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THE NONLOCAL THEORY SOLUTION OF A MODE-I CRACK
IN FUNCTIONALLY GRADED MATERIALS SUBJECTED TO

HARMONIC STRESS WAVES

ZHEN-GONG ZHOU, JUN LIANG AND LIN-ZHI WU

In this paper, the dynamic behavior of a finite crack in functionally graded ma-
terials subjected to harmonic stress waves is investigated by means of nonlocal
theory. The traditional concepts of nonlocal theory are extended to solve the
dynamic fracture problem of functionally graded materials. To overcome math-
ematical difficulties, a one-dimensional nonlocal kernel is used instead of a two-
dimensional one for the dynamic problem to obtain the stress fields near the
crack tips. To make the analysis tractable, it is assumed that the shear modulus
and the material density vary exponentially and vertically with respect to the
crack. Using the Fourier transform and defining the jumps of the displacements
across the crack surfaces as the unknown functions, two pairs of dual integral
equations are derived. To solve the dual integral equations, the jumps of the dis-
placements across the crack surfaces are expanded in a series of Jacobi polyno-
mials. Unlike classical elasticity solutions, it is found that no stress singularities
are present near crack tips. Numerical examples are provided to show the effects
of the crack length, the parameter describing the functionally graded materials,
the frequency of the incident waves, the lattice parameter of the materials and
the material constants upon the dynamic stress fields near crack tips.

1. Introduction

A new class of engineered materials, functionally gradient materials (FGMs), has
been developed primarily for use in high temperature applications [Koizumi 1993].
The composition of these FGMs, prepared using techniques like power metallurgy,
chemical vapor deposition, centrifugal casting, etc., is graded along the thickness.
The spatial variation of the material composition results in a medium with vary-
ing elastic and physical properties and calls for investigation into the fracture of
FGMs under different loading conditions. In particular, the use of the graded ma-
terial as interlayers in bonded media is one of the highly effective and promising
applications to eliminate various shortcomings resulting from stepwise property

Keywords: crack, harmonic stress waves, functionally graded materials, nonlocal theory, dual
integral equations.
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mismatch inherent in piecewise homogeneous composite media [Lee and Erdogan
1994; Suresh and Mortensen 1977; Choi 2001].

From the viewpoint of fracture mechanics, the presence of a graded interlayer
would play an important role in determining crack driving forces and fracture resis-
tance parameters. In an attempt to address the issues pertaining to fracture analysis
of bonded media with such transitional interfacial properties, a series of solutions
to certain crack problems was obtained by Erdogan and his associates [Delae and
Erdogan 1988; Ozturk and Erdogan 1996].

The dynamic crack problem for non-homogeneous composite materials was con-
sidered in [Wang et al. 2000] but they considered the FGM layer as a multi-layered
homogeneous medium. The crack problem in FGM layers under thermal stresses
was studied by Erdogan and Wu [1996]. They considered an unconstrained elastic
layer under statically self-equilibrating thermal or residual stresses. More recently,
the scattering of harmonic stress waves by a Mode-I crack in functionally graded
materials was investigated by use of the Schmidt method in [Zhou et al. 2004].
However, it is found that all the solutions in [Koizumi 1993; Lee and Erdogan
1994; Suresh and Mortensen 1977; Choi 2001; Delae and Erdogan 1988; Ozturk
and Erdogan 1996; Wang et al. 2000; Erdogan and Wu 1996; Zhou et al. 2004]
contain stress singularities at the crack tips, which is not reasonable according to
physical nature. As a result of this, beginning with Griffith, all fracture criteria in
use today are based on other considerations, for example, energy, the J -integral
[Rice 1968], and strain gradient theory [Xia and Hutchinson 1996].

To overcome the stress singularity in classical elastic fracture theory, Eringen
[1977; 1978; 1979] used nonlocal theory to study the stress near tips of a sharp
line crack in an isotropic elastic plate subject to uniform tension, shear, and anti-
plane shear, and the resulting solutions did not contain any stress singularities.
This allows us to use maximum stress as a fracture criterion. Modern nonlocal
continuum mechanics has originated and developed in the last four decades as an
alternative to these local approaches of zero-range internal interactions. Edelen
[1976] contributed some mathematical formalism while Green and Rivlin [1965]
simply enunciated some postulates for nonlocal theory. On the other hand, Eringen
[1976] contributed not only the complete physics and mathematics of nonlocal
theory but also shaped the theory into concrete form, making it viable for practical
applications to boundary value problems.

According to nonlocal theory, the stress at a point X in a body depends not only
on the strain at point X but also on that at all other points of the body. This is
contrary to the classical theory that the stress at a point X in a body depends only
on the strain at point X . In [Pan and Takeda 1998], the basic theory of nonlocal
elasticity was stated with emphasis on the difference between nonlocal theory and
classical continuum mechanics. The basic idea of nonlocal elasticity is to build a
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relationship between macroscopic mechanical quantities and microscopic physical
quantities within the framework of continuum mechanics.

The constitutive theory of nonlocal elasticity has been developed in [Edelen
1976], in which the elastic modulus is influenced by the microstructure of the ma-
terial. Other results have been given by the application of nonlocal elasticity to the
fields such as a dislocation near a crack [Pan 1992;1994] and fracture mechanics
problems [Pan 1995; Pan and Fang 1993]. The literature on the fundamental as-
pects of nonlocal continuum mechanics is extensive. The results of those concrete
problems that have been solved display a remarkable agreement with experimental
evidence. This can be used to predict cohesive stress for various materials and the
results are close to those obtained in atomic lattice dynamics [Eringen and Kim
1974;1977].

