
Journal of

Mechanics of
Materials and Structures

STRESSES AND STRAINS AT NANO/MICRO
SCALES

Youping Chen, James Lee and Liming Xiong

Volume 1, Nº 4 April 2006

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 1, No. 4, 2006

STRESSES AND STRAINS AT NANO/MICRO SCALES

YOUPING CHEN, JAMES LEE AND LIMING XIONG

This paper is concerned with stress and strain fields at atomic scale. Unlike
other formulations of atomistic expression of macroscopic stress fields or ho-
mogeneous systems, this paper aims at field descriptions of atomic stresses and
strains for multi-element crystalline materials. By decomposing atomic deforma-
tion into homogeneous lattice deformation and inhomogeneous relative atomic
deformation, a field representation of momentum flux is formulated within the
framework of atomic many-body dynamics, and the connection to a macroscopic
definition of stress is obtained. The atomic strain measures and the atomic stress-
strain relations are derived. Phonon dispersion relations are calculated and pre-
sented.

1. Introduction

Stress is an important concept in characterizing the states of condensed matter,
and has been extensively studied from both macroscopic and microscopic points
of view. Quantum mechanics theory of stress may be traced back to the earliest
years of the development of quantum mechanics [Born et al. 1926]. Through
atomistic simulations of momentum flux in classical many-body dynamics, the
study of stress response to external disturbance has played an important role in
understanding mechanical properties of materials [Horstemeyer and Baskes 1999].
One of the fundamental properties in classical continuum mechanics is stress. Ex-
tensions of macroscopic continuum theory to microcontinuum theories are mainly
due to the deficiency of stress descriptions – we thus have theories incorporating
moment stress, microstress average, couple stress, etc. [Eringen and Suhubi 1964;
Mindlin 1964; Eringen 1967; Cosserat and Cosserat 1909; Toupin 1962; Green
and Rivlin 1964]. While the underlying physics is same, the descriptions from
different viewpoints are thoroughly different.

Atomistic view of a crystal is as a periodic arrangement of local atomic bonding
units. Each lattice point defines the location of the center of the unit that forms
the smallest structural unit of the crystal. The structure of the unit together with
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(a) (b) (c) (d)

Figure 1. Stresses in ABO3 ferroelectrics: (a) The ABO3 struc-
tural unit; (b) Lattice points and the unit cell (2D illustration); (c)
stress evaluated at lattice position with the volume of a unit cell;
(d) moment stress resulting from the resultant moment of inter-
atomic forces.

the network of lattice points determines the crystal structure and hence the physi-
cal properties of the material. Classical continuum mechanics, on the other hand,
views a crystal as a homogeneous and continuous medium. The basic structural unit
of the crystal is idealized as point mass, and the internal motion and deformation
of atoms within the unit are ignored.

Consider ABO3 ferroelectrics as an example. There are five atoms in a unit cell,
the smallest structural unit (Figure 1a). This unit cell (a mass point in classical
continuum theory) gives the smallest allowable volume in which the continuum
hypothesis is not violated (Figure 1b). However, at ferroelectric phase, for this
mathematical infinitesimal, the vector sum of all interatomic forces will not pass
through the mass center. This will result in a surface couple on the surface of this
infinitesimal volume, and hence a higher order moment stress, m, (as shown in
Figure 1d) in addition to the stress in the traditional continuum definition (Figure
1c). Such higher order stress has been employed in many micro-continuum theories
to account for the effect of microstructure. Among those well-established, there are
micromorphic theory [Eringen and Suhubi 1964; Eringen 1999], microstructure
theory [Mindlin 1964], micropolar theory [Eringen 1967], and Cosserat theory
[Cosserat and Cosserat 1909]. As a consequence of the higher order stresses, there
are higher order strains to be the corresponding thermodynamic conjugates.

However, it is very difficult, if not impossible, for these micro-continuum theo-
ries to describe the dynamics feature of atoms in complex crystals at nano/micro
scales. Material properties or behavior related to atomic motion and interaction
cannot be modeled accurately by the existing micro-continuum theories. Moreover,
the stresses and strains defined in classical or micro-continuum theories may not be
consistent with the atomistic definitions in microscopic modeling and simulations.

This paper aims at field descriptions of stress and strain at atomic scale for multi-
element crystals. In Section 2 the momentum flux density in the classical N -body
dynamics will be introduced. A field representation of momentum flux will be
derived in Section 3, atomic stress-strain relation as well as the atomistic measures
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of strain will be derived in Section 4, a few numerical examples will be presented in
Section 5, and a summary and discussions will be presented in Section 6. Standard
dyadic and tensor notations are employed in this paper.

