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SO. . . IS THIS A SURFACE-BREAKING CRACK?

MILAN POZNIC AND CLAUDIO PECORARI

An inspection technique used to assess the structural integrity of critical compo-
nents in a nuclear power plant must be able to discern surface-breaking cracks
from subsurface cracks. This work proposes an ultrasonic method to provide that
information and presents a theoretical investigation into it. The main assump-
tion of the model is that water carried by pressurized pipes infiltrates and fills a
surface-breaking crack, while a subsurface crack is dry. The model simulates an
inspection in which the modulation technique is employed and the surface host-
ing the crack is not accessible. A ratio, R, constructed with signals recorded in
backscattering configuration during a modulation cycle, is examined and shown
to provide a clear criterion allowing subsurface cracks to be distinguished from
surface-breaking cracks when a shear vertical wave at 45 degree incidence is
employed as a probe.

1. Introduction

Stress corrosion cracks, especially in pipes carrying pressurized water, constitute
a serious threat to the structural integrity of nuclear power plants. They are often
found in regions proximal to the inner surface of the pipe, and can be either surface-
breaking or subsurface. The growth of a subsurface crack is caused mostly by fa-
tigue. However, if a crack reaches the surface of the hosting component, corrosion
becomes the main factor affecting crack growth. This is the case because water
enters the fracture thanks to the combination of tensile stresses, which cause the
crack to remain open while the plant is operating, and the pipe internal pressure,
which can reach values of the order of 70 atm.

For this reason, it is of the utmost importance for a nondestructive technique
employed in the assessment of a plant’s structural integrity to enable not only
the detection of stress-corrosion cracks, but also their characterization as surface-
breaking or subsurface defects. Indeed, there have been instances in which cracks
have been characterized as subsurface during inspection but proved to be surface-
breaking upon a destructive metallurgical investigation [Jenssen et al. 2000]. Of
relevance to the subject of this work is also the presence of debris resulting from
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corrosion, which tends to bridge the gap between the surfaces, rendering the defect
more transparent to an inspecting ultrasonic beam.

This work presents the principles of an ultrasound-based technique designed
to discern partially closed cracks that are subsurface from those that are surface-
breaking. The proposed method exploits the effects of water confinement within
a partially closed, surface-breaking crack on the acoustic response of the defect.
The sensitivity of the proposed technique to the presence of fluid trapped between
the crack faces, and to compressive stresses acting on the crack, is examined. The
emphasis on cracks that are partially closed derives from the near certainty that,
following the shut-down of the plant prior to inspection, stresses due to the plant’s
operating conditions are removed and cracks tend to partially close, at least in
vicinity of their tips (see [Newman et al. 2003], for example). This investigation
is limited to the worst-case scenario in which the surface hosting the crack is not
accessible and the inspection must be carried out from the outer surface of the
component.

The article is organized as follows. We first report experimental results which il-
lustrate the characteristic dependence of the stiffness on the pressure applied to dry
and fluid-filled interfaces. We then present a model which evaluates the backscat-
tering by partially closed, surface-breaking and subsurface cracks. To simulate
the effect of partial closure on backscattering, spring boundary conditions are em-
ployed. Experimental results obtained on partially closed interfaces are employed
in the theoretical model to describe the effect of water trapped within a surface-
breaking fracture. The model is used to simulate experiments in which the partial
closure of the crack is modulated by a low-frequency, high-amplitude wave while
a probing ultrasonic wave interrogates the defect. We close with a discussion of
the significance of these findings for the development of a method allowing water-
confining, surface-breaking cracks and dry subsurface cracks to be distinguished
from each other.

2. Dry and water-confining interfaces

The interaction between ultrasonic waves and interfaces formed by two rough,
nonconforming surfaces in contact under increasing pressure has been investigated
extensively both experimentally and theoretically; see for example [Baltazar et al.
2002; Baik and Thompson 1984; Drinkwater et al. 1996; Lavrentyev and Rokhlin
1998; Kim et al. 2004a]. Models have been developed that derive the macroscopic
mechanical properties of such interfaces from those of the asperities in contact
and from the topographical properties of the surfaces. This considerable effort
notwithstanding, several of the outstanding issues concerning this problem still
await a solution [Pecorari and Poznic 2006]. In particular, the effect of water
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confined between surfaces in partial contact appears not to be accounted for by
any available model.

In this section we present experimental results on both dry and water-confining
interfaces and use them in the theoretical modeling of ultrasonic wave scattering
by surface-breaking and subsurface cracks. The experimental set-up employed in
this investigation is discussed in [Pecorari and Poznic 2006] and is not repeated
here. The only noteworthy differences from our earlier experimental conditions
are:

i. The nominal frequency of the transducer used to generate and receive the
waves reflected by the imperfect interface is 2.25 MHz here.

ii. The measurements were carried out also with shear waves.

iii. The rms roughness of the two surfaces employed here was evaluated to be of
the order of 0.2 µm. In all the measurements, the inspecting waves insonify
the interface at normal incidence.