Likewise, a nonlocal study of the secondary flow of viscous fluid in a pipe
furnishes a streamlined pattern similar to that obtained experimentally by Eringen
[Eringen 1977]. Other examples of the effectiveness of the nonlocal approach
are: (i) prediction of the dispersive character of elastic waves demonstrated ex-
perimentally (and lacking in classical theory) [Eringen 1972] and (ii) calculation
of the velocity of short Love waves whose nonlocal estimates agree better with
seismological observations than the local ones [Nowinski 1984b].

Several nonlocal theories have been formulated to address strain-gradient and
size effects [Nowinski 1984b]. Recently, some fracture problems [Zhou et al.
1999b; 2002; Zhou and Wang 2002a] in an isotropic elastic material and piezoelec-
tric material have been studied by use of nonlocal theory with a somewhat different
method. The traditional concepts of nonlocal theory are extended to solve the frac-
ture problem of piezoelectric materials [Zhou et al. 1999b; 2002; 2002a]. More
recently, the traditional concepts of nonlocal theory have also been extended to
solve the anti-plane shear fracture problem of functionally graded materials [Zhou
and Wang 2006], and the results of the solution in [Zhou and Wang 2006] did not
contain any stress singularity. However, to our knowledge, the effect of the lattice
parameter on the dynamic stress field near the Mode-I crack tips has not been
studied by use of nonlocal theory in functionally graded materials, in which the
shear modulus and material density vary exponentially and vertically with respect
to the crack. The present work is an attempt to fill this gap in research. Here, we
attempt to give a theoretical solution for this problem.

In the present paper, the effect of the lattice parameter of functionally graded
materials on dynamic stress fields near Mode-I crack tips is investigated using
nonlocal theory in functionally graded materials with the Schmidt method [Morse
and Feshbach 1958; Yau 1967]. When the lattice parameter of materials tends to
zero, the present problem will revert to the same problem as in [Zhou et al. 2004].
To make the analysis tractable, it is assumed that the shear modulus and the material
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density vary exponentially and vertically with respect to the crack. To overcome
the mathematical difficulties, a one-dimensional nonlocal kernel is used instead of
a two-dimensional one for the dynamic problem of obtaining the stress fields near
the crack tips.

The traditional concepts of nonlocal theory are extended to solve the dynamic
fracture problem of functionally graded materials. The Fourier transform is ap-
plied and a mixed boundary value problem is reduced to two pairs of dual integral
equations. To solve the dual integral equations, the jumps of displacements across
crack surfaces are expanded in a series of Jacobi polynomials. Numerical solutions
are obtained for the stress fields near the crack tips. Contrary to previous results, it
is found that the solution does not contain any stress singularities at the crack tips.

2. Formulation of the problem

We assume that there is a crack of length 2` along the x-axis in a functionally
graded material plane, as shown in Figure 1. In this paper, the harmonic elastic
stress wave is vertically incident. Let ω be the circular frequency of the incident
wave, τ0 a magnitude of the incident wave, and

u( j)
0 (x, y, t) and v

( j)
0 (x, y, t)

are components of the displacement vectors. τ
( j)
ik0(x, y, t), (i, k = x, y) are com-

ponents of stress fields. Note that the superscript j = 1, 2 corresponds to the half-
planes y ≤ 0 and y ≥ 0 throughout this paper and as shown in Figure 1. Because
the incident wave is an harmonic stress wave, all field quantities of

u( j)
0 (x, y, t), v

( j)
0 (x, y, t) and τ

( j)
ik0(x, y, t)

can be assumed to be of the following forms:

[u( j)
0 (x, y, t), v( j)

0 (x, y, t), τ ( j)
ik0(x, y, t)]

= [u( j)(x, y), v( j)(x, y), τ
( j)
ik (x, y)]e−iωt . (1)

In what follows, the time dependence of e−iωt will be suppressed but understood.
Here, the standard superposition technique was used. As discussed in [Eringen
et al. 1977] and [Srivastava et al. 1983], the boundary conditions can be written as
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Figure 1. Geometry of a finite crack in the functionally graded materials.

follows. (In this paper, we consider just the perturbation fields.)

τ (1)
yy (x, 0) = τ (2)

yy (x, 0) = −τ0, τ
(1)
xy (x, 0) = τ (2)

xy (x, 0) = 0, |x | ≤ ` (2)

τ (1)
yy (x, 0) = τ (2)

yy (x, 0), τ (1)
xy (x, 0) = τ (2)

xy (x, 0), |x | > ` (3)

u(1)(x, 0) = u(2)(x, 0), v(1)(x, 0) = v(2)(x, 0), |x | > ` (4)

u( j)(x, y) = 0, v( j)(x, y) = 0, ( j = 1, 2) for
√

x2 + y2 → ∞ (5)

3. Basic equations of nonlocal functionally graded materials

The basic equations of a plane of linear, non-homogeneous, isotropic, nonlocal
functionally graded materials with variable shear modulus, variable material den-
sity and vanishing body force are given by Equations (6) and (7) [Suresh and
Mortensen 1977; Nowinski 1984b]. (We assume here that the shear modulus and
density function vary exponentially and vertically with respect to the crack.)

