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YUN HUANG, SOFIA G. MOGILEVSKAYA AND STEVEN L. CROUCH

The paper considers the problem of an infinite, homogeneous, isotropic vis-
coelastic plane containing multiple circular holes. Constant or time-dependent
loading is applied at infinity or on the boundaries of the holes. The sizes and
locations of the holes are arbitrary provided they do not overlap. The solution
of the problem is based on the use of the correspondence principle, and the
governing equation in the Laplace domain is a complex hypersingular boundary
integral equation written in terms of the unknown transformed displacements at
the boundaries of the holes. The main feature of this equation is that the material
parameters are only involved as multipliers for the terms other than the integrals
of transformed displacements. The unknown transformed displacements are ap-
proximated by truncated complex Fourier series with coefficients dependent on
the transform parameter. A system of linear algebraic equations is formulated
using Taylor series expansion for determining these coefficients. The viscoelas-
tic stresses and displacements are calculated through the viscoelastic analogs of
Kolosov–Muskhelishvili potentials, and an inverse Laplace transform is used to
provide the time domain solution. All the operations (space integration, Laplace
transform and its inversion) are performed analytically. The method described
in the paper enables the consideration of a variety of viscoelastic models. For
the sake of illustration, examples are given for the cases where the viscoelastic
solid responds as (i) a Boltzmann model in shear and elastically in dilatation,
(ii) a Boltzmann model in both shear and dilatation, and (iii) a Burgers model in
shear and elastically in dilatation. The accuracy and efficiency of the approach
are demonstrated by comparing selected results with the solutions obtained by
the finite element method (ANSYS) and the time stepping boundary element
approach.

1. Introduction

Circular cavities are frequently present in various engineering applications. Time-
independent problems involving multiple circular cavities have been extensively
studied. A comprehensive review of the literature related to elastic problems can
be found in [Crouch and Mogilevskaya 2003]. The solutions of various harmonic
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and biharmonic problems have been obtained in [Bird and Steele 1991; 1992; Bird
1992]. More recently, [Chen et al. 2006c; 2006a; 2006b] described a null-field
integral equation approach for plane, anti-plane shear and torsion problems.

Efficient solutions of time-dependent problems involving a large number of cir-
cular cavities have not yet been published. The present paper aims to present such
a solution for linear viscoelastic problems.

Traditional methods of solving problems in linear viscoelasticity fall into three
categories. Methods in the first category are based on the use of the correspondence
principle. For these methods, the reformulated problem in Laplace space is solved
analytically or numerically (for example, using finite element or boundary element
methods), and the results are inverted into the time domain using numerical Laplace
transform inversion [Schapery 1962; Rizzo and Shippy 1971; Kusama and Mitsui
1982; Wang and Crouch 1982; Sun and Hsiao 1985; Carini and Gioda 1986; Lee et
al. 1994]. The accuracy of these methods depends on the choice of the appropriate
values for the transform parameters [Lee and Kim 1995], which changes with each
problem under consideration. This disadvantage limits the application of these
methods.

In the second category, a temporal integral equation is formulated using the
time-dependent Green’s functions, and the time history is divided into a number
of discrete steps. By approximating time-dependent unknowns by some functions
(for example, polynomials) at each time step and integrating them numerically or
analytically, the time convolution is replaced by a sum of integrals for all steps. In
general, the computation for one time step requires knowledge of the results from
all the previous steps [Lee and Kim 1995; Sim and Kwak 1988]. The amount of
computation therefore increases with time. If a linear or constant time interpolation
function is used, the influence from all previous steps can be stored in a time-
dependent function and updated after each step. In such cases, the computational
expense can be decreased to some extent [Shinokawa et al. 1985].

In the third category of solution procedures for problems in linear viscoelasticity,
a boundary integral equation involving time derivatives of the principal unknown
variables (for example, the displacements) is obtained using the differential con-
stitutive equation for a particular viscoelastic model and a weighted residual tech-
nique. A finite difference scheme is adopted to approximate the time derivatives,
which results in a time stepping algorithm, and the space integrals are carried out
using the boundary element method [Mesquita and Coda 2001; 2002b; 2003]. For
the special case in which all of the geometric features are circular, we suggested
a time stepping boundary integral method based on a truncated Fourier series ap-
proximation for the boundary variables [Huang et al. 2005c; 2005b; 2005a]. All
the space integrals can be evaluated analytically in this method. However, such
methods are based on the assumption of a constant viscoelastic Poisson’s ratio,
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which is physically unrealistic for practical materials. A volume integral must
be included in the analysis if one wishes to consider a time-dependent Poisson’s
ratio, and this requires the adoption of a finite element type approach, as done for
example in [Mesquita and Coda 2002a].

To overcome the disadvantages noted above for traditional methods of solution,
a new approach is desired. As an attempt in this direction, we describe here a
semi-analytical solution for the problem of an infinite viscoelastic plane containing
multiple holes. The time-independent analog of this approach has been presented
earlier in the series of papers [Mogilevskaya and Crouch 2001; 2002; Crouch and
Mogilevskaya 2003; Wang et al. 2003a; 2003b; Mogilevskaya and Crouch 2004;
Legros et al. 2004]. The technique presented in those papers was based on the use
of complex or real versions of the two-dimensional Somigliana’s formula. The
unknown variables on the circular boundaries were approximated by truncated
Fourier series. All the space integrals involved were evaluated analytically. In fact,
infinite Fourier series provide the analytical solution for this class of problems;
apart from round-off error, the only errors introduced in the numerical model are
due to truncation of the series.

In the present paper, we extend this technique to the area of linear viscoelasticity.
The solution presented in this paper is based on the correspondence principle and
the analytical Laplace transform and its inversion, rather than the time stepping
scheme used in our previous work [Huang et al. 2005c; 2005b; 2005a]. The gov-
erning equation for the problem in the Laplace domain is a complex hypersingular
boundary integral equation written in terms of the unknown transformed displace-
ments at the boundaries of the holes. A significant feature of this equation is that
the space integrals involving the unknown variables (the transformed boundary
displacements) do not include the material properties; the material parameters only
appear as multipliers for the terms involving transformed far-field stress and pore
pressures. The unknown transformed displacements on the circular boundary are
approximated by truncated complex Fourier series with the coefficients dependent
on the transform parameters. A system of linear algebraic equations is formed and
solved for these Fourier coefficients. The solution for stresses and displacements
anywhere in the viscoelastic plane is obtained in both the Laplace and time domains.
No specific physical model is involved in the governing complex variable hyper-
singular integral equation, which means that the method is capable of handling a
variety of viscoelastic models.

Several computational examples are given. In these examples, the viscoelas-
tic solid responds as a Boltzmann model in shear and elastically in dilatation; a
Boltzmann model in both shear and dilatation; and a Burgers model in shear and
elastically in dilatation. Three loading cases are considered:

(i) the viscoelastic plane is subjected to constant far-field stresses;
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(ii) the holes are subjected to constant pressure; and

(iii) the holes are subjected to time-dependent pressure.