Among the properties of interest, the stiffness K of the imperfect interface is of
primary importance in understanding the interaction between ultrasonic waves and
such interfaces. It is defined by the relation K = ∂ P/∂δ, where P is the applied
pressure (or the tangential stress) and δ is the relative approach (or the tangential
displacement) between the mean planes of the rough surfaces. The values KN and
KT of the normal and transverse interfacial stiffness can be recovered from the
measured reflection coefficients RL and RT for longitudinal and shear waves at
normal incidence via the well-known relation

RL ,T = −
1

1 − 2 j (KN ,T /ωZL ,T )
,

where ω is the circular frequency of the incident and scattered waves, and ZL , ZT

are the acoustic longitudinal and shear impedances of the medium. The symbol
j represents the imaginary unit. When water is confined by the interface, and the
real area over which mechanical contact between the surfaces take place is a small
fraction of the nominal area, the normal stiffness of the latter can be written as the
sum of two terms: KN = (3/d0) + 1KN . The first term describes the effect of
a layer of water with thickness d0, the latter quantity being the distance between
the mean planes of the rough surfaces when no pressure is applied to the interface.
The symbol 3 represents the only nonzero elastic constant of the liquid medium.
The second term, 1KN , describes the part of the stiffness which depends on the
applied pressure. Since the shear modulus of water is zero, the transverse stiffness
does not contain a term analogous to 3/d0.

Figure 1 reports experimental results obtained at normal incidence using steel-
steel interfaces with rms roughness σ approximately equal to 0.2 microns. They
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Figure 1. Normalized normal (left) and transverse (right) spring
stiffness versus pressure applied to a water-confining and dry steel-
steel interface. The symbols represent experimental results.

illustrate the dependence of the normalized normal, KN /ωZL , and transverse,
KT /ωZL , interface stiffness components on the applied pressure for both dry and
water-confining interfaces, respectively. The pressure is varied from 0 MPa to
80 MPa at which point the reflection coefficient of a longitudinal wave interacting
with a water-confining interface is smaller than 0.1. The two most relevant features
of Figure 1, left, are the overall larger normal stiffness of the water-confining in-
terface compared to that of the dry one, and the initial fast increase of KN when
pressure not exceeding 5 MPa is applied to the interface. Unpublished numerical
simulations by these authors show that the addition of the term accounting for
the thin fluid layer, 3/d, to the stiffness of the dry interface is not sufficient to
reproduce the experimental results. A possible explanation for this deficiency of
the model may be found in the results of both experimental and theoretical in-
vestigations into the interaction between solid surfaces confining water; see [Das
et al. 1996; Israelachvili 1992; Grabbe and Horn 1993; Ho et al. 1998; Pashley
and Israelachvili 1984]. These works show that repulsive forces between solid
surfaces arise when the distance between the latter is comparable to the dimension
of the fluid’s molecules. The physical origin of such repulsive forces may vary from
system to system, but common to all is the increase of structural order caused by the
spatial confinement on the molecules of the fluid. These findings suggest that these
repulsive forces may also occur between asperities of the system under investiga-
tion, opposing their mechanical contact when they are separated by a distance of the
order of a nanometer. An alternative interpretation to that just outlined considers
the effect of drainage forces which oppose the motion of the solid surfaces in the
direction normal to their mean planes. A suitable mathematical model for such a
phenomenon should extend the analysis carried out by Chan and Horn [1985] on
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cylindrical surfaces with axes oriented normally to each other and to the direction
of motion. Essential for the accuracy of the novel model, the extension of Chang
and Horn’s model should account for the statistical character of the surface profiles.
Of importance is also the results concerning the shear stiffness, KT , which have
been obtained with the same two interfaces; see Figure 1, right. They display a
dependence on the applied pressure which, for our purposes, can be assumed to be
identical. In other words, they show that the viscosity of the fluid does not affect
KT , and thus, a mechanism which does not call upon the viscosity of the fluid
appears to offer a more plausible explanation of the experimental observation. In
summary, the experimental results of Figure 1 show that water strongly affects the
dependence of the interface normal stiffness on the applied pressure, while it does
not alter that of the shear stiffness.

