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The aim of this article is to give a detailed account of the plane harmonic generalized elasto-thermo-
diffusive (ETNP) waves in semiconductive materials. The shear (purely transverse) waves get decoupled
from the rest of the motion and remain independent of the influence of other fields. These waves propa-
gate without dispersion and attenuation in semiconductors. The coupled system of partial differential
equations, governing the rest of the interacting fields, has been solved to obtain a complex secular
equation. According to the frequency equation, four coupled longitudinal waves, namely, the quasither-
moelastic (QTE), quasielastodiffusive (QEN/QEP), quasithermodiffusive (QTN/QTP), and quasithermal
(T-mode), can exist and propagate in an infinite semiconductor. The complex secular equation of plane
harmonic waves in semiconductors is solved by using Descartes’ algorithm and the irreducible case of
Cardan’s method in order to obtain phase velocities and attenuation coefficients of all possible coupled
waves. The thermoelastic (ET), elastodiffusive (EN/EP) and thermodiffusive (TN/TP) waves have also
been investigated as special cases. The derived theoretical results have been illustrated and verified
numerically for germanium (Ge) and silicon (Si) semiconductors. The computed phase velocity and
attenuation profiles have been presented graphically.

1. Introduction

Certain substances like germanium, silicon, carbon etc. are neither good conductors like copper nor
insulators like glass. In other words, the resistivity (10−4 to 0.5�m) of these materials lies between
conductors and insulators. Such substances are classified as semiconductors. Semiconductors have
some useful properties and are being extensively used in electronic circuits. For instance, transistor −a
semiconductor device is fast replacing bulky vacuum tubes in almost all applications. A semiconductor
has negative temperature coefficient of resistance i.e. the resistance of a semiconductor decreases with
increase in temperature and vice-versa. Wave motion is a form of disturbance, which travels through
a medium due to the repeated periodic motion of particles about their mean positions. The motion
being handed over from one particle to the other. The waves which can be produced or propagated in
a material medium, are called elastic (mechanical) waves. In case of large frictional forces present in
the medium, the wave motion dies out soon. [Maruszewski 1986a; 1986b; 1987a] presented theoretical
considerations of the simultaneous interactions of elastic, thermal and diffusion of charge carriers’ fields
in semiconductors. The problems of interaction of various fields were formulated mathematically by
[Maruszewski 1989; 1986c; 1987b] based on the following assumptions:

(i) All the considerations are made in the framework of the phenomenological model.

(ii) The electric neutrality of the semiconductor is satisfied.

Keywords: semiconductors, relaxation time, electrons and holes, waves, germanium and silicon.

813

http://www.jomms.org
http://dx.doi.org/10.2140/jomms.2006.1-5


814 JAGAN NATH SHARMA AND NAVEEN THAKUR

(iii) The magnetic field effect can be ignored.

(iv) The mass of the charge carrier fields is negligible.

(v) The surface heat sources are neglected.

(vi) The electric field with in the boundary layer is very weak and can be neglected.

(vii) The recombination functions of electrons and holes are selected on the basis of facts that take care
of defects and hence the concentration values of the charge carrier fields according to [Many et al.
1965].

(viii) The surface of the semiconductor is free of mechanical loading.

(ix) The temperature T0 = constant is the uniform reference temperature and θ = T − T0, is the temper-
ature change of the body.

(x) The concentrations of electrons and holes satisfy the conditions N = n− n0, P = p− p0, where
n, p and n0, p0 are respectively the nonequilibrium and equilibrium values of electrons and holes
concentrations.

Maruszewski [1989] studied the propagation of thermodiffusive surface waves in the semiconductors
with relaxation of heat and charge carrier fields. The secular equation of coupled elastic, thermal and
diffusive waves is obtained and illustrated by considering two particular cases of elastodiffusive (EN)
and thermodiffusive (TN) waves.

The governing equations in classical dynamic coupled thermoelasticity are wave-type (hyperbolic)
equations of motion and a diffusion type (parabolic) equation of heat conduction. Therefore, it is seen
that a part of the solution of energy equation extends to infinity implying that if a homogeneous isotropic
elastic medium is subjected to thermal or mechanical disturbance, the effects of temperature and displace-
ment fields are experienced at an infinite distance from the source of disturbance. This shows that part
of the disturbance has an infinite velocity of propagation, a physically impossible phenomenon. With
this drawback in mind, some researches such as [Lord and Shulman 1967; Green and Lindsay 1972;
Dhaliwal and Sherief