The accuracy and efficiency of the method are examined by comparison to the
numerical solution obtained by commercial finite element software (ANSYS) or
by a time stepping boundary element approach [Huang et al. 2005b].

2. Problem formulation

Consider an infinite, isotropic, viscoelastic plane containing an arbitrary number
of nonoverlapping circular holes, as shown in Figure 1. A plane strain condition
is assumed. The holes are assumed to be either traction-free or subjected to time-
dependent uniform normal traction. The viscoelastic plane is subjected to time-
dependent far-field stress σ∞(t). Let R j , z j and L j denote the radius, center, and
boundary of the j th hole, and let p j (t) denote the time-dependent uniform normal
traction acting on L j (p j < 0 for compression). Any point of the plane is identified
by the complex coordinate z = x + iy. The global and local Cartesian coordinate
systems are shown in Figure 1. The direction of travel is clockwise for all the
boundaries L j . The unit tangent q points in the direction of travel and the unit
outward normal n points to the right of this direction, away from the viscoelastic
solid. The evolution of displacements and stresses in the perforated viscoelastic
solid is to be determined.
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Figure 1. An infinite viscoelastic plane with multiple circular
holes.
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3. Correspondence principle

The correspondence principle allows the time domain solution for a linear vis-
coelastic problem to be obtained from the solution of a corresponding elastic prob-
lem by employing the following procedure. By using the Laplace transform, the
time-dependent parameters for the original viscoelastic problem are removed by
replacing them by s-varying analogs of these parameters. The resulting problem is
formally equivalent to a linear elastic problem. However, the ‘elastic constants’ are
functions of the transform parameter s, as are the transformed boundary conditions
for the problem. By solving the corresponding elastic problem and taking the
inverse Laplace transform, the time-dependent solution is found [Lee 1955; Findly
et al. 1989].

The Laplace transform of a function f (t) and its inversion are defined as [Haber-
man 1998]

f ∗(s)≡ 0[ f (t)] =

∫
∞

0
f (t)e−st dt (Re s = ς ≥ 0),

f (t)≡ 0−1
[ f ∗(s)] =

1
2π i

∫ ς+i∞

ς−i∞
f ∗(s)est ds (t ≥ 0, ς ≥ 0),

(1)

where s is the transform parameter and ς is a vertical contour in the complex plane
chosen in such a way that all singularities of f ∗(s) are located to the left of it.

The general way to obtain the s-varying analog of the Young’s modulus E∗(s)
and Poisson’s ratio ν∗(s) from the constitutive equations of a viscoelastic model
is explained elsewhere (for example, [Wang and Crouch 1982]). Using the re-
lations among elastic constants, one can easily obtain the s-varying shear modu-
lus G∗(s), bulk modulus K ∗(s) and s-varying Kolosov–Muskhelishvili parameter
κ∗(s) (which equals 3−4ν∗(s) in plane strain and (3−ν∗(s))/(1+ν∗(s)) in plane
stress). In Section 6, G∗(s) and κ∗(s) are given for three different viscoelastic
models.

4. Basic equations

4.1. Basic hypersingular integral equation in the Laplace domain. The govern-
ing equation for the problem of a viscoelastic plane with holes (Figure 1) in the
Laplace domain is an analog of the complex hypersingular integral equation for the
corresponding elastic problems [Linkov and Mogilevskaya 1994; Mogilevskaya
and Linkov 1998; Linkov and Mogilevskaya 1998; Linkov 2002]. To state the
equation, let N be the number of holes; let i denote

√
−1 and z̄ the complex

conjugate of z; let u∗

j (τ ; s)= u∗

j,x(τ ; s)+ iu∗

j,y(τ ; s) be the result of the Laplace
transform applied to the complex-valued displacement u(τ )= u j,x(τ )+ iu y(τ ) in
the global coordinate system on the boundary of the j-th hole; let σ∞,∗

i j (s) (with i ,
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j representing x or y) be the components of far-field stress in the Laplace domain.
The problem is then described by the N equations (k = 1, 2, . . . , N )

1
2π i

N∑
j=1

(
2
∫

L j

u∗

j (τ ; s)

(τ − ζ )2
dτ −

∫
L j

u∗

j (τ ; s)
∂2

∂τ∂ζ
K1(τ, ζ ) dτ

−

∫
L j

u∗

j (τ ; s)
∂2

∂τ̄ ∂ζ
K2(τ, ζ ) d τ̄

+
p∗

j

2G∗

(
(1 − κ∗)

∫
L j

dτ
τ − ζ

− κ∗

∫
L j

∂

∂ζ
K1(τ, ζ ) dτ +

∫
L j

∂

∂ζ
K2(τ, ζ ) d τ̄

))

=
κ∗

+ 1
4G∗

(
p∗

k −
(
σ∞,∗

xx + σ∞,∗
yy

)
−

d ζ̄
dζ

(
σ∞,∗

yy − σ∞,∗
xx − 2iσ∞,∗

xy
))
, (2)

where G∗ stands for G∗(s) and likewise p∗

j , p∗

k , κ
∗, and the σ∞,∗

i j ; d ζ̄ /dζ =

exp(−2iβ), where β is the angle between the axis Ox and the tangent at the point
ζ ; τ ∈ L j and ζ ∈ Lk for k = 1, 2, . . . , N ; and the kernels K1 and K2 are

K1(τ, ζ )= ln
τ − ζ

τ̄ − ζ̄
, K2(τ, ζ )=

τ − ζ

τ̄ − ζ̄
. (3)

4.2. The viscoelastic analog of the Kolosov–Muskhelishvili potentials. In the La-
place domain the displacements and stresses at any point of the viscoelastic plane
can be calculated using the viscoelastic analogs of the Kolosov–Muskhelishvili
potentials [Muskhelishvili 1963]

2G∗(s)u∗(z;s)= κ∗(s)ϕ∗(z;s)− z(∂/∂z)ϕ∗(z;s)−ψ∗(z;s), (4)

σ ∗

xx(z;s)+ σ ∗

yy(z;s)= 4Re(∂/∂z)ϕ∗(z;s), (5)

σ ∗

yy(z;s)− σ ∗

xx(z;s)+ 2iσ ∗

xy(z;s)= 2
(
z̄(∂2/∂z2)ϕ∗(z;s)+ (∂/∂z)ψ∗(z;s)

)
, (6)

where, as in [Wang et al. 2003a],

ϕ∗(z; s)=
G∗(s)

π i(κ∗(s)+ 1)

N∑
j=1

∫
L j

u∗

j (τ ; s)

τ − z
dτ +ϕ∞,∗(z; s) (7)

and

ψ∗(z; s)

=
G∗(s)

π i(κ∗(s)+ 1)

N∑
j=1

(
p∗

j (s)

2G∗(s)

(∫
L j

τ̄ dτ
τ − z

+ κ∗(s)
∫

L j

ln(τ − z) d τ̄
)

+

∫
L j

u∗

j (τ ; s)

τ − z
dτ −

∫
L j

u∗

j (τ ; s)

τ − z
d τ̄ +

∫
L j

u∗

j (τ ; s)τ̄

(τ − z)2
dτ
)

+ψ∞,∗(z; s), (8)
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with

ϕ∞,∗(z; s)=
σ∞,∗

xx (s)+ σ∞,∗
yy (s)

4
z, (9)

ψ∞,∗(z; s)=
σ∞,∗

yy (s)− σ∞,∗
xx (s)+ 2iσ∞,∗

xy (s)

2
z.

