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A MODE III MOVING CRACK BETWEEN A FUNCTIONALLY
GRADED COATING AND A HOMOGENEOUS SUBSTRATE

BAO-LIN WANG AND JIE-CAI HAN

This paper considers an anti-plane moving crack between a functionally graded
coating and a homogeneous substrate. The shear modulus and the mass density
of the FGM coating are considered for a class of functional forms for which
the equilibrium equation has an analytical solution. The problem is solved by
means of singular integral equation technique. Results are plotted to show the
effect of material nonhomogeneity and crack moving velocity on the crack tip
field. The angular variation of the near-tip stress field is of particular interest, and
the crack bifurcation behaviour is also discussed. It is shown that choice of an
appropriate fracture criterion is essential for studying the stability of a moving
crack in FGMs. Different fracture criteria could give opposite predictions for
crack stability. It seems that the maximum cleavage stress near the crack tips is
a reasonable failure criterion for a moving crack in FGMs.

1. Introduction

In functionally graded materials, the compositions and microstructures vary con-
tinuously in the thickness direction and the mismatch of material properties at the
coating/substrate interface is eliminated. The problem of cracks in functionally
graded materials has been studied extensively. In particular, some authors have
studied dynamic fracture problems of FGMs. Marur and Tippur [1998] computed
the magnitude and phase of complex stress intensity factors in FGMs for static
and dynamic loading. Rousseau and Tippur [2001] studied the effect of different
elastic gradient profiles on the fracture behavior of dynamically loaded function-
ally graded materials with cracks parallel to the elastic gradient. They used finite-
element analyses of FGM and homogeneous beams to examine crack tip responses
to low velocity and symmetric impact loading on the uncracked edge of the beams.
Wu et al. [2002] proposed an extended dynamic J integral for functional graded ma-
terials. Zhang et al. [2003] used a boundary integral equation method to investigate
the dynamic response of FGM crack problems. Chen et al. [2003] investigated the
dynamic fracture of a crack in a functionally graded piezoelectric interface. Guo
et al. [2005] considered the dynamic response of an edge crack in a functionally
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graded orthotropic strip. Zhou et al. [2004] investigated the dynamic behavior of
a finite crack in functionally graded materials using the Schmidt method. The dy-
namic propagations of anti-plane shear cracks in functionally graded piezoelectric
strips have been investigated by Kwon [2004] and Shin et al. [2004]. Recently,
Sladek et al. [2005] used a meshless local boundary integral equation method for
dynamic anti-plane shear crack problems in functionally graded materials.

All these papers considered the time dependence of the crack tip field in FGMs.
Solutions to problems of moving cracks in FGMs are important since they can
assist in the understanding of how FGMs can best be constructed to arrest running
cracks. Some earlier investigations [Jin et al. 2003; Bi et al. 2003; Jin and Zhong
2002; Li and Weng 2002; Ma et al. 2005] have considered moving cracks in FGMs
with exponentially distributed material properties.

In this paper, we study a crack moving at the interface between an FGM layer and
a homogeneous substrate. The properties of the FGM are considered for a class of
continuous functions of the coordinate perpendicular to the crack plane. The Yoffe
model [1951] of a running crack is adopted. The crack is assumed to propagate at a
constant velocity. The results show that crack growth behavior is strongly affected
by the material nonhomogeneity and the crack moving velocity. Different fracture
criteria may lead to different, indeed opposite, crack growth predictions. This
suggests that the selection of a fracture criterion is essential for moving cracks in
FGMs. Based on the maximum cleavage stress criterion, the dependence of crack
bifurcation angle and the critical crack speed (at which bifurcation occurs) on the
stress intensity factor are found to be identical for functionally graded materials
and homogeneous materials. Stress intensity factors, however, have a strong de-
pendence on material nonhomogeneity and crack moving velocity.

2. Formulation of the crack problem

From the viewpoint of applications, anti-plane crack problems often provide a
useful analog to the more interesting in-plane fracture problems. Therefore, we
investigate an anti-plane crack problem in an FGM/substrate structure. The prop-
erties of the FGM vary along the y-axis, as shown in Figure 1. There is a plane
crack of length 2a lying at the interface between the FGM and the substrate. The
crack advances with a constant length in the material having shear modulus µ(Y )

and mass density ρ(Y ). Crack motion is maintained at a constant velocity V by
the uniform anti-plane shear stress −τ0(x) applied to the crack faces.

