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Static and buckling analyses of carbon nanotubes (CNTs) are carried out with
newly developed nonlocal continuum models. Small-scale effects are explicitly
derived for bending deformation solutions for CNTs subjected to general flexural
loading first. Solutions via nonlocal continuum models are expressed by simple
terms related to scale coefficients in addition to remaining terms via local contin-
uum models in which the simplicity of the nonlocal continuum models is clearly
observed. Discussions on various derivations of Young’s modulus for CNTs
from existing experimental work in the literature are provided, revealing the
applicability of the nonlocal continuum models. In addition, a simple equation
for the buckling load of CNTs with various general boundary conditions subject
to axial loading via the nonlocal elastic beam model is explicitly derived for
instability analysis. The results of this research provide benchmark solutions for
the response of CNTs subject to general static loading, with small-scale effects
modeled and revealed. Thus, the work has great potential in studying mechanical
properties of CNTs of various sizes.

1. Introduction

Carbon nanotubes (CNTs) have been the focus of extensive research [Ball 2001;
Baughman et al. 2002; Harris 1999; Treacy et al. 1996] since they were discovered
by Iijima [1991], because of their potential to lead to new applications, such as fric-
tionless nanoactuators, nanomotors, nanobearings, and nanosprings [Lau 2003].

Two major analytical approaches are used in studies of CNTs. The first is
atomic modeling, and includes techniques such as classical molecular dynamics
(MD) [Iijima et al. 1996; Yakobson et al. 1997], tight binding molecular dynamics
(TBMD) [Hernandez et al. 1998] and density functional theory (DFT) [Sanchez-
Portal et al. 1999]. Its use is limited to the study of systems having a relatively
small number of atoms.

The second approach, continuum modeling, is more practical in analyzing car-
bon nanotubes of large-scale systems. Continuum modeling includes elastic beam
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and shell models, which have been applied in analyzing static response, stability
and vibration of CNTs. Yakobson et al. [1996] studied unique features of fullerenes
and developed a continuum shell model to study instability patterns of a CNT under
different compressive loads. Ru [2000a; 2000b] proposed the buckling analysis of
CNTs with shell models. Parnes and Chiskis [2002] investigated elastic buckling
of nanofiber reinforced composites with elastic beam theory. Wang and coworkers
[Wang and Varadan 2005; Wang 2005; Wang et al. 2005b] have investigated global
and local instability or kinks of CNTs with elastic beam models. In these contin-
uum models, stress at a reference point is defined and considered traditionally to
be a functional of the strain field at the exact point in the body; hence the models
are usually called classical or local continuum models. A pioneering work [Zhang
et al. 2002] established a nanoscale continuum theory to incorporate interatomic
potentials into a continuum analysis in studying the linear modulus of a single-
wall CNT. The Young’s modulus predicted by that work agreed well with prior
experimental results and atomic studies. The simplicity of these continuum models
has inspired a great deal of work on CNT mechanical behavior, and this research
has shown that continuum mechanics is easy to handle and accurate in predicting
much this behavior.

Local continuum models do not admit intrinsic size dependence in elastic so-
lutions of inclusions and inhomogeneities. At nanolength scales, however, size
effects often become prominent, and in view of the increasing interest in nanotech-
nology, they need to be addressed [Sharma et al. 2003]. Wang et al. [2005a] used
the Tersoff–Brenner potential and ab initio calculations to find the size dependence
of CNTs in a thin-shell model. Sun and Zhang [2003] pointed out the limitations of
the applicability of classical continuum models in nanotechnology. They indicated
the importance of semicontinuum models in analyzing nanomaterials with plate-
like geometry. Their results contrast with those obtained from classical continuum
models; the values of material properties were found to depend heavily on the
thickness of the plate structure. The modeling of such a size-dependent phenome-
non has become an active researcher subject [Sheehan and Lieber 1996; Yakobson
and Smalley 1997]. One concludes from these works that the applicability of the
classical continuum models at small scales may be questionable. At such scales the
microstructure of the material, such as the lattice spacing between individual atoms,
becomes increasingly important and the discrete structure of the material can no
longer be homogenized into a continuum. Therefore, more appropriate continuum
models rather than classical or local elastic beam and shell theories are needed in
studying the small-scale effect in nanomaterials.