After the displacements u∗

j (τ ; s) on boundary L j ( j = 1, . . . , N ) have been ob-
tained from the solution of Equation (2), the displacements and stresses in the
Laplace domain at point z can be calculated using (4)–(6) and (7)–(9), provided
that the integrals involved in (7) and (8) can be evaluated.

5. Numerical solution

The Laplace domain equation (2) is similar to the corresponding equation for elas-
ticity (for example, equation (1) in [Wang et al. 2003a]). Thus, Equation (2) can
be solved in the same way as its elastic counterpart [Wang et al. 2003a]. The main
steps of the solution are outlined below.

5.1. Approximation of the boundary variables. The unknown displacement on
the boundary L j ( j = 1, . . . , N ) in the Laplace domain is approximated by a
truncated complex Fourier series as

u∗

j (τ ; s)=

M j∑
m=1

D∗

−m, j (s)g
m
j (τ )+

M j∑
m=0

D∗

m, j (s)g
−m
j (τ ), (10)

where the function g j (τ ) is defined as

g j (τ )=
R j

τ − z j
.

The unknown complex Fourier coefficients D∗

±m, j (s) (m = 1, . . . ,M j ) in (10)
are functions of the Laplace transform parameter s. In the following discussion,
we will omit the argument s in the expressions for the Fourier coefficients for
notational convenience.

With the substitution of the Fourier series representation (10) into Equation (2),
the unknown coefficients can be moved outside of the space integrals. The kernel
space integrals are the same as those for the elastic problem [Wang et al. 2003a].
Thus, we can use the results of the space integrals provided in that article. In this
way we obtain the following system of N complex algebraic equations, one for
each hole:
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Mk∑
m=1

m D∗

−m,k gm+1
k (ζ )+

(
D∗

1,k + D∗

1,k

)
+

Mk∑
m=2

m D∗

m,k g1−m
k (ζ )

+

N∑
j=1
j 6=k

Rk

R j

( M j∑
m=1

m D∗

−m, j g
m+1
j (ζ )+

(
D∗

1, j + D∗

1, j

)
g2

k (ζ )g
2
j (ζ )

+

M j∑
m=2

m D∗

m, j g
2
k (ζ )g

m+1
j (ζ )

+

M j∑
m=1

m D∗

−m, j

(
gm+1

j (ζ )− (m + 2)g2
k (ζ )g

m+3
j (ζ )

+(m + 1)
( Rk

R j
gk(ζ )+

g2
k (ζ )

g j (zk)

)
gm+2

j (ζ )

))

=
κ∗(s)+ 1
4G∗(s)

Rk
(
σ∞,∗

xx + σ∞,∗
yy − g2

k (ζ )(σ
∞,∗
yy − σ∞,∗

xx − 2iσ∞,∗
xy )

)
−

p∗

k

G∗(s)
Rk −

1 − κ∗(s)
2G∗(s)

Rk g2
k (ζ )

N∑
j=1
j 6=k

p∗

j g2
j (ζ ) (11)

Similarly, with the substitution of Fourier series approximation (10) into (7) and
(8), and using the results of the space integrals provided in [Wang et al. 2003a],
the viscoelastic analogs of the Kolosov–Muskhelishvili potentials ϕ∗(z; s) and
ψ∗(z; s) are expressed as

ϕ∗(z; s)=
2G∗(s)
κ∗(s)+ 1

N∑
j=1

M j∑
m=1

D∗

−m, j g
m
j (z)+

σ∞,∗
xx (s)+ σ∞,∗

yy (s)

4
z, (12)

ψ∗(z; s)=
2G∗(s)
κ∗(s)+ 1

N∑
j=1

((
g2

j (z)+
z j

z − z j

) M j∑
m=1

m D∗

−m, j g
m
j (z) (13)

−
(
D∗

1, j + D∗

1, j

)
g j (z)−

M j∑
m=2

D∗

m, j g
m
j (z)

)

−
1 − κ∗(s)
1 + κ∗(s)

N∑
j=1

p∗

j (s)R j g j (z)+
σ∞,∗

yy (s)− σ∞,∗
xx (s)+ 2iσ∞,∗

xy (s)

2
z.

5.2. Reduction to a linear algebraic system. To find the unknown coefficients
D∗

−m, j (m = 1, . . . ,M j ) and D∗

m, j (m = 1, . . . ,M j ) for j = 1, . . . , N , we need to
reduce the system (11) to a linear algebraic system. We showed in a previous paper
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[Wang et al. 2003a] that, excluding collocation, there are two equivalent methods to
obtain the linear algebraic system: (i) the Galerkin weighted residual method and
(ii) the Taylor series expansion method. Using a Taylor series expansion technique
[Wang et al. 2003a] a linear algebraic equation system is obtained as follows:

Mk∑
m=2

m D∗

m,k g1−m
k (ζ )+

∞∑
n=1

N∑
j=1
j 6=k

Rk

R j

gn
k (z j )

gn
k (ζ )

M j∑
m=1

m
(m+n

n

)
D∗

−m, j g
m+1
j (zk)

+ 2 Re(D∗

1,k)+

N∑
j=1
j 6=k

Rk

R j

M j∑
m=1

m
(

D∗

−m, j g
m+1
j (zk)+ D∗

−m, j g
m+1
j (zk)

)

+

Mk∑
m=1

m D∗

−m,k gm+1
k (ζ )

+

∞∑
n=1

N∑
j=1
j 6=k

Rk

R j
gn

k (z j )gn
k (ζ )

M j∑
m=1

m
(m+n

n

)
D∗

−m, j g
m+1
j (zk)

+

∞∑
n=0

N∑
j=1
j 6=k

Rk

R j
gn

k (z j )

(
gn+2

k (ζ )

(
2(n + 1)Re(D∗

1, j )g
2
j (zk)

+

M j∑
m=2

m
(m+n

n

)
D∗

m, j g
m+1
j (zk)

−

M j∑
m=1

m(m + 2)
(m+n+2

n

)
D∗

−m, j g
m+3
j (zk)

+

M j∑
m=1

m(m + 1)
(m+n+1

n

)
D∗

−m, j

gm+2
j (zk)

g j (zk)

)

−gn+1
k (ζ )

M j∑
m=1

m(m + 1)
(m+n+1

n

)
D∗

−m, j g
m+1
j (zk)gk(z j )

)

=
κ∗(s)+ 1
4G∗(s)

Rk
(
σ∞,∗

xx + σ∞,∗
yy

)
−

p∗

k

G∗(s)
Rk

−
κ∗(s)+ 1
4G∗(s)