We call XY the fixed coordinate system and xy the coordinates attached to the
moving crack. Under anti-plane deformation, the constitutive equations are

τxz = µ(Y )
∂w

∂ X
, τyz = µ(Y )

∂w

∂Y
, (1)
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Figure 1. Geometry of the crack problem.

where µ(Y ) is the shear modulus, which is a constant for y < 0. From the equilib-
rium equation

∂τxz

∂ X
+

∂τyz

∂Y
= ρ

∂2w

∂t2

and the constitutive equations, we obtain

µ(Y )

(
∂2w

∂ X2 +
∂2w

∂Y 2

)
+

dµ(Y )

dY
∂w

∂Y
= ρ(Y )

∂2w

∂t2 .

To simplify this equation, we apply the coordinate change x = X − V t , obtaining

µ(y)

(
∂2w

∂x2 +
∂2w

∂y2

)
+

dµ(y)

dy
∂w

∂y
− V 2ρ(y)

∂2w

∂x2 = 0. (2)

Let the solution of (2) be given by

w(x, y) =
1

2π

∫
∞

−∞

F(y, s)e−isx ds (3)

(see [Erdogan and Ozturk 1992]), where the function F is to be determined. It
follows from (2) and (3) that

d2 F
dy2 + p(y)

d F
dy

−

(
1 −

V 2ρ(y)

µ(y)

)
s2 F = 0, (4)

where

p(y) =
µ′(y)

µ(y)
.

To overcome the complexity of mathematics involved, we will focus in this study
on a special class of FGMs in which the properties vary proportionally, that is,

µ(y) = µ0 f (y) and ρ(y) = ρ0 f (y) (5)
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for some function f (y), where µ0 and ρ0 are material properties of the homoge-
neous substrate. From equations (4) and (5), we obtain

d2 F
dy2 + p(y)

d F
dy

− ω2s2 F = 0, (6)

where

ω =

√
1 − (V/c)2 with c =

√
µ0/ρ0

is the lowest bulk wave speed for plane wave propagation along the x direction.
Introduce the function

H(y, s) = F(y, s) f (y)1/2. (7)

Then Equation (6) becomes

d2 H
dy2 −

1
4

(
p2

+ 2
dp
dy

+ 4s2ω2
)

H = 0. (8)

We will now look for a particular class of functions for which this equation has
an analytical solution. The simplest class of such functions is obtained by assuming
that

p2
+ 2

dp
dy

= 4`0,

where `0 is a constant. We consider three classes of functions satisfying this equa-
tion (see [Erdogan and Ozturk 1992; Wang et al. 2003]):

(a) With `0 > 0 and β =
√

`0:

p(y) = ∓2β, f (y) = exp(∓2βy),

p(y) = 2β coth(βy + 0.8814), f (y) = sinh2(βy + 0.8814),

p(y) = 2β tanh(βy), f (y) = cosh2(βy).

(9)

(b) With `0 < 0 and β =
√

−`0:

p(y) = −2β tan(βy), f (y) = cos2(βy). (10)

(c) With `0 = 0 and β arbitrary:

p(y) = 2β/(βy + 1), f (y) = (βy + 1)2,

p(y) = 0, f (y) = 1.
(11)

The material properties are continuous at the interface between the coating and the
substrate if the coating property gradient is described by any of these equations.
The case p = 0, f = 1 describes a homogeneous coating.
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3. The solutions

For the choices of p(y) and f (y) just listed, Equation (8) can be solved in analytic
form:

H = A(s) exp(|s|γ y) + B(s) exp(−|s|γ y), γ =

√
ω2 + `0/s2, (12)

where A and B are arbitrary constants. It follows from (12), (7) and (3) that

w(x, y) =
1

2π

∫
∞

−∞

(
f1a(y)A1(s) + f1b(y)B1(s)

)
e−isx ds, −h1 < y < 0,

w(x, y) =
1

2π

∫
∞

−∞

(
f2a(y)A2(s) + f2b(y)B2(s)

)
e−isx ds, h2 > y > 0,

(13)
where A1(s), B1(s), A2(s) and B2(s) are unknown functions and

f1a(y) = e|s|ωy, f1b(y) = e−|s|ωy,

f2a(y) = f (y)−1/2e|s|γ y, f2b(y) = f (y)−1/2e−|s|γ y .
(14)