∂τ
( j)
xx (x, y)

∂x
+

∂τ
( j)
xy (x, y)

∂y
= −ρ(y)ω2u( j)(x, y), ( j = 1, 2) (6)

∂τ
( j)
xy (x, y)

∂x
+

∂τ
( j)
yy (x, y)

∂y
= −ρ(y)ω2v( j)(x, y). ( j = 1, 2) (7)
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The following relationships were used in Equations (6)–(7)

− ρ(y)ω2u( j)(x, y)e−iωt
= ρ(y)

∂2u( j)
0 (x,y,t)
∂t2 = ρ(y)

∂2(u( j)(x,y)e−iωt )

∂t2 , (8)

−ρ(y)ω2v( j)(x, y)e−iωt
= ρ(y)

∂2v
( j)
0 (x,y,t)
∂t2 = ρ(y)

∂2(v( j)(x,y)e−iωt )

∂t2 , (9)



τ
( j)
xx (x, y) =

∫
∞

−∞

∫
∞

−∞
µ∗(|x ′

− x |, |y′
− y|)[

1+k
k−1

∂u( j)(x ′,y′)

∂x ′ +
3−k
k−1

∂v( j)(x ′,y′)

∂y′

]
dx ′dy′,

τ
( j)
yy (x, y) =

∫
∞

−∞

∫
∞

−∞
µ∗(|x ′

−x |, |y′
−y|)[

1+k
k−1

∂v( j)(x ′,y′)

∂y′ +
3−k
k−1

∂u( j)(x ′,y′)

∂x ′

]
dx ′dy′,

τ
( j)
xy (x, y) =

∫
∞

−∞

∫
∞

−∞
µ∗(|x ′

− x |, |y′
−y|)[

∂v( j)(x ′,y′)

∂x ′ +
∂u( j)(x ′,y′)

∂y′

]
dx ′dy′,

( j = 1, 2), (10)

where k = 3−4η for the plane strain state and k = (3−η)/(1+η) for the generalized
plane stress state. µ∗(|x ′

− x |, |y′
− y|) is the shear modulus, ρ(y) is the material

density. In this paper, we consider only the plane strain problem. η is the Poisson’s
ratio, and is taken to be a constant, owing to the fact that its variation within a
practical range has a rather insignificant influence on the stress fields near the crack
tips.

In the constitutive Equations (10), the only difference from classical elastic the-
ory is that the stress

τ
( j)
ik (x, y)(i, k = x, y)

at a point (x, y) depends on

u( j)
,k (x, y) and v

( j)
k (x, y)

at all points of the body. As discussed in [Eringen and Kim 1974; 1977; Eringen
1977], it can be assumed in the form for which the dispersion curves of plane elastic
waves coincide with those known in lattice dynamics. Among several possible
curves the following has been found to be very useful.

µ∗(|x ′
− x |, |y′

− y|) = µ(y′)α(|x ′
− x |, |y′

− y|), (11)

where α(|x ′
− x |, |y′

− y|) is known as the influence function.
Crack problems in functionally graded materials do not appear to be analytically

tractable for arbitrary variations of material properties. Usually one tries to gener-
ate forms of non-homogeneity for which the problem becomes tractable. As with
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the treatment of the crack problem for isotropic non-homogeneous materials in
[Koizumi 1993; Lee and Erdogan 1994; Suresh and Mortensen 1977; Choi 2001;
Delae and Erdogan 1988; Ozturk and Erdogan 1996], we assume that the shear
modulus and the material density are described by

µ(y) = µ0 eγ y, ρ(y) = ρ0 eγ y, (12)

where γ is a constant that describes the functionally graded materials; µ0 and ρ0

are the shear modulus and the material density along y = 0, respectively; and
γ 6= 0 is the case for the functionally graded materials. When γ = 0, it returns to
the homogeneous material case.

Substituting Equations (10) for Equations (6)–(7) and using Equations (11)–(12)
and the Green–Gauss theorem leads to

µ0

∫
∞

−∞

∫
∞

−∞

α|x ′
− x |, |y′

− y|) eγ y′

[
(1+k)

∂2u( j)

∂x ′2 + (k−1)
∂2u( j)

∂y′2 + 2
∂2v( j)

∂x ′∂y′
+ (k−1)γ

(
∂u( j)

∂y′
+

∂v( j)

∂x ′

)]
dx ′dy′

−

∫ `

−`

α|x ′
− x |, |0|)[[[σ ( j)

xy (x ′, 0)]]]dx ′
= −ρ(y)ω2u( j)(x, y) (13)

µ0

∫
∞

−∞

∫
∞

−∞

α|x ′
− x |, |y′

− y|) eγ y′

{
(1+k)

∂2v( j)

∂y′2 +(k−1)
∂2v( j)

∂x ′2 +2
∂2u( j)

∂x ′∂y′
+ γ

[
(1+k)

∂v( j)

∂y′
+(3−k)

∂u( j)

∂x ′

]}
dx ′dy′

−

∫ `

−`

α|x ′
− x |, |0|) [[[σ ( j)

yy (x ′, 0)]]]dx ′
= −ρ(y)ω2v( j)(x, y), (14)

where

σ ( j)
yy (x, y) = µ0eγ y

[
1 + k
k − 1

∂v( j)(x, y)