2. Momentum flux in classical N-body dynamics

2.1. Atomic forces. In an atomic N -body system, if one defines the force between
atom i and atom j as

f i j
= −

〈
∂Uint

∂(Ri
− R j )

〉
=

〈
∂Uint

∂(R j
− Ri )

〉
= − f j i , (2–1)

one then has

f i
=

n∑
j=1

f i j ,

where f i j is the interatomic force and Ri
− R j the relative separation vector be-

tween the two atoms i and j .
Now consider a multi-element crystal with n unit cell and ν atoms in each primi-

tive unit cell. Generally, forces acting on an atom (k, α), where k = 1, 2, . . . n and
α = 1, 2, . . . ν, can be divided into three kinds:

1. f
kα
lβ
1 : interatomic force between (k, α) and (l, β) atoms in two different unit

cells k and l, with

f
kα
lβ
1 = − f

lβ
kα
1 .

2. f
kα
β

2 : interatomic force between (k, α) and (k, β) atoms in the same unit cell
k, with

f
kα
β

2 = − f kβ
α

2 .

3. f kα
3 : body force on atom (k, α) due to the external fields.

The total force acting on an atom (k, α) can be written as

Fkα
=

n∑
l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kα
β

2 + f kα
3 .

2.2. Momentum flux. The quantum mechanical theorem of stress by Born et al.
[1926] and Nielsen and Martin [1985] can result in exactly the same form as the
momentum flux in classical many-body dynamics [Hoover 1986; 1991; Chen and
Lee 2003a; 2003b]. On a microscopic basis of atomic many-body dynamics, there
are two kinds of contributions to the momentum flux: kinetic and potential.
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Figure 2. Flow of momentum due to inter-particle force.

Suppose a particle α carries a momentum p. During a small time interval dt
this momentum is transported a distance ( p/mα)dt . The resulting “kinetic” con-
tribution to the momentum flux, in the co-moving coordinate system, is

sα
kin = − p ⊗ p/mα. (2–2)

By virtue of the possible macroscopic motion of the material body, the veloc-
ity that contributes to momentum flux is the difference between the instantaneous
velocity and the stream velocity (the ensemble or time-interval average of the ve-
locity),

Ṽ
kα

= V kα
−
〈
V kα

〉
= V kα

− (v̄ + 1v̄α). (2–3)

This velocity difference, Ṽ
kα

, measures the fluctuations of atoms relative to the
local equilibrium and is related to the thermal motion of atoms.

The “potential” flow of momentum occurs through the mechanism of the inter-
particle forces. For a pair of particles kα and lβ that lie on different sides of a
surface, the pair force

f
kα
lβ = − f

lβ
kα

gives the rate at which momentum is transported from particle kα to particle lβ. For
each such pair the direction of this transport is along the line parallel to Rkα

− Rlβ ,
and the potential contribution to the momentum flux is

spot = −Rkα
⊗ f

kα
lβ − Rlβ

⊗ f
lβ
kα = −(Rkα

− Rlβ) ⊗ f
kα
lβ . (2–4)

This momentum transfer can be visualized as a direct connection between two
interacting particles (Figure 2), which is continuous through the line linking them.

3. Field representation of momentum flux

3.1. Field representation of the atomic system. An ordered atomic system can be
viewed as a periodic arrangement of local atomic bonding units. Each lattice point
defines the location of the center of the unit. The space lattice is macroscopically
homogeneous, and the deformation of lattice is homogeneous up to the point of
structural instability (phase transformation). Therefore, the network of lattice point
is continuous, and the deformation gives rise to a field function u(x), where each
point x in the physical space corresponds to a lattice point Rk in the phase space;
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Figure 3. Physical space and phase space descriptions of an
atomic position.

embedded within each point x is a group of ν discrete atoms (1rkα) (Figure 3).
With a localization function

δ(Rk
+ 1rkα

− x − yα) = δ(Rk
− x)δ(1rkα

− yα),

the local density of any measurable phase-space function A(r, p), where

A(r, p) = A
(
r(t), p(t)

)
,

can be expressed as [Chen and Lee 2006]

