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MICROCRACK INITIATION
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IN PIEZOELECTRIC MEDIA

ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN

In this paper is proposed a dislocation emission mechanism for microcrack initi-
ation at the tip of a finite rigid conducting line in a piezoelectric solid. When a
finite rigid conducting line is embedded in a piezoelectric matrix, because of the
highly concentrated stress and electric displacement fields at its tips, dislocations
of one sign are driven away from the tip, while the stationary dislocations of the
opposite sign are left behind. As a result, a micro Zener–Stroh crack is initiated
at each tip for the in-plane case, and two microcracks at each tip for the anti-
plane case. We obtain analytical solutions of both in-plane and anti-plane exten-
sion forces for microcracks initiated at the tip of a finite rigid conducting line.
By obtaining the stress and electric displacement fields at the tip under nonzero
net Burgers vectors, we observe two critical crack lengths. We find that the in-
plane and anti-plane critical extension forces for a finite rigid conducting line are
related to those for a conventional crack in the same piezoelectric materials.

1. Introduction

Because of the intrinsic electromechanical coupling behavior, piezoelectric ceram-
ics are used as actuators in adaptive structures. However, piezoelectric ceramics
are very brittle and susceptible to fracture. The propagation of defects such as
dislocations, cracks and inclusions would degenerate the performance of devices.
It is important to understand the fracture behavior of piezoelectric ceramics.

There have been some efforts in establishing the fracture criterion for piezoelec-
tric materials in the presence of cracks. The J integral, equal to the total potential
energy release rate, has been proposed as a fracture criterion by; for example, Suo,
Kuo, Barnett and Willis [Suo et al. 1992], while Pak [1990; 1992] used it to predict
Mode III and Mode I fracture. However, so far there is no experimental support for
this criterion. Park [1993; 1995] proposed using mechanical strain energy release
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rate — the mechanical part of the total potential energy release rate — as the frac-
ture criterion, and found that this criterion agrees qualitatively with the existing
experimental observations.

Rigid line inclusions (or, for brevity, rigid lines) have been used to model certain
materials or flat defects, such as metal precipitates in a piezoelectric solid. For the
past decades, many researchers addressed rigid lines by solving the whole field
solutions for various configurations; see, for example, [Wang et al. 1985, 1986;
Li and Ting 1989; Ballarini 1990; Fan and Keer 1993; Asundi and Deng 1995].
Recently, rigid lines embedded in piezoelectric solids have been studied in [Shi
1997; Deng and Meguid 1998; Gao and Fan 2001]. All that the research work
has identified is a square root singularity at the rigid line tip, and led to a stress
intensity factor similar to that for a crack.

Based on those analyses, Xiao and Fan [1990] proposed a mechanism for Mode
I microcrack initiation at the tip of a semi-infinite rigid line in a purely elastic solid.
As a result, the fracture toughness for a rigid line was related to that for a crack in
the same solid. Xiao et al. [2003] proposed a model of two Mode III microcrack
initiations at the tip of a semi-infinite rigid line in a piezoelectric solid, and found
the relation between the fracture toughness for a rigid line and that for a crack in
the same solid. Here, the criteria of microcrack initiation at the tip of a finite rigid
line in a piezoelectric solid, both for in-plane and anti-plane cases, are formally
set, in analogy to crack propagation, as

G∗

+
= G∗

+cr and G∗

−
= G∗

−cr, (1-1)

respectively, where G denotes the mechanical strain energy release rate when the
rigid line extends, and is termed as “the rigid line extension force”; the superscript
∗ is used for a rigid line in order to distinguish it from the crack extension force;
and the subscripts + and − represent in-plane and anti-plane cases, respectively.
The two critical values G∗

+cr and G∗
−cr at the right-hand sides of Equations (1-1) are

deemed to be material constants that can be determined from tests. Based on the
authors’ knowledge, however, there are no such experimental results in the open
literature so far. It is our conjecture that the two critical values for a rigid line
can be correspondingly related to those for a crack in the same solid, since both
cases associate with the square root singularity in terms of the stress and electric
displacement (SED) intensity factors.

We denote by G+cr and G−cr the mechanical strain energy release rates of a
Mode I and Mode III crack in the same piezoelectric material, respectively. Our
research objective is to search for possible relations between G∗

+cr and G+cr, as
well as between G∗

−cr and G−cr; for example

G∗

+cr = C1 G+cr and G∗

−cr = C2 G−cr, (1-2)
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in which C1 and C2 are constants to be determined. To perform our investigation,
models of microcrack initiation at a rigid line tip proposed by Xiao [1990; 2003]
are extended to the current problems.

For the anti-plane case, a finite rigid conducting line is loaded around its two
tips with the SED intensity fields K∗

−
=
{

K ∗

III K ∗

D2

}
T , where K ∗

III and K ∗

D2 are the
anti-plane shear stress and electric displacement intensity factors; see Figure 1.

For the in-plane case, a finite rigid conducting line of length 2a, perpendic-
ular to the poling axis, is loaded at the tips by the SED intensity fields K∗

+
={

K ∗

II K ∗

I K ∗

D1

}
T , where K ∗

II , K ∗

I and K ∗

D1 are the in-plane shear stress, tensile
stress and electric displacement intensity factors; see Figure 2.