Nonlocal elasticity was first proposed by Eringen [1976; 1983] to account for
the scale effect in elasticity, by assuming the stress at a reference point to be a func-
tional of the strain field at every point in the body. In this way, the internal size scale
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could be considered in the constitutive equations simply as a material parameter.
Recently, Pugno and Ruoff [2004] modified continuum fracture mechanics and
proposed their fracture quantized mechanics to predict fractures of tiny systems
with a given geometry and type of loading occurred at quantized stress.

The application of nonlocal elasticity models to nanomaterials has received at-
tention from the nanotechnology community only recently. Peddieson et al. [2003]
proposed a version of nonlocal elasticity for the formulation of an Euler–Bernoulli
beam theory. They concluded that nonlocal continuum mechanics could potentially
play a useful role in the analysis of phenomena related to nanotechnology applica-
tions. Sudak [2003] studied infinitesimal column buckling of CNTs, incorporating
van der Waals forces and small-scale effects, and showed that the critical axial
strain decreases, compared to the results with classical continuum beam model,
where the small length scale increases in magnitude. Zhang et al. [2004] proposed
a nonlocal multishell model for the axial buckling of CNTs under axial compres-
sion. Their results showed that the effect of the small-scale on axial buckling
strain is related to the buckling mode and the length of tubes. Wang [2005] studied
the dispersion relations for CNTs considering small-scale effects. A qualitative
validation study showed that results based on the nonlocal continuum mechanics
are in agreement with the published experimental reports in this field.

These studies of the use of nonlocal continuum mechanics in the mechanical
analysis of CNTs have shown that nonlocal continuum mechanics is not signifi-
cantly harder to apply than local continuum mechanics. In existing buckling and
vibration analyses of CNTs, the results can all be expressed concisely; only a few
terms related to scale coefficients need be included in addition to those based on
local continuum models. The simplicity of nonlocal continuum mechanics implies
that these proposed nonlocal elastic models, such as nonlocal elastic beam and
shell models, have great potential in the study of scale effects, in cases where such
effects have to be taken into account (which cannot be done via local continuum
mechanics).

In this article we focus on the static and buckling analysis of CNTs using non-
local continuum models. We first derive explicitly the small-scale effect in the
bending analysis of single-walled CNTs subjected to general loading; one clearly
observes a difference in response between the local and nonlocal continuum models
for this problem. To our knowledge, no experimental data based on CNT static
measurements are available yet that would to reflect scale effects. Wang [2005]
studied the validity and applicability of nonlocal continuum models using experi-
mental data for vibrating CNTs only.

To qualitatively show the scope of the proposed research, we show how to derive
the Young’s modulus of a CNT from experiments, using the force-displacement
relation, in such a way that small-scale effects, in particular systems studied in
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the literature, can be identified and estimated from published measurements of the
Young’s modulus.

We next derive solutions for the buckling load of a CNT subjected to axial
loading with various boundary conditions, using the nonlocal continuum model,
relating these solutions to those obtained with local continuum models. In all
simulations, the results of static and buckling analyses are expressed in simple
terms related to scale coefficients, in addition to the terms corresponding to local
continuum models. This shows the simplicity of the nonlocal continuum models.
It is hoped that this work will help provide benchmark solutions for the analysis
of CNTs via continuum models.

2. Elastic nonlocal beam models for CNT analysis

According to the theory of nonlocal elasticity [Eringen 1976], the stress at a ref-
erence point x is considered to be a functional of the strain field at every point
in the body. This observation is in accordance with the atomic theory of lattice
dynamics and experimental observations on phonon dispersion. In the limit when
the effects of strains at points other than x is neglected, one obtains the classical
(local) theory of elasticity. The basic equations for linear, homogeneous, isotropic,
nonlocal elastic solid with zero body force are given by

σi j, j = 0,

σi j (x) =

∫
α
(
|x − x ′

|, τ
)
Ci jklεkl(x ′) dV (x ′)for x ∈ V,

εi j =
1
2(ui, j + u j,i ),

where Ci jkl is the elastic module tensor of classical isotropic elasticity, σi j and εi j

are the stress and strain tensors, and ui is displacement vector.
Next,

α
(
|x−x ′

|, τ
)

is the nonlocal modulus or attenuation function, which serves to incorporate into
the constitutive equations the nonlocal effects at the reference point x produced
by local strain at the source x ′. Here