Āα(x, t) =
〈
Aα
〉
≡ Aα

m =
1

1t

∫ 1t

0

n∑
k=1

A(r, p)δ(Rk
− x)δ(1rkα

− yα)dτ,

Here, quantities in physical space are expressed in terms of time-interval aver-
ages, as in experimental observations, which are performed over a finite duration.
The localization function, a Dirac δ-function or a distribution function, links the
expressions of a dynamic function in phase space to the local density function
in physical space. The displacement of lattice point x, u(x), gives rise to the
homogeneous and continuous lattice deformation with length scale from nano to
macroscopic. The relative displacements of the a-th atom, ξ(x, α), result in relative
atomic deformation within the inner structure and describe the inhomogeneous and
non-continuum atomic behavior whose length scale is less than a nanometer. The
total atomic displacement is u(x) + ξ(x, α) in physical space, corresponding to
the u(k) + ξ(k, α) in phase space, with the time scale of u(x) at audible frequency
region and ξ(x, α) at inferred.

3.2. Field descriptions of forces and momentum flux. The field representation of
total force acting on a an atom α can be expressed as

Fα(x) ≡

〈
n∑

k=1

(
n∑

l=1

ν∑
β=1

f
kα
lβ
1 +

ν∑
β=1

f
kα
β

2 + f kα
3

)
δ(Rk

− x)δ(1rkα
− yα)

〉
,
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where the external body force density f̄ α
is given by

f̄ α
(x) ≡

〈
n∑

k=1

f kα
3 δ(Rk

− x)δ(1rkα
− yα)

〉
,

and the internal force density is (see Equation (2–1))

f̄ α

int(x) =

〈
n∑

k=1

(
n∑

l=1

ν∑
ξ,η=1

f
kξ
lη
1 +

ν∑
ξ,η=1

f kξ
η

2

)
δ(Rk

− x)δ(1rkξ
− yα)

〉
.

From Equations (2–2)–(2–4), the local densities of kinetic and potential momen-
tum fluxes can be expressed as

s̄α
kin(x) = −

〈
n∑

k=1

mα Ṽ
kα

⊗Ṽ
kα

δ(Rk
−x)δ(1rkα

− yα)

〉
,

s̄α
pot(x) = −

〈
1
2

n∑
k,l=1

ν∑
ξ,η=1

(Rkξ
−Rlη)

⊗ f
kξ
lβ
1

∫ 1

0
dλδ

(
Rkλ+Rl(1−λ)−x

)
δ
(
1rkξλ+1r lη(1−λ)− yα

)〉

−

〈
1
2

n∑
k=1

ν∑
ξ,η=1

(Rkξ
−Rkη)

⊗ f kξ
η

2

∫ 1

0
dλδ(Rk

−x)δ
(
1rkξλ+1rkη(1−λ)− yα

)〉
.

The momentum flux in MD has been considered as the atomistic counterpart of the
continuum stress. However, it is seen that

(1) The smallest mathematical infinitesimal volume that does not violate the con-
tinuum assumption is the volume 1V defining the density of lattice points,
which is the volume of a primitive unit cell. The vector sum of all the atomic
forces within this volume may not pass through the mass center of the 1V
(Figure 4).

(2) The continuum definition of stress is not the momentum flux density. For a
crystal with more than one atom in the unit cell, the continuum stress is only
the homogenous part of the momentum flux summing over a volume of at
least a primitive unit cell, and it may not be symmetric.

The total momentum flux density is, therefore, better represented by the sum of
a homogeneous part, t , which is due to the motion and deformation of the lattice
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Figure 4. Illustration of atomic forces in a unit cell.

and is related to continuum stress,

t̄αkin = −

〈
n∑

k=1

mα Ṽ
k
⊗ Ṽ

kα
δ(Rk

− x)δ(1rkα
− yα)

〉
, (3–1)

t̄αpot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(Rk
− Rl)

⊗ f
kξ
lη
1 δ
(
Rkλ + Rl(1 − λ) − x

)
δ(1rkξλ + 1r lη(1 − λ) − yα)

〉
, (3–2)

and an inhomogeneous part, τ , which is due to the internal motion and deformation,

τ̄α
kin = −

〈
n∑

k=1

mα1ṽkα
⊗ Ṽ

kα
δ(Rk

− x)δ(1rkα
− yα)

〉
, (3–3)

τ̄α
pot = −

〈
1
2

∫ 1

0
dλ

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
− 1r lη)

