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CONSERVATION LAWS AT NANO/MICRO SCALES

YOUPING CHEN AND JAMES LEE

This paper aims to find a field description of local conservation laws at nano/
micro scales. Atomistic definitions and field representations of fundamental
physical quantities are presented. By decomposing atomic deformation into ho-
mogeneous lattice deformation and inhomogeneous relative atomic deformation,
and also decomposing momentum flux and heat flux into homogeneous and inho-
mogeneous parts, the field representations of conservation laws at atomic scale
have been formulated, which follow exactly the time evolution laws that exist in
atomistic simulations, where the atomic motion is fully described, the inhomo-
geneous internal motion is not ignored, and the smallest particles considered are
atoms.

1. Introduction

The atomic view of a crystal is as a periodic arrangement of local atomic bonding
units. Each lattice point defines the location of the center of a unit. The space
lattice is macroscopically homogeneous. Embedded in each lattice point is a group
of bonded atoms, the smallest structural unit of the crystal. The structure of the
unit together with the network of lattice points determines the crystal structure and
hence the physical properties of the material.

For crystals that have more than one atom in the unit cell, elastic distortions give
rise to wave propagation of two types: acoustic and optic. In the acoustic type, all
atoms in the unit cell move essentially in the same phase, resulting in deformation
of the lattice. In the optical type, atoms move within the unit cell, leave the lattice
unchanged, and give rise to internal deformations. In real material response, atomic
vibrations usually include simultaneous lattice deformation and internal deforma-
tion. The displacement of the α-th atom in the k-th unit cell, u(k, α) is in fact a
sum of the lattice displacement u(k) and the internal displacement ξ(k, α), that is,

u(k, α) = u(k) + ξ(k, α). (1–1)
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Figure 1. Atomic view of crystal structure: left, space lattice;
right, crystal structure.

Analysis of phonon dispersion relations can show that, for a unit cell with ν

atoms, there will be 3 acoustic and 3(ν − 1) optical vibrational modes, and hence
3 lattice displacements and 3(ν − 1) internal displacement patterns. There are two
length/time scales associated with the atomic displacement in Equation (1–1). The
lattice deformation u(k) is homogeneous up to the point of structural instability
(phase transformation). It is in the low and audible frequency region, and its length
scale can be from sub-nano to macroscopic. The internal displacement ξ(k, α)

measures the displacement of atoms relative to the lattice, and contributes to the
inhomogeneous deformation. It is in the high frequency region, typically in the
infrared, and its length scale is less than a nanometer.

From the viewpoint of molecular dynamics simulation, an ordered single crystal
is considered to have n unit cells; each unit cell is composed of ν atoms with mass
mα, position Rkα and velocity V kα, where α = 1, 2, . . . , ν and k = 1, 2, . . . , n.
The mass m, coordinate Rk and velocity V k at the center of the unit cell can be
obtained as

m =

ν∑
α=1

mα, Rk
=

1
m

ν∑
α=1

mα Rkα, V k
=

1
m

ν∑
α=1

mαV kα. (1–2)

The relative positions and velocities between atoms and the center of the unit
cell are

1rkα
= Rkα

− Rk, 1vkα
= V kα

− V k . (1–3)

It follows that
u(k, α) = u(k) + ξ(k, α). (1–4)

This again shows that the total atomic displacement u(k, α) is a sum of a homoge-
neous lattice deformation u(k) and an inhomogeneous internal deformation ξ(k, α),
as is obtained in Equation (1–1) from a crystal dynamics viewpoint. Note that the
inhomogeneous internal deformations will be averaged out upon cell-averages, and
are ignored in classical macroscopic theories.

This paper aims to formulate a field representation of the conservation laws
for multielement systems. Unlike the approach in statistical mechanics, here the
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atomic motion and deformation are decomposed into homogeneous and inhomoge-
neous parts and the conservation equations are to be valid at atomic scale. Atom-
istic definitions of physical quantities are derived in Section 2; general dynamic
equations (time evolution) of instantaneous and averaged physical quantities are
introduced in Section 3; and the balance laws at atomic scale are formulated in
Section 4. A summary and discussions are presented in Section 5. Standard dyadic
notations are adopted in this paper.

2. Atomistic definitions of physical quantities

2.1. Instantaneous physical quantities. Macroscopic quantities are generally de-
scribed by continuous (or piecewise-continuous) functions of physical space co-
ordinates x and of time t . They are fields in physical space-time. Microscopic
dynamic quantities, on the other hand, are functions of phase-space coordinates
(r, p), that is, the positions and momenta of atoms (see Equations (1–2) and (1–3)):

r =
{

Rkα
= Rk

+ 1rkα
∣∣ k = 1, 2, . . . , n; α = 1, 2, . . . , ν

}
,

p =
{
mαV kα

= mαV k
+ mα1vkα

∣∣ k = 1, 2, . . . , n; α = 1, 2, . . . , ν
}
,

where the superscript kα refers to the α-th atom in the k-th unit cell. Consider a
one-particle dynamic function a(Rkα, V kα). The corresponding local density at a
given point x in physical space can be represented by

A(Rkα, V kα
; x) = a(Rkα, V kα)δ(Rkα

− x).

Here the δ-function, δ(Rkα
− x), is a localization function and provides the link

between phase space and physical space descriptions. It can be a Dirac δ-function
or a distribution function. For a Dirac δ-function [Irving and Kirkwood 1950], one
has

δ(x − Rkα) =

{
∞, x = Rkα,

0, x 6= Rkα.

This means that, in a discontinuous atomic description, there can be a contribution
to this function only if an atom happens to be located at x, that is, if Rkα

= x.
In the distribution or weighting function approach, the localization function is

a nonnegative function that has a finite size and finite value [Hardy 1963; 1982;
Ranninger 1965], peaks at x = Rkα and tends to zero as |x − Rkα

| becomes large.
For example, one can use the Gaussian distribution function

δ(x − Rkα) =
1

π3/2l3 exp
(
−|x − Rkα

|
2/ l2),
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where l characterizes the length of the region of a lattice point or of an atom. Both
the Dirac δ-function and the distribution function shall satisfy∫

V
δ(x − Rkα) d3x = 1.