∣∣x − x ′
∣∣ is the Euclidean distance and τ is

the quotient e0a/ l [Peddieson et al. 2003], where l is the external characteristic
length (crack length, wavelength, etc.), a is an internal characteristic length, which
we choose as 0.142 nm, the length of a C-C bond, as in [Sudak 2003]; and e0 is
an adjustable parameter, given as 0.39 in [Eringen 1983], although Sudak [2003]
proposed a value in the order of hundreds. Our work suggests that Eringen’s value
is close to the mark, but it needs to be further verified through experiments or
through matching dispersion curves of plane waves with those of atomic lattice
dynamics for CNTs.
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Wang [2005] made a rough estimate of the scale coefficient e0a from the avail-
able highest frequency of a single-walled CNT in the literature, based on vibration
analysis using the nonlocal elastic Timoshenko beam model. The asymptotic fre-
quency was derived there as ω = 21456/(e0a) if the mass density is ρ = 2.3 g/cm3

and the thickness of the nanotube is t = 0.34 nm. Hence, a conservative evaluation
of the scale coefficient is given by the equation above as e0a < 2.1 nm for a single-
walled CNT, if the measured frequency value is greater than 10 THz. This value,
like the frequency, is radius-dependent.

Eringen [1983] reduced the integral-partial differential equations for this linear
nonlocal elasticity problem to singular partial differential equations of a special
class of physically admissible kernel. In addition, Hooke’s law for a uniaxial stress
state can be determined by

σ(x) − (e0a)2 d2σ(x)

dx2 = Eε(x), (1)

where E is the Young’s modulus of the material.
We now apply Euler–Bernoulli beam theory based on the nonlocal continuum

elasticity. The free body diagram of an infinitesimal element of a beam structure
subjected to both an axial compression force F and a flexural distributed force q(x)

is shown in Figure 1. The equilibrium equation for the vertical force component is
easily seen to be

dV
dx

+ q(x) = 0,

q(x)

F

F

M

M + d M

dx

V

V +dV

Figure 1. Free body diagram of a beam element.
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and that for the moment on the one-dimensional structure is

V −
d M
dx

+ F
dw(x)

dx
= 0, (2)

where V (x, t) and M(x, t) are the resultant shear force and bending moment on
the beam, and w(x) is the flexural deflection of the beam.

Differentiating the latter equation and substituting into the former one gets

d2 M
dx2 = F

dw2(x)

dx2 − q(x). (3)

Consider the definitions of the resultant bending moment and the kinematics rela-
tion in a beam structure:

M =

∫
A

y σd A and ε = − y
d2w

dx2 ,

where y is the coordinate measured from the mid-plane in the height direction of
the beam.

Substituting this into the nonlocal constitutive relation Equation (1) leads to

M − (e0a)2 d2 M
dx2 = − EI

d2w

dx2 ,

where EI is the bending rigidity of the beam structure. Further considering Equa-
tion (3) and Equation (2), the expressions for moment and shear force are derived
as

M(x) = −
(
EI − F(e0a)2)d2w(x)

dx2 − q(e0a)2,

V (x) = − EI
d3w(x)

dx3 − F
d

dx

(
w(x) −

(
e0a

)2 d2w(x)

dx2

)
− (e0a)2 dq(x)

dx
.

(4)

Substitution of the second of these equations into (2) yields the nonlocal elastic
beam model for CNTs subjected to static flexural and axial loadings:

EI
d4w(x)

dx4 +F
d2

dx2

(
w(x)−(e0a)2 d2w(x)

dx2

)
−q(x)

(
1−(e0a)2 d2q(x)

dx2

)
= 0. (5)

It is easily seen from the derivation that the local Euler–Bernoulli beam model is
recovered when the parameter e0 is identically zero.
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3. Flexural bending analysis of CNTs

To investigate the bending analysis of CNTs subjected to static flexural loading,
the governing equation for CNTs can be derived from (5) as

EI
d4w(x)

dx4 = q(x) − (e0a)2 d2q(x)

dx2 .