In formulating those boundary conditions, the crack problem has been treated
using the superposition technique; that is, the problem without any cracks has
been solved and the equal and opposite values of the stresses have been used as
the applied loads on the crack surfaces. Therefore, the boundary and continuity
conditions are as follows (see Figure 1):

τyz(x, −h1) = 0 = τyz(x, h2) forx ∈ (−∞, ∞), (15)

τyz(x, +0) = τyz(x, −0) forx ∈ (−∞, ∞), (16)

w(x, +0) = w(x, −0) forx /∈ (b, c), (17)

τyz(x, +0) = τyz(x, −0) = τ0(x) forx ∈ (b, c). (18)

Those conditions can be used to determine the unknown constants A1(s), B1(s),
A2(s) and B2(s).

3.1. The singular integral equation. The three homogeneous boundary conditions
shown in Equations (15) and (16) can be used to eliminate three of the four un-
known functions. The mixed boundary conditions (17)–(18) then give a system
of dual integral equations to determine the remaining one. By defining a new
unknown function

g(x) =
∂w(x, +0) − ∂w(x, −0)

∂x
, (19)
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the problem can be reduced to an integral equation in g; then it is seen that (17) is
equivalent to

g(x) = 0 for x /∈ (b, c)
∫ c

b
g(x) dx = 0,

and (18) gives the desired integral equation.
By substituting the values from Equations (13) via Hooke’s law into the bound-

ary conditions (15) and continuity conditions (16), and by using Equation (19), we
can determine A1(s), B1(s), A2(s) and B2(s) in terms of the Fourier transforms
of g. Noting that g is zero for x /∈ (b, c), the expressions found for A1(s), B1(s),
A2(s) and B2(s) are

A1(s) =
1

1(s)

(
f ′

2a(0) − f ′

2b(0)
f ′

2a(h2)

f ′

2b(h2)

)
i
s

∫ c

b
g(t)eist dt,

B1(s) = exp(−2|s|ωh1)A1(s),

A2(s) =
1

1(s)

(
f ′

1a(0) − f ′

1b(0)
f ′

1a(−h1)

f ′

1b(−h1)

)
i
s

∫ c

b
g(t)eist dt,

B2(s) = −
f ′
a(h2)

f ′

b(h2)
A2(s),

where
f ′

a(y) = ∂ fa(y)/∂y, f ′

b(y) = ∂ fb(y)/∂y,

and

1(s) =

(
1 −

f ′

2a(h2)

f ′

2b(h2)

)(
f ′

1a(0) − f ′

1b(0)
f ′

1a(−h1)

f ′

1b(−h1)

)
−

(
1 −

f ′

1a(−h1)

f ′

1b(−h1)

)(
f ′

2a(0) − f ′

2b(0)
f ′

2a(h2)

f ′

2b(h2)

)
.

Substituting Equations (1) and (13) into the remaining boundary condition (18),
we obtain:

1
π

∫ c

b
g(t)K (x, t) dt = τ0(x)/µ0, (20)

where

K (x, t) =
i
2

∫
∞

−∞

k(s)eis(t−x)ds, (21)

k(s) =
1

s1(s)

(
f ′

1a(0) − f ′

1b(0)
f ′

1a(−h1)

f ′

1b(−h1)

)(
f ′

2a(0) − f ′

2b(0)
f ′

2a(h2)

f ′

2b(h2)

)
. (22)

Therefore, the integral kernel k can be obtained by inserting the property distribu-
tions (9)–(11) into Equations (14) and then into (22).
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To determine the singular behavior of (20) we must examine the behavior of the
kernel k. For this, it is sufficient to determine and separate those leading terms in
the asymptotic expansion of k as |s| → ∞ that would lead to unbounded integrals.
From the expression of k in (22) it can be shown that in the asymptotic expansions
for |s| → ∞ the only terms that would give unbounded integrals are

k(±∞) = − sgn(s) 1
2ω.

By adding and substituting this asymptotic value to and from k in (21), and by
evaluating the integrals involving the leading terms, we obtain

K (x, t) =
1
2ω

1
t − x

+
i
2

∫
∞

−∞

3(s)eis(t−x) ds,

where
3(s) = k(s) +

1
2 sgn(s)ω.