This is a standard treatment in statistical mechanics for defining a mapping of phase
space into physical space.

We intend here to employ a different field description that specifies the positions
of the unit cell and of the atom relative to the unit cell, similar to the MD model
representation in Figure 2 of a multielement crystal. Unlike the standard treatment
in statistical mechanics, we employ x throughout the rest of this paper to represent
continuous collections of lattice points, corresponding to the phase space coordi-
nates, Rk and yα to represent the α-th atomic position relative to the lattice point x,
corresponding to 1rkα; see Figures 2 and 3. Therefore, this localization function

α-th atom

k-th unit cell1rkα

Rkα

Rk

Figure 2. Atomic coordinate in terms of the positions of the unit
cell and of the atom relative to the unit cell.

α-th atom

Lattice point xyα

x + yα

x

Figure 3. Field representation of the positions of the unit cell and
of the atoms relative to the unit cell.
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that defines the mapping of phase space into physical space has the form

δ(Rk
+ 1rkα

− x − yα) = δ(Rk
− x)δ(1rkα

− yα),

with which the correspondence between a lattice point x in physical space to the
position of the center of the k-th unit cell in phase space, Rk , is then established,
and the position of the α-th atom associated with lattice point x, yα, shall be in
one-to-one correspondence with 1rkα , the relative position of the α-th atom in the
unit cell k. That is, for any given physical point x at an instantaneous time, a unit
cell can be found whose center Rk is located at this point, and a physical space
description of the relative position of the α-th atom, yα, can be determined.

The local density of any measurable phase-space function A(r, p) can then be
defined as

A(x, yα) =

n∑
k=1

A(r, p)δ(Rk
− x)δ(1rkα

− yα) ≡ Aα(x),

with normalization conditions∫
V

δ(Rk
− x) d3x = 1 for all k, (2–1)

where V is the volume of the whole system. Equation (2–1) implies that over the
entire physical space all the unit cells (k = 1, 2, . . . , n) can be found. Then, for
each unit cell k, the second δ-function, δ(1rkα

− yα), identifies yα to be 1rkα:

δ(1rkξ
− yα) =

{
1 if ξ = α and 1rkξ

= yα,

0 if ξ 6= α or 1rkξ
6= yα.

It follows that

δ(1rkα
− yα) =

ν∑
ξ=1

δ(1rkξ
− yα),

and ∫
V

δ(Rk
− x)δ(1rkα

− yα) d3x = 1 for all k, α.

2.2. Averaged field variables. To obtain an observable quantity in a MD simula-
tion, one must first be able to express this observable as a function of the positions
and momenta of the particles in the system. However, a measured value of A, called
Am , is not obtained from an experiment performed at an instant; rather the exper-
iment requires a finite duration. During that measuring period individual atoms
evolve through many values of positions and momenta. Therefore, the measured
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value Am is generally the phase function A(r, p) averaged over a time interval 1t :

Am(t) =
1

1t

∫ 1t

0
A
(
r(t + τ), p(t + τ)

)
dτ.

In equilibrium MD it is assumed that this time-interval average reliably approx-
imates the time average 〈A〉 = limt→∞

1
t

∫ t
0 A(r(τ ), p(τ )) dτ , which would be

obtained from a measurement performed over an essentially infinite duration:

Am = 〈A〉. (2–2)

In statistical mechanics a macroscopic quantity is defined as the ensemble aver-
age of an instantaneous dynamical function:

〈A〉 ≡

∫
p

∫
r

A(r, p) f (r, p, t) d r d p,

where f is the normalized probability density function
((∫

f (r, p, t) d r d p = 1
))

.
Equation (2–2) distinguishes molecular dynamics from statistical mechanics. Sta-
tistical mechanics replaces the time average with an ensemble average by invoking
the ergodic hypothesis, which is motivated by the inability to compute the phase-
space trajectory of a real system containing huge numbers of molecules. When
one departs from equilibrium, very little theoretical guidance is available from
statistical mechanics, and MD begins to play the role of an experimental tool.

Most current MD applications involve systems that are either in equilibrium or
in some time-independent stationary state; where individual results are subject to
fluctuation, it is the well-defined averages over sufficiently long time intervals that
are of interest. Extending MD to open systems, where coupling to the external
world is of a more general kind, introduces many new problems. Not only are
open systems out of thermodynamic equilibrium, but also in many cases they are
spatially inhomogeneous and time-dependent. To smooth out the results and to
obtain results close to experiments, measurements of physical quantities are need
to be collected and averaged over a finite time duration. Therefore, in deriving the
field descriptions of atomic quantities and balance equations, it is the time-interval
averaged quantities that will be used, and the local density function, averaged over
an interval 1t around time t , reads

Āα(x, t) = 〈Aα
〉 ≡ Aα

m

=
1

1t

∫ 1t

0

n∑
k=1

A
(
r(t + τ), p(t + τ)

)
δ(Rk

− x)δ(1rkα
− yα) dτ.

The fundamental physical quantities considered in this paper are mass, momentum,
atomic force, momentum flux, total and internal energy, heat flux and temperature.
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2.3. Mass density. Define the local mass density of the α-th atom as a time-interval
averaged quantity

ρ̄α(x, t) = ρ̄(x, yα, t) =

〈 n∑
k=1

mαδ(Rk
− x)δ(1rkα

− yα)

〉
.

The total mass of the system is then given by

M =

∫
V

( v∑
α=1

ρ̄α(x, t)
)

d3x

=

〈 ∫
V

( n∑
k=1

v∑
α=1

mαδ(Rk
− x)δ(1rkα

− yα)

)
d3x

〉
= n

v∑
α=1

mα
= nm.

Here, the definition of mass densities is similar to that of Kreuzer [1981], who
defined the total mass density of a system involving ν different components, each
with mass density ρα, as

ρ̄ =

ν∑
α=1

ρ̄α.

