K (1)
∞ −

G1
G2

√
a0
a K (2)

∞

1 + 2 G1h1
G2h2

√
a0
a

. (23)

Equation (22) bears a physical meaning similar to that perceived by other researchers,
but only Kbr is derived from anti-plane stresses and is explicitly expressed in Equa-
tion (23).

From the a-N curve, Figure 4 (a), fatigue crack growth rates can be evaluated.
The effective stress intensity factors in the FML are thus found as compared with
the metal fatigue crack growth behavior, that is, from the da/d N versus 1K rela-
tionship, assuming that the fatigue crack, propagating in the aluminum alloy layer
of an FML, experiences the same stress intensity at the same growth rate as it would
were it propagating in the monolithic alloy alone. For the finite panel specimen
configuration, a correction was made to Equation (21), replacing K (1)

∞ with

K (1)
∞

√
sec

πa
W
,

where W is the width of the specimen, to account for the effect of finite width.
In matching (21) with the real case, the value of a0 has to be adjusted to account

for the effect of bluntness of the initial machine notch in the specimen. Note that
fatigue precracking in this case would only sharpen the metal crack but not the
prepreg crack (notch). The comparison of (21) with the evaluated 1K is shown
in Figure 4 (b). The elastic properties of the FML, as input to the calculation, are:
G1 = 27.7 GPa, h1 = 0.3 mm, for aluminum; and G2 = 5.6 GPa, h2 = 0.25 mm, for
prepreg. The stress intensity factor of a crack in an infinite monolithic aluminum
sheet is also shown in the figure for comparison purposes. It may be seen that a
crack without fiber-bridging exhibits very high stress intensities as the crack grows,
while the one in the FML tends to level off to a fairly constant value until the very
end of the panel. Excellent agreement between the theoretical and experimental
values can be found for the FML over 90% of crack growth range, except in the
initial stage where the crack is perhaps under the influence of the notch plasticity.

To check the compatibility conditions at the interface, the difference between the
displacements in the aluminum and the prepreg, v1 − v2, is calculated and mapped
onto the panel plane (the x-y plane), as shown in Figure 5. We see that there is a
discernible region of discontinuity, with a maximum occurring at x = a0 (the tip of
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Figure 5. A map of displacement discontinuity at the interface
between metal and prepreg layers. X − Y represent the panel plane
and Z represents the absolute value of v1 − v2.

the prepreg crack). This displacement discontinuity region actually corresponds to
the shape of the delamination region rather well, as observed in the FML specimens
both in our testing program and in others [Guo and Wu 1998]. It should be under-
stood that the delamination problem in the present context within the framework of
2D elasticity is depicted as interfacial sliding, that is, relative in-plane displacement,
as shown in Figure 5. Therefore, the criterion of delamination may be defined by
how much the delta sliding can be accommodated by the gluing agent, which is
determined by the physical properties of the interface. Such properties can be
called the interfacial delamination resistance. Beyond that, interfacial breaking
may occur, and thus physical delamination occurs. However, descriptions of the
physical delamination process are beyond the scope of the theory of elasticity.

In summary, a higher-order laminate plate theory has been developed for fiber-
metal laminates that consist of alternating metal and fiber-reinforced prepreg layers.
The theory is an extension of the previous higher-order theory for generalized plane-
stress problems of isotropic materials, which employs two harmonic anti-plane
stress potentials, p and q, in addition to the bi-harmonic plane stress potential.
When the displacement compatibility condition is set at the interlaminar interface,
these anti-plane stress potentials play the role of load transfer between adjacent
layers, particularly when one of them contains a crack. By taking advantage of
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the complex variable method that has been developed and matured for monolithic
isotropic materials [Muskhelishvili 1953; Lekhnitskiı̆ 1981], one can easily ex-
tend the complex variable treatment, with the inclusion of an additional analytical
function for the anti-plane stress potential to multi-layered bodies, as shown in
the previous section. As an example, one mathematical solution is presented in
this paper for GLARE-3 containing a fatigue crack, to show the application of the
theory to practical problems.

6. Conclusion

1. A higher-order lamination theory has been developed for the plane-stress elastic-
ity of fiber-metal laminates. The new theory employs anti-plane stress potentials
to take into consideration possible interlaminar interactions, particularly when
defects exist in certain layers, which tend to break the compatibility with the
adjacent lamina. In this case, the anti-plane stress potentials produce an ad-
ditional in-plane stress component that modifies the original (by the classical
theory) stress state to re-establish the strain/displacement compatibility.

2. The complex variable representation of the plane-stress problem is modified to
include the anti-plane shear stress function and a solution is derived for GLARE-
3 (3/2) containing a fiber-bridged fatigue crack.

3. An effective stress intensity factor for GLARE-3 (3/2) is derived in closed form,
which agrees with the test results, provided that the initial notch effect for the
specimen is appropriately corrected.
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