Hence the model for a CNT subject to a distributed force q(x), concentrated forces
Pi at x = ai (i = 1 . . . m), and bending moment M j at x = b j ( j = 1 . . . n) has
the form

EI
d4w(x)

dx4 = q(x) − (e0a)2 d2q(x)

dx2 +

m∑
i=1

Pi
(
δ(x − ai ) − (e0a)2δ′′(x − ai )

)
−

n∑
j=1

M j
(
δ′(x−b j ) − (e0a)2δ′′′(x−b j )

)
, (6)

where δ is the Dirac delta function, and ′ denotes differentiation with respect to x .
By integrating both sides of (6), one obtains expressions for the beam deforma-

tion and its three derivatives as follows:

w′′′(x) =
1
EI

∫ x

0
q(x1) dx1 − (e0a)2 dq(x)

dx
+ C1

+

m∑
i=1

Pi
(
H(x−ai ) − (e0a)2δ′(x−ai )

)
−

n∑
j=1

M j
(
δ(x−b j ) − (e0a)2δ′′(x−b j )

)
, (7)

w′′(x) =
1
EI

∫ x

0
(x−x1)q(x1) dx1 − (e0a)2q(x) + C1x + C2

+

m∑
i=1

Pi
(
(x−ai )H(x−ai ) − (e0a)2δ(x−ai )

)
−

n∑
j=1

M j
(
H(x−b j ) − (e0a)2δ′(x−b j )

)
, (8)

w′(x) =
1
EI

1
2

∫ x

0
(x−x1)

2q(x1) dx1 − (e0a)2
∫ x

0
q(x1) dx1

+
C1

2
x2

+ C2x + C3 +

m∑
i=1

Pi
(
(x−ai )

2 H(x−ai )/2 − (e0a)2 H(x−ai )
)

−

n∑
j=1

M j
(
(x−b j )H(x−b j ) − (e0a)2δ(x−b j )

)
, (9)
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w(x) =
1
EI

1
6

∫ x

0
(x−x1)

3q(x1) dx1 − (e0a)2
∫ x

0
(x−x1)q(x1) dx1

+
C1

6
x3

+
C2

2
x2

+ C3x + C4

+

m∑
i=1

Pi
(
(x−ai )

3 H(x−ai )/6 − (e0a)2(x−ai )H(x−ai )
)

−

n∑
j=1

M j
(
(x−b j )

2 H(x−b j )/2 − (e0a)2 H(x−b j )
)
. (10)

3.1. Cantilevered CNT. Next we discuss small-scale effects on the response of a
CNT under different boundary conditions.

We first study a cantilevered CNT of length L subjected to a concentrated force
P at x = l. This system has been used by Wong et al. [1997] to measure the
Young’s modulus. According to (10), the response of the CNT under a point force
P is

w(x) =
1
EI

( 1
6C1x3

+
1
2C2x2

+C3x +C4 +
1
6 P(x−l)3 H(x−l)− P(x−l)H(x−l)

)
.

The boundary conditions at the left end, w(0) = w′(0) = 0, lead to the solutions
having C3 = C4 = 0. The boundary conditions at the right end, M(L) = V (L) = 0,
together with Equations (4), lead to

−EI
d2w(x)

dx2

∣∣∣∣
x=L

− Pδ(L − l)(e0a)2
= 0, that is,

d2w(x)

dx2

∣∣∣∣
x=L

= 0,

−EI
d3w(x)

dx3

∣∣∣∣
x=L

− (e0a)2 Pδ′(L − l) = 0, that is,
d3w(x)

dx3

∣∣∣∣
x=L

= 0.

(11)

Hence C1 and C2 can be derived by substituting (7) and (8) into (11):

C1 = − P and C2 = Pl.

The response of the CNT is therefore

w(x) =
1
EI

(
P(x−l)3

6
H(x−l) − P

(
e0a

)2
(x−l)H(x−l) −

Px3

6
+

Plx2

2

)
.

From this we find that the small-scale term, P(e0a)2(x−l)H(x−l), will affect
the response of the CNT only in the domain x > a. The response at x = l is

w(l) =
Pl3

3EI
. (12)

It is important to determine whether the small-scale term has any effect on the
derived Young’s modulus in experimental investigations. In the investigations of
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mechanical properties of CNTs by Wong et al. [1997] and Poncharal et al. [1999],
the response of a cantilevered CNT at the position of the concentrated force was
employed to evaluate Young’s modulus of CNTs. According to Equation (12), it is
clear that the derived Young’s modulus can be viewed as an “accurate” evaluation,
since the measurement is independent of the small-scale effect.