2.4. Linear momentum density. The linear momentum measures the flow of mass.
The link between the atomic measure of the flow of mass and the field description of
momentum density is achieved through the localization function and time interval
averaging:

ρ̄α(v̄+ 1v̄α) =

〈 n∑
k=1

mα(V k
+ 1vkα)δ(Rk

− x)δ(1rkα
− yα)

〉
,

where v̄ = ẋ and 1v̄α
= ẏα are the time-interval averaged velocity of the mass

center of a unit cell and the velocity of the α-th atom relative to the center of the
unit cell, respectively.

2.5. Atomic forces. It is assumed that the interatomic force can be derived from in-
teratomic potential. Whether the interaction is through two or three-body potential,
one always has the force acting on the atom i as

f i
= −

∂U
∂ Ri , (2–3)

and the mutual interaction force between atom i and atom j can be obtained as

f i j
= −

∂U
∂(Ri

− R j )
=

∂U
∂(R j

− Ri )
= − f j i , (2–4)

where U is the total potential energy of the system, f i j the interatomic force, and
Ri

− R j the relative separation vector between the two atoms i and j .
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For multielement systems, forces acting on an atom can be divided into three
kinds:

(1) f
kα
lβ
1 : interatomic force between (k, α) and (l, β) atoms in two different unit

cells, and f
kα
lβ
1 = − f

lβ
kα
1 ;

(2) f
kα
β

2 : interatomic force between (k, α) and (k, β) atoms in the same unit cell,

and f
kα
β

2 = − f kβ
α

2 ;

(3) f kα
3 : body force on atom (k, α) due to the external fields.

The total force acting on an atom (k, α) can be written as

Fkα
=

n∑
l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kα
β

2 + f kα
3 . (2–5)

The body force density due to an external field is

f̄ α
≡

〈 n∑
k=1

f kα
3 δ(Rk

− x)δ(1rkα
− yα)

〉
,

and body couple density is

Lα
=

〈 n∑
k=1

f kα
3 ⊗ (Rk

+ 1rkα)δ(Rk
− x)δ(1rkα

− yα)

〉
= f̄ α

⊗ x + l̄α,

where l̄α = 〈
∑n

k=1 f kα
3 ⊗ 1rkαδ(Rk

− x)δ(1rkα
− yα)〉.

Assuming that the total internal potential energy is Uint and using the force-
potential function relationship (2–3)–(2–4), the internal force density due to atomic
interaction can be expressed as

f̄ α
int(x) ≡

〈 n∑
k=1

( n∑
l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kα
β

2

)
δ(Rk

− x)δ(1rkα
− yα)

〉

= −

〈 n∑
k,l=1

ν∑
ξ,η=1

∂Uint

∂(Rkξ
− Rlη)

δ(Rk
− x)δ(1rkξ

− yα)

〉

−

〈 n∑
k=1

ν∑
ξ,η=1

∂Uint

∂(Rkξ
− Rkη)

δ(Rk
− x)δ(1rkξ

− yα)

〉
.

From Equation (2–4) we have f
kξ
lη
1 = − f

lη
kξ

1 and f kξ
η

2 = − f
kη
ξ

2 . Interchanging the
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indices kξ and lη, we see that

f̄ α
int(x)=

1
2

〈 n∑
k,l=1

ν∑
ξ,η=1

f
kξ
lη
1

(
δ(Rk

−x)δ(1rkξ
− yα)−δ(Rl

−x)δ(1r lη
− yα)

)〉

+
1
2

〈 n∑
k=1

ν∑
ξ,η=1

f kξ
η

2 δ(Rk
− x)

(
δ(1rkξ

− yα) − δ(1rkη
− yα)

)〉
, (2–6)

Since the formulation involves many-body interactions, it is understood that the
summation over k and l does not include the case k = l and similarly the summation
over α and β does not include the case α = β. In this article, velocity-dependent
interactions such as interaction with magnetic fields are not considered, and hence
the forces depend only on atomic positions. However, the results can be generalized
to include such cases.

2.6. Momentum flux density. It is well accepted that the momentum flux in an
N -body dynamics system can be divided into two parts: kinetic and potential parts
[Hoover 1986; 1991; Chen and Lee 2003a; 2003b; Chen et al. 2003]. The kinetic
part of the momentum flux is the flow of momentum due to atomic motion, which,
in the co-moving coordinate system, is

skin = − p ⊗ p/m.

By virtue of the possible macroscopic motion of the material body, the velocity that
contributes to momentum flux is the difference between the instantaneous velocity
and the stream velocity (the ensemble or time average of the velocity):

Ṽ
kα

= V kα
− 〈V kα

〉 = V kα
− (v̄+ 1v̄α).

This velocity difference Ṽ
kα

measures the fluctuations of atoms relative to the local
equilibrium and is related to the thermal motion of atoms. In the field representa-
tion, the kinetic part of local density of momentum flux at the α-th atomic position
embedded in lattice point x is

s̄α
kin = −

〈 n∑
k=1

mα Ṽ
kα

⊗ Ṽ
kα

δ(Rk
− x)δ(1rkα

− yα)

〉
.

The potential flow of momentum occurs through the mechanism of the interpar-
ticle forces (Figure 4). For a pair of particles α and β that lie on different sides
of a surface that intersects the line connecting the two particles at x + yα , the pair
force

f
kξ
lη = − f

lη
kξ
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gives the rate at which momentum is transported from particle kξ to particle lη. For
each such pair the direction of this transport is along the direction of Rkξ

− Rlη.
So, the potential contribution to the momentum flux is

spot = −(Rkξ
− Rlη) ⊗ f

kξ
lη ,

which is continuous along the line connecting the two particles. Notice that

δ(Rk
− x)δ(1rkξ

− yα) − δ(Rl
− x)δ(1r lη

− yα)

=

∫ 1

0

d
dλ

(
δ(Rkλ + Rl(1 − λ) − x)δ(1rkξλ + 1r lη(1 − λ) − yα)

)
dλ.