⊗ f
kξ
lβ
1 δ
(

Rkλ + Rl(1 − λ) − x
)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

)〉
−

〈
1
2

∫ 1

0
dλ

n∑
k=1

ν∑
ξ,η=1

(1rkξ
− 1rkη)

⊗ f kξ
η

2 δ(Rk
− x)δ

(
1rkξλ + 1rkη(1 − λ) − yα

)〉
. (3–4)
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Using the identity

d
dλ

(
δ
(

Rkλ + Rl(1 − λ) − x
)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

))
= −∇x ·

(
(Rk

− Rl)δ
(

Rkλ + Rl(1 − λ) − x
)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

))
− ∇ yα ·

((
1rkξ

− 1r lη)δ(Rkλ + Rl(1 − λ) − x
)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

))
,

the divergences of the potential momentum fluxes can be related to the interatomic
forces as

∇x · t̄αpot + ∇ yα · τ̄α
pot = f α

pot(x)

=

〈
n∑

k=1

ν∑
η=1

(
n∑

l=1

f
kα
lη
1 + f

kα
η

2

)
δ(Rk

− x)δ(1rkα
− yα)

〉
. (3–5)

Note that for cell average t̄pot =
∑ν

α=1 t̄αpot. Using
∑ν

α,β=1 f
kα
β

2 = 0, one finds

∇x · t̄pot =

〈
n∑

k,l=1

ν∑
α,β=1

f
kα
lβ
1 δ(Rk

− x)

〉
(3–6)

=

〈
n∑

k=1

ν∑
α,β=1

( n∑
l=1

f
kα
lβ
1 + f

kα
β

2

)
δ(Rk

− x)

〉
. (3–7)

This is the well-known stress-force relation in the continuum description.
It is seen from Equations (3–5) and (3–6) that

ν∑
α=1

∇yα · τ̄α
pot = 0.

This indicates that the divergence of the inhomogeneous momentum flux density
will be averaged out and will not contribute to cell-averaged balance equation of
linear momentum. However, note that

ν∑
α=1

τ̄α
pot 6= 0.

The inhomogeneous part of momentum flux does not vanish upon cell averaging.
Therefore, as pointed out by Nielsen and Martin [1985], the classical definition
of macroscopic stress as “any tensor field which satisfies the condition that its
divergence is the vector force field” [Sommerfeld 1950; Nye 1957] cannot give a
unique definition of stress, and additional consideration is required to include the
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inhomogeneous part of momentum flux in order to uniquely describe the stress
field at microscopic scale for inhomogeneous systems.

4. Stress-strain relations in the nano/micro scales

4.1. Interatomic forces. Results of atomic-level molecular dynamics simulation
depend critically on the interatomic forces. A key issue in atomic-level simulations
is therefore the choice of a suitable potential energy function or interatomic force.
For the sake of simplicity, this paper considers only systems with central force
pair potential. Assuming the separation distance of two atoms is d i j , and the total
potential energy of the system U is a function of the atomic positions only, one has

U =

n∑
i 6= j

U (d i j ).

Setting

G(d i j ) ≡
1

d i j

∂U
∂(d i j )

,

the interatomic force between atoms i and j can be written as

f i j
= −

∂U

∂(di j )
= −

∂U
∂(d i j )

di j

d i j = − G(d i j )di j .

Here di j is the separation vector between two atoms i and j .
In our notation the vectorial relative displacement between atom (k, α) and atom

(l, β) is

Rkα
− Rlβ

= (Rkα
o − Rlβ

o ) + u(k) − u(l) + ξ(k, α)− ξ(l, β).

Here Rkα
o and Rlβ

o are the position vectors of atoms (k, α) and (l, β) in the ground
state, u(k) and u(l) are the displacements of the centers of the k-th and the l-th
unit cells, and ξ(k, α) and ξ(l, β) are the displacements of atoms (k, α) and (l, β)

relative to their unit cell centers, that is, lattice points.

4.2. Momentum flux density. The temperature in an N -body dynamics systems
is generally defined as [Chen and Lee 2006]

T α
=

〈
1V
3kB

n∑
k=1

mα(Ṽ
kα

)2δ(Rk
− x)δ(1rkα

− yα)

〉
.

We see that the kinetic parts of momentum flux in Equations (3–1) and (3–3),
caused by the thermal motion of atoms, are related to temperature. They depend
only on the magnitude of the fluctuations of atoms. This implies

t̄αkin + τ̄α
kin = −γ T α I or t̄αkin = −γ1T α I, τ̄α

kin = −γ2T α I,
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with

γ1 + γ2 = γ, γ =
kB

1V
.