Rk g2
k (ζ )

(
(σ∞,∗

yy − σ∞,∗
xx − 2iσ∞,∗

xy )
)

−
1 − κ∗(s)
2G∗(s)

Rk

∞∑
n=0

(n + 1)gn+2
k (ζ )

N∑
j=1
j 6=k

p∗

j g2
j (zk)gn

k (z j ). (14)
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By equating the coefficients of the positive powers gl+1
k (t) ( 1 ≤ l ≤ Mk), the

constant terms, and the negative powers g1−l
k (t) ( 2 ≤ l ≤ Mk) in (14), we obtain

a system of 2Mk ( k = 1, . . . , N ) linear complex algebraic equations for all the
Fourier coefficients. To simplify the notation, we set

RHS1(s)= −
κ∗(s)+ 1
4G∗(s)

Rk(σ
∞,∗
yy (s)−σ∞,∗

xx (s)− 2iσ∞,∗
xy (s))

−
1 − κ∗(s)
2G∗(s)

Rk

N∑
j=1
j 6=k

p∗

j (s)g
2
j (zk)

and, for l = 2, . . . ,Mk ,

RHSl(s)= −
1 − κ∗(s)
2G∗(s)

Rk

N∑
j=1
j 6=k

p∗

j (s)g
2
j (zk)gl−1

k (z j ).

The desired system is

D∗

−l,k −

N∑
j=1
j 6=k

gl
k(z j )

( M j∑
m=1

(l + 1)
(m+l

l+1

)
D∗

−m, j g
m
j (zk)

×

(
g j (zk)

g j (zk)
−

m + l + 1
l + 1

g2
k (z j )−

m + l + 1
m + 1

g2
j (zk)

)

+ 2 Re(D∗

1, j )g j (zk)+

M j∑
m=2

(m+l−1
l

)
D∗

m, j g
m
j (zk)

)
= RHSl(s), (15)

Re D∗

1,k +
1
2

N∑
j=1
j 6=k

Rk

R j

M j∑
m=1

m
(
D∗

−m, j g
m+1
j (zk)+ D∗

−m, j g
m+1
j (zk)

)
=
κ∗(s)+ 1
8G∗(s)

Rk
(
σ∞,∗

xx (s)+ σ∞,∗
yy (s)

)
−

p∗

k (s)
2G∗(s)

Rk, (16)

D∗

l,k −

N∑
j=1
j 6=k

gl
k(z j )

M j∑
m=1

(m+l−1
l

)
D∗

−m, j g
m
j (zk)= 0 (l = 2, . . . ,Mk). (17)

The system (15)–(17) can be written in compact form as

AD = B. (18)

The matrix A is s-independent and can be inverted directly and stored in computer
memory. The unknown vector D is s-dependent and is defined as

D =
[

D∗

1(s) . . . D∗

N (s)
]T
,
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where each subvector, such as D∗

j (s), is a vector of unknown Fourier coefficients
for one hole, given by

D∗

j (s)=
[

D∗

−M j , j (s) . . . D∗

−1, j (s) Re(D∗

1, j (s)) D∗

2, j (s) . . . D∗

M j , j (s)
]T
.

The vector B on the right is composed of loading terms multiplied by certain
constants involving the transformed material parameters. The three constants are(
κ∗(s)+ 1

)
/
(
4G∗(s)

)
,
(
1 − κ∗(s)

)
/
(
2G∗(s)

)
, and 1/

(
2G∗(s)

)
. We decompose B

into three parts, each containing only one constant:

B = B(1) + B(2) + B(3),

where, for k = 1, . . . , N , we have set

B(1)l,k =


−
κ∗(s)+ 1
4G∗(s)

Rk
(
σ∞,∗

yy (s)− σ∞,∗
xx (s)− 2iσ∞,∗

xy
)
(s) (l = −1),

κ∗(s)+ 1
4G∗(s)

Rk
σ∞,∗

xx (s)+ σ∞,∗
yy (s)

2
(l = 1),

0 (l = ±2, . . . ,±Mk),

(19)

B(2)l,k =


−

1 − κ∗(s)
2G∗(s)

Rk

∑N
j=1
j 6=k

p∗

j (s)g
2
j (zk) (l = −1),

−
1 − κ∗(s)
2G∗(s)

Rk

∑N
j=1
j 6=k

p∗

j (s)g
2
j (zk)g−l−1

k (z j ) (l = −Mk, . . . ,−2),

0 (l = 1, . . . ,Mk),

(20)

B(3)l,k =


1

2G∗(s)

(
−p∗

k (s)Rk
)

(l = 1),

0 (l = −1,±2, . . . ,±Mk).

(21)

Assume for simplicity that all components of the far-field stress vary in the same
time-dependent manner; for example,

σ∞

i j (t)= σ̃∞

i j · f∞(t),

where i, j represent x, y. Thus, in the Laplace domain the far-field stress is ex-
pressed by

σ
∞,∗
i j (s)= σ̃∞

i j · f ∗

∞
(s), (22)

where the s-dependent function f ∗
∞
(s) is given as

f ∗

∞
(s)= 0

[
f∞(t)

]
=

∫
∞

0
f∞(t)e−st dt.
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Similarly we assume that the tractions on the boundaries of the holes vary as

p j (t)= p̃ j · f p(t), j = 1, . . . , N .

Thus, in the Laplace domain the boundary tractions are expressed by

p∗

j (s)= p̃ j · f ∗

p (s).

Substituting this and (22) into (19)–(21) and separating the s-dependent terms, we
get

B(1) =
κ∗(s)+ 1
4G∗(s)

〈
B(1)

〉
f ∗

∞
(s),

B(2) =
1 − κ∗(s)
2G∗(s)

〈
B(2)

〉
f ∗

p (s),

B(3) =
1

2G∗(s)

〈
B(3)

〉
f ∗

p (s),

where

〈
B(1)l,k

〉
=


−Rk

(
σ̃∞

yy − σ̃∞
xx − 2i σ̃∞

xy
)

(l = −1),
1
2 Rk(σ̃

∞
xx + σ̃∞

yy ) (l = 1),

0 (l = ±2, . . . ,±Mk),

〈
B(2)l,k

〉
=


−Rk

∑N
j=1
j 6=k

p̃ j g2
j (zk) (l = −1),

−Rk

∑N
j=1
j 6=k

p̃ j g2
j (zk)g−l−1

k (z j ), (l = −Mk, . . . ,−2),

0 (l = 1, . . . ,Mk),

〈
B(3)l,k

〉
=

− p̃k Rk (l = 1),

0 (l = −1,±2, . . . ,±Mk).