Based on the dislocation emission mechanism at the rigid line tip proposed in
[Xiao and Fan 1990; Xiao et al. 2003], dislocations of one sign are driven away
from the tip of the rigid conducting line because of the concentrated fields along
certain slip planes, while the dislocations with the opposite sign pile up at the tip
of the rigid conducting line. As a result, Zener–Stroh cracks are initiated at both
tips, as shown in Figure 3 for the anti-plane and in Figure 4 for the in-plane case.

x2

x1

2a

D∞

1 , σ∞

31

Figure 1. A finite conducting rigid line loaded around its tip with
the anti-plane concentrated fields.

σ∞

x2 poling axis

x1
2a

D∞

2

Figure 2. A finite conducting rigid line loaded around its tip with
the in-plane concentrated fields.
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This microcrack initiation mechanism is considered as a possible way to release the
high strain energy. It is worth mentioning that this mechanism was first observed in
[Kikuchi et al. 1981] and that the resulting crack was named an “anti-Zener–Stroh
crack” in [Weertman 1986].

2. Formulation

2.1. Anti-plane case. In this case, because of the concentrated SED fields [Shi
1997], a pair of microcracks is initiated (see Figure 3) at both tips of the finite
rigid conducting line loaded with the anti-plane SED fields K∗

−
(see Figure 1). We

assume that the microcracks are still loaded with the tip SED fields K∗
−

. The pair
of microcracks at one tip has the same field variables as those at the other tip, and
the deformations of the two microcracks at each tip are anti-symmetric in the x3

direction.
Here, we will analyze only the upper-right crack. The SED distributions near

the right tip are approximated by K∗
−
/
√

2πy, with y > 0. We will study how a
microcrack of length 2c is affected by the tip SED fields K∗

−
and by the net Burgers

vectors of dislocations dT inside the microcrack.

x2

x1

2a

D∞

1 , σ∞

31

2c

2c

2c

2c

Figure 3. Microcracks initiated at the tip for the anti-plane case.
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D∞
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2c 2c

Figure 4. Microcrack initiated at the tip for the in-plane case.
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The interaction between the rigid conducting line and the dislocations at both
the upper and lower half-planes causes the SED fields at the upper half-plane. We
first consider the two dislocations with Burgers vector d̃, one located at the point
(a, ζ ) and another at (a, −ζ ), ζ > 0. The SED fields induced at the point (a, y),
y > 0, by the two dislocations interacting with the rigid conducting line [Chen et al.
2005b] take the form{
σ13(y, ζ ) D1(y, ζ )

}T
∣∣
x=a =

1
4π

C
(

−
1

y − ζ
−

1
y − ζ

√
ζ

y
h1(y, ζ, a) + h5(y, ζ, a)

)
d̃(ζ ),

where h1(y, ζ, a) and h5(y, ζ, a) are given in Appendix B, and where the material
property matrix C is

C =

[
c44 e15

e15 −ε11

]
,

with c44, e15 and ε11 being the elastic, piezoelectric and dielectric constants.
Because of a continuous distribution of dislocations, the SED fields along the

upper-right crack line are given by{
σ13(a, y) D1(a, y)

}T
=

1
4π

C
∫ 2c

0

(
−

1
y − ζ

−
1

y − ζ

√
ζ

y
h1(y, ζ, a) + h5(y, ζ, a)

)
D̃(ζ ) dζ,

where the density vector of the charged screw dislocations along the crack line is
D̃(ζ ) =

{
D̃3(ζ ) D̃4(ζ )

}
T, with D̃4(ζ ) = D̃ϕ(ζ ).

With the assumption that the microcrack faces are free from surface traction and
charge, we have

{
σ13(a, y) D1(a, y)

}T
= −

K∗
−

√
2πy

, 0 ≤ y ≤ 2c. (2-1)

Moreover, the charged screw dislocation densities along the crack line must
satisfy ∫ 2c

0
D̃i (ζ ) dζ = dT

xi
, i = 3, 4, (2-2)

with the net Burgers vector inside the microcrack dT =
{
dT

x3
dT

x4

}
T and dT

x4
= dT

ϕ .
Introduce the substitutions

u =
y
c

− 1, r =
ζ

c
− 1.
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Equations (2-1) and (2-2) are then rewritten as

1
4π

4∑
j=3

C(i−2)( j−2)

∫ 1

−1
D̃ j (r)

(
−

1
u−r

−
1

u−r
h̃1

(
u, r, c

a

)
+ h̃5

(
u, r, c

a

))
dr

= −
K̂ ∗

i
√

2πc

1
√

u + 1
, −1 ≤ u, r ≤ 1, i = 3, 4, (2-3)

and ∫ 1

−1
D̃i (r) dr =

dT
xi

c
; i = 3, 4, (2-4)

where h̃1(u, r, c/a) and h̃5(u, r, c/a) are given in Appendix B, and

K̂ ∗

3 = K ∗

III , K̂ ∗

4 = K ∗

D2.

2.2. In-plane case. The physical problem that we examine is shown in Figure 2:
a finite rigid conducting line of length 2a, loaded with the in-plane SED fields K∗

+

in a piezoelectric solid. As discussed in Section 1, because of the concentrated
SED fields that we mentioned and were obtained by Deng and Meguid [1998],
dislocations of one sign move away from the rigid line tips, and the left-behind
dislocations form a microcrack at each tip, as shown in Figure 4. We assume
that the microcracks are still controlled by the tip fields K∗

+
. Since the physical

properties of the two microcracks are the same, we only study the one on the right.
The SED distributions near the right tip are approximated by K∗

+
/
√

2π(x − a),
with x > a. We study how a microcrack of length 2c is affected by the tip fields
K∗

+
and the net Burgers vectors of the dislocations bT inside the microcrack.