Wong et al. [1997] also considered the beam subjected to surface friction force
in their modeling of the cantilevered CNT. The friction force can be modeled as a
uniform distributed force f applied on the beam. From Equation (10), the response
of the CNT can be written as

w(x) =
1
EI

(
f x4

24
−

f x2

2
(e0a)2

+ C1x3/6 + C2x2/2 + C3x + C4

)
.

The fixed left end again leads to C3 = C4 = 0. Zero moment and shear force at the
right end lead to C1 = − f L and C2 = f L2/2, by (4), leading to the solution

EIw′′(L) + (e0a)2 f = 0 and EIw′′′(L) = 0.

Therefore, the response of the CNT under uniform distributed force is

w(x) =
1
EI

(
f x4

24
−

f Lx3

6
+

f L2x2

4
−

f x2

2
(e0a)2

)
.

It can be seen that the small-scale term has an effect on the measurement of
mechanical properties for a cantilevered CNT subjected to uniformly distributed
force. This effect has to be considered if an independent value for the Young’s
modulus or any other material properties is to be evaluated properly. The small-
scale effect on the deformation of the CNT is studied numerically in terms of the
location of the deformation and the length of the CNT by studying the ratio of
the response for the nonlocal versus the local continuum models, at x = l. In the
simulations we take e0a = 2 nm, as suggested in [Wang 2005]. In the top half of
Figure 2 we see a plot of this ratio versus the nondimensional location (l/L), for a
CNT having length L = 10 nm. We see that the small-scale effect is more obvious
for the response at the point near the free end. The small-scale effect decreases the
response, indicating that its neglect may lead to an overestimation of the Young’s
modulus from the measurements. In [Wong et al. 1997], an increasing variation
of the Young’s modulus was found by using the classical beam model when the
measurement was towards the free end of the cantilever CNT, with both distributed
friction and point loading modeled in their experiment. These authors’ findings on
the increasing variation of the Young’s modulus are in agreement with the result
shown in the figure for the nonlocal beam model, in which a decreasing variation
of the bending deformation is observed as one moves toward the free end. The
effect of the length of the CNT on the ratio is seen in Figure 2, bottom, where
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Figure 2. Small-scale effect versus location of the measurement
(top) and length of CNT (bottom) for the model of a cantilevered
CNT under distributed force.

we take l/L = 0.5. It is expected that the small-scale effect is higher for shorter
CNTs, and this can be seen in the figure. Thus a local continuum model becomes
appropriate for modeling large CNTs.

3.2. Simply supported CNT. Next, the response of a simply supported CNT sub-
jected to a concentrated force P at x = l will be discussed to show the small-scale
effect. The governing equation for the CNT can be obtained from (10) as
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w(x) =
1
EI

(
P(x−l)3

6
H(x−l) − P(x−l)H(x−l)(e0a)2

+
C1x3

6
+

C2x2

2
+ C3x + C4

)
. (13)

The boundary conditions on the two sides of the CNT, w(0) = w(L) = M(0) =

M(L) = 0, lead to the solution for the four coefficients, C1, C2, C3 and C4, and
thus the response of the CNT can finally be obtained as:

w(x) =
1
EI

(
P(x−l)3

6
H(x−l) − P(x−l)H(x−l)

(
e0a

)2

−
P
(
L − l

)
x3

6L
+

P(L − l)(−l2
+ 2Ll)x

6L
+

P(L − l)
(
e0a

)2x
L

)
.

The response of the CNT at the force location, x = l, is thus derived as:

w(l) =
1
EI

(
−

P
(
L − l

)
l3

6L
+

P(L − l)(−l2
+ 2Ll)l

6L
+

P(L − l)
(
e0a

)2l
L

)
.

Especially when l = L/2, one can obtain,

w

(
L
2

)
=

L3

48EI

(
1 + 12

(e0a
L

)2
)

.