With the consideration of all interatomic forces that pass through the atomic site
(x, yα), the local density of the momentum transport at (x, yα) due to atomic
interaction is thus expressed as

s̄α
pot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rkξ
− Rlη) ⊗ f

kξ
lη
1 δ

(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(Rkξ
− Rkη) ⊗ f kξ

η

2 δ(Rk
− x)

δ
(
1rkξλ + 1rkη(1 − λ) − yα

)〉
.

The continuum counterpart of momentum flux density is the stress tensor. How-
ever, the mathematical infinitesimal volume that does not violate the continuum
assumption is the volume 1V defining the density of lattice points, which is the
volume of a unit cell. The vector sum of all the atomic forces within this volume
may not pass through the mass center of the 1V . The continuum definition of
stress is, therefore, not the momentum flux density; for a crystal with more than
one atom in the unit cell, the continuum stress is only the homogeneous part of the
momentum flux summing over a volume of at least one unit cell, and it may not
be symmetric.

x + yα

Rkξ Rlη

Figure 4. Flow of momentum due to interatomic force.
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The total momentum flux is, therefore, better represented upon decomposition
of a homogeneous part, caused by lattice motion and deformation and related to
continuum stress, and an inhomogeneous part, caused by internal (relative) atomic
motion and deformation. The homogeneous kinetic, inhomogeneous kinetic, ho-
mogeneous potential and inhomogeneous potential parts are given by, respectively,

t̄αkin = −

〈 n∑
k=1

mα Ṽ
k
⊗ Ṽ

kα
δ(Rk

− x)δ(1rkα
− yα)

〉
,

τ̄α
kin = −

〈 n∑
k=1

mα1ṽkα
⊗ Ṽ

kα
δ
(
Rk

− x)δ(1rkα
− yα

)〉
,

t̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rk
− Rl) ⊗ f

kξ
lη
1 δ(Rkλ + Rl(1 − λ) − x)

× δ(1rkξλ + 1r lη(1 − λ) − yα)

〉
,

τ̄α
pot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
−1r lη)⊗ f

kξ
lη
1 δ

(
Rkλ+ Rl(1−λ)− x

)
× δ

(
1rkξλ + 1r lη(1 − λ) − yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(1rkξ
− 1rkη) ⊗ f kξ

η

2 δ(Rk
− x)

× δ
(
1rkξλ + 1rkη(1 − λ) − yα

)〉
,

(2–7)

where Ṽ
k
= V k

− 〈V k
〉 = V k

− v̄, 1ṽkα
= 1vkα

− 〈1vkα
〉 = 1vkα

− 1v̄α.
Using

d
dλ

(
δ
(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

))
= − ∇x ·

(
(Rk

− Rl)δ
(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

))
− ∇ yα ·

(
(1rkξ

− 1r lη)δ
(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

))
,

we see from Equation (2–6), and the last two equations of (2–7), that the diver-
gences of the potential momentum fluxes are related to the internal forces by

∇x · t̄αpot + ∇ yα · τ̄α
pot = f̄ α

int

=

〈
n∑

k=1

ν∑
η=1

( n∑
l=1

f
kα
lη
1 + f

kα
η

2

)
δ(Rk

− x)δ(1rkα
− yα)

〉
. (2–8)
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2.7. Total energy density and internal energy density. The total energy of atom
α in a microscopic N -body dynamics system is the sum of kinetic and potential
energies. In continuum theory, the local energy density is usually defined as energy
per unit mass. This implies

ρ̄α Ēα
=

〈 n∑
k=1

( 1
2 mα(V kα)2

+ U kα
)
δ(Rk

− x)δ(1rkα
− yα)

〉
.

The local density of internal energy, which is the state function of thermodynamics,
can be expressed as the sum of thermal energy and potential energy:

ρ̄α ε̄α
=

〈 n∑
k=1

( 1
2 mα(Ṽ

kα
)2

+ U kα
)
δ(Rk

− x)δ(1rkα
− yα)

〉
.

Rewriting the total energy density as

ρ̄α Ēα
=

〈 n∑
k=1

( 1
2 mα

{
(Ṽ

kα
)2

+ 2Ṽ
kα

· (v̄+ 1v̄α) + (v̄+ 1v̄α)2}
+ U kα

)
× δ(Rk

− x)δ(1rkα
− yα)

〉
,

there results the macroscopic relation of densities of the total energy, the internal
energy and the kinetic energy as

〈ρα Eα
〉 = 〈ραεα

〉 +
1
2 ρ̄α(v̄+ 1v̄α)2.

2.8. Heat flux. The flow of energy by atomic motion, for all particles in the vol-
ume 1V , gives the kinetic contribution to the energy flux. It comes from the rate
at which the local energy E i of atom i moves with local atomic velocity pi/mi ,

Qi
kin = −

pi

mi E i .

The potential contribution to the energy flow occurs whenever two moving par-
ticles interact in such a way that one particle transfers a part of their joint energy to
the other. It comes from the rate at which energy is transported through the action
of interparticle forces: atom i is doing work on atom j , multiplied by the distance
Ri

− R j over which this energy is transferred:

Qpot = −
1
2
(Ri

− R j )

(
pi

2mi +
p j

2m j

)
· f i j .

Noting that heat flux is the conductive flow of internal energy per unit time
and area [Huang 1967; Cochran 1973], the local density functions of kinetic and
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potential heat fluxes, therefore, are expressed as

Q̄α

kin = −

〈 n∑
k=1

Ṽ
kα[1

2 mα(Ṽ
kα

)2
+ U kα

]
δ(Rk

− x)δ(1rkα
− yα)

〉
,

Q̄α

pot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rkξ
− Rlη)Ṽ

kξ

× f
kξ
lη
1 δ

(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(Rkξ
− Rkη)Ṽ

kξ

× f kξ
η

2 δ(Rk
− x)δ

(
1rkξλ + 1rkη(1 − λ) − yα

)〉
.