Using the δ-function identity (see Appendix),

∫ 1

0
δ
(
Rkλ + Rl(1 − λ) − x

)
δ
(
1rkξλ + 1r lη(1 − λ) − yα

)
dλ

=

∞∑
m=1

1
m!

(
(Rk

− Rl) · ∇x + (1rkξ
− 1r lη) · ∇ yα

)m−1
δ(Rk

− x)δ(1rkξ
− yα),

we see that the potential momentum fluxes, Equations (3–2) and (3–4), are func-
tions of a series of high order gradients, with zeroth order terms

( t̄αpot)
0
= −

〈
1
2

n∑
k,l=1

ν∑
ξ,η=1

(Rk
−Rl) ⊗ f

kξ
lη
1 δ(Rk

− x)δ(1rkξ
− yα)

〉
,

(τ̄α
pot)

0
= −

〈
1
2

n∑
k,l=1

ν∑
ξ,η=1

(1rkξ
−1r lη) ⊗ f

kξ
lβ
1 δ(Rk

− x)δ(1rkξ
− yα)

〉

−

〈
1
2

n∑
k=1

ν∑
ξ,η=1

(1rkξ
−1rkη) ⊗ f kξ

η

2 δ(Rk
− x)δ(1rkξ

− yα)

〉
.

Note that the sum of zeroth momentum flux, ( t̄αpot)
0
+ (τ̄α

pot)
0, is the atomic

virial stress. Using the expressions for interatomic forces, ( t̄αpot)
0 and (τ̄α

pot)
0 can

be expressed as

(
t̄αpot(x, t)

)0
=

1
2(1V )2

∫
V (x′)

υ∑
β=1

G
(
dαβ

)
(x − x′) ⊗ dαβdV (x′), (4–1)

(
τ̄α

pot(x, t)
)0

=
1

2(1V )2

∫
V (x′)

υ∑
β=1

G
(
dαβ

)
yαβ ′

⊗ dαβdV (x′)

+
1

1V

υ∑
β=1

G
(
yαβ

)
yαβ

⊗ yαβ, (4–2)
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and the first order terms as(
t̄αpot(x, t)

)1
=

1
4
∇x ·

(
1

(1V )2

∫
V (x′)

(x−x′)

υ∑
β=1

G(dαβ)(x−x′)⊗dαβdV (x′)

)

+
1
4
∇yα ·

(
1

(1V )2

∫
V (x′)

υ∑
β=1

yαβ ′

G(dαβ)(x−x′)⊗dαβdV (x′)

)
, (4–3)

(
τ̄α

pot(x, t)
)1

=
1
4
∇x ·

(
1

(1V )2

∫
V (x′)

(x−x′)

υ∑
β=1

G(dαβ) yαβ ′

⊗dαβdV (x′)

)

+
1
4
∇yα ·

(
1

(1V )2

∫
V (x′)

υ∑
β=1

yαβ ′

G(dαβ) yαβ ′

⊗dαβdV (x′)

)

+
1
4
∇yα ·

(
1

1V

υ∑
β=1

yαβG(yαβ) yαβ
⊗ yαβ

)
, (4–4)

where

dαβ(x, x′) ≡ xo + u(x) + yα
o + ξ(x, α)−

(
x′

o + u(x′) + yβ
o + ξ(x′, β)

)
,

yαβ
≡ yα

− yβ
= yα

o + ξα(x) −
(

yβ
o + ξβ(x)

)
,

yαβ ′

≡ yα
− y′β

= yα
o + ξα(x) −

(
yβ

o + ξβ(x′)
)
,

dαβ
≡
∣∣dαβ

∣∣,
yαβ

≡
∣∣ yαβ

∣∣.
Equations (4–1)–(4–4) are the zeroth and the first order nonlinear nonlocal

constitutive relations for the potential momentum flux density. The independent
variables are the lattice displacement u(x, t) and the relative atomic displacements
ξ(x, α, t) 1

= ξα(x, t).