∂y
+

3 − k
k − 1

∂u( j)(x, y)

∂x

]
(15)

and

σ ( j)
xy (x, y) = µ0eγ y

[
∂v( j)(x, y)

∂x
+

∂u( j)(x, y)

∂y

]
. (16)

The bold brackets in Equations (13)–(14) indicate a jump at the crack line, that is,

[[[σ ( j)
xy (x, 0)]]] = σ (2)

xy (x, 0+) − σ (1)
xy (x, 0−), (17)

[[[σ ( j)
yy (x, 0)]]] = σ (2)

yy (x, 0+) − σ (1)
yy (x, 0−); (18)
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Expressions (15)–(16) are the classical constitutive equations. Here the surface
integral may be dropped since the displacement field vanishes at infinity as shown
in Equations (13)–(14).

4. The dual integral equations

As discussed in [Eringen et al. 1977], we see that

[[[σ ( j)
xy (x, 0)]]] = 0 , [[[σ ( j)

yy (x, 0)]]] = 0. (19)

What remains now is to solve the integrodifferential equations (13)–(14) for func-
tions u( j)(x, y) and v( j)(x, y), ( j = 1, 2). It is impossible to obtain a rigorous solu-
tion at the present stage. It seems obvious that in the solution of such a problem we
encounter serious, if not insurmountable, mathematical difficulties and must resort
to an approximation procedure. In the given problem, as discussed in [Nowinski
1984b; 1984a; Zhou and Wang 2002b], we assume that the nonlocal interaction in
the y direction is ignored. This is purely an assumption for mathematical tractabil-
ity. In view of our assumptions, we can state that{

α|x ′
− x |, |y′

− y|) = α0(|x ′
− x |)δ(y′

− y),

α0(|x ′
− x |) =

1
√

π
(βα exp[−(β/α2(x ′

− x)2
],

(20)

where β is a constant and can be determined by experiment, and where a is the
characteristic length. The characteristic length may be selected according to the
range and sensitivity of the physical phenomena. For instance, for a perfect crys-
tal, a may be taken as the lattice parameter. For a granular material, a may be
considered to be the average granular distance and, for a fiber composite, the fiber
distance, etc. In the present paper, a is taken to be the lattice parameter. From
Equations (13)–(14), we have

∫
∞

−∞

α0(|x ′
− x |)eγ y

[
(1+k)

∂2u( j)

∂x ′2 + (k−1)
∂2u( j)

∂y2 + 2
∂2v( j)

∂x ′∂y

+(k−1)γ

(
∂u( j)

∂y
+

∂v( j)

∂x ′

)]
dx ′

= −
ρ0

µ0
ω2u( j), (21)

∫
∞

−∞

α0(|x ′
− x |)eγ y

{
(1+k)

∂2v( j)

∂y2 + (k−1)
∂2v( j)

∂x ′2 + 2
∂2u( j)

∂x ′∂y

+ γ

[
(1+k)

∂v( j)

∂y
+ (3−k)

∂u( j)

∂x ′

]}
dx ′

= −
ρ0

µ0
ω2v( j). (22)
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To solve the problem, the Fourier transform of Equations (21)–(22) with x can be
given as follows:

− s2(1+k)ū( j)
+ (k−1)

∂2ū( j)

∂y2 − 2s
∂v̄( j)

∂y

+ (k−1)γ

(
∂ ū( j)

∂y
− sv̄( j)

)
= −

ρ0

µ0ᾱ0
ω2ū( j), (23)

(1+k)
∂2v̄( j)

∂y2 − s2(k−1)v̄ + 2s
∂ ū( j)

∂y

+ γ

[
(1+k)

∂v̄( j)

∂y
+ s(3−k)ū

]
= −

ρ0

µ0ᾱ0
ω2v̄( j). (24)

Throughout the paper a superposed bar indicates the Fourier transform.
Because of the symmetry, it suffices to consider the problem for x ≥ 0, |y| < ∞.

The above systems governing Equations (23)–(24) are solved using the Fourier in-
tegral transform to obtain the general expressions for the displacement components
as u(1)(x, y) =

2
π

∫
∞

0
∑2

i=1 Ai (s) e−λi+2 y sin(sx) ds,

v(1)(x, y) =
2
π

∫
∞

0
∑2

i=1 mi+2(s)Ai (s) e−λi+2 y cos(sx) ds ,

(y ≥ 0) (25)

u(2)(x, y) =
2
π

∫
∞

0
∑2

i=1 Bi (s) e−λi y sin(sx) ds,

v(2)(x, y) =
2
π

∫
∞

0
∑2

i=1 mi (s)Bi (s) e−λi y cos(sx) ds,
(y ≥ 0) (26)

and from Equations (15) and (16), the stress components are obtained as


σ

(1)
yy (x, y) =

2µ0eγ y

π(k−1)

∫
∞

0
∑2

i=1[−(k+1)mi+2(s)λi+2],

+s(3−k)]Ai (s) e−λi+2 y cos(sx) ds,

σ
(1)
xy (x, y) =

2µ0eγ y

π

∫
∞

0
∑2

i=1[−λi+2 − mi+2(s)s]Ai (s)e−λi+2 y sin(sx) ds,

(y ≤ 0) (27)