Clearly there are homogeneous and inhomogeneous parts. Similar to the decom-
position of momentum flux density, let the heat flux density be decomposed into
four parts: the homogeneous kinetic, inhomogeneous kinetic, homogeneous po-
tential and inhomogeneous potential part of heat flux, all of which are given by,
respectively,

q̄α
kin = −

〈 n∑
k=1

Ṽ
k[ 1

2 mα(Ṽ
kα

)2
+ U kα

]
δ(Rk

− x)δ(1rkα
− yα)

〉
,

j̄α
kin = −

〈 n∑
k=1

1ṽkα
[ 1

2 mα(Ṽ
kα

)2
+ U kα

]
δ(Rk

− x)δ(1rkα
− yα)

〉
,

q̄α
pot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rk
− Rl)Ṽ

kξ

× f
kξ
lη
1 δ

(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

)〉
,

j̄α
pot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
− 1r lη)Ṽ

kξ

× f
kξ
lη
1 δ

(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(1rkξ
− 1rkη)Ṽ

kξ

× f kξ
η

2 δ(Rk
− x)δ

(
1rkξλ + 1rkη(1 − λ) − yα

)〉
.
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We see that the inhomogeneous heat flux is closely associated with the inhomoge-
neous stress and may represent the thermal currents that flow back and forth during
vibration between stress inhomogeneities. With the definition of the potential parts
of momentum fluxes and the identity of δ function, it is straightforward to prove
that the divergences of potential heat fluxes have the following characteristics:

∇x ·
(
q̄α

pot + t̄αpot · (v̄+ 1v̄α)
)
+ ∇ yα ·

(
j̄α

pot + τ̄
α
pot · (v̄+ 1v̄α)

)
=

〈
1
2

n∑
k,l=1

ν∑
η=1

(V kα
+ V lη) · f

kα
lη
1 δ(Rk

− x)δ(1rkα
− yα)

〉

+

〈
1
2

n∑
k=1

ν∑
η=1

(V kα
+ V kη) · f

kα
η

2 δ(Rk
− x)δ(1rkα

− yα)

〉
. (2–9)

2.9. Temperature. The temperature T for the microscopic N -body system is also
an average quantity. It can be most simply expressed in terms of thermal energy
by the mean-squared velocity relative to the local stream velocity [Hoover 1991],
as

T α(x) =

〈
1V
3kB

n∑
k=1

mα(Ṽ
kα

)2δ(Rk
− x)δ(1rkα

− yα)

〉

=

〈
1V
3kB

n∑
k=1

mα(V kα)2δ(Rk
− x)δ(1rkα

− yα)

〉
−

mα

3kB
(v̄+ 1v̄α)2,

where kB is Boltzmann constant, Ṽ
kα

are the velocity differences or the fluctuations
of atoms, and 1V is the volume that defines the density of lattice points, that is,
the volume of a unit cell.

3. Time evolution of physical quantities

As mentioned above, an observable quantity in a MD simulation is supposed to be
a function of the positions and momenta of the particles in the system:

A(x, yα) =

n∑
k=1

A(r, p)δ(Rk
− x)δ(1rkα

− yα) ≡ Aα(x).

With

∇Rkδ(Rk
− x) = −∇xδ(Rk

− x),

∇1rkαδ(1rkα
− yα) = −∇ yαδ(1rkα

− yα),
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and in the general case that the phase space function A does not involve field
quantities, the time evolution of its local density function can be expressed as

∂ Aα

∂t

∣∣∣∣
x, yα

=

n∑
k=1

Ȧδ(Rk
− x)δ(1rkα

− yα)

− ∇x ·

( n∑
k=1

V k
⊗ Aδ(Rk

− x)δ(1rkα
− yα)

)

− ∇ yα ·

( n∑
k=1

1vkα
⊗ Aδ(Rk

− x)δ(1rkα
− yα)

)
. (3–1)

For the time-interval averaged (at time t in the interval 1t) field quantity Āα,

Āα(x, t) = 〈Aα
〉 ≡ Aα

m =
1

1t

∫ 1t

0
A(r(t + τ), p(t + τ), x, yα) dτ,

one has

∂Āα

∂t

∣∣∣∣
x,yα

=

〈 n∑
k,l=1

ν∑
γ=1

δ(Rk
−x)δ(1rkα

− yα)

(
V lγ

·∇Rlγ +
1

mγ
Flγ

·∇V lγ

)
A
〉

−∇x ·

〈 n∑
k=1

V k
⊗Aδ(Rk

−x)δ(1rkα
− yα)

〉

−∇
α
y ·

〈 n∑
k=1

1vkα
⊗Aδ(Rk

−x)δ(1rkα
− yα)

〉
. (3–2)

Equations (3–1) and (3–2) are the time evolution laws for instantaneous quantity
Aα and averaged field quantity Āα , respectively. When Aα is a conserved property,
it results in the local conservation laws that govern the time evolution of Aα and
Āα, respectively.

4. Formulation of the balance laws

A thermodynamic theory of irreversible processes starts with a set of general bal-
ance equations that govern the time evolution of the system. It is the objective of
this paper to establish differential balance equations for a thermodynamic system
on the same foundation of molecular dynamics: the classical N -body dynamics.
Those balance equations will follow exactly the time evolution laws that exist in
a molecular dynamics simulation, where the atomic motion is fully described, the
inhomogeneous internal motion is not ignored, and the smallest particles are atoms.
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4.1. Conservation of mass. With ρ̄α
= 〈

∑n
k=1 mαδ(Rk

− x)δ(1rkα
− yα)〉, the

time evolution of mass density can be obtained as

∂ρ̄α

∂t
= −∇x ·

〈 n∑
k=1

mαV kδ(Rk
− x)δ(1rkα

− yα)

〉

− ∇ yα ·

〈 n∑
k=1

mα1vkαδ(Rk
− x)δ(1rkα

− yα)

〉
.

From the definition of linear momentum, one immediately finds

∂ρ̄α

∂t
+∇x ·(ρ̄

α v̄)+∇ yα ·(ρ̄α1v̄α) = 0 or
dρ̄α

dt
+ρ̄α(∇x ·v̄+∇ yα ·1v̄α) = 0.