Thus, the solution of equation system (18) can be written compactly as

D =
κ∗(s)+ 1
4G∗(s)

〈
D(1)〉 f ∗

∞
(s)+

1 − κ∗(s)
2G∗(s)

〈
D(2)〉 f ∗

p (s)+
1

2G∗(s)

〈
D(3)〉 f ∗

p (s), (23)

where the s-independent vectors
〈
D( j)

〉
( j = 1, . . . , 3) are the solution of the fol-

lowing equation systems 〈
D( j)〉

= A−1 〈B( j)〉 . (24)

We emphasize that A−1 is computed only once. The system (24) can also be solved
(after separating the real and imaginary parts) using standard numerical methods
(Gauss elimination, Gauss–Seidel iteration, etc.).
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5.3. Solution in the Laplace domain. With the substitution of the solution for
Fourier coefficients (23) into the expressions for the potentials (12), followed by
substitution of those potentials and their derivatives into (4)–(6), one obtains the
solution for the displacements and stresses at any point z in the Laplace domain:

ux(z; s)+iu y(z; s)=
3∑

k=1

(
f ∗

k (s)8k −z f ∗

k+3(s)8
′

k − f ∗

k+3(s)9k
)
+ f ∗

5 (s)9(p)

+ f ∗

7 (s)
σ̃∞

xx + σ̃∞
yy

2
z − f ∗

4 (s)
(
σ̃∞

yy − σ̃∞

xx − 2i σ̃∞

xy
)
z̄, (25)

σxx(z; s)+ σyy(z; s)= 4 Re
( 1

2 f ∗

∞
(s)8′

1 + f ∗

8 (s)8
′

2 + f ∗

9 (s)8
′

3
)

+
(
σ̃∞

xx + σ̃∞

yy
)

f ∗

∞
(s), (26)

σyy(z; s)− σxx(z; s)+ 2iσxy(z; s)

= 2
(

z̄
(1

2 f ∗

∞
(s)8′′

1 + f ∗

8 (s)8
′′

2 + f ∗

9 (s)8
′′

3
)

+
( 1

2 f ∗

∞
(s)9 ′

1 + f ∗

8 (s)9
′

2 + f ∗

9 (s)9
′

3
)
+ f ∗

8 (s)s
−19(p)′

)
+
(
σ̃∞

yy − σ̃∞

xx + 2i σ̃∞

xy
)

f ∗

∞
(s), (27)

where 8(k), 9(k) (k = 1, . . . , 3) and 9(p) are given by

8(k) =

N∑
j=1

M j∑
m=1

〈
D(k)

−m, j

〉
gm

j (z),

9(k)
=

N∑
j=1

((
g2

j (z)+
z j

z − z j

) M j∑
m=1

m
〈
D(k)

−m, j

〉
gm

j (z)

−
( 〈

D(k)
1, j

〉
+
〈
D(k)

1, j

〉 )
g j (z)−

M j∑
m=2

〈
D(k)

m, j

〉
gm

j (z)
)
,

9(p)
=

N∑
j=1

p̃ j R j g j (z).

Note that 8(k), 9(k) and 9(p) are independent of the transform parameter s.
In these equations the s-independent Fourier coefficients

〈
D(k)

m, j

〉
, for m = ±1,

. . . , ±M j , are the components of the vectors
〈
D(k)

〉
(k = 1, . . . , 3) obtained from

the equation systems (24).
The s-dependent functions involved in Equations (25)–(27) are written as

f ∗

1 (s)=
κ∗(s)

4G∗(s)
f ∗

∞
(s), f ∗

2 (s)=
1

2G∗(s)
κ∗(s)

(
1 − κ∗(s)

)
κ∗(s)+ 1

f ∗

p (s),
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f ∗

3 (s)=
1

2G∗(s)
κ∗(s)

κ∗(s)+ 1
f ∗

p (s), f ∗

4 (s)=
1

4G∗(s)
f ∗

∞
(s),

f ∗

5 (s)=
1

2G∗(s)
1 − κ∗(s)
κ∗(s)+ 1

f ∗

p (s), f ∗

6 (s)=
1

2G∗(s)
1

κ∗(s)+ 1
f ∗

p (s),

f ∗

7 (s)=
κ∗(s)− 1
4G∗(s)

f ∗

∞
(s), f ∗

8 (s)=
1 − κ∗(s)
κ∗(s)+ 1

f ∗

p (s),

f ∗

9 (s)=
1

κ∗(s)+ 1
f ∗

p (s).

Note again that the space functions 8(k), 9(k) (k = 1, 2, 3) and 9(p) are indepen-
dent of the viscoelastic model and the time-dependent behavior for the loadings:
f∞(t) and f p(t). Thus the procedure is universal for any viscoelastic model and
any loading situation.

5.4. Solution in the time domain. Upon application of the analytical inverse La-
place transform, equations (25)–(27) become

ux(z; t)+ iu y(z; t)=
3∑

k=1

(
fk(t)8k − z fk+3(t)8′

k − fk+3(t)9k
)
+ f5(t)9(p)

+ f7(t)
σ̃∞

xx + σ̃∞
yy

2
z − f4(t)

(
σ̃∞

yy − σ̃∞

xx − 2i σ̃∞

xy
)
z̄, (28)

σxx(z; t)+ σyy(z; t)= 4 Re
( 1

2 f∞(t)8′

1 + f8(t)8′

2 + f9(t)8′

3
)

+ σ∞

xx (t)+ σ
∞

yy (t), (29)
σyy(z; t)− σxx(z; t)+ 2iσxy(z; t)

= 2
(

z̄
(1

2 f∞(t)8′′

1 + f8(t)8′′

2 + f9(t)8′′

3
)

+
( 1

2 f∞(t)9 ′

1 + f8(t)9 ′

2 + f9(t)9 ′

3
)
+ f8(t)s−19(p)′

)
+ σ∞

yy (t)− σ
∞

xx (t)+ 2iσ∞

xy (t), (30)

where f j (t) ( j = 1, . . . , 9) are the analytical inverse Laplace transforms (1) of the
s-functions, that is,

f j (t)= 0−1[ f ∗

j (s)
]
. (31)

It is observed from Equations (28) and (30) that to compute the displacements
and stresses at multiple time instants, one need compute the potentials 8(k), 9(k),
9(p) and their derivatives only once (following the procedure described in Sec-
tions 5.1–5.3), and then successively multiply them by the time functions f j (t)
( j = 1, . . . , 9) for each time instant. This procedure dramatically reduces the com-
putational costs, as compared with time stepping approaches that use a nonconstant
time step size.
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Since the time dependence of the solutions is simply determined by the time
functions f j (t) ( j = 1, . . . , 9), the present approach provides the capability to
adopt a variety of physical models and loading conditions. It is more flexible than
the traditional time-stepping approach, in which the constitutive equation for the
physical model is involved in the governing equations; see [Huang et al. 2005c;
2005b; 2005a].

In the solution procedure, the Fourier coefficients are not computed explicitly.
The accuracy of the solution is nevertheless still dependent on the number of
Fourier terms, as can be seen from the expressions of the potentials (12). We
will perform the computation for given values Mk (k = 1 to N ), and then increase
the values of Mk until a specified degree of accuracy is achieved. Details about
determining the number of terms in the Fourier expansion and the error estimation
are given by [Mogilevskaya and Crouch 2001].