3. Theory

Figure 2 illustrates the geometry of the material system and of the defect under
consideration. The segment of material of length a separating the crack from the
surface in the diagram on the left is also known as the ligament. With reference
to Figure 2, and following the method developed by Achenbach et al. [1980]
and Mendelsohn et al. [1980], the original problem posed by the scattering of
an incident bulk wave onto the crack is decomposed into a symmetrical and an
antisymmetrical part.

a

b

x

y

d

x

y

Figure 2. Geometry of the material system and its defect. The
material system occupies the half-space y > 0. Left: Subsurface
crack. Right: surface-breaking crack, with a = 0 and b = d .
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When considering the scattering by a subsurface crack, the boundary conditions
along the crack face, which are associated with the symmetrical problem are

σ+

xy = 0, x = 0, 0 ≤ y < ∞,

σ+

xx = KN 1 u, a ≤ y < b,


u = 0, 0 ≤ y < a or b ≤ y < ∞,

(3–1)

and those associated with the antisymmetrical problem are

σ+

xx = 0, x = 0, 0 ≤ y < ∞,

σ+

xy = KT 1v, a ≤ y < b,


v = 0, 0 ≤ y < a or b ≤ y < ∞.

(3–2)

In these equations, the σ+

i i are the total stress components acting on the positive
side of the crack, i.e., on the side for which x = 0+, while u and v are the dis-
placement components in the x and y direction, respectively. The spring stiffness
densities KN and KT are generally allowed to be functions of depth, y, so that non-
uniform closure can be modeled. The remaining boundary conditions are those
used by Achenbach et al. [1980] and Mendelsohn et al. [1980] for an open crack.
In particular, the surface y = 0 is assumed to be free of traction. The crack closure
is simulated by varying the contact pressure between the crack faces according to
the next equations, which are given next only for a subsurface crack:

P(y) = Ptip exp
y − b

`
, (a + b)/2 ≤ y ≤ b,

P(y) = Ptip exp
a − y

`
, a ≤ y ≤ (a + b)/2.

(3–3)

Here Ptip is the pressure at the crack tips and ` is the decay length which controls
the spatial extent of the tip closure. The pressure distribution on a surface-breaking
crack is obtained from (3–3) by letting a = 0 and substituting (a +b)/2 with b = d .
Equations (3–3) are used to assign a local value to the spring stiffness densities by
way of the relationships illustrated in Figure 1. The purpose of this feature of the
model is twofold. First, the effect of the water on the scattering phenomenon is
accounted for within the same mathematical scheme used to treat a dry partially
closed crack. Secondly, the boundary conditions in equations (3–1) and (3–2) allow
for the simulation of the well documented closure of a crack in the regions proximal
to its tips [Newman et al. 2003], the causes of which are varied, still debated, and
leading essentially to the same result when considered from the wave scattering
point of view.
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The equations of motion for the two displacement components are

c2
L
∂2u
∂x2 + c2

T
∂2u
∂y2 +

(
c2

L − c2
T
) ∂2v

∂x∂y
=

∂2u
∂t2 ,

c2
L
∂2v

∂x2 + c2
T

∂2v

∂y2 +
(
c2

L − c2
T
) ∂2u
∂x∂y

=
∂2v

∂t2 ,

where t represents time, and cL and cT are the phase velocities of longitudinal
and shear waves, respectively. The solutions of these are given by the following
expressions (see [Achenbach et al. 1980; Mendelsohn et al. 1980]):

us(Ex) =
2
π

∫
∞

0

(
ξkL Ase−αL y

− 2κ−2αT kLC se−αT y) sin(ξ x) dξ

+
2
π

∫
∞

0

(
αLkL Bse−αL x

+ 2κ−2ξkL Dse−αT x) cos(ξ y) dξ, (3–4)

vs(Ex) =
2
π

∫
∞

0

(
αLkL Ase−αL y

− 2κ−2ξkLC se−αT y) cos(ξ x) dξ

+
2
π

∫
∞

0

(
ξkL Bse−αL x

+ 2κ−2αT kL Dse−αT x) sin(ξ y) dξ, (3–5)

for the symmetric field, while those of the antisymmetric are

ua(Ex) =
2
π

∫
∞

0

(
ξkL Aae−αL y

− 2κ−2αT kLCae−αT y) cos(ξ x) dξ

+
2
π

∫
∞

0

(
αLkL Bae−αL x

+ 2κ−2ξkL Dae−αT x) sin(ξ y) dξ, (3–6)

va(Ex) =
2
π

∫
∞

0

(
−αLkL Aae−αL y

+ 2κ−2ξkLCae−αT y) sin(ξ x) dξ

−
2
π

∫
∞

0

(
ξkL Bae−αL x

+ 2κ−2αT kL Dae−αT x) cos(ξ y) dξ . (3–7)