4.3. Linear local momentum flux density. To derive the linear constitutive rela-
tions for the potential momentum flux density one may make the assumption of
infinitesimal deformation, namely, dαβ

− dαβ
o → 0. Therefore, the internal atomic

force density can be written as

f α
int(x) ≈

1
(1V )2

∫
V (x′)

ν∑
β=1

(
cαβ

o
(
x0, x′

0
)
+ cαβ

1

(
x0, x′

0
)(

dαβ
−dαβ

o
))

dV (x′),

where dαβ

0 = dαβ(x0, x′

0) is the separate vector between two ground-state atoms,
and cαβ

o (x0, x′

0) = cαβ

1 dαβ
o and cαβ

1 are the interatomic force constants which can
be computed from quantum mechanics and are functions of the type of atoms in
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question as well as their separation. For the sake of simplicity, one may write

cαβ ′

0,1 = cαβ

0,1(x0, x′

0), cαβ

0,1 = cαβ

0,1(x0, x0).

Using linearized atomic force, Equations (4–1)–(4–4) become

(
t̄αpot(x, t)

)0
=

1
2(1V )2

∫
V (x′)

υ∑
β=1

(x − x′) ⊗
(
cαβ ′

o + cαβ ′

1 (dαβ
− dαβ

o )
)
dV (x′),

(
t̄αpot(x, t)

)1
=

1
4(1V )2 ∇x ·

∫
V (x′)

υ∑
β=1

(x − x′)(x − x′)

⊗
(
cαβ ′

o + cαβ ′

1 (dαβ
−dαβ

o )
)
dV (x′)

+
1

4(1V )2 ∇yα ·

∫
V (x′)

υ∑
β=1

yαβ ′

(x−x′)

⊗
(
cαβ ′

o + cαβ ′

1 (dαβ
−dαβ

o )
)
dV (x′),

(
τ̄α

pot(x, t)
)0

=
1

2(1V )2

∫
V (x′)

υ∑
β=1

yαβ ′

⊗
(
cαβ ′

o + cαβ ′

1 (dαβ
−dαβ

o )
)
dV (x′)

+
1

21V

υ∑
β=1

yαβ
⊗
(
cαβ

o + cαβ

1 ( yαβ
− yαβ

o )
)
,

(
τ̄α

pot(x, t)
)1

=
1

4(1V )2 ∇x ·

∫
V (x′)

(x−x′)

υ∑
β=1

yαβ ′

⊗
(
cαβ ′

o + cαβ ′

1 (dαβ
− dαβ

o )
)
dV (x′)

+
1

4(1V )2 ∇yα ·

∫
V (x′)

υ∑
β=1

yαβ ′

yαβ ′

⊗
(
cαβ ′

o + cαβ ′

1 (dαβ
−dαβ

o )
)
dV (x′)

+
1

4(1V )
∇yα ·

υ∑
β=1

yαβ yαβ
⊗
(
cαβ

o + cαβ

1 ( yαβ
−yαβ

o )
)
.

Note that material properties should make the ground state stresses vanish: t̄αpot(0)=

τ̄α
pot(0) = 0. Hence, the expressions for potential momentum flux in the ground state

t̄αpot(0) =
1

2(1V )2

∫
V (x′)

υ∑
β=1

(
xo − x′

o
)
⊗ cαβ ′

o dV (x′),

τ̄α
pot(0) =

1
2(1V )2

∫
V (x′)

ν∑
β=1

yαβ
o ⊗ cαβ ′

o dV (x′) +
1

1V

ν∑
β=1

yαβ
o ⊗ cαβ

o ,
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can be used for validation once the material parameters cαβ ′

0 , cαβ

0 and the ground
state structural parameters xo and yαβ

o are obtained from quantum mechanical cal-
culations.

If one further neglects nonlocal effects considering only the interactions between
unit cells in a close neighborhood, one then has

u(x) − u(x′) ≈ u,x · (xo − x′

0),

ξ(x, β)− ξ(x′, β) ≈ ξβ
,x ·
(
xo − x′

0
)
,

ξ(x, α)− ξ(x, β)
1
= γ αβ

·
(

yα
o − yβ

o
)
,

and hence

(
x − x′

)
−
(
xo − x′

o
)
= u(x) − u(x′) ≈ u,x ·

(
xo − x′

0
)
, (4–5)(

yα
− yβ

)
−
(

yα
0 − yβ

0

)
= ξ(x, α)− ξ(x, β)

1
= γ αβ

·
(

yα
o − yβ

o
)
, (4–6)(

yα
− y′β

)
−
(

yα
0 − y′β

0

)
= ξ(x, α)− ξ(x′, β)

= ξ(x, α)− ξ(x, β)+ ξ(x, β)− ξ(x′, β)