6. Examples

It is well known that for the class of problems considered in this paper the vis-
coelastic stresses are time-independent and are exactly same as the stresses in the
corresponding elastic problems [Timoshenko and Goodier 1970]. In our approach,
this conclusion can be rigorously proved for the case of one hole. For the case of
multiple holes it has been verified numerically for all the examples in this paper.
This fact provides the means to verify the solution for the stresses obtained with our
approach. To do so we performed the computation and compared the results for the
stresses to those for the elastic problems given in [Wang et al. 2003a] (the latter
results have been verified with the benchmark results obtained earlier by [Ling
1948] and [Haddon 1967]). We achieved the same accuracy as reported in [Wang
et al. 2003a].

Thus, below we only present the results for displacements. To demonstrate the
versatility of our approach we present the examples for three different viscoelastic
models.

6.1. Examples for viscoelastic model I. In this series of examples we assume that
the viscoelastic material responds as a Boltzmann model in shear and elastically in
dilatation (Figure 2). The constitutive equations for shear and dilatation are

G1 + G2

G1
si j +

η

G1
ṡi j = 2G2εi j + 2ηε̇i j , σkk = 3K εkk,

where the meanings of the elastic and viscous parameters G1, G2 and η are ex-
plained in Figure 2. The numbers si j (σkk) and εi j (εkk) are the deviatoric (volu-
metric) components of the stress and strain tensors σi j and εi j :

σi j = si j +
1
3δi jσkk, εi j = εi j +

1
3δi jεkk .
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G1

G2

Figure 2. Boltzmann model.

Following the procedure described in [Wang and Crouch 1982], one can find the
s-varying constants for this model as follows:

G∗(s)=
G1(G2 + ηs)
G1 + G2 + ηs

,

κ∗(s)= 1 +
6G1(G2 + ηs)

G1(G2 + ηs)+ 3(G1 + G2 + ηs)K
.

(32)

Assume that the stresses at infinity and the tractions on the boundaries of the
holes are suddenly applied at t = 0 and remain constant. Thus,

f∞(t)= 1 and f p(t)= 1.

By Laplace transformation, this yields

f ∗

∞
(s)=

1
s

and f ∗

p (s)=
1
s
.

With the substitution of these equations and (32) into the expressions for f ∗

i (see
pages 483–484), and after an analytic inverse Laplace transformation, one obtains
for the time functions the expressions

f1(t)=
1
4χ1(t), f2(t)= −

1
2χ1(t)+χ2(t)−χ3(t),

f3(t)=
1
2

(
χ2(t)−χ3(t)

)
, f4(t)=

1
4χ2(t),

f5(t)= −
1
2χ2(t)+χ3(t), f6(t)=

1
2χ3(t),

f7(t)=
1
4

(
χ1(t)−χ2(t)

)
f8(t)= −1 + 2χ4(t),

f9(t)= χ4(t),

(33)
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with

χ1(t)=
(G1 + G2)(C2 + 3G1G2)

G1G2C1
−

1
G2

e−αt
−

6G2
1e−βt

(3K + G1)C1
,

χ2(t)=
1

G1
+

1 − e−αt

G2
,

χ3(t)=
(G1 + G2)C1

2G1G2C2
−

1
2G2

e−αt
+

6G2
1e−γ t

(3K + 4G1)C2
,

χ4(t)=
1
2

−
3G1G2

2C2
−

9K G2
1e−γ t

2(3K + 4G1)C2
,

where the following abbreviations have been introduced:

α =
G2

η
, (34)

β =
1
η

( 3K G1

3K + G1
+ G2

)
,

C1 = 3K G2 + G1(3K + G2),

γ =
1
η

( 3K G1

3K + 4G1
+ G2

)
,

C2 = 3K G2 + G1(3K + 4G2).

6.1.1. An example with constant far-field stresses. Consider two traction-free cir-
cular holes of different sizes in an infinite plane subjected to far-field stresses σ∞

xx ,
σ∞

yy and σ∞
xy . As shown in Figure 3, two holes L1 and L2 with radii R1 and R2 are

aligned with the x- axis and separated by a distance d .

yy

A xx

B

 L2
xx

yy

 y 

 x  O 

d

 R2

 R1

 L1

 B 

A

Figure 3. Two circular holes in an infinite plane.
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The elastic problem with the same geometrical configuration under three loading
conditions (longitudinal tension: σ∞

xx = σ0, σ
∞
yy = σ∞

xy = 0; transverse tension:
σ∞

yy = σ0, σ∞
xx = σ∞

xy = 0; and pure shear: σ∞
xy = σ0, σ∞

xx = σ∞
yy = 0) was considered

in [Wang et al. 2003a]. By using the method described in the present paper, we
obtained the results for the corresponding viscoelastic problems. The parameters
were adopted for the viscoelastic material were

G1 = 8 × 103σ0, G2 = 2 × 103σ0, η = 5 × 103σ0 · sec, K = 17333.3σ0,

To obtain the dimensionless time we used the viscosity coefficient γ = η/G2 = 2.5
second.

To examine the numerical results for displacements, the relative elongations of
the diameters of hole L1 in the x and y directions

δx =
ux(A)− ux(A′)

2R1
and δy =

u y(B)− u y(B ′)

2R1
(35)

are computed for the case R1/R2 = 5; d/R2 = 1 and σ∞
xx = σ0, σ

∞
yy = 0.5σ0, σ∞

xy =

0 and the results were compared with those obtained with the commercial finite
element software-ANSYS. Since ANSYS cannot directly model an infinite area,
the infinite viscoelastic plane was modeled as a large plate (200R2 ×200R2). Prony
series were adopted to approximate the relaxation functions of the shear and bulk
moduli and a time stepping algorithm was used to obtain the time domain solution
in ANSYS. With ANSYS, 4839 finite elements were used and the computation
took 2 hours 16 minutes on an IBM SP workstation (500 time steps). With the
present approach, only 36 terms in the Fourier series were used to represent the
boundary displacements for the two holes and the computation just took 19 seconds
with a 900 MHz PC (500 time instants). It is seen from Figure 4 that the results
given by the two approaches match very well.

6.1.2. An example with constant pressure. Consider the case of three holes shown
in Figure 5. The boundaries of two smaller holes with the radii R2 = R3 = R
are assumed to be traction-free. The central hole with the radius R1 (R1/R = 5)
is subjected to constant pressure p1 = −σ0. The three holes are separated by a
distance d = R. The material properties for the viscoelastic plane are the same as
those in the previous example.

The relative elongations of the diameters of the central hole L1 in the x and y
directions, given by (35), are computed and compared with the results provided by
ANSYS. It is seen from Figure 6 that the results given by the two approaches agree
very well. Due to the existence of holes L2 and L3 along the x axis, the change of
diameter of the central hole in the x direction is larger than that in the y direction.
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Figure 4. Change of diameter of the hole L1 due to far-field stresses.
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 x  O 

 d 

 R2  R1 

 L1 

 L2 
 p1  L3 

 R3 

A A′ 
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B′ 

Figure 5. Three holes in an infinite plane with the central hole
subjected to constant pore pressure.