The time-dependence of the solution is assumed to be harmonic. In the equations
above, Aa,s , Ba,s, Ca,s , and Da,s are functions of the integration variable ξ , and
are themselves given in terms of integrals of suitable functions containing the tan-
gential slope of the two components of the crack opening displacement. These are
obtained by solving two decoupled singular integral equations derived by enforcing
the boundary conditions (3–1) and (3–2) on the solutions of the equations of motion.
The symbols kL and kT are the wavenumbers of the longitudinal and shear waves,
respectively. With the same meaning of the subscripts L and T , the quantities αL
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and αT are defined by

αL =


√

ξ 2
− k2

L if ξ ≥ kL ,

− j
√

k2
L − ξ 2 if ξ < kL ,

αT =


√

ξ 2
− k2

T if ξ ≥ kT ,

− j
√

k2
T − ξ 2 if ξ < kT .

The branch of the square root function in the complex plane is chosen to satisfy
the Sommerfeld radiation condition.

Equations (3–4)–(3–7) concern the field in the quarter-space where both x and
y are positive. The field components in the quarter-space where x < 0 are obtained
from those given by those equations as follows:

us(x < 0, y) = − us(|x |, y),

vs(x < 0, y) = vs(|x |, y),

ua(x < 0, y) = ua(|x |, y),

va(x < 0, y) = −va(|x |, y).

In solving the integral equations in the unknown tangential slope of two com-
ponents of the displacement discontinuity, the condition that their integral over the
extent of the crack is null must be enforced. The scattering by an open subsurface
crack was solved first by Brind and Achenbach [1981].

The scattering from a partially closed, surface-breaking crack is modeled within
the same mathematical framework. The boundary conditions for this problem are
obvious extensions of those given for a subsurface crack, and the solutions of the
problem are again sought in the form given by equations (3–4)–(3–7).

As described earlier, the real physical system hosting the crack is a steel pipe
containing water. Therefore, the boundary conditions stating that the surface y = 0
is traction-free are not correct. Enforcing the continuity of traction and normal
displacement across the solid-water interface, however, would add considerable
mathematical complications without substantially affecting the phenomena of in-
terest in this work. In fact, the algorithm later proposed to characterize the defect
as being surface-breaking or internal is designed to measure only the relative effect
of the applied modulation on the scattering properties of the defect with respect to
those displayed by the defect in its unperturbed state. Boundary conditions which
amount to a small perturbation of the total field within the solid half-space are not
expected to have a significant effect on the results of this algorithm.

4. Numerical results

The experimental results of Section 2 indicate that the most striking difference
between the properties of two interfaces under consideration is the rapid increase of
the normal stiffness of the water-confining interface as soon as contact between as-
perities is established. This naturally suggests the use of the parametric modulation
technique as a novel method to characterize a crack as being surface-breaking or
subsurface. The modulation technique exploits the nonlinear properties of partially
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closed cracks, and more specifically the dependence of the crack stiffness on the
applied pressure. Xiao and Nagy [1998] employed thermal stresses induced by a
laser source to vary the closure of a surface-breaking crack which was simultane-
ously insonified by a high frequency Rayleigh wave. By means of suitable signal
processing of the backscattered ultrasonic pulse acquired during different phases
of the thermal modulation, these authors showed that the acoustic signature of the
crack can be extracted from the noisy environment (see also [Nagy 1992]). In
other words, the modulation technique was shown to be able to selectively detect
nonlinear material defects. Rokhlin et al. [2004] adapted this method to increase
the sensitivity of ultrasonic inspections to poor adhesive bonds between aluminum
plates, while Kim et al. [2004b] (see also references therein) used it to characterize
small surface-breaking cracks initiated at surface pits by fatigue. Finally, Kazakov
et al. [2002] used the same idea to image the nonlinear properties of a surface-
breaking crack. Rokhlin et al. [2004], Kim et al. [2004a; 2004b] and Kazakov
et al. [2002] used a low-frequency source of mechanical vibrations to vary the
instantaneous properties of the defect of interest.

In this work, an experimental configuration similar to those employed by the
previously cited authors is simulated. A crack under investigation is subjected to
a sinusoidal, time-dependent pressure field of amplitude 1P: P(t) = 1P sin(�t),
the frequency of the modulation, �, being orders of magnitude lower than that
of an ultrasonic wave, ω, which is used to monitor the instantaneous state of the
crack. This pressure is superposed on the static pressure given in (3–3), which
is responsible for the initial partial closure. During a cycle, three backscattered
ultrasonic signals are recorded, two at the opposite turning points of each cycle,
and one at the mid point when P(t) = 0. By using the peak-to-peak amplitude
of the back-scattered wave, or any other feature of this signal which reflects the
variation of the crack state, the following ratio is constructed:

R =
(
B−

− B+
)
/B0, (4–1)

where B−,+ are the features of interest measured when the crack is most open (−)

or closed (+), respectively, and B0 refers to the crack state in its rest condition.
Note that the ratio R is independent of the amplitude of the incident wave, and,
thus conveys information which depends on the intrinsic properties of the defect
and of the modulation, but not on the intensity of the inspecting wave. This work
investigates the conditions under which R can possibly serve as an “index of state”
to distinguish a fluid filled surface-breaking crack from a dry subsurface crack.
The numerical results presented next and the conclusions drawn from them refer
to phenomena involving only monochromatic waves. However, given the linearity
of the system, their validity can be extended to wave packets formed by linear
superposition of harmonic waves.
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Figure 3. Schematics of the simulated modulation experiment il-
lustrating the relationship between the state of the crack and the
signal backscattered by it during a cycle of the modulation. The
arrows pointing towards the crack represent the sum of the static
pressure and the modulation.

The following numerical investigation considers the scattering by partially closed
surface-breaking and subsurface cracks in a steel half-space. The mass density and
phase velocity of longitudinal and shear waves in steel are ρ = 7.8 × 103 kg m−3,
cL = 5900 ms−1, and cT = 3200 ms−1. The results presented in all the follow-
ing figures refer to a configuration in which a shear vertical wave impinges on
the defect at 45 degree incidence, unless otherwise stated. The frequency of the
wave is f = 2.25 MHz. The solution of the scattering problem is evaluated in the
backscattering direction. The observation point lies at a distance of about 30 shear
wavelengths (about 40 mm) from the surface of the half-space.

The residual pressure which determines the closure of the crack (see Equation
(3–3)) is chosen to represent three characteristic configurations: one in which the
closure is uniform, and two in which it decays with rates equal to 0.1 mm and 1 mm,
respectively. The rationale behind the choice of the latter values stems from the
assumption that the cracks of interest are detectable by conventional methods, and,
thus, their extent is of the order of several millimeters. For such cracks a likely
state is one in which their tip(s) are partially closed while throughout the remaining
portion of their extent there is no mechanical contact between the surfaces. The
pressure at the crack tip, Ptip, is chosen to be equal to 5 MPa and 70 MPa to rep-
resent two well distinct situations in which the crack tip is nearly open or fairly
closed, respectively. The values of the normalized stiffness constants KN /(ωZL)

and KT /(ωZL) corresponding to these pressure values are 0.2 and 0.07, respec-
tively, if the crack is dry, and 3 and 0.07 if a defect contains water. The amplitude
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Figure 4. Ratio R versus nondimensional crack size kT d for val-
ues of pressure at the crack tip equal to 5 MPa and 70 MPa. The
pressure distribution is constant along the crack extent. Left: dry
surface-breaking crack. Right: water-confining surface-breaking
crack.

of the modulation is 1P = 5 MPa in all simulations. For this value of the amplitude
1P , the modulation causes the crack to open completely when Ptip = 5 MPa. The
dependence of the ratio R on the nondimensional size of the crack, kT d , is reported
over a range which corresponds to cracks with physical dimension reaching values
up to 5.36 mm.

In Figure 4, the left panel refers to a dry surface-breaking crack and the right
panel to the same crack when it is filled with water. In both figures, the cases
in which the crack is subjected to a uniform pressure, Ptip, of 5 MPa and 70 MPa
are considered. In Figure 4, left, the crack shows a nearly constant response when
Ptip = 70 MPa, reflecting the modest effect the modulation has on the crack opening,
while it displays wide oscillation for the lower value of the applied pressure. In
both cases, however, the ratio R does not exceeds values of 0.1 as the size of the
crack increases. If water is confined within the crack (Figure 4, right), the value of
the ratio for Ptip = 70 MPa is even smaller as a consequence of the higher values
of the crack stiffness, while for Ptip = 5 MPa R reaches values larger than 2 over
nearly all the range of values of kT d considered here. As indicated in Figure 2,
right, the depth of the surface-breaking crack is d. This striking contrast is due to
the large variation of values spanned by the normal stiffness as the total applied
pressure varies between 0 and 10 MPa (see Figure 1, right).