The study of the small-scale effect on the simply supported CNT is illustrated in
Figure 3. The top half of the figure plots the ratio of the response from the local
and nonlocal continuum model versus the nondimensional location (l/L) for a
CNT with L = 10 nm. It is observed that the small-scale effect is more obvious for
the response at the two ends of the beam. The effect leads to the value of the ratio
up to 2.4. The small-scale effect makes the response of the CNT larger indicating
that an under-estimated Young’s modulus might be obtained from the measurement
of deformation of a simply supported CNT. The effect of the length of the CNT
on the ratio is shown in the bottom half of the figure, for l/L = 0.5. It is again
within our understanding that the small-scale has higher effect for shorter simply
supported CNTs.

3.3. Fixed-fixed CNT. Salvetat et al. [1999] investigated the elastic and shear
modulus of CNTs by measuring the displacement of a fixed-fixed CNT subjected
to a concentrated force. Thus, it is of significance to understand and evaluate the
small-scale effect on the results of the moduli by measuring the response of fixed-
fixed CNTs. The general expression for the deformation result of a fixed-fixed CNT
subjected to a concentrated force P at x = l is same as Equation (13). Considering
the boundary conditions at the two ends of the beam, w(0) = w′(0) = w(L) =
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Figure 3. Small-scale effect versus location of the measurement
(top) and length of CNT (bottom) for a singly supported CNT.

w′(L) = 0, one can obtained the values for the four coefficients, C1, C2, C3 and
C4, and hence, the response of the beam shown as

w(x) =
1
EI

(
P(x−l)3

6
H(x−l) − P(x−l)H(x−l)(e0a)2

+

(
P(e0a)2

L2

(2l
L

− 1
)

−
P(L − l)2

6L2

(
1 +

2l
L

))
x3

+

(
P
(
e0a

)2

L2

(
2L − 3l

)
+

P(L − l)2l
2L2

)
x2

)
.
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The expression for the response at x = l is thus given as:

w(x) =
1
EI

((
P
(
e0a

)2

L2

(2l
L

− 1
)

−
P(L − l)2

6L2

(
1 +

2l
L

))
x3

+

(
P(e0a)2

L2

(
2L − 3l

)
+

P(L − l)2l
2L2

)
x2

)
.

Furthermore, the result for l = L/2 is given as:

w
(L

2

)
=

P L3

192

(
1 + 24

(e0a
L

)2
)

.

Figure 4, top, shows the ratio of the response from the local and nonlocal continuum
model versus the nondimensional location (l/L), for L = 10 nm. It is seen clearly
that the ratio reaches 3.7 when the measurement is taken near fixed ends and 1.96
for measurement at the center of the beam. This observation indicates that the
Young’s modulus may be underestimated by a factor of at least two in the fixed-
fixed CNT. The bottom half of the figure again shows the effect of the length of
the CNT on the estimation of the response, if the measurement point is taken at the
middle of the CNT. It is seen that the small-scale effect is still obvious for a CNT
with L = 15 nm although this effect becomes smaller with longer CNTs.

From the numerical simulation on three types of CNTs, it is found that the small-
scale effects are more obvious for stiffer CNTs, i.e. fixed-fixed CNTs, and less
obvious for softer CNTs, i.e. cantilevered CNTs. Since the experimental results in
[Salvetat et al. 1999] are inconsistent, the verification for the nonlocal beam model
cannot be implemented at the moment, but will be conducted when consistent data
are available. However, the scale effect was truly observed in [Salvetat et al. 1999].

4. Buckling analysis of CNTs

Buckling is one type of instability exhibited by structures subjected to compressive
loading. Sudak [2003] derived the buckling load of simply supported CNTs via
the nonlocal continuum model. To establish the relationship between the buckling
load of CNTs considering small-effect from nonlocal continuum models and that
without taking into account of small-effect from local continuum models is the
main objective in this section.

The governing equation for a CNT subjected to a compressive loading, F , is
given as follows according to Equation (5):

EI
d4w(x)

dx4 + F
d2

dx2

(
w(x) − (e0a)2 d2w(x)

dx2

)
= 0. (14)



676 QUAN WANG AND YASUHIDE SHINDO
re

sp
on

se
ra

tio

0 0.2 0.4 0.6 0.8 1

2

3

4

5

6

l/L

re
sp

on
se

ra
tio

10 12 14 16 18 20

1.3

1.4

1.5

1.6

1.7

1.8

1.9

L (nm)

Figure 4. Small-scale effect versus location of the measurement
(top) and length of CNT (bottom) for a fixed-fixed CNT.