For cell-average mass density ρ̄ = 〈
∑n

k=1 mδ(Rk
− x)〉, we readily see that

∂ρ̄

∂t
+ ∇x · (ρ̄v̄) = 0 or

dρ̄

dt
+ ρ̄∇x · v̄ = 0.

This is identical to the continuity equation in macroscopic physics.

4.2. Balance of linear momentum. Recall the field representation of local linear
momentum density as

ρ̄α(v̄+ 1v̄α) ≡

〈 n∑
k=1

mαV kαδ(Rk
− x)δ(1rkα

− yα)

〉
.

Substituting it into Equation (3–2), it follows that

∂ρ̄α(v̄+ 1v̄α)

∂t
=

〈 n∑
k,l=1

ν∑
γ=1

δ(Rk
− x)δ(1rkα

− yα)
Flγ

mγ
· ∇V lγ (mαV kα)

〉

−∇x ·

〈 n∑
k=1

mαV k
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
−∇yα ·

〈 n∑
k=1

mα1vkα
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
.

With the divergence of momentum flux, Equation (2–8), one has〈 n∑
k=1

Fkαδ(Rk
− x)δ(1rkα

− yα)

〉
= ∇x · t̄αpot + ∇ yα · τ̄α

pot + f̄ α. (4–1)

Since〈 n∑
k=1

mα Ṽ
k
δ(Rk

−x)δ(1rkα
− yα)

〉
=

〈 n∑
k=1

mα1ṽkαδ(Rk
−x)δ(1rkα

− yα)

〉
= 0,
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this gives

∇x ·

〈 n∑
k=1

mαV k
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
= ∇x ·

〈 n∑
k=1

mα
(
Ṽ

k
⊗ Ṽ

kα
+ v̄⊗ (v̄+ 1v̄α)

)
δ(Rk

− x)δ(1rkα
− yα)

〉
= ∇x ·

(
− t̄kinα + ρ̄α v̄⊗ (v̄+ 1v̄α)

)
, (4–2)

∇ yα ·

〈 n∑
k=1

mα1vkα
⊗ V kαδ(Rk

− x)δ(1rkα
− yα)

〉
= ∇ yα ·

〈 n∑
k=1

mα
(
1ṽkα

⊗ Ṽ
kα

+ 1v̄α
⊗ (v̄+ 1v̄α)

)
δ(Rk

− x)δ(1rkα
− yα)

〉
= ∇ yα ·

(
−τ̄α

kin + ρ̄α1v̄α
⊗ (v̄+ 1v̄α)

)
. (4–3)

Combining Equations (4–1)–(4–3) with t̄α = t̄αkin + t̄αpot and τ̄α
= τ̄α

kin + τ̄α
pot, the

time evolution of linear momentum is obtained as

∂

∂t

(
ρ̄α(v̄+ 1v̄α)

)
= ∇x ·

(
t̄α − ρ̄α v̄⊗ (v̄+ 1v̄α)

)
+ ∇ yα ·

(
τ̄α

− ρ̄α1v̄α
⊗ (v̄+ 1v̄α)

)
+ f̄ α,

or

ρ̄α d
dt

(v̄+ 1v̄α) = ∇x · t̄α + ∇ yα · τ̄α
+ f̄ α.

For cell-average linear momentum density, ρ̄v̄ ≡ 〈
∑n

k=1 mV kδ(Rk
− x)〉, the

time evolution is obtained as

∂

∂t
(ρ̄v̄) = ∇x ·

[
t̄ − ρv̄⊗ v̄

]
+ f̄ or ρ̄

d
dt
v̄ = ∇x · t̄ + f̄ , (4–4)

where t̄ =
∑ν

α=1 t̄α and f̄ =
∑ν

α=1 f̄ α are the cell averages of homogeneous
momentum flux density and body force density, respectively. Equation (4–4) is
identical with the conservation law of linear momentum in macroscopic continuum
mechanics. However, the latter no longer holds at atomic scale.

4.3. Balance of angular momentum. The angular momentum density can be de-
fined as

ρ̄αψ̄
α

≡

〈 n∑
k=1

mαV kα
× Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
= ρ̄α(v̄+1v̄α)× (x + yα).
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Substituting it into Equation (3–2), there results

∂

∂t
(ρ̄αψ̄

α
) =

〈 n∑
k=1

mαV kα
· V kαδ(Rk

− x)δ(1rkα
− yα)

〉
+

〈 n∑
k=1

Fkα
· Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
− ∇x ·

〈 n∑
k=1

(Ṽ
k
+ v̄) ⊗ mα(Ṽ

kα
+ v̄+ 1v̄α) × Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
− ∇yα ·

〈 n∑
k=1

(1ṽkα
+1v̄α) ⊗ mα(Ṽ

kα
+v̄+1v̄α) × Rkαδ(Rk

− x)δ(1rkα
− yα)

〉
≡ A + B + C + D,

where

A =

〈 n∑
k=1

(mαV ka
×V ka)δ(Rk

−x)δ(1rkα
− yα)

〉
= 0,

B =

〈 n∑
k=1

( n∑
l=1

ν∑
η=1

f
kα
lη
1 ×Rkα

+

ν∑
η=1

f
kα
η

2 ×Rkα

)
×δ(Rk

−x)δ(1rkα
− yα)

〉
+L̄α

=

〈 n∑
k=1

( n∑
l=1

ν∑
η=1

f
kα
lη
1 +

ν∑
η=1

f
kα
η

2

)
δ(Rk

−x)δ(1rkα
− yα)

〉
×(x+ yα)+L̄α

= (∇x · t̄
α
pot+∇ yα ·τ̄α

pot)×(x+ yα)+L̄α,

C = −∇x ·

(〈 n∑
k=1

mα Ṽ
k
(Rk

−x)δ(1rkα
− yα)

〉
×(x+ yα)

)
−∇x ·(v̄⊗ρ̄αψ̄

α
)

= −∇x ·
(
v̄⊗ρ̄αψ̄

α
− t̄αkin×(x+ yα)