Based on [Chen et al. 2005a], the SED fields, arising along the crack line because
of the interaction between a single charged edge dislocation located at the point
(2a + ξ, 0) with the Burgers vector b̃ and with the finite rigid conducting line, are
given by

II2(x, ξ)|y=0 =
1

4π

b̃(ξ)

x − ξ

(
_

W −
^

W
√

ξ 2
−a2

x2−a2

)
−

1
4π

^

W b̃(ξ)
√

x2 − a2
,

where II2 =
{
σ21 σ22 D2

}
T . The real 3 × 3 matrices

_

W and
^

W are given by

_

W = H̃−1
− H̃−1S̃2

+ L̃,
^

W = H̃−1
− H̃−1S̃2

− L̃,

while the real 3×3 matrices H̃, S̃, L̃ can be obtained by removing the third column
and the third row of the real 4 × 4 matrices H, S, L (see Appendix A). Because of
a continuous distribution of dislocations along the crack line, the SED fields are
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given by

II2(x, 0) =

1
4π

(∫ a+2c

a

B̃(ξ)

x − ξ

(
_

W −
^

W
√

ξ 2
−a2

x2−a2

)
dξ −

∫ a+2c

a

^

W B̃(ξ)
√

x2 − a2
dξ

)
, (2-5)

where the density vector of the charged edge dislocations along the microcrack line
is B̃(ξ) =

{
Bx1(ξ) Bx2(ξ) Bϕ(ξ)

}
T , with Bx3(ξ) = Bϕ(ξ).

The boundary conditions on the crack faces in piezoelectric solids are assumed
to be free of surface traction and charge [Deeg 1980; Pak 1990]. Therefore, one
has

II2(x, 0) = −
K∗

+
√

2π(x − a)
, a ≤ x ≤ a + 2c. (2-6)

The charged edge dislocation densities must satisfy∫ a+2c

a
B̃(ξ) dξ = bT , (2-7)

where the net Burgers vector inside the crack are bT =
{
bT

x1
bT

x2
bT

ϕ

}
T , with bT

x3
=

bT
ϕ .

The integral over [a, a + 2c] is normalized to [−1, 1] by the substitutions

t =
x − a

c
− 1, s =

ξ − a
c

− 1.

Equations (2-6) and (2-7) now read

3∑
i=1

(
_

W mi

∫ 1

−1

B̃xi (s)
t − s

ds

−
^

W mi

∫ 1

−1

G1(t, c/a) B̃xi (s)
G3(s, c/a) (t − s)

ds −
^

W mi

∫ 1

−1
G1(t, c/a) B̃xi (s) ds

)
= −

√
8π

c
G2(t) K̃ ∗

m, −1 ≤ s, t ≤ 1, m = 1, 2, 3 (2-8)

and ∫ 1

−1
B̃xi (s) ds =

bT
xi

c
, i = 1, 2, 3, (2-9)

where
K̃ ∗

1 = K ∗

II , K̃ ∗

2 = K ∗

I , K̃ ∗

3 = K ∗

D1,

G1(t, c/a) =
1

√
1 + t

√
1 + t + 2a/c

,
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G2(t) =
1

√
1 + t

, G3(s, c/a) =
1

√
1 + s

√
1 + s + 2a/c

.

3. Numerical Procedure

Let 9(s) and 4(r) be bounded functions in [−1, 1], and the charged edge and
screw dislocation density vectors can be written as

B̃(s) = 9(s) (1 + s)α(1 − s)β,

D̃(r) = 4(r) (1 + r)λ(1 − r)γ ,

with
9(s) =

{
91(s) 92(s) 9ϕ(s)

}T , 93(s) = 9ϕ(s),

4(r) =
{
43(r) 44(r)

}T , 44(r) = 4ϕ(r).

3.1. Anti-plane case. The discretized forms of Equations (2-3) and (2-4) are writ-
ten

1
4π

n∑
j=1

W̃ j (r j )

4∑
k=3

C(r−2)(k−2) 4k(r j )

(
−

1 + h̃1(ui , r j , c/a)

ui − r j
+ h̃5(ui , r j , c/a)

)

= −
K̂ ∗

r
√

2πc

1
√

1 + ui
, −1 ≤ u, r ≤ 1, r = 3, 4, (3-1)

and
n∑

j=1

W̃ j (r j )4r (r j ) =
dT

xr

c
, r = 3, 4, (3-2)

where r j and ui are the roots of the Jacobi polynomials,

P (λ,γ )
n (r j ) = 0, P (−γ,−λ)

n+λ+γ (ui ) = 0, j = 1, . . . , n, i = 1, . . . , n − 1, (3-3)

and W̃ j (r j ) can be obtained from the right-hand side of Equation (3-15) by replac-
ing sr , α, β with r j , λ, γ , respectively.