Thus, Equation (20) becomes

ω

2π

∫ c

b

1
t − x

g(t) dt +
1
π

∫ c

b
K1(x, t)g(t) dt =

τ0(x)

µ0
, (23)

where

K1(x, t) =
i
2

∫
∞

−∞

3(s)eis(t−x)ds = −

∫
∞

0
3(s) sin

(
s(t − x)

)
ds

is a known bounded function.

3.2. The crack tip field. Equation (23) contains a Cauchy-type kernel. Conse-
quently, the crack tip behavior can be characterized by a standard square-root
singularity. The solution of the singular integral equation (23) has the form

g(x) =
G(x)

√
(x − b)(c − x)

, (24)

where G is a bounded function. After normalizing the interval (b, c), equation (23)
can be solved numerically by using a Gaussian quadrature formula. The mode III
stress intensity factor at, for example, at the crack tip x = b is defined by

k3(b) = lim
x→b−0

√
2(x − b) τyz(x, 0).

Observing that Equation (23) gives the stress component τyz(x, 0) on the plane of
the crack for x ∈ (b, c) as well as x /∈ (b, c), and substituting from (24) into (23),
a simple asymptotic analysis shows that

k3(b) =
µ0

2
ω

G(b)
√

a
, k3(c) = −

µ0

2
ω

G(c)
√

a
.
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Of practical interest is the stress status near the crack tip. From the above results
we can obtain the asymptotic fields near the moving crack tips in terms of the stress
intensity factor in the moving coordinate system. The results at the right crack tip
are

τyz =
k3(c)
√

2π r̂
cos

θ̂

2
, τxz = −

k3(c)

ω
√

2π r̂
sin

θ̂

2
, (25)

where

r̂ =

√
(x − a)2 + (ωy)2, θ̂ = tan−1 ωy

x − a
. (26)

4. Infinite functionally graded medium

The foregoing analysis can be easily extended to the case of an infinite function-
ally graded medium (h1 → ∞ and h2 → ∞). Suppose by using superposition
technique, the solution has been reduced to a perturbation problem where the only
applied loads are the anti-plane shear stresses on the crack surfaces. To satisfy the
regularity conditions at infinity, the constants B1 and A2 in Equations (13) must
equal zero. Following a similar analysis procedure in Section 3, we obtain the
remaining unknown constants B2 and A1 as

A1(s) =
f ′

2b(0)

f ′

1a(0) − f ′

2b(0)

i
s

∫ c

b
g(t)eist dt,

B2(s) =
f ′

1a(0)

f ′

1a(0) − f ′

2b(0)

i
s

∫ c

b
g(t)eist dt .

The integral equation (20) remains unchanged, provided that the integral kernel
k(s) in (21) be replaced by

k(s) =
f ′

1a(0) f ′

2b(0)

s[ f ′

1a(0) − f ′

2b(0]
.

The rest of the analysis and the equation system are the same as those in the previ-
ous section.

5. Results and discussion

We have considered an infinite medium (h1 → ∞, h2 → ∞) with proportional
material properties f (y) and p(y) varying according to one of several functions,
namely, f (y) = exp(βy), f (y) = sinh2(βy + 0.8814), and f (y) = exp(−βy).
The latter represents a soft coating (the stiffness of the coating is less than that
of the substrate). The values of the stress intensity factors for a single crack are
given in Figure 2, where a = (c − b)/2 is the half-crack length. As expected, the
value of k3 for a homogeneous medium (β = 0) is 1 for any crack velocity. For
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Figure 2. Stress intensity factors for a crack at different velocities.

the property distribution f (y) = exp(βy), the values of the stress intensity factor
k3 increase with the material nonhomogeneity β and the crack moving velocity V .
Oppositely, for the property distributions f (y) = exp(−βy) and f (y) = sinh2(βy+

0.8814), the values of k3 decrease with the material nonhomogeneity and the crack
moving velocity. The results indicate further that for a nonhomogeneous material
with property distributions f (y) = exp(−βy) and f (y) = sinh2(βy + 0.8814) the
stress intensity factor k3 is smaller than the corresponding value for a homogeneous
material.