σ

(2)
yy (x, y) =

2µ0eγ y

π(k−1)

∫
∞

0
∑2

i=1[−(k+1)mi (s)λi ,

+s(3−k)]Bi (s) e−λi y cos(sx) ds,

σ
(2)
xy (x, y) =

2µ0eγ y

π

∫
∞

0
∑2

i=1[−λi − mi (s)s]Bi (s)e−λi y sin(sx) ds,

(y ≥ 0) (28)
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where s is the transform variable. A1, A2, B1 and B2 are arbitrary unknowns, and
λi (s) (i = 1, 2, 3, 4) are the roots of the characteristic equation

λ4
− 2λ3γ + (γ 2

− 2s2)λ2
+ 2γ s2λ + s4

+
3−k
k+1

γ 2s2

+
2kρ0ω

2

(k+1)µ0α0(s)
(−s2

+ λ2
− γ λ) +

k−1
k+1

(
ρ0ω

2

µ0α0(s)

)2

= 0, (29)

and mi (s) (i = 1, 2, 3, 4) is expressed for each root λi (s) as

mi (s) =
−(k+1)s2

+ (k−1)λ2
i − γ (k−1)λi

−2sλi + sγ (k−1)
. (30)

Equation (29) can be rewritten in the following form

(λ2
− λγ − s2)2

+
3−k
k+1

γ 2s2
+

2kc2
1(λ

2
− γ λ − s2)

k + 1
+

c4
1(k − 1)

k + 1
= 0, (31)

where

c2
1 =

c2

α0(s)
and c2

=
ρ0ω

2

µ0
.

The roots may be obtained as

λ1 =
1
2

(
γ +

√√√√
γ 2 − 4

(
kc2

1

k+1
− s2 −

√
c4

1

(k+1)2 −
s2γ 2(3−k)

k + 1

) )
, (32)

λ2 =
1
2

(
γ +

√√√√
γ 2 − 4

(
kc2

1

k+1
− s2 +

√
c4

1

(k+1)2 −
s2γ 2(3−k)

k + 1

) )
, (33)

λ3 =
1
2

(
γ −

√√√√
γ 2 − 4

(
kc2

1

k+1
− s2 −

√
c4

1

(k+1)2 −
s2γ 2(3−k)

k + 1

) )
, (34)

λ4 =
1
2

(
γ −

√√√√
γ 2 − 4

(
kc2

1

k+1
− s2 +

√
c4

1

(k+1)2 −
s2γ 2(3−k)

k + 1

) )
. (35)

From Equations (25)–(28), we can see that there are four unknown constants (in
Fourier space they are functions of s), that is, A1, A2, B1, and B2, which can be
obtained from the boundary conditions (2)–(4). To solve the present problem, the
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jumps of the displacements across the crack surfaces can be defined as follows:

f1(x) − u(2)(x, 0) − u(1)(x, 0), (36)

f2(x) − v(2)(x, 0) − v(1)(x, 0), (37)

where f1(x) is an odd function and f2(x) an even one.
Applying the Fourier transforms and the boundary conditions (2)–(4), we obtain

[X1]

[
B1(s)
B2(s)

]
− [X2]

[
A1(s)
A2(s)

]
=

[
f̄1(s)
f̄2(s)

]
, (38)

[X3]

[
B1(s)
B2(s)

]
= [X4]

[
A1(s)
A2(s)

]
, (39)

where the matrices [X i ] (i = 1, 2, 3, 4) can be seen in the Appendix.
From Equations (10), and using Equations (20), we have

τ (2)
yy (x, y) =

∫
∞

−∞

α0(|x ′
− x |)σ (2)

yy (x ′, y) dx ′, (40)

τ (2)
xy (x, y) =

∫
∞

−∞

α0(|x ′
− x |)σ (2)

xy (x ′, y) dx ′. (41)

Using the relations as follows [Gradshteyn and Ryzhik 1980]

I1=

∫
∞

−∞

exp (−px ′2)

{
sin ξ(x ′

+x)

cos ξ(x ′
+x)

}
dx ′

=(π/p)
1
2 exp

(
−ξ 2

4p

){
sin(ξ x)

cos(ξ x)

}
, (42)

we have

τ (2)
yy (x, y)=

2µ0eγ y

π(k − 1)

∫
∞

0e−
s2
4p

[
2∑

i=1

gi (s)Bi (s)+
2∑

i=1

gi+2(s)Ai (s)

]
cos(sx) ds, (43)

τ (2)
xy (x, y) =

2µ0eγ y

π

∫
∞

0
e−

s2
4p

[
2∑

i=1

hi (s)Bi (s) +

2∑
i=1

hi+2(s)Ai (s)

]
sin(sx) ds, (44)

where

gi (s) = −(k + 1)mi (s)λi + s(3 − k) and hi (s) = −λi − mi (s)s,

with (i = 1, 2, 3, 4), p =
(

β

a

)2.