≈ γ αβ
·
(

yα
o − yβ

o
)
+ ξβ

,x ·
(
xo − x′

0
)
, (4–7)

dαβ
− dαβ

0 ≈
(
u,x + ξβ

,x
)
·
(
xo − x′

0
)
+ γ αβ

·
(

yα
o − yβ

o
)
. (4–8)

The zeroth order linear local potential momentum flux density can be then ex-
pressed as

t̄α(x, t) = − γ1T α I +

υ∑
β=1

(
A1

: u,x + A2
: γ αβ

+ A3
: ξβ

,x
)
, (4–9)

τ̄α(x, t) = − γ2T α I +

υ∑
β=1

(
B1

: u,x + B2
: γ αβ

+ B3
: ξβ

,x
)
. (4–10)

Here (A : B)i jk...lmn = Ai jk... pq Bpq...lmn .
Note that dαβ

o , xo − x′
o, and yαβ

o = yα
o − yβ

o are material constants, while dαβ ,
x − x′ and yα

− yβ are up to first order in u,x , ξ
β
,x , and γ αβ . Using Equations

(4–5)–(4–8) one can find that the first order terms of momentum flux density are
the strain gradient terms. Therefore, Equations (4–9) and (4–10) represent the
linear local form of zeroth order homogeneous and inhomogeneous momentum
flux density, and the sum of the two is the field representation of atomic virial
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Figure 5. Illustration of strain measures in the formulated field theory.

stress. One can also write them in tensor notation as:

t̄α
mn(x, t) = − γ

δmn
1 T α

+

υ∑
β=1

(
A1

mnpqε1
pq + A2

mnpqε2
pq + A3

mnpqε3
pq
)
,

τ̄α
mn(x, t) = − γ

δmn
2 T α

+

υ∑
β=1

(
B1

mnpqε1
pq + B2

mnpqε2
pq + B3

mnpqε3
pq
)
,

where
ε1

pq = u p,q , ε2
pq = γ αβ

pq , ε3
pq = ξβ

p,q , (4–11)

and
Ai=1,2,3

mnpq , Bi=1,2,3
mnpq

are material constants which can be expressed in terms of ground state structural
parameters xo − x′

0, yα
o − yβ

o and a material parameter cαβ

1 .

4.4. Strain measures. The field representation of momentum flux involves tem-
perature, lattice deformation and relative atomic deformation. The linear local
forms of momentum flux are expressed in terms of temperature and lattice strain
u,x(x), relative atomic strain ξ

β
,x(x), and atomic-bond strain γ αβ(x). They are

the lattice deformation gradient, relative atomic deformation gradient and relative
atomic-bond stretch, and can be illustrated through Figure 5.

5. Numerical examples

For the purpose of numerical validation, a periodic solid under simple tension is
modeled and simulated. Stress and strain relations are computed based on the
formulas derived in this paper and by atomic-level molecular dynamics simulation
(MD) as well. The general-purpose parallel MD simulation code DL-POLY is
employed [Smith and Forester 2001] to perform the simulation. The modeling of
simple tension is achieved through NVT ensemble.
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(a) ZnO (wurtzite) (b) BaTiO3 (perovskite, cubic phase)

O
Ba
Ti

(c) MgO (rock salt)

Figure 6. Crystal structure of zinc oxide, barium titanate, and
magnesium oxide.

Three single crystalline materials are considered in this paper. Among them,
piezoelectric and semiconductor material Zinc Oxide, ZnO, is wurtzite structured
with lattice constants a = 3.249 Å and c = 5.206 Å, ferroelectric material Barium
Titanate, BaTiO3 is in its cubic phase with the lattice constant a = 3.943 Å, and
MgO, the standard test-bed material for the evaluation of theoretical methods to
calculate some mechanical properties, has a rock salt structure with the lattice
constant a = 4.2 Å. The Coulomb and Buckingham interatomic potentials are em-
ployed for the MD simulation, and the material parameters are taken from [Catlow
1986; Grimes 1994; McCoy et al. 1997a; 1997b; Grimes et al. 1995; Chen et al.
1997].

Under uniform simple tension loading, there are no strain gradients, and hence
only the zeroth momentum flux exists. Thus, the formula for the total stress reduces
to the zeroth order momentum flux, ( t̄αpot)

0
+(τ̄α

pot)
0, which is identical to the atomic

virial stress.
The numerical results of the stress-strain relations before the onset of structure

stability (phase transition) by the formulation and DL-POLY are plotted in Figure 7.
A good agreement between the results from the formulation and from the DL-POLY
simulation is found, while the computational time ratio between these two methods
is about 1 to 104. Although the analytical stress-strain relation is nonlinear and
nonlocal, surprisingly the numerical results indicate that the stress-strain relation
is quite linear until structural transformation.