Equations (3-1) and (3-2) provide a system of 2n linear algebraic equations to
solve the 2n unknowns 4i (r j ), i = 3, 4, j = 1, 2, . . . , n. If 4

(1)
i (r) and 4

(2)
i (r) are

the solutions of the system

n∑
j=1

W̃ j (r j ) 4(γ )
m (r j )

(
−

1+h̃1(ui , r j , c/a)

ui −r j
+ h̃5(ui , r j , c/a)

)
=

1
√

1 + ui
δ1γ

n∑
j=1

W̃ j (r j ) 4(γ )
m (r j ) = δ2γ , m = 3, 4
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we obtain

4
(1)
3 (r) = 4

(1)
4 (r) and 4

(2)
3 (r) = 4

(2)
4 (r), (3-4)

43(r) = −

√
8π

c
ε11K ∗

III + e15K ∗

D2

c44ε11 + e2
15

4
(1)
3 (r) +

dT
x3

c
4

(2)
3 (r), (3-5)

44(r) = −

√
8π

c
e15K ∗

III − c44K ∗

D2

c44ε11 + e2
15

4
(1)
4 (r) +

dT
ϕ

c
4

(2)
4 (r). (3-6)

Since there is a square root singularity at the upper tip of the upper-right micro-
crack, we take γ = −1/2. As the deformations of the rigid line tip at the upper
and lower half-planes are antisymmetric along the x3 axis, we take λ = −1/2. The
effect of this approximation on the upper tip is reasonably negligible [He et al.
1991].

The anti-plane SED intensity factors K− =
{

KIII KD2
}

T at the upper tip of the
upper-right microcrack are obtained as

K− = lim
y→2c+

√
2π(y − 2c)

{
σ13(y) D1(y)

}T
= −

√
πc
4

C 4(1), (3-7)

where KIII and KD2 are the anti-plane shear stress and electric displacement inten-
sity factors. Combining (3-7) with (3-4), (3-5), and (3-6) leads to

KIII =
√

2π 4
(1)
3 (1) K ∗

III −

√
π

2
√

c

(
c44 4

(2)
3 (1) dT

x3
+ e15 4

(2)
4 (1) dT

ϕ

)
, (3-8)

KD2 =
√

2π 4
(1)
4 (1) K ∗

D2 −

√
π

2
√

c

(
e15 4

(2)
3 (1) dT

x3
− ε11 4

(2)
4 (1) dT

ϕ

)
. (3-9)

According to [Park and Sun 1995], the anti-plane crack extension force can be
defined as

G M−
= lim

δ→0

1
δ

∫ δ

0
σ13(y) u3(δ − y) dy.

Thus, the anti-plane microcrack extension force is obtained, in terms of the SED
intensity factors, as

G M−
=

ε11
(
KIII

)2
+ e15KIII KD2

2
(
c44ε11 + e2

15

) . (3-10)

The anti-plane extension force for the finite rigid conducting line loaded with the
SED intensity fields K∗

−
, is obtained as

G∗

M−
= −

ε11
(
K ∗

III

)2
+ e15K ∗

III K ∗

D2

2
(
c44ε11 + e2

15

) . (3-11)
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Combined with (3-8), (3-9), and (3-11), Equation (3-10) is rewritten as

G M−
= −

(√
2π 4

(1)
3 (1)

)2
G∗

M−

−
π

√
π

√
2c

4
(1)
3 (1) 4

(2)
3 (1)

(
K ∗

III dT
x3

+

(
c44 dT

x3
+ e15 dT

ϕ

) (
ε11K ∗

III + e15K ∗

D2

)
2
(
c44ε11 + e2

15

) )

+

π
(
4

(2)
3 (1)

)2

8c

(
c44

(
dT

x3

)2
+ e15dT

x3
dT

ϕ

)
. (3-12)

Note that 4
(u)
j (1) ≈ 4

(u)
j (r1) for large n. In our calculation, we took n = 100.

It is observed from Equation (3-4) that the coefficients 4
(1)
3 (1), 4

(1)
4 (1), 4

(2)
3 (1)

and 4
(2)
4 (1) depend on the ratio of the microcrack’s length of 2c to the rigid line’s

length of 2a, but are independent of the material’s property constants. This makes it
possible to find the constant C2 from Equation (3-12) that exhibits the relationship
among the microcrack extension force G M−

, the rigid line extension force G∗

M−
,

the SED intensity factors K∗
−

, the net Burgers vectors dT , and the microcrack length
2c. Here are the anti-plane coefficients corresponding to the ratio c/a = 10−4:

4
(1)
3 (1) = 4

(1)
4 (1) = 0.117764,

4
(2)
3 (1) = 4

(2)
4 (1) = 0.415922.

Since these coefficients depend on the ratio c/a, the constant C2 could be a function
of it.

3.2. In-plane case. Following the method in [Erdogan et al. 1973], we write the
discretized forms of Equations (2-8) and (2-9) as

1
4π

n∑
r=1

3∑
i=1

W̃r (sr )

( _

W mi

tu − sr
−

^

W mi

tu − sr

G1(tu, c/a)

G3(sr , c/a)
−

^

W mi G1(tu, c/a)

)
9i (sr )

= −
K̃ ∗

m
√

2πc
G2(tu), −1 ≤ s, t ≤ 1, m = 1, 2, 3, (3-13)

and
n∑

r=1

W̃r (sr ) 9i (sr ) =
bT

xi

c
, i = 1, 2, 3, (3-14)

where sr and tu are the roots of the Jacobi polynomials,

P (α,β)
n (sr ) = 0, P (−β,−α)

n+α+β (tu) = 0, r = 1, . . . , n, u = 1, . . . , n − 1,
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and

W̃r (sr ) =

−
(2n + α + β + 2) 0(n + α + 1) 0(n + β + 1)

(n + 1)! (n + α + β + 1) 0(n + α + β + 1)