The fact that the values of k3 can increase or decrease with crack moving ve-
locities suggests that, if the stress intensity factor criterion is used to predict the
unstable fracture initiation, then the critical applied loads can increase or decrease
with crack velocities, depending on the type of the material nonhomogeneity (gra-
dient). For example, unstable fracture is more likely to take place, for a lower crack
moving velocity, for material gradient f (y) = sinh2(βy +0.8814), and for a higher
crack moving velocity, for material gradient f (y) = exp(βy).

For a quick assessment of a possible unstable crack growth initiation, it is gener-
ally sufficient to examine the amplitude and the direction of the maximum cleavage
stress τθ z(r, θ) at the crack tips. The cleavage stress τθ z(r, θ) can be expressed as

τθ z(r, θ) = τyz cos θ − τxz sin θ, (27)
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where (r, θ) are the polar coordinates at the crack tip and θ is measured from
the positive x-axis (see Figure 1). Figure 3 gives the variation of cleavage shear
stress τθ z(r, θ) with the angle for different crack velocities. It is seen that the
stresses depend significantly on the crack velocities. Unlike the static solution, the
maximum value of τθ z(r, θ) does not always occur along the axis coincident with
the crack (θ = 0). For small velocities, the shear stress decreases monotonously
with the angle. As the velocity increases, τθ z(r, θ) in each curve attains a maximum

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

V=0

V/c=0.5

V/c=0.7

a

r
z

2

0
τ

τ
θ

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

V=0

V/c=0.5

V/c=0.7

θ

Figure 3. Angular distribution of stress τθ z with polar angle for a
crack moving at different velocities. Top: f = exp(βy), βa = 3.
Bottom: f = sinh2(βy + 0.8814), βa = 1.5.



A MODE III MOVING CRACK 659

value at an angle different from θ = 0. This suggests that crack bifurcation may
occur at a sufficient higher crack moving velocity.

Further consideration of the results in Figure 3 shows that the peak values of
the cleavage stress τθ z(r, θ) increase with the crack moving velocity, both for the
gradient f (y) = exp(βy) and for the gradient f (y) = sinh2(βy + 0.8814). Hence,
it is more reasonable to use the maximum cleavage stress τθ z(r, θ) as a fracture
criterion, since it can predict that the fracture is more likely to take place for a
higher crack moving velocity, no matter what kind of material nonhomogeneity
the medium has.

As mentioned above, the crack may bifurcate at a sufficient high moving velocity.
Referring to Figure 3, the bifurcation angle θc and the critical crack speed at which
bifurcation initiation can be found from:

∂τθ z(r, θc)

∂θc
= 0,

∂2τθ z(r, θc)

∂θ2
c

< 0. (28)

From Equations (25), (26), (27) and (28) we see that the value of θc is only a
function of crack moving velocities and does not depend on the material gradient.
Therefore, the bifurcation angle θc and the critical crack speed at which bifurcation
occurs are the same as for an ordinary homogeneous isotropic solid.

6. Conclusions

The fracture problem for a functionally graded material under anti-plane shear
loads is investigated for a class of property distributions. The paper aims at de-
termining the crack tip stress field, evaluating simultaneously the effects of the
crack velocity and material varying properties. Also discussed are the stability of
crack growth, crack bifurcation and failure criteria to be adopted. The following
conclusions can be drawn:

• Unlike the case of a a homogeneous coating, crack motion affects the stress
intensity factors for an FGM coating.

• Stress intensity factors depend on the crack velocity as well as material non-
homogeneity. They can increase or decrease with material nonhomogeneities
and crack velocities, depending on the type of the material property distribu-
tion.

• For a stationary crack, the angular distribution of the stress field near the
crack tips is the same as for a homogeneous material. But for a moving crack
the singular stress field near the crack tips is altered considerably by crack
velocity.

• It is more convenient to use the maximum cleavage stress τθ z(r, θ) as a fracture
criterion for a moving crack in FGMs, since it can explain the fact that the
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fracture is more likely to take place for a higher moving velocity, for any
of the kinds of material nonhomogeneity (gradients) considered in this paper.
Oppositely, if the stress intensity factor criterion is used, the crack growth
could be enhanced or retarded by crack moving velocity, depending on the
material nonhomogeneity.

Acknowledgements

Comments from two anonymous reviewers on the original manuscript were espe-
cially useful for the improvement of the presentation and quality of the paper.

References

[Bi et al. 2003] X. S. Bi, J. Cheng, and X. L. Chen, “Moving crack for functionally grated material
in an infinite length strip under antiplane shear”, Theor. Appl. Fract. Mech. 39:1 (2003), 89–97.