Figure 5 illustrates the dependence of the ratio R for a surface-breaking crack
with a closure given by the second equation of (3–3), specified for the case of a
surface-breaking crack (a = 0, and b = d as upper limit), and with ` = 1 mm. As in
the case considered in Figure 4, left, the response of a dry surface-breaking crack
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tends to settle around values of the order of 0.1 as the size of the crack increases.
However, a water-confining crack subjected to a compressive stress of 70 MPa at
its crack tip (Figure 5, right) displays a remarkably different behavior compared to
that shown in the corresponding panel of Figure 4. In fact, as the crack size exceeds
the decay length, `, corresponding to a value kT ` ≈ 5, the ratio rapidly increases
to reach values larger than one. This prediction can be explained as the result
of an increasingly larger portion of the crack surface being subjected to a static
pressure smaller than the amplitude of the modulation. Since the ratio R measures
the relative variation of the backscattered signal caused by the modulation, the
larger the portion of the crack, the opening of which is significantly affected by
the modulation, the larger R. The extreme example of this situation is provided
by the results of the previous figure in which ` is infinity. For Ptip = 70 MPa,
the variation of the opening of the crack produces nearly no modulation of the
scattered field since nowhere along the surface the crack opens. On the other hand,
for Ptip = 5 MPa, the whole surface of the crack completely opens and closes,
causing the largest variation of the backscattering considered in this work. The
behavior of the curve associated with a pressure of 5 MPa at the crack tip may
also be interpreted along the same line. Of interest is also the observation that
the two curves appear to converge towards each other as the size of the crack
increases. This result is further confirmed by those obtained if the decay length
is decreased to become ` = 0.1 mm, as shown in Figure 6, right. On the other
hand, the predictions concerning a dry surface-breaking crack, which is partially
closed by the same pressure field (Figure 6, left), do not present features which
significantly differ from those already shown in the left panels of Figures 4 and 5.
Also worthy of attention is the difference between the values of the plateau in the
right panels of 5 and 6, the former being slightly larger than the latter (1 versus
0.75). This finding may be expected in virtue of positive correlation between the
values of ` and the extent of the region over which a significant variation of the
local stiffness takes place. That is to say, the wider this region, the stronger the
effect of the modulation on the amplitude of the backscattered wave, the extreme
case being that considered in Figure 4 for Ptip = 5 MPa.

The investigation carried out on a surface-breaking crack was repeated with
a subsurface crack. Contrary to the former case, the investigation on the latter
yielded results which do not substantially differ from each other. For this reason,
only the predictions on the dependence of the ratio R on the size of a crack, d =

(b − a), which is subjected to a pressure field decaying with a constant ` = 1 mm
are presented in Figure 7, those on the left being obtained for Ptip = 5 MPa, while
those on the right refer to Ptip = 70 MPa. Each figure illustrates the behavior of
R for three values of the ligament size: a/λT = 0.4, 1 and 2. The most relevant
feature of these results is that, with the exception of a small range of values of kT d
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Figure 5. Ratio R versus nondimensional crack size kT d for val-
ues of the pressure at the crack tip equal to 5 MPa and 70 MPa.
The pressure distribution decays exponentially from the crack tip
with a characteristic length ` = 1 mm. Left: dry surface-breaking
crack. Right: water-confining surface-breaking crack.
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Figure 6. Ratio R versus nondimensional crack size kT d for val-
ues of the pressure at the crack tip equal to 5 MPa and 70 MPa.
The pressure distribution decays exponentially from the crack tip
with a characteristic length ` = 0.1 mm. Left: dry surface-breaking
crack. Right: water-confining surface-breaking crack.

corresponding to cracks smaller than one wavelength of the incident wave, the ratio
R always remains below a threshold value of 0.3.

In view of earlier results proving the higher sensitivity of shear waves to small
surface breaking cracks when they are insonified at angles of incidence just above
the critical angle of longitudinal waves [Pecorari and Poznic 2005; Pecorari 2005],
the behavior of the ratio R has been examined also under these conditions, and
found to yield no clear criterion to discern subsurface from surface-breaking cracks.
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Figure 7. Ratio R versus nondimensional crack size kT d = kT (b−

a) for values of the ligament, a, equal to 0.4λT , 1λT , and 2λT . The
pressure distribution decays exponentially from the crack tip with
a characteristic length ` = 1 mm. Left: Ptip = 5 MPa. Right: Ptip =

70 MPa.

Similar negative results have obtained with longitudinal waves at 45 degrees, 60
degrees and 85 degrees incidence.

Finally, the results in Figure 8 concern the sensitivity of the ratio R to a variation
of the angle on incidence from 45 degrees to 40 degrees, both for a surface-breaking
crack filled with water (left), and for a dry subsurface crack (right). The pressure
closing the crack is characterized by Ptip = 70 MPa and ` = 0.1 mm, which is the
less favorable of the two cases. Similar results have been obtained for an angle
of incidence equal to 50 degrees and by reducing the value of the pressure at the
crack tip to 5 MPa. The main conclusion to be drawn from the latter results is
that the proposed technique appears to be robust within a variation of the angle of
incidence of at least ±5 degrees, since they confirm the results presented earlier.