6. Summary and discussion

The field representation of momentum flux density is formulated in this paper
within the framework of atomic N -body dynamics. Three strain measures and
the momentum flux density–strain relations are obtained. Major considerations
and conclusions regarding the formulation may be summarized as follows:
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Figure 7. Stress-strain relation of zinc oxide (a), barium titanate
(b), and magnesium oxide (c) by the formulation and by molecular
dynamics simulation code DL-POLY.

(1) The momentum flux formulated in this paper exactly represents the momen-
tum flux in an atomic N -body dynamics model. Both the atomic-level mo-
mentum flux and the atomic displacements can be fully represented in terms
of field variables: temperature, lattice deformation and relative atomic defor-
mation. All material constants involved can be obtained through the atomistic
formulation.

(2) This paper has shown that the stress in the conventional continuum description
is not the momentum flux density in an atomic N -body dynamics model; it
is only the homogeneous part of momentum flux density summing over at
least the volume of a primitive unit cell. Decomposing the momentum flux
into homogeneous and inhomogeneous parts, one can establish the connection
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between the atomic momentum flux density and the continuum stress, and
obtain the field representation of conservation equations on the atomic scale
[Chen and Lee 2006].

(3) The formulations have shown that the momentum flux density-strain relation,
which may be referred to as atomic stress-strain relation, is nonlinear and
nonlocal in displacements, and involves higher order gradients. In the case
of homogeneous strain so that no strain gradients exist, the formula for total
stress shall be identical to the virial theorem. Or, if the average stress of
a whole specimen is concerned, then the total stress formula shall also be
identical to the virial theorem.

(4) The three strain measures are obtained for the linear local constitutive relation.
One may prove that the nonlinear nonlocal relation can also be expressed in
terms of the temperature and the three strain measures.

(5) The numerical examples in this paper, although quite preliminary, show that
the stress-strain relation under uniform loading is linear until structural insta-
bility.

Appendix

Define

δ(λ; k, l, ξ, η, α) ≡δ
(

Rkλ + Rl(1 − λ)−x
)
δ
(
1rkξλ+1r lη(1−λ) − yα

) 1
= δ(λ),

1(k, ξ, α) ≡δ
(

Rk
− x

)
δ
(
1rkξ

− yα
) 1
= 1 = δ(1),

A ≡
(

Rk
− Rl)

· ∇x,

B ≡
(
1rkξ

− 1r lη)
· ∇ yα .

It is readily verified that

dδ

dλ
= − (A + B)δ,

dδ = − (A + B)δdλ,∫ 1

0
λ

dδ

dλ
dλ =

∫ 1

0
λdδ = λδ

∣∣1
0 −

∫ 1

0
δdλ = δ(1) −

∫ 1

0
δdλ,

∫ 1

0
δdλ = 1 + (A + B)

∫ 1

0
λδdλ,∫ 1

0
λndδ = 1 − n

∫ 1

0
λn−1δdλ,
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which gives ∫ 1

0
λn−1δdλ =

1

n
+

1
n
(A + B)

∫ 1

0
λnδdλ.

One may then prove that∫ 1

0
δdλ = 1 + (A + B)

∫ 1

0
λδdλ

= 1 + (A + B)

(
1

2
+

1
2
(A + B)

∫ 1

0
λ2δdλ

)
= 1 +

1
2
(A + B)1 +

1
2
(A + B)2

∫ 1

0
λ2δdλ

= · · · =

∞∑
n=1

1
n!

(A + B)n−11,

or, in other words,∫ 1

0
δ
(
Rkλ+Rl(1−λ)−x

)
δ
(
1rkξλ+1r lη(1−λ)− yα

)
dλ

=

∞∑
m=1

1
m!

(
(Rk

−Rl)·∇x+(1rkξ
−1r lη)·∇ yα

)m−1
δ(Rk

−x)δ(1rkξ
− yα),

∫ 1

0
δ
(
Rkλ+Rl(1−λ)−x

)
dλ =

∞∑
m=1

1
m!

(
(Rk

−Rl)·∇x
)m−1

δ(Rk
−x).
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