2α+β

P ′(α,β)
n (sr ) P (α,β)

n+1 (sr )
, (3-15)

with 0(z) being the well known Gamma function.
Equations (3-13) and (3-14) provide a system of 3n linear algebraic equations in

the 3n unknowns 9i (sr ) with i = 1, 2, 3 and r = 1, 2, . . . , n. Denote by 9
(γ )
m (sr )

the solutions of the set of system

n∑
r=1

3∑
i=1

W̃r (sr )

( _

W mi G1(sr , c/a)−
^

W mi G1(tu, c/a)

(tu − sr ) G3(sr , c/a)
−

^

W mi G1

(
tu,

c
a

))
9

(γ )

i (sr )

= −G2(tu) δmγ
n∑

r=1

W̃r (sr ) 9(γ )
m (sr ) = δ(m+4)γ ,

(3-16)

where m = 1, 2, 3 and γ = 1, 2, . . . , 6, while δi j is Kronecker’s delta.
We have

91(s) =

√
8π

c
K ∗

II 9
(1)
1 (s) +

bT
x1

c
9

(4)
1 (s), (3-17)

92(s) =

√
8π

c

(
K ∗

I 9
(2)
2 (s) + K ∗

D19
(3)
2 (s)

)
+

bT
x2

c
9

(5)
2 (s) +

bT
ϕ

c
9

(6)
2 (s), (3-18)

93(s) =

√
8π

c

(
K ∗

I 9
(2)
3 (s) + K ∗

D19
(3)
3 (s)

)
+

bT
x2

c
9

(5)
3 (s) +

bT
ϕ

c
9

(6)
3 (s). (3-19)

Since a square root singularity exists at the right tip of the right microcrack, we
take β = −1/2. An oscillatory singularity at the left tip can be induced because
of the incompatibility of the piezoelectric material and the rigid line. Since the
oscillatory singularity leads to the penetration of the crack surfaces, it is physically
unfeasible. Fortunately, a pure square root singularity is restored by allowing crack
surfaces to have contact, as in [Comninou 1977]. Therefore we can take α = −1/2
in our calculations. This assumption may cause some approximation at the left tip,
but the effect on the right tip is negligible [He et al. 1991]. After all, the result
from the right tip is responsible for the crack propagation.

The in-plane SED intensity factors at the right tip of the microcrack are

K+ =
{

KII KI KD1
}T

= lim
x→a+2c+

√
2π(x − 2a − c) II2(x, 0), (3-20)

where KII , KI , and KD1 are the in-plane shear stress, the tensile stress and the
electric displacement intensity factors. Substituting (2-5) into (3-20) and following
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c11 c12 c13 c33 c44 e31 e33 e15 ε11 ε33

GPa GPa GPa GPa GPa C/m2 C/m2 C/m2 nC/V·m nC/V·m

PZT-5H 126 55 53 117 35.3 −6.5 23.3 17 15.1 13.0
PZT-5 121 75.4 75.2 111 21.1 −5.4 15.8 12.3 8.11 7.35
PZT-4 139 77.8 74.3 115 25.6 −5.2 15.1 12.7 6.46 5.62
PZT-7A 148 76.8 74.2 131 25.4 −2.1 9.5 12.7 4.07 2.08

Table 1. Material properties for piezoelectric ceramics (the poling
direction is along the x3 axis).

the procedure in [Muskhelishvili 1977], one obtains

K+ =

√
πc
4

(
_

W −
^

W) 9(1). (3-21)

Substituting (3-17)–(3-19) into (3-21), one finds

KII =
√

2π f11 K ∗

II +

√
π

2
√

c
f12 bT

x1
, (3-22)

KI =
√

2π f21 K ∗

I +
√

2π f22 K ∗

D1 +

√
π

2
√

c

(
f23 bT

x2
+ f24 bT

ϕ

)
, (3-23)

KD1 =
√

2π f31 K ∗

I +
√

2π f32 K ∗

D1 +

√
π

2
√

c

(
f33 bT

x2
+ f34 bT

ϕ

)
, (3-24)

where

f1i = L̃11 9
(i2)
1 (1), i = 1, 2,

fki = L̃k2 9
(i+1)
2 (1) + L̃k3 9

(i+1)
3 (1), k = 2, 3, i = 1, 2,

fki = L̃k2 9
(i+2)
2 (1) + L̃k3 9

(i+2)
3 (1), k = 2, 3, i = 3, 4.

The coefficients f1i , f2i and f3i can be determined, since 9
(k)
i (1) ≈ 9

(k)
i (s1)

exists for large n. Also, it is observed from Equations (3-16)–(3-19) that these
coefficients depend on the ratio of the microcrack length of 2c to the rigid line
length of 2a. We take n = 100 in the following calculations, and select PZT-5H,
PZT-5, PZT-4 and PZT-7A ceramics for our numerical examples, with the material
constants listed in Table 1, taken from [Dunn and Taya 1994; Pak 1992].

According to [Park and Sun 1993], the crack extension force can then be cal-
culated as the mechanical strain energy released when propagating the crack an
infinitesimal distance, that is,

G M+
= lim

δ→0

1
δ

∫ δ

0
σ2i (x) ui (δ − x) dx, i = 1, 2,
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where δ is the assumed crack extension. Thus, the extension force for the micro-
crack, in terms of the SED intensity factors, is G M+

=
1
2(K+)T L′ K+, where

the real 2 × 3 matrix L′ is obtained by removing the third row of the inverse of L̃.
Substituting into this equation the values given by (3-22)–(3-24), we get

G M+
=

1
2

2π2 (K∗

+
)T X K∗

+
+

π
√

π
√

2c
(K∗

+
)T YbT +

π

8c
(bT)T ZbT, (3-25)

where X, Y and Z are the 3 × 3 matrices from Appendix C.
The extension force for the rigid conducting line loaded with the tip SED inten-

sity fields K∗
+

is obtained as

G∗

M+
= −

1
2 (k∗)T H′ k∗

,

where k∗
=
{
k∗

1 k∗

2 k∗

3

}
T is the tip strain intensity factors and K∗

+
= S̃T H̃−1 k∗.