)
,

D = −∇ yα ·

(
1v̄α

⊗ρ̄αψ̄
α
+

〈 n∑
k=1

1ṽkα
⊗mαV kα

×Rkαδ(Rk
−x)×δ(1rkα

− yα)

〉)
= −∇ yα ·(1v̄α

⊗ρ̄αψ̄
α
)

−∇ yα ·

(〈 n∑
k=1

1ṽkα⊗mα(Ṽ
k
α+v̄+1v̄α)δ(Rk

−x)δ(1rkα
− yα)

〉
×(x+ yα)

)
= −∇ yα ·

(
1v̄α

⊗ρ̄αψ̄
α
−τ̄α

kin×(x+ yα)
)
.
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Combining A, B, C , and D gives

∂

∂t
(ρ̄αψ̄

α
) = −∇x ·

(
v̄⊗ ρ̄αψ̄

α
− t̄αkin × (x + yα)

)
−∇ yα ·

(
1v̄α

⊗ρ̄αψ̄
α
−τ̄α

kin×(x+ yα)
)
+(∇x · t̄

α
pot+∇ yα ·τ̄α

pot)×(x+ yα)+L̄α
,

or

ρ̄α dψ̄
α

dt
= ∇x ·

(
t̄αkin × (x + yα)

)
+ ∇ yα ·

(
τ̄α

kin × (x + yα)
)

+ (∇x · t̄αpot + ∇ yα · τ̄α
pot) × (x + yα) + L̄α

.

Notice that the time evolution of angular momentum can also be expressed from
its field definition as

ρ̄α dψ̄
α

dt
= ρ̄α d(v̄+ 1v̄α)

dt
× (x + yα) = (∇x · t̄α + ∇ yα · τ̄α

+ f̄ α) × (x + yα).

Since t̄α + τ̄α is symmetric (see Equations (2–7) and x and yα are mutually inde-
pendent within any unit cell, the balance law of angular momentum is shown to be
identically satisfied.

4.4. Conservation of energy. With the definition of local total energy density

ρ̄α Ēα
=

〈 n∑
k=1

(1
2 mα(V kα)2

+ U kα
)
δ(Rk

− x)δ(1rkα
− yα)

〉
,

Equation (3–2) results in

∂

∂t
(ρα Ēα) = − ∇x ·

〈 n∑
k=1

V k( 1
2 mα(V kα)2

+ U kα
)
δ(Rk

− x)δ(1rkα
− yα)

〉
− ∇ yα ·

〈 n∑
k=1

1vkα
(1

2 mα(V kα)2
+ U kα

)
δ(Rk

− x)δ(1rkα
− yα)

〉

+

〈 n∑
k=1

Fkα
· V kαδ(Rk

− x)δ(1rkα
− yα)

〉

+

〈 n∑
k,m=1

ν∑
γ=1

(V mγ
· ∇Rmγ )U kαδ(Rk

− x)δ(1rkα
− yα)

〉
≡ A + B + C + D.
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A, B, C and D can be further derived as

A = − ∇x ·

〈 n∑
k=1

(V k
− v̄+ v̄)

( 1
2 mα(Ṽ

kα
)2

+ Ṽ
kα

· (v̄+ 1v̄α)

+
1
2 mα(v̄+ 1v̄α)2

+ U kα
)
δ(Rk

− x)δ(1rkα
− yα)

〉
= − ∇x ·

(
− q̄α

kin − t̄αkin · (v̄+ 1v̄α) + v̄
(
ρ̄α ε̄α

+
1
2 ρ̄α(v̄+ 1v̄α)2)),

B = − ∇
α
y ·

〈 n∑
k=1

(1vkα
− 1v̄α

+ 1v̄α)
( 1

2 mα(Ṽ
ka

)2
+ Ṽ

ka
· (v̄+ 1v̄α)

+
1
2 mα(v̄+ 1v̄α)2

+ U kα
)
δ(Rk

− x)δ(1rka
− yα)

〉
= − ∇ yα ·

(
− j̄α

kin − τ̄α
kin · (v̄+ 1v̄α) + 1v̄α

(
ρ̄α ε̄α

+
1
2 ρ̄α(v̄+ 1v̄α)2)),

C =

〈 n∑
k=1

ν∑
β=1

V kα
·

( n∑
l=1

f
kα
lη
1 + f

kα
β

2

)
δ(Rk

− x)δ(1rkα
− yα)

〉
+

〈 n∑
k=1

V kα
· f 3δ(Rk

− x)δ(1rkα
− yα)

〉
,

D =
1
2

〈 n∑
k=1

n∑
l=1

ν∑
γ=1

(V lγ
· ∇Rlγ )U kαδ(Rk

− x)δ(1rkα
− yα)

〉

= −
1
2

〈 n∑
k=1

n∑
l=1

ν∑
γ=1

(V kα
− V lγ ) · f

kα
lγ
1 δ(Rk

− x)δ(1rkα
− yα)

〉
−

1
2

〈 n∑
k=1

ν∑
γ=1

(V kα
− V kγ ) · f

kα
γ

2 δ(Rk
− x)δ(1rkα

− yα)

〉
.

With the divergence of heat flux (Equation (2–9)), we see that

C + D =

〈
1
2

n∑
k,l=1

ν∑
η=1

(V kα
+ V lη) · f

kα
lη
1 δ(Rk

− x)δ(1rkα
− yα)

〉

+

〈
1
2

n∑
k=1

ν∑
η=1

(V kα
+ V kη) · f

kα
η

2 δ(Rk
− x)δ(1rkα

− yα)

〉
= ∇x ·

(
q̄α

pot + t̄αpot · (v̄+ 1v̄α)
)
+ ∇ yα ·

(
j̄α

pot + τ̄
α
pot · (v̄+ 1v̄α)

)
+

〈 n∑
k=1

(V kα
− v̄− 1v̄α) · f 3δ(Rk

− x)δ(1rkα
− yα)/1V α

〉
+ (v̄+ 1v̄α) · f̄ α.
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If the external field is not velocity-dependent, the sum of A, B, C , and D reads

∂(ρ̄α Ēα)

∂t
= ∇x ·

(
q̄α

− v̄ρ̄α ε̄α
+ t̄α · (v̄+ 1v̄α)

)
+ ∇ yα ·

(
j̄α

− 1v̄αρ̄α ε̄α
+ τ̄α

· (v̄+ 1v̄α)
)

− ∇x ·
{1

2 ρ̄α v̄(v̄+ 1v̄α)2}
− ∇ yα ·

{1
2 ρ̄α1v̄α(v̄+ 1v̄α)2}

+ (v̄+ 1v̄α) · f̄ α.