6.2. Examples for viscoelastic model II. In this series of examples we assume
that the viscoelastic material responds as a Boltzmann model in both shear and
dilatation, and the Poisson’s ratio ν is constant. As the result of these assumptions
the viscoelastic properties of the material can be represented by the constants G1,
G2, η (Figure 2) and ν.

Following the procedure described in [Wang and Crouch 1982], one can find
the s-varying constants for this model using the equations

G∗(s)=
G1 (G2 + ηs)
G1 + G2 + ηs

, κ∗(s)= 3 − 4ν.
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Figure 6. Change of diameter of the central hole due to a constant pressure.

In case that the stresses at infinity and the tractions on the boundaries of the holes
are kept constant, the time functions f j (t) ( j = 1, . . . , 9) can again be expressed
by Equations (33) with the functions χk(t) (k = 1, . . . , 4) given by

χ1(t)= (3 − 4ν)
(

1
G1

+
1 − e−αt

G2

)
, χ2(t)=

1
G1

+
1 − e−αt

G2
,

χ3(t)=
1

4 − 4ν

(
1

G1
+

1 − e−αt

G2

)
, χ4(t)=

1
4 − 4ν

,

where α is defined in Equation (34).

6.2.1. An example with constant far-field stresses. The geometry of this example
is the same as that depicted in Figure 5. The boundaries of all three holes are
assumed to be traction-free and the infinite plane is subjected to biaxial far-field
stresses σ∞

xx = σ0 and σ∞
yy = 0.5σ0. The material properties adopted in computation

were

G1 = 8 × 103σ0, G2 = 2 × 103σ0, η = 5 × 103σ0 · sec, ν = 0.25.

The viscosity coefficient γ = η/G2 = 2.5 second was again employed. The
relative elongations of the diameters of the central hole L1 in the x and y directions,
given by Equation (35), are computed and compared with the results provided by
the time stepping approach described in [Huang et al. 2005b]. It is seen from
Figure 7 that the results given by the two approaches are practically identical. To
accomplish the computation of the same number (500) of time instants (or steps)



SEMI-ANALYTICAL SOLUTION FOR A VISCOELASTIC PLANE 491

0 1 2 3 4

0

2

4

6

x - Present approach

x - Time stepping approach
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Figure 7. Change of diameter of the central hole due to constant
far-field stresses.

and reach the same accuracy, the present approach used 35 terms of the Fourier se-
ries for each of the three circular holes and the computation took 42 seconds, while
the time stepping approach used 45 terms of the Fourier series for the central hole
and 12 terms of the Fourier series for the two smaller holes and the computation
took about twice as long, 1 minute 38 seconds. The difference can be explained as
follows: with the current approach, the algebraic equation systems are formulated
and solved only once and the same potentials (and their derivatives) are used for
the computation at every time instant; only the time functions f j (t) ( j = 1, . . . , 9)
need to be recomputed to obtain the stresses and displacements at different time
instants. In the time stepping approach, since the solution for a typical time step
relies on the results for the previous step, the system of algebraic equations needs
to be solved for each time step [Huang et al. 2005b].

6.2.2. An example with time-dependent pressure. Now we modify the loading con-
ditions in the previous example (Section 6.2.1) and assume that σ∞

xx =σ∞
yy = σ∞

xy = 0
and the central hole is subjected to time-dependent pressure given in sinusoidal
form as

p1(t)= −σ0 (1 + c sinωt).

The boundaries of the other two holes are traction-free.
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Figure 8. Change of diameter of the central hole due to a time-
dependent pressure.

The time functions f j (t) ( j = 1, . . . , 7, 9) can again be expressed by the corre-
sponding equations in (33), with the functions χk(t) (k = 1, . . . , 4) given by

χ1(t)=
3 − 4ν

G1G2(η2ω2 + G2
2)

(
−G1(η

2ω2
− cηωG2 + G2

2)e
−(G2/η)t

(1 + c sinωt)G2(η
2ω2

+ G2
2 + G1G2)+ G1ηω(ηω− c cosωtG2)

)
,

χ2(t)=
1

3−4ν
χ1(t), χ3(t)=

1
(3−4ν)(4−4ν)

χ1(t), χ4(t)=
1

4−4ν
(1+c sinωt),

while

f8(t)= −(1 + c sinωt)+ 2χ4(t).

The material properties for this example are the same as those in the previous
subsection. In the computation, the following values for the pressure are adopted:
c = 0.5 and ω = 1 sec−1. The relative elongations of the diameters of the cen-
tral hole L1 in the x and y directions, given by Equation (35), are computed and
compared with the results provided by the time stepping approach in Figure 8. It
is seen that the results given by the two approaches are practically identical. The
behaviors of δx and δy are characterized by the combination of exponential and
sinusoidal functions.
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Figure 9. Burgers model.

6.3. Examples for viscoelastic model III. Here we take

s̈i j +

(G1

η1
+

G1

η2
+

G2

η2

)
ṡi j +

G1G2

η1η2
si j = 2G1ε̈i j + 2

G1G2

η2
ε̇i j , σkk = 3K εkk,

where the meanings of the elastic and viscous parameters G1, G2, η1 and η2 are
explained in Figure 9.

Following the procedure described in [Wang and Crouch 1982], one can find
the s-varying constants using the equations

G∗(s)=

G1s2
+

G1G2
η2

s

s2
+

(G1
η1

+
G1
η2

+
G2
η2

)
s +

G1G2
η1η2

,

κ∗(s)= 1 +

6G1s2
+ 6 G1G2

η2
s

G1s2
+

G1G2
η2

s + 3
(

s2
+

(G1
η1

+
G1
η2

+
G2
η2

)
s +

G1G2
η1η2

)
K
.

If the far-field stresses and the tractions on the boundaries of holes are both
constant, one can obtain the time functions f j (t) ( j = 1, . . . , 9) expressed by (33),
with the functions χk(t) (k = 1, . . . , 4) given as

χ1(t)=
1

K G1

(
K −

G2
1

3K+G1
e−αt(1+eβt)+ G1

(
2 +

K
G2
(1 − e−%t)+

K
η1

t
)

+
e−αt(−1+eβt)G2

1

(
(3K G1−(3K+G1)G2)η1+3K G1η2

)
(3K +G1)C3

)
,

χ2(t)=
1

G1
+

1−e−%t

G2
+

1
η1

t,
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χ3(t)=
1

2K G1

(
K +

G2
1

3K+4G1
e−α′t(1 + eβ

′t)+ G1

(
−1 +

K
G2
(1 − e−%t)+

K
η1

t
)

−
2e−α′t(−1+eβ

′t)G2
1

(
−3K G2η1+G1((3K−4G2)η1+3Kη2)

)
(3K +4G1)C ′

3

)
,

χ4(t)=
1
2

−
3G1

4(3K +4G1)C ′

3

(
eα

′t
(

3K G2η1 +G1
(
(−3K +4G2)η1 −3Kη2

)
+C ′

3

)
+ e−α′′t(

−3K G2η1 + G1((3K−4G2)η1 + 3Kη2)+ C ′

3
))
,

where the constants that occur are

C1 = (3K + G1)η1η2,

C2 = 3K G2η1 + G1
(
(3K + G2)η1 + 3Kη2

)
,

C3 =

√
−12K G1G2C1 + C2

2 ,

C ′

1 = (3K + 4G1)η1η2,

C ′

2 = 3K G2η1 + G1
(
(3K + 4G2)η1 + 3Kη2

)
,

C ′

3 =

√
−12K G1G2C ′

1 + C ′2
2 ,

α =
C2 + C3

2C1
, β =

C3

C1
, % =

G2

η2
, α′

=
−C ′

2 + C ′

3

2C ′

1
, α′′

=
C ′

2 + C ′

3

2C ′

1
.