Equation (3-25) can be rewritten in terms of G∗

M+
as

G M+
= −

2π2 sT X̃ s
H′11

G∗

M+
+ π2 X11

(
K ∗

II
)2

+
π

√
π

√
2c

(
K∗

+

)T YbT

+
π

8c
(bT)T ZbT, (3-26)

where the 2 × 2 matrix X̃ is obtained by removing the first row and the first column
of the matrix X, and we have sT

=
{
Ŝ21 Ŝ31

}
T with Ŝ = S̃T H̃−1.

Equation (3-26) gives the relationship among the microcrack extension force
G M+, the rigid line extension force G∗

M+
, the tip SED intensity factors K∗

+
, the

net Burgers vectors of dislocations bT inside the microcrack, and the microcrack
length 2c. The elements of X, Y and Z for the ratio c/a = 10−4 are listed in
Table 2.

4. Discussion

4.1. Critical crack length.

Anti-plane case. Equation (3-12) suggests that the upper-right microcrack tends to
reach its critical value at

G
−cr = −

(√
2π 4

(1)
3 (1)

)2
G∗

M−

−
π

√
π

√
2ccr

4
(1)
3 (1)4

(2)
3 (1)

(
K ∗

III dT
x3

+

(
c44dT

x3
+e15dT

ϕ

) (
ε11K ∗

III +e15K ∗

D2

)
2
(
c44ε11+e2

15

) )

+

π
(
4

(2)
3 (1)

)2

8ccr

(
c44

(
dT

x3

)2
+ e15 dT

x3
dT

ϕ

)
. (4-1)
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PZT-5H PZT-5 PZT-4 PZT-7A

X11 1.448×10−12 1.931×10−12 1.586×10−12 1.514×10−12

X22 1.256×10−12 1.667×10−12 1.405×10−12 1.352×10−12

X23(X32) 5.511×10−4 9.200×10−4 9.570×10−4 1.145×10−3

X33 2.172×104 2.313×104 3.753×104 8.592×104

Y11 0.182 0.172 0.174 0.174
Y22 0.169 0.161 0.161 0.169
Y23 2.730×10−11 2.589×10−11 2.189×10−11 1.278×10−11

Y32 6.608×107 7.593×107 9.368×107 1.287×108

Y33 0.020 0.024 0.024 0.017
Z11 2.275×1010 1.540×1010 1.901×1010 2.006×1010

Z22 2.246×1010 1.516×1010 1.805×1010 2.078×1010

Z23(Z32) 3.955 2.747 20757 1.698
Z33 3.323×10−10 2.156×10−10 1.940×10−10 7.054×10−11

Table 2. Matrices X, Y and Z under the ratio c/a = 10−4.

The two critical crack lengths can be obtained from (4-1). The anti-plane tip SED
fields K∗

−
and the net Burgers vector dT determine the two critical crack lengths.

In the absence of the electric field K ∗

D2, of the electric displacement loading dT
ϕ ,

and of the piezoelectric constant e15, Equation (4-1) can be reduced to that for
isotropic elastic media, as

G
−cr|iso = −

(√
2π 4

(1)
3 (1)

)2
G∗

−|iso

−
π

√
π 4

(1)
3 (1) 4

(2)
3 (1)

√
2ccr

K ∗

III dT
x3

+

π
(
4

(2)
3 (1)

)2

8ccr
µ
(
dT

x3

)2
, (4-2)

where G∗

−|iso = −
(
K ∗

III

)2
/(2µ).

In-plane case. Equation (3-26) suggests that the right microcrack tends to reach
its critical value at

Gcr = −
2π2 sT X̃ s

H′
11

G∗

M+
+ π2 X11

(
K ∗

II
)2

+
π

√
π

√
2ccr

(
K∗

+

)T YbT +
π

8ccr
(bT)T ZbT. (4-3)

For a general Zener–Stroh crack, loaded with external stress and nonzero net
dislocations, there are two critical crack lengths: one is stable, the other unstable
[Fan 1994]. This particular physical phenomenon is also seen in Equation (4-3).
The smaller critical crack length is a stable one under the Zener–Stroh mechanism.
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The crack propagates until it reaches its second critical crack length, which is under
the Griffith crack mechanism. Obviously, the applied SED fields K∗

+
at the tip and

the net Burgers vectors bT inside the microcrack determine the two critical crack
lengths.

The shear stress intensity factor K ∗

II does not exist at the tip of the rigid line
embedded in isotropic elastic materials subjected to remote loading. By using the
solutions from [Wang et al. 1985; Li and Ting 1989], combined with the matrices
S, L and H for isotropic elastic materials given in [Li and Ting 1989], we can
reduce (4-3) to

G
+cr|iso = −

(√
2π F1(1)

)2 (1 − 2υ)2

3 − 4υ
G∗

+|iso +
π

√
π

√
2ccr

F1(1) 9
(5)
2 (1) K ∗

I bT
x2

+
π

8ccr

µ

1 − υ

(
9

(5)
2 (1)

)2
(bT

x2
)2,

where
F1(1) = 9

(2)
2 (1)

µ

1 − υ
,

G∗

+|iso = −
1 − υ

2µ

3 − 4υ

(1 − 2υ)2 (K ∗

I )2, 1 < 3 − 4υ < 3.