458 ZHEN-GONG ZHOU, JUN LIANG AND LIN-ZHI WU

By solving the four expressions in Equations (38)–(39) with four unknown func-
tions A1, A2, B1 and B2, substituting those solutions for Equations (43)–(44), and
applying the boundary conditions (2)–(4) to the results, we have

τ (1)
yy (x, 0) = τ (2)

yy (x, 0)

=
2µ0

π(k − 1)

∫
∞

0
e−

s2
4p [d1(s) f̄1(s) + d2(s) f̄2(s)] cos(sx) ds

= −τ0, 0 ≤ x ≤ `, (45)

τ (1)
xy (x, 0) = τ (2)

xy (x, 0)

=
2µ0

π

∫
∞

0
e−

s2
4p [d3(s) f̄1(s) + d4(s) f̄2(s)] sin(sx) ds

= 0, 0 ≤ x ≤ `, (46)

∫
∞

0
f̄1(s) sin(sx)ds = 0, x > `, (47)∫

∞

0
f̄2(s) cos(sx)ds = 0, x > `, (48)

where

d1(s) = g1(s)e11(s) + g2(s)e21(s) + g3(s)c11(s) + g4(s)c21(s),

d2(s) = g1(s)e12(s) + g2(s)e22(s) + g3(s)c12(s) + g4(s)c22(s),

d3(s) = h1(s)e11(s) + h2(s)e21(s) + h3(s)c11(s) + h4(s)c21(s),

d4(s) = h1(s)e12(s) + h2(s)e22(s) + h3(s)c12(s) + h4(s)c22(s),

and where ei j (s) and ci j (s) (i = 1, 2, j = 1, 2) are non-zero constants, as can
be seen in the Appendix. To determine the unknown functions f̄1(s) and f̄2(s),
the dual integral equations in (45)–(48) must be solved. For the lattice parameter
a → 0, then

d1(s)e
−

s2
4p , (i = 1, 2, 3, 4)

is equal to a non-zero constant and Equations (45)–(48) reduce to two pairs of
dual integral equations for the same problem in the classical functionally graded
materials case.
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5. Solution of the dual integral equations

The only difference between the classical and nonlocal equations is in the influence
functions di (s) (i = 1, 2, 3, 4). It is logical to utilize the classical solution to convert
the system of equations in (45)–(48) to two pairs of integral equations of the second
kind, since the latter is generally better behaved. For the lattice parameter a → 0,
then

d1(s)e
−

s2
4p , (i = 1, 2, 3, 4)

is equal to a non-zero constant and Equations (45)–(48) reduce to two pairs of
dual integral equations for the same problem in classical elasticity. In the case of
(a → 0), the present problem is the same as that discussed in [Zhou et al. 2004].
As we find in [Eringen et al. 1977], the dual integral equations (48)–(51) cannot
be transformed into a Fredholm integral equation of the second kind, because

d1(s)e
−

s2
4p /s, (i = 1, 2, 3, 4)

does not tend to a constant C (C 6= 0) for s → ∞. Of course, the dual equa-
tions (45)–(48) can be considered to be a single integral equation of the first kind
with discontinuous kernel. It is well known in the literature that integral equations
of the first kind are generally ill-posed in the sense of Hadamard, that is, small
perturbations of the data can yield arbitrarily large changes in the solution. This
makes the numerical solution of such equations quite difficult. To overcome this
difficulty, the Schmidt method [Morse and Feshbach 1958; Yau 1967] is used to
solve the dual integral equations (45)–(48).

From the nature of the displacement along the crack line, it can be shown that
the jumps of the displacements across the crack surface are finite, differentiable,
and continuum functions. Hence, the jumps of the displacements across the crack
surface can be expanded by the following series:

f1(x) =

∞∑
n=0

an P
( 1

2 , 1
2 )

2n+1

( x
`

) (
1 −

x2

`2

) 1
2

, for 0 ≤ x ≤ `, (49)

f1(x) = 0, for x > `, (50)

f2(x) =

∞∑
n=0

bn P
( 1

2 , 1
2 )

2n

( x
`

) (
1 −

x2

`2

) 1
2

, for 0 ≤ x ≤ `, (51)

f2(x) = 0, for x > `, (52)

where an and bn are unknown coefficients and

P
( 1

2 , 1
2 )

n (x)
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is a Jacobi polynomial [Gradshteyn and Ryzhik 1980].
The Fourier transforms of Equations (49)–(52) are [Erdelyi 1954]

f̄1(s) =

∞∑
n=0

anG(1)
n

1
s

J2n+2(s`) , G(1)
n =

√
π (−1)n 0(2n+2+

1
2)

(2n + 1)!
, (53)

f̄2(s) =

∞∑
n=0

bnG(2)
n

1
s

J2n+1(s`) , G(2)
n =

√
π (−1)n 0(2n+1+

1
2)

(2n)!
, (54)

where 0(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting Equations (53)–(54) for Equations (45)–(48), it can be shown that

Equations (47)–(48) are automatically satisfied. Equations (45)–(46) reduce to

2µ0

π(k − 1)

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p [d1(s)anG(1)

n J2n+2(sl)

+ d2(s)bnG(2)
n J2n+2(sl)] cos(sx)ds = −τ0, 0 ≤ x ≤ `, (55)

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p [d3(s)anG(1)

n J2n+2(sl)

+ d4(s)bnG(2)
n J2n+1(sl)] sin(sx)ds = 0 , 0 ≤ x ≤ `. (56)