6.3.1. An example with constant far-field stresses. Consider the same example de-
scribed in Section 6.1.1 (Figure 3). The geometric parameters are taken as follows:
R1/R2 = 5, d/R2 = 1. The holes are traction-free and the stresses at infinity
are given as σ∞

xx = σ0, σ∞
xx = σ∞

xy = 0. The material properties adopted for the
computations are

G1 = 8 × 103σ0, G2 = 2 × 103σ0, η1 = 8 × 103σ0 · sec,

η2 = 5 × 103σ0 · sec, K = 17333.3σ0,

In this example the displacement ux along the straight line between the two points
(5R2, 0) and (6R2, 0) is computed for three time instants: t = 0 sec, t = 1 sec, and
t = 10 sec (Figure 10). The left end point (5R2, 0) is fixed. It can be observed that
the deformation keeps increasing with time. This can be explained by the linear
term in t in the time-dependent expressions for χ1, χ2, χ3, χ4 starting at the bottom
of the previous page.
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Figure 10. ux along the line between the two holes.

6.3.2. An example with constant far-field stresses and pressure. In this example,
we demonstrate the use of our method for solving problems involving multiple
randomly distributed holes. The same material properties are adopted as in the pre-
vious subsection. The viscoelastic plane is subjected to constant far-field stresses
σ∞

xx = σ0, σ∞
xx = σ∞

xy = 0, and constant uniform pressure p = −σ0 is applied to one
of the holes. Figures 11–13 show contours of ux in the plane at three time instants:
t = 0 sec, t = 0.5 sec and t = 10 sec. It is shown that the plane is stretched and
that the displacements are increasing with time. The solution to this problem took
approximately 26 minutes on a 900 MHz PC.

Even though this problem only involves 12 holes, our approach can be used to
solve more complicated problems involving a larger number of holes of arbitrary
sizes and locations as long as none of the holes overlap, and with more complicated
loading conditions.

6.4. Special case of one hole. For the particular case of a single hole in an elastic
plane, the displacements on the boundary of the hole are exactly represented by a
two-term complex Fourier series [Muskhelishvili 1963]. This fact is retained for
the viscoelastic plane and the only nonzero ‘coefficients’ are〈

D(1)
−1

〉
= −R(σ̃∞

yy − σ̃∞

xx − 2i σ̃∞

xy ), (36)〈
D(1)

1

〉
=

1
2 R(σ̃∞,∗

xx + σ̃∞

yy ),〈
D(3)

1

〉
= − p̃R.
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Figure 11. Contour of ux at t = 0 sec.
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Figure 12. Contour of ux at t = 0.5 sec.
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Figure 13. Contour of ux at t = 10 sec.

The time functions f j (t) ( j = 1, . . . , 9) can be obtained for the specific viscoelastic
model and loading condition, as explained in the examples above. Using (36) and
the time functions f j (t) and performing some algebraic manipulations one can
obtain the analytical solution for the special case of a single circular hole within
an infinite viscoelastic plane.

7. Concluding remarks

A complex variable boundary integral method combined with analytical Laplace
transform and its inversion is presented to obtain a semi-analytical solution for
the problem of an infinite viscoelastic plane containing multiple circular holes.
The method is based on the use of the correspondence principle and a complex
variable hypersingular integral equation for a corresponding elastic problem. A
significant feature of the governing integral equation is that the transformed mate-
rial parameters are not involved in the integral terms for the transformed boundary
displacements.

The main features of the solution for an analogous elastic problem are preserved
in the current method [Wang et al. 2003a]. The unknown displacements on the
circular boundaries of the holes in Laplace domain are approximated by truncated
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complex Fourier series with the coefficients dependent on the transform parame-
ter. A system of linear algebraic equations is formed by using the Taylor series
expansion. Solutions of stresses and displacements in Laplace domain are written
in terms of viscoelastic analogs of Kolosov–Muskhelishvili potentials, which are
defined through integrals of displacements on the boundaries of the holes. The time
domain solution for stresses and displacements are obtained using the analytical
inverse Laplace transform.

The present method has the following advantages:

(1) The time dependence of the viscoelastic solution is expressed through several
simple time functions. Thus, the method can easily incorporate a variety of
physical models and loading conditions.

(2) All the mathematical operations (space integration, direct and inverse Laplace
transforms) are performed analytically. The accuracy of the problem is only
dependent on the number of terms in the complex Fourier series and the only
error (apart from round-off) comes from the truncation of the Fourier series.
This method provides an analytical solution for the problem involving only
one hole, where the boundary displacements can be exactly expressed through
finite terms in the Fourier series.

(3) The matrix of the resulting system of linear algebraic equations is inverted
only once and the results are used for the calculation of the viscoelastic re-
sponses at any time instants. Thus, the method produces significant compu-
tational savings as compared with the numerical methods based on time step-
ping. The latter methods permit the use of a one-time inversion of the matrix
only if the time step size is constant. Our method has no such limitation.

(4) The number of degrees of freedom is much less than in finite element-based
methods.

The present approach allows a straightforward extension to the case where the
displacements are prescribed on the boundaries of the holes if the Poisson’s ratio
of the viscoelastic matrix is constant. The case with a time-dependent Poisson’s
ratio for the matrix and the displacements prescribed at the boundaries is more
complicated and needs more investigation.

Future developments of the approach might include the extension to problems
of multiple circular holes within a finite circular viscoelastic domain as well as the
extension to problems involving a half-plane containing multiple holes (by using
the viscoelastic analog of the equation (21) in [Mogilevskaya 2000]). Another pos-
sibility is to extend the approach to problems of multiple holes of arbitrary shape.
The governing Equation (2) remains valid for this case. Thus, the problem can be
solved using the boundary element technique where the boundary of each hole is
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divided into elements and the unknowns on each of the elements are approximated
by piecewise polynomials with time-dependent coefficients. Problems involving
multiple curvilinear cracks could be also considered. This class of problems is
governed by Equation (2), with unknown displacement discontinuities rather than
displacements [Linkov and Mogilevskaya 1994].
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