Here are the numerical values of F1(1) for different values of Poisson’s υ, showing
that effect of υ on F1(1) is quite small.

υ F1(1) 9
(5)

2 (1)

1/4 0.140453 0.337617
1/3 0.141730 0.328747
1/2 0.143271 0.318310

4.2. Connection constants. Consider a very brittle piezoelectric material, and as-
sume that no dislocations are emitted from the rigid line tip and electric dislocations
can be negligible, so that bT

x2
= bT

x1
= bT

ϕ = 0 for the in-plane case and dT
x3

= dT
ϕ = 0

for the anti-plane case.

Anti-plane case. Equations (4-1) and (4-2) can be reduced to G∗
−cr = C2 G−cr,

with

C2 = −
1(√

2π 4
(1)
3 (1)

)2 . (4-4)

Equation (4-4) partially confirmed our initial conjecture in the second equation
in (1-2), both for brittle piezoelectric and for purely elastic materials. Since the
coefficient 4

(1)
3 (1) is a result of the ratio c/a, the coefficient C2 is a function of

the ratio c/a. The numerical values of the coefficient C2 for different ratio c/a are
listed in Table 3. It shows that the absolute value of the coefficient C2 decreases
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with the increasing c/a, or with the microcrack propagation. It is observed that
the C2 value is almost constant when the microcrack is at the very initial stage
(c/a < 10−3). The variation of C2 value for different ratio c/a is so small that we
can consider the coefficient C2 a constant. The C2 value also indicated that the
crack initiation will be catastrophic.

c/a C1 C2

10−8
−5.93064 −3.653

10−7
−5.93064 −3.653

10−6
−5.93064 −3.653

10−5
−5.93064 −3.653

10−4
−5.93064 −3.65299

5 · 10−4
−5.93064 −3.65295

10−3
−5.93065 −3.6529

5 · 10−3
−5.93068 −3.65247

10−2
−5.93073 −3.65193

5 · 10−2
−5.93108 −3.64749

10−1
−5.9315 −3.64158

5 · 10−1
−5.93443 −3.58969

1 −5.93721 −3.56074

Table 3. The connection constants C1 for PZT-5H and C2.

For ductile piezoelectric solids, the net Burgers vector bT inside the mixed
mode microcrack and the net Burgers vector dT inside the Mode III microcrack are
nonzero. In this case, G∗

+cr relies on the net Burgers vectors of shear dislocations
bT

x1
, on the net Burgers vectors of climbing dislocations bT

x2
, and on the net Burgers

vectors of electric dislocations bT
ϕ inside the microcrack as shown in (4-3); while

G∗
−cr relies on the net Burgers vectors of shear dislocations dT

x3
and on the net Burg-

ers vectors of electric dislocations dT
ϕ inside the microcrack as shown in Equation

(4-1). We would like to assume that bT
x1

, bT
x2

, bT
ϕ , dT

x3
and dT

ϕ are material-dependent
constants, which measure the magnitudes of the ductility and dielectricity of the
matrix material. Also, it is very likely that after a microcrack is initiated, no more
dislocations enter the crack, because the concentrated stress ahead of the rigid line
tip has been released. Nonetheless, all these assumptions and conjectures need
experimental support before pursuing further theoretical investigations.

In-plane case. If the rigid line isn’t loaded with the tip shear stress field K ∗

II , Equa-
tion (4-3) is reduced to

G∗

+cr = C1 G+cr,
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with

C1 = −
1

2π2

H′
11

sT X̃ s
. (4-5)

Equation (4-5) partially confirmed our initial conjecture in the first equation in
(1-2), though only for very brittle materials under tensile stress and electric dis-
placement fields. The numerical values of the coefficient C1 for PZT-5H, PZT-4,
PZT-5 and PZT-7A ceramics under the ratio c/a = 10−4 are as follows:

PZT-5H PZT-5 PZT-4 PZT-7A
5.931 17.651 12.158 10.355

The numerical values of the coefficient C1 for PZT-5H for the ratio c/a are listed
in Table 3. It is observed that, when the micro crack is at the very initial stage
(c/a < 10−3), the coefficient C1 is constant. When the micro crack propagates
further, the absolute value of the coefficient C1 increases so slightly that we can
still consider it a constant in the same solid. The C1 value also indicates that the
microcrack initiation is catastrophic.

For isotropic elastic materials, one finds

G∗

+cr|iso = C1|iso G+cr|iso,

in which

C1|iso = −
3 − 4υ(√

2π F1(1)
)2

(1 − 2υ)2
.

It is worth mentioning that for the incompressible solid, υ = 0.5, the numeri-
cal value of C1|iso approaches infinity, which indicates that the crack initiation is
catastrophic.

It is noted that microcrack initiation at other angles may occur at the rigid line
tip under some mixed loadings for the anti-plane and in-plane cases. The current
approach can also be employed to analyze such cases, if the rigid line extension
force is calculated as the mechanical strain energy released per infinitesimal trans-
lation in the inclined direction. However, the constants C1 and C2 may be different
and need to be further investigated for different angles.