5. Summary and concluding remarks

The potential use of the modulation technique to discern surface-breaking from
subsurface cracks in components carrying pressurized water has been investigated
theoretically. To that end, a model predicting the backscattered signal from dry
and water-confining surface-breaking cracks and from subsurface cracks has been
developed.

By using the backscattered signals recorded at the two turning points of a mod-
ulation cycle, B−,+, and when the no modulation is applied, B0, the ratio

R =
B−

− B+

B0
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Figure 8. Ratio R versus nondimensional crack size kT d = kT (b−

a). The pressure distribution decays exponentially from the crack
tip with a characteristic length ` = 0.1 mm, and Ptip = 70 MPa.
The angle of incidence is θin = 40 degree. Left: Water-confining,
surface-breaking crack. Right: subsurface crack with ligament
size a equal to 0.4λT , 1λT , and 2λT .

has been constructed. This ratio does not depend on the amplitude of the incident
wave, though it appears to vary with both angle of incidence and wave polariza-
tion. For a shear vertical wave at 45 degree incidence, R is predicted to exceeds
a threshold limit of 0.5 when a surface-breaking crack is filled with water, while
it is always lower than 0.5 if the crack, whether surface-breaking or subsurface, is
dry. The difference in the values of the ratio is ascribed to the dramatic variation
of the normal stiffness of a partially closed, water-confining crack as the surfaces
of the latter come into contact, and it may be used as a criterion for differentiating
water-confining surface-breaking from subsurface cracks.

To confirm the validity of the proposed method a deeper investigation into the
role of the rms roughness of the composite interface formed by the crack surfaces
needs to be carried out. In fact, as illustrated in [Pecorari and Poznic 2005], the
variation of the normalized normal stiffness of a water-confining interface is consid-
erably reduced when the rms roughness of the interface increases from 0.1 µm to
1.5 µm. In this context, results by Parisi et al. [2000] (see also references therein)
concerning the self-affine nature of the surfaces of fatigue cracks also need be taken
into account if the profile of a stress-corrosion crack displays similar properties.
Should this be the case, in fact, the extent to which a self-affine profile can be
represented by models describing the statistical properties of an infinite interface
treated as a stochastic process with spectrum containing components with arbi-
trarily small wavelengths must be reassessed. Of relevance to the behavior of the
partially closed crack tip and to the model used to predict its acoustic response is
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also the asymptotic behavior of the normal stiffness in proximity of the crack tip.
In this work, the crack is assumed to be either uniformly closed or increasingly
open as the observation point moves from the tip toward the mouth or center of
the crack. Watanabe et al. [2005] have recently brought to the authors’ attention
the incompatibility between the asymptotic behavior of the stress (∝

√
1/r) and

of the displacement discontinuity (∝
√

r) when the crack stiffness is assumed to
be constant and finite. This incompatibility would be removed if the self-affine
nature of the crack surfaces were considered. In fact, the rms roughness evaluated
over an interval shorter than the smaller cut-off wavelength of the profile’s power
spectrum, and including the crack tip, would be zero. Thus, the crack would be
either completely open or completely closed in the neighborhood of its crack tip.
In the first case KN = 0, in the second KN → ∞, and in both the use of the
spring boundary conditions would be compatible with the assumed asymptotic be-
havior of the quantities involved. However, whether either condition would extend
far enough from the crack tip to affect the numerical solution of the scattering
problem obtained in this work remains a matter to investigate. The limits of the
model notwithstanding, it is the authors’ opinion that the proposed method deserves
the consideration of a working hypothesis for further experimental investigation,
and that alone can provide a definite answer to the problem of interest to this
communication.
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Appendix

In this appendix, the integral equations and the formulas expressing the displace-
ment components of the scattered field in terms of the solutions of the former are
given in the case in which the crack is subsurface. The integral equations are
found by enforcing the boundary conditions given in equations (3–1) and (3–2)
on the general solutions of the equations of motion. These equations are singular
and decoupled. Their unknowns, A(S) and B(S), are functions representing the
tangents of the tangential and normal crack opening displacement components,
respectively.