The multi-valued functions λ1, λ2, λ3 and λ4 have branch points. We choose the
branches such that <(λ1) ≥ 0, <(λ2) ≥ 0, <(λ3) ≤ 0 and <(λ4) ≤ 0 are on the
path of integration. For large s, the integrands of Equations (55)–(56) almost all
decrease exponentially. So the semi-infinite integral in Equations (55)–(56) can be
evaluated numerically by Filon’s method. Equations (55)–(56) can now be solved
for the coefficients an and bn by the Schmidt method [Morse and Feshbach 1958;
Yau 1967]. Briefly, Equations (55)–(56) can be rewritten as

∞∑
n=0

an E∗

n(x) +

∞∑
n=0

bn F∗

n (x) = U0(x) , 0 ≤ x ≤ `, (57)

∞∑
n=0

anG∗

n(x) +

∞∑
n=0

bn H∗

n (x) = 0 , 0 ≤ x ≤ `, (58)

where E∗
n(x), F∗

n (x), G∗
n(x) and H∗

n (x) and U0(x) are known functions, and an

and bn are unknown coefficients.
From Equation (58), we obtain

∞∑
n=0

bn H∗

n (x) = −

∞∑
n=0

anG∗

n(x) . (59)
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This can now be solved for coefficients bn by the Schmidt method. Here, the form
−
∑

∞

n=0 anG∗
n(x) will be considered temporarily as a known function. A set of

functions Pn(x), which satisfies the orthogonality condition∫ `

0
Pm(x)Pn(x)dx = Nnδmn , Nn =

∫ `

0
P2

n (x) dx, (60)

can be constructed from the function, H∗
n (x), such that

Pn(x) =

n∑
i=0

Min

Mmn
, H∗

i (x), (61)

where Mi j is the cofactor of the element di j of Dn , which is defined as

Dn =



d00, d01, d02, . . . , d0n

d10, d11, d12, . . . , d1n

d20, d21, d22, . . . , d2n

. . .

. . .

. . .

dn0, dn1, dn2, . . . , dnn


, di j =

∫ `

0
H∗

i (x)H∗

j (x) dx . (62)

Using Equations (59)–(62), we obtain

bn =

∞∑
j=n

Mnj

M j j
with q j = −

∞∑
i=0

ai
1

N j

∫ `

0
G∗

i (x)Pj (x) dx . (63)

This can be rewritten as

bn =

∞∑
i=0

ai K ∗

in , K ∗

in = −

∞∑
j=n

q j
Mnj

N j M j j

∫ `

0
G∗

i (x)Pj (x)dx . (64)

Substituting Equation (64) for Equation (57), we obtain
∞∑

n=0

anY ∗

n (x) = U0(x) , Y ∗

n (x) = E∗

n(x) +

∞∑
i=0

K ∗

ni F∗

i (x) . (65)

This can now be solved for the coefficients an by the Schmidt method, again as
mentioned above. With the aid of Equation (64), the coefficients bn can be ob-
tained.

6. Numerical calculations and discussion

The coefficients an and bn are known, so that the entire stress field can be obtained.
In the case of the present study, τ

(1)
yy (x, y) and τ

(1)
xy (x, y) along the crack line can
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Figure 2. The stress along the crack line versus x/ l for l = 1.0,
wl/c = 0.2, γ l = 0.4, η = 0.23 and a/βl = 0.003.

be expressed as

τyy = τ (1)
yy (x, 0) =

2µ0

π(k − 1)

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p (66)

[d1(s)anG(1)
n J2n+2(s`) + d2(s)bnG(2)

n J2n+2(s`)] cos(sx) ds,

τxy = τ (1)
xy (x, 0) =

2µ0

π

∞∑
n=0

∫
∞

0

1
s

e−
s2
4p (67)

[d3(s)anG(1)
n J2n+2(s`) + d4(s)bnG(2)

n J2n+2(s`)] sin(sx) ds.

When the lattice parameter a 6= 0, the semi-infinite integration and the series in
Equations (66)–(67) are convergent for any variable x , and they give finite stresses
along y = 0, so there are no stress singularities at crack tips. For −` < x < `,
τ

(1)
yy (x, 0)/τ0 is very close to negative unity. Hence, the solution of this paper can

also be proved to satisfy the boundary conditions (2). For x > `, τ
(1)
yy (x, 0)/τ0 pos-

sesses finite values diminishing from a finite value at x = ` to zero at x = ∞. Since
a/β` > 1/100 represents a crack length of less than 100 atomic distances [Eringen
et al. 1977; Eringen 1978; 1979], and, for such submicroscopic sizes, other serious
questions arise regarding the interatomic arrangements and force laws, we do not
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Figure 3. The locally enlarged graph of Figure 2 near the crack tip.

pursue valid solutions at such small crack sizes. The semi-infinite integrals that
occur are easily evaluated because of the rapid diminution of the integrands. From
[Itou 1978; Zhou et al. 1999a], it can be seen that the Schmidt method is performed
satisfactorily if the first ten terms of the infinite series in Equations (57)–(58) are
retained. The results of this paper are shown in Figures 2–8. From the results, the
following observations are very significant:

(i) Nonlocal theory can be used to solve dynamic fracture problems in function-
ally graded materials subjected to harmonic stress waves. The traditional
concepts of nonlocal theory can be extended to solve the fracture problem
of functionally graded materials. When the lattice parameter, a → 0 the
present problem will revert to the same problem as discussed in [Zhou et al.
2004]. The dynamic stress fields can be directly obtained in the present paper.
However, the dynamic stress fields cannot be directly obtained in [Zhou et al.
2004]; only the stress intensity factors are given there.