[Chen et al. 2003] J. Chen, Z. Liu, and Z. Zou, “Dynamic response of a crack in a functionally graded
interface of two dissimilar piezoelectric half-planes”, Arch. Appl. Mech. 72:9 (2003), 686–696.

[Erdogan and Ozturk 1992] F. Erdogan and M. Ozturk, “Diffusion problems in bonded nonhomoge-
neous materials with an interface cut”, Int. J. Eng. Sci. 30:10 (1992), 1507–1523.

[Guo et al. 2005] L. C. Guo, L. Z. Wu, and T. Zeng, “The dynamic response of an edge crack in a
functionally graded orthotropic strip”, Mech. Res. Commun. 32:4 (2005), 385–400.

[Jin and Zhong 2002] B. Jin and Z. Zhong, “A moving mode-III crack in functionally graded piezo-
electric material: permeable problem”, Mech. Res. Commun. 29:4 (2002), 217–224.

[Jin et al. 2003] B. Jin, A. K. Soh, and Z. Zhong, “Propagation of an anti-plane moving crack in a
functionally graded piezoelectric strip”, Arch. Appl. Mech. 73:3–4 (2003), 252–260.

[Kwon 2004] S. M. Kwon, “On the dynamic propagation of an anti-plane shear crack in a function-
ally graded piezoelectric strip”, Acta Mech. 167:1–2 (2004), 73–89.

[Li and Weng 2002] C. Y. Li and G. J. Weng, “Yoffe-type moving crack in a functionally graded
piezoelectric material”, P. Roy. Soc. Lond. A Mat. 458:2018 (2002), 381–399.

[Ma et al. 2005] L. Ma, L. Z. Wu, L. C. Guo, and Z. G. Zhou, “On the moving Griffith crack in a
non-homogeneous orthotropic medium”, Eur. J. Mech. A: Solids 24:3 (2005), 393–405.

[Marur and Tippur 1998] P. R. Marur and H. V. Tippur, “Evaluation of mechanical properties of
functionally graded materials”, J. Test. Eval. 26:6 (1998), 539–545.

[Rousseau and Tippur 2001] C.-E. Rousseau and H. V. Tippur, “Influence of elastic gradient profiles
on dynamically loaded functionally graded materials: cracks along the gradient”, Int. J. Solids
Struct. 38:44–45 (2001), 7839–7856.

[Shin et al. 2004] J. W. Shin, T. U. Kim, and S. C. Kim, “Dynamic characteristics of an eccentric
crack in a functionally graded piezoelectric ceramic strip”, Korean Soc. Mech. Eng. Int. J. 18:9
(2004), 1582–1589.

[Sladek et al. 2005] J. Sladek, V. Sladek, and C. Z. Zhang, “A meshless local boundary integral
equation method for dynamic anti-plane shear crack problem in functionally graded materials”,
Eng. Anal. Bound. Elem. 29:4 (2005), 334–342.

[Wang et al. 2003] B. L. Wang, Y. W. Mai, and Y. G. Sun, “Anti-plane fracture of a functionally
graded material strip”, Eur. J. Mech. A: Solids 22:3 (2003), 357–368.



A MODE III MOVING CRACK 661

[Wu et al. 2002] C. Wu, P. He, and Z. Li, “Extension of J integral to dynamic fracture of functional
graded material and numerical analysis”, Comput. Struct. 80:5–6 (2002), 411–416.

[Yoffe 1951] E. H. Yoffe, “The moving Griffith crack”, Philos. Mag. 42:7 (1951), 739–750.

[Zhang et al. 2003] C. Zhang, A. Savaidis, G. Savaidis, and H. Zhu, “Transient dynamic analysis of
a cracked functionally graded material by a BIEM.”, Comput. Mater. Sci. 26 (2003), 167–174.

[Zhou et al. 2004] Z. G. Zhou, B. Wang, and Y. G. Sun, “Investigation of the dynamic behavior of a
finite crack in the functionally graded materials by use of the Schmidt method”, Wave Motion 39:3
(2004), 213–225.

Received 2 Dec 2005.

BAO-LIN WANG: wangbl2001@hotmail.com
Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and
Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia

JIE-CAI HAN: hanjc@hit.edu.cn
Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, P.R. China