Appendix A

In a Cartesian coordinate system (x1, x2, x3), for a linear piezoelectric medium
without body forces and with free charges at constant temperature, the constitutive
and equilibrium equations given in [Tieresten 1969] are

σi j = ci jkl uk,l + ek ji φ,k, Di = eikl uk,l − εik φ,k, i, j,k,l = 1, 2, 3, (A-1)

σi j, j = 0, Di,i = 0, i, j = 1, 2, 3, (A-2)



576 ZHONGMIN XIAO, HONGXIA ZHANG AND BINGJIN CHEN

where σi j , Di , ui , φ are the mechanical stress, electric displacement, elastic dis-
placement and electric potential, while ci jkl , eki j , εi j are the elastic, piezoelectric
and dielectric constants.

For a two-dimensional problem in which the variables depend on x1, x2 only, a
general solution to Equation (A-2), given in [Barnett and Lothe 1975], is

u = a f (z), z = x1 + px2. (A-3)

Here f is an arbitrary function of z, while p and a are determined by inserting
(A-3) into (A-2). We have[

Q + p(R + RT ) + p2T
]

a = 0, (A-4)

where the matrices Q, R and T are

Q =

[
ci1k1 e1i1

eT
1k1 −ε11

]
, R =

[
ci1k2 e2i1

eT
1k2 −ε12

]
, T =

[
ci2k2 e2i2

eT
2k2 −ε22

]
.

The generalized stresses obtained by substituting (A-3) into (A-1) can be written
in terms of the stress function 8 as{

σ1 j D1
}T

= −8,2,
{
σ2 j D2

}T
= −8,1,

in which

8 = b f (z), b = (RT
+ pR) a = −p−1(Q + pR) a.

From (A-4) we see that eight eigenvalues p consist of four pairs of complex
conjugates. If pα, aa are the eigenvalues and the associated eigenvectors, we let

Im(pα) > 0, pα+4 = p̄α,

aα+4 = āα, bα+4 = b̄α, α = 1, 2, 3, 4,

where Im stands for the imaginary part and the overbar denotes complex conjuga-
tion.

Assuming that pα are distinct, the general solutions are obtained by

u = 2 Re
( 4∑

α=1

aα fα(zα)

)
, 8 = 2 Re

( 4∑
α=1

bα fα(zα)

)
,

where Re stands for the real part, and

fα+4 = f̄α.

The 4 × 4 complex matrices A and B defined by

A =
[
a1 a2 a3 a4

]
, B =

[
b1 b2 b3 b4

]
,



MICROCRACK INITIATION AT THE TIP OF A FINITE RIGID CONDUCTING LINE 577

satisfy, when properly normalized, the orthogonality relation[
BT AT

B̄T ĀT

] [
A Ā
B B̄

]
=

[
I O
O I

]
.

The matrices H, L and S defined by

H = i2 AAT ,

L = i2 BBT ,

S = i
(
ABT

− I
)

can be shown to be real. The matrices H and L are symmetric.

Appendix B

h1(y, ζ, a) =

√
1

y2+4a2

√
ζ y+4a2

2
+

1
2

P(y, ζ, a)

h2(y, ζ, a) = −

√
1

y2+4a2

√
ζ y−4a2

2
+

1
2

P(y, ζ, a)

h3(y, ζ, a) =

√
ζ

y+ζ

√
1

(y+ζ )2+4a2 ·

√
ζ(y+ζ )+4a2

2
+

1
2

Q(y, ζ, a)

h4(y, ζ, a) = −

√
ζ

y+ζ

√
1

(y+ζ )2+4a2 ·

√
ζ(y+ζ )−4a2

2
+

1
2

Q(y, ζ, a)

P(y, ζ, a) =

√
16a4 + ζ 2 y2 + 4a2(y2 + ζ 2)

Q(y, ζ, a) =

√
16a4 + ζ 2(y + ζ )2 + 4a2(y2 + 2ζ 2 + 2yζ )

h5(y, ζ, a) = −
1
y
(1 − h3(y, ζ, a)) −

1
y+ζ

(
1 −

√
ζ

y
h2(y, ζ, a)

)
−

1
y+2ζ

(
1 + h4(y, ζ, a)

)
h̃1(u, r, c/a) =

√
r +1
u+1

h1(u + 1, r + 1, a/c)

h̃5(u, r, c/a) =
1
c

h5(u + 1, r + 1, a/c).
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Appendix C

X11 = L′
11( f11)

2

X22 = L′
22( f21)

2
+ L′

23 f21 f31

X23 = X32 = L′
22 f21 f22 +

1
2 L′

23
(

f22 f31 + f21 f32
)

X33 = L′
22( f22)

2
+ L′

23 f22 f32

Y11 = L′
11 f11 f12

Y22 = L′
22 f21 f23 +

1
2 L′

23
(

f21 f33 + f31 f23
)

Y23 = L′
22 f21 f24 +

1
2 L′

23
(

f21 f34 + f31 f24
)

Y32 = L′
22 f22 f23 +

1
2 L′

23
(

f22 f33 + f32 f23
)

Y33 = L′
22 f22 f24 +

1
2 L′

23
(

f22 f34 + f32 f24
)

Z11 = L′
11( f12)

2

Z22 = L′
22( f23)

2
+ L′

23 f23 f33

Z23 = Z32 = L′
22 f23 f24 +

1
2 L′

23
(

f23 f34 + f24 f33
)

Z33 = L′
22( f24)

2
+
(
L̃−1)

33( f34)
2

+ L′
23 f24 f34.
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