The general solution for Equation (14) can be easily derived as:

w(x) = A1 cos α x + A2 sin α x + A3x + A4, (15)

where α =

√
F

EI−F(e0a)2 .
The buckling load can be derived from an eigenvalue problem to find nontrivial

solution for w(x) by substituting Equation (15) into four boundary conditions at
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the ends of beams. The fundamental value of α for the first buckling mode is
derived as follows [Timoshenko and Gere 1963]:

α =
βπ

L
, (16)

where β has different value for beams with different boundary conditions, i.e. β = 1
for simply supported beams; β = 0.5 for cantilevered beams; β = 2 for fixed-
fixed beams. From Equation (16), the buckling load for CNTs with the nonlocal
continuum model can thus be obtained as

F =

EI
(
βπ

L

)2

1 + (e0a)2
(
βπ

L

)2 . (17)

It can be seen clearly that the buckling load becomes smaller with a factor(
1 + (e0a)2

(βπ

L

)2
)−1

(18)

from the nonlocal elastic beam theory compared to that from local continuum
model. Equation (17) provides a general solution for the buckling load with the
nonlocal continuum model. For example, the solution for buckling load at β = 1
for a simply supported CNT was provided by Sudak [2003]. From the solution
shown in (17), it can be concluded that the small-scale effect is more obvious for
shorter, or smaller L , and stiffer CNT, or higher β. Yakobson et al. [1996] studied
the instability behavior of CNTs by using molecular dynamics. In their results
on the instability patterns, they found a beam-like buckling mode with two half
wavenumber in tube length direction at the axial compression strain ε = 0.09 for a
CNT with length 6 nm and diameter 1 nm. However, according to the continuous
elastic beam model [Wang and Varadan 2005], the CNT may have its beam-like
buckling for a two-half wavenumber mode only at compression strain ε = 0.137.
Such discrepancy of the derived buckling strain may be due to the scale effect.
From the currently developed nonlocal theory, it can be easily found that the over-
estimated buckling strain can be modulated to match the result from the molecular
dynamics calculations in [Yakobson et al. 1996] if the scale coefficient is set to be
e0a = 1.2 nm. It is also noted that the nonlocal beam model cannot capture the
radius-dependent scale effect since in beam model, a uniform radial deformation
assumption is endorsed. The possible radius-dependent scale effect found in [Wang
et al. 2005a] could only be evaluated from a nonlocal shell model which will be
developed and studied later.
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5. Conclusions

Small-scale effects on both the bending analysis of CNTs subjected to static flex-
ural loading and the buckling load of CNTs subjected to compressive loading are
explicitly studied with the nonlocal continuum beam theory. It is found that there
is no such effect on the static response of a cantilevered CNT at the location where
the beam is subjected to a concentrated force, and hence the experimental work on
the measurement of Young’s modulus of CNTs on a cantilevered CNT subjected to
concentrated force is relatively reliable since the small-scale effect of CNTs is not
involved in the measurement of the response. On the other hand, the small-scale
effects are explicitly derived on the response of cantilevered CNT subjected to
distributed force at all locations, simply supported CNTs and fixed-fixed CNTs at
the location where the CNT is subjected to concentrated force. The effect becomes
more obvious with smaller size of CNTs. In addition, the effect is dependent on
the location where the response is taken. For example, the effect is higher on the
responses, where the force is applied at the two ends of both simply supported
and fixed-fixed CNTs. But the effect is higher at the free end of a cantilevered
CNT subjected to a uniformly distributed force. The results also reveals that the
small-scale effects are more obvious for stiffer CNTs, i.e. fixed-fixed CNTs, and
less obvious for softer CNTs, i.e. cantilevered CNTs. The results on buckling
instability of CNTs show that the buckling load becomes smaller when small-scale
effect is considered by the nonlocal continuum model. The ratio of the result from
nonlocal model to that via local model is explicitly derived for CNTs with any gen-
eral boundary conditions. Furthermore, the small-scale effect is found to be more
obvious for shorter and stiffer CNT in buckling analysis. Further studies may focus
on the corresponding analysis of multi-walled CNTs. In all simulations, the results
for CNTs static and buckling analyses are all expressed by simple terms related
to scale coefficients in addition to terms by local continuum models. Thus, the
simplicity of the nonlocal continuum mechanics is well seen and the applicability
of the theory is promising.
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