(ii For a/β` 6= 0, it can be proved that the semi-infinite integration in Equa-
tions (66)–(67) and the series in Equations (66)–(67) are convergent for any
variable x . So the stresses give finite values all along the crack line, as shown
in Figures 2 and 3. Contrary to the classical theory solution, we find that no
stress singularities are present at the crack tips, and also that the present results
converge to the classical ones when far away from the crack tips. The nonlocal
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Figure 4. The stress at the crack tip versus γ l for a/βl = 0.003,
wl/c = 0.2, η = 0.23 and l = 1.0.

elastic solutions yield a finite hoop stress at the crack tips, thus allowing us
to use the maximum stress as a fracture criterion. The maximum stress does
not occur at the crack tips, but slightly away from it, as shown in Figure 3.
This phenomenon has been thoroughly substantiated in [Eringen 1983]. The
distance between the crack tip and the maximum stress point is very small, and
it depends on the crack length, the lattice parameter, the parameter describing
the functionally graded materials, and the frequency of the incident waves. As
shown in Figures 2 and 3, it can be seen that the shear stress τ

(1)
xy is equal to

zero for |x | < `. However, the shear stress τ
(1)
xy is not equal to zero for x ≥ `.

This inequality is caused by the shear modulus and mass density not being
symmetric with respect to the cracked plane. The shear stress is smaller than
the normal stress along the crack line.

(iii) Stresses at the crack tips become infinite as the lattice parameter a → 0. This
is the classical continuum limit of square root singularity. This can be shown
from Equations (45)–(48). For a → 0,

e−
s2
4p = 1,

Equations (45)–(48) will reduce to the dual integral equations for the same
problem in the classical functionally graded materials [Zhou et al. 2004].
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Figure 5. The stress at the crack tip versus η for γ l = 0.4, a/βl =

0.003, wl/c = 0.3, and l = 1.0.

These dual integral equations can be solved by using the singular integral
equation for the same problem in the local functionally graded materials case.
However, that stress singularities are present at the crack tips in the local
functionally graded materials problem is well known.

(iv) The stress fields τ
(1)
yy at crack tips are symmetric about the line γ ` = 0, as

shown in Figure 4. The stress fields τ
(1)
yy at the crack tips decrease with an in-

crease in the gradient parameter for γ ` < −1.0, and increase with the gradient
parameter reaching a peak near γ ` = −0.5. They then decrease in magnitude
for γ ` < 0, as shown in Figure 4. In the case of γ ` > 0, the stress fields τ

(1)
yy

at the crack tips are symmetric, as in the case of γ ` < 0. This means that
by adjusting the gradient parameter of FGMs, dynamic stress fields near the
crack tips can be reduced. However, the shear stress fields τ

(1)
xy at the crack

tips increase almost linearly with an increase in the gradient parameter for all
γ `. In this case, the shear stress τ

(1)
xy is smaller than the normal stress τ

(1)
yy .

(v) The stress fields at the crack tips decrease with an increase in Poisson’s ratio
η, as shown in Figure 5. However, the changing ranges are small—that is, the
variation of Poisson’s ratio η within a practical range has a rather insignificant
influence on the stress value near crack tips as discussed in [Delae and Erdogan
1988; Ozturk and Erdogan 1996].
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Figure 6. The stress at the crack tip versus l for a/β = 0.003,
γ = 0.4, η = 0.23 and w/c = 0.2.

(vi) The stress fields at the crack tips increase non-linearly with an increase in
crack length, as shown in Figure 6. This is similar to results of classical frac-
ture theory. For classical fracture theory, the stress intensity factors increase
with an increase in crack length.

(vii) The dynamic stresses of τ
(1)
yy and τ

(1)
xy at the crack tips in functionally graded

materials tend to increase, with the frequency reaching a peak, and then de-
crease in magnitude, as shown in Figure 7. We can see that this conclusion is
the same as that of the fracture problem in isotropic homogeneous materials.

(viii) The effect of the lattice parameter of functionally graded materials on the
stress fields near the crack tips decreases with an increase in the lattice param-
eter, as shown in Figure 8. This phenomenon is discussed in [Eringen et al.
1977; 1978; 1979].



NONLOCAL THEORY SOLUTION OF A MODE-I CRACK 467

0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

τ
(1)
yy /τ0

τ
(1)
xy /τ0

τ
/
τ 0

wl/c

Figure 7. The stress at the crack tip versus wl/c for a/βl =

0.0p03, γ l = −0.4, η = 0.23 and l = 1.0.

Appendix

X1 =

[
1 1

m1(s) m2(s)

]
,

X1 =

[
1 1

m3(s) m4(s)

]
,

X3 =

[
g1(s) g2(s)
h1(s) h2(s)

]
,

X4 =

[
g3(s) g4(s)
h3(s) h4(s)

]
,

[X5] = [X1] − [X2][X4]
−1

[X3],[
e11(s) e12(s)
e21(s) e22(s)

]
= [X5]

−1,

[X6] = [X4]
−1

[X3][X5]
−1

=

[
c11(s) c12(s)
c21(s) c22(s)

]
.
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Figure 8. The stress at the crack tip versus a/βl for l = 1.0, γ l =

0.4, η = 0.23 and wl/c = 0.2.
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