From the conservation equation of mass and the balance equation of linear momen-
tum, the total energy equation can be rewritten in terms of internal energy as

∂

∂t
(ρ̄α Ēα) =

∂

∂t
(
ρ̄α ε̄α

+
1
2 ρ̄α(v̄+ 1v̄α)2)

=
∂

∂t
(ρ̄α ε̄α) − ∇x ·

( 1
2 ρ̄α v̄(v̄+ 1v̄α)2)

− ∇ yα ·
(1

2 ρ̄α1v̄α(v̄+ 1v̄α)2)
+ (v̄+ 1v̄α) · (∇x · t̄α + ∇ yα

· τ̄α
+ f̄ α).

Finally, the time evolution of internal energy is obtained as

∂

∂t
(ρ̄α ε̄α) + ∇x · (−q̄α

+ v̄ρ̄α ε̄α) + ∇ yα · (− j̄α
+ 1v̄αρ̄α ε̄α)

= t̄α : ∇x(v̄+ 1v̄α) + τ̄α
: ∇ yα (v̄+ 1v̄α),

or

ρ̄α d ε̄α

dt
= ∇x · q̄α

+ ∇ yα · j̄α
+ t̄α : ∇x(v̄+ 1v̄α) + τ̄α

: ∇ yα (v̄+ 1v̄α),

where

t̄α : ∇x(v̄+ 1v̄α) ≡ t̄α
i j

∂(v̄ j + 1v̄α
j )

∂xi
,

τ̄α
: ∇ yα (v̄+ 1v̄α) ≡ τ̄α

i j

∂(v̄ j + 1v̄α
j )

∂yα
i

.

One can find that the time evolution law of cell-averaged energy is different
from the macroscopic equation of conservation of energy. This indicates that the
macroscopic form of the conservation of energy equation no longer holds even at
cell level; the energy density of a unit cell is not a homogeneous quantity; and the
contribution of the internal motion and deformation of atoms to the evolution of
energy density cannot be ignored.

5. Summary and discussion

By decomposing atomic displacements, momentum and heat fluxes into homo-
geneous and inhomogeneous parts, we have formulated a field representation of
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conservation laws at an atomic scale. The mathematical representations for conser-
vation of mass, balance of linear momentum and conservation of energy are

dρ̄α

dt
+ ρ̄α(∇x · v̄+ ∇ yα · 1v̄α) = 0,

ρ̄α d
dt

(v̄+ 1v̄α) = ∇x · t̄α + ∇ yα · τ̄α
+ f̄ α,

ρ̄α d ε̄α

dt
= ∇x · q̄α

+ ∇ yα · j̄α
+ t̄α : ∇x(v̄+ 1v̄α) + τ̄α

: ∇ yα (v̄+ 1v̄α),

and the balance law of angular momentum at atomic scale is identically satisfied.
Here are some conclusions:

(1) The field representations of conservation equations were formulated within
the framework of atomic N-body dynamics. They are the exact time evolution
laws of conserved quantities in MD simulations.

(2) Recall that in micromorphic theory [Eringen and Suhubi 1964; Eringen 1999],
the balance laws for mass, linear momentum, generalized spin, and energy
were obtained as

dρ̄

dt
= − ρ̄∇x · v̄

ρ̄
d v̄
dt

= ∇x · t̄ + f̄ ,

ρ̄
dφ̄
dt

= ∇x · m̄ + ω̄ · ρ i · ω̄T
+ ( t̄ − s̄)T

+ l̄,

ρ̄
d ε̄

dt
= t̄ : ∇v̄+ m̄

...∇ω̄+ ω̄ : ( s̄ − t̄ )T
+ ∇ · q̄,

where ϕ is generalized spin, ω the gyration tensor and l the external couple.
Assuming that the inner atomic structure is a continuum and thus 1vkα

= ω ·

1rkα , one will find that the obtained balance laws in this paper can be reduced
to the balance laws in micromorphic theory upon such continuum assumption
and cell averaging [Chen and Lee 2003a; 2003b; Chen et al. 2003]. Note
that because the atomic motion and deformation as well as momentum and
heat fluxes are decomposed into homogeneous and inhomogeneous parts, the
higher order moment stress is avoided in this paper. Also, if the structural unit
of the crystal is considered as a point mass, ignoring the atomic structure of
the primitive unit cell and relative motion and deformation within this cell, the
balance equations we obtain can be reduced to those of continuum mechanics.

(3) For a single component system the obtained balance laws are identical with
those obtained by Irving and Kirkwood [1950].
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(4) The averaged quantities are time-interval averages. If one uses ensemble av-
erages, it is straightforward to prove that Liouville’s theorem would result in
the same form as in Equation (3–2) for the time evolutions in equilibrium
statistical mechanics; the Boltzmann transport equation as well as BBGKY
theory would also yield the same for conserved properties in nonequilibrium
statistical mechanics [Chen and Lee 2003a; 2003b; Chen et al. 2003; Kreuzer
1981].

(5) The formulation in this paper has proved that for multielement systems the
local conservation equations at atomic scale differ from that at macroscopic
scale, and the contribution of the internal motion and deformation of atoms
cannot be ignored.

(6) While in molecular dynamics simulations, some physical phenomena may de-
pend on the initial condition, the time-interval 1t , and the choice of the local-
ization function δ, it is noticed that the obtained mathematical representation
of the conservation laws is fully in terms of field variables, and is independent
of the initial conditions, the time interval and the choice of the localization
function.
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