Let Ain be the amplitude of the incident wave and ξ the transform variable used
in the integral representation of the general solution of the equations of motion
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(3–4)–(3–7). Introduce the normalized quantities and coordinates

Ā = AinkL , ā = akL , b̄ = bkL , X = xkL , Y = ykL ,

ζ = kLξ, βL = kLαL , and βT = kLαT ,

in which kL is the wave number of the incident wave; also let H be the Heaviside
unit step function. The integral equation for the symmetric problem then becomes∫ b̄

ā
B(S)

(
1

S+Y
−

2πκ2

1−κ2 K̄N (Y )H(S−Y ) +
1

1−κ2

∫
∞

0
(I1+I2) dζ

)
d S

+

∫ b̄

ā

B(S)

S−Y
d S =

πκ2

2(κ2−1)

σ̄ I
xx(Y )

Ā
, (A-1)

where

I1 =

∫
∞

0

(κ2
+ 2β2

L)(β2
T + ζ 2)e−βL Y

− 4βLβT ζ 2e−βT Y

4ζ 2βLβT − (ζ 2 + β2
T )2

(
F1eβL S

+ F2eβT S) dζ,

I2 =

∫
∞

0

(
(ζ 2

+ β2
T )2

− 4ζ 2βLβT

ζβL
−
(
2 − 2κ2)) sin(ζ S) cos(ζY ) dζ,

with F1 =
(
−κ2(2 − κ2) − 4β2

Lζ 2
)
/β2

L and F2 = 4ζ 2.
The integral equation associated with the antisymmetric problem is∫ b̄

ā
B(S)

(
1

S+Y
+

πκ2

κ2−1
K̄T (Y )H(S−Y ) +

4
κ2−1

∫
∞

0
(I3+I4) dζ

)
d S

+

∫ b̄

ā

A(S)

S−Y
d S =

π

(1−κ2)

τ̄ I
xy(Y )

Ā
, (A-2)

where

I3 =

∫
∞

0

−4ζ 2βLβT e−βL Y
+ (2ζ 2

+ κ2)2e−βT Y

4ζ 2βLβT − (β2
T + ζ 2)2

(
E1e−βL S

+ E2e−βT S) dζ,

I4 =

∫
∞

0

(
4ζ 2βLβT − (ζ 2

+ β2
T )2

4ζβT
−

1
2

(
κ2

− 1
))

sin(ζ S) cos(ζY ) dζ,

with E1 = −ζ 2 and E2 = (ζ 4
− ζ 2κ2

+ κ2/4)/β2
T . If the crack is surface-breaking,

additional terms appear in the integrals I1 and I3, namely F3 = κ2(2 − κ2)/β2
L

and E3 = −κ4/4β2
T , respectively; see also [Mendelsohn et al. 1980]. In all these

expressions κ = kT /kL . The right-hand sides of (A-1) and (A-2) are the respective
components of the stress field carried by the incident wave.

The components of the displacement field scattered by a subsurface crack, nor-
malized by the amplitude of the incident wave Ain and propagating in the positive
quarter-space, are given by the following expression:
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Symmetric problem.

U S(X, Y ) =

2
π

∫
∞

0
dζ

∫ b̄

ā

(
(β2

T +ζ 2)(F1e−βL S
+F2e−βT S)

κ2
(
4ζ 2βLβT −(β2

T +ζ 2)2
) (

ζe−βL Y
−

2ζβLβT

β2
T +ζ 2

e−βT Y
)

sin(ζ X)

+

(2ζ

κ2 e−βT X
−

β2
T +ζ 2

ζκ2 e−βL X
)

cos(ζY ) sin(ζ S)

)
B(S) d S,

V S(X, Y ) =

2
π

∫
∞

0
dζ

∫ b̄

ā

(
(β2

T +ζ 2)(F1e−βL S
+F2e−βT S)

κ2
(
4ζ 2βLβT −(β2

T +ζ 2)2
) (

βLe−βL Y
−

2ζ 2βL

β2
T +ζ 2

e−βT Y
)

cos(ζX)

+

(2βT

κ2 e−βT X
−

(β2
T +ζ 2)

βLκ2 e−βL X
)

sin(ζY ) sin(ζ S)

)
B(S) d S.

Antisymmetric problem.

U a(X, Y ) =

2
π

∫
∞

0
dζ

∫ b̄

ā

(
(E1e−βL S

+E2e−βT S)

4ζ 2βLβT −(β2
T +ζ 2)2

(
4ζ 2βT e−βL Y

−2βT (β2
T +ζ 2)e−βT Y ) cos(ζX)

−

(
βLe−βL X

−
β2

T +ζ 2

2βT
e−βT X

)
sin(ζY ) sin(ζ S)

)
A(S) d S,

V a(X, Y ) =

2
π

∫
∞

0
dζ

∫ b̄

ā

(
(E1e−βL S

+E2e−βT S)

4ζ 2βLβT −(β2
T +ζ 2)2

(
−4ζβT βLe−βL Y

+2ζ(β2
T +ζ 2)e−βT Y ) sin(ζX)

−

(
ζe−βL X

−
β2

T +ζ 2

2ζ
e−βT X

)
cos(ζY ) sin(ζ S)

)
A(S) d S.

Similar expressions for the displacement components scattered by a surface-
breaking crack can be found in [Mendelsohn et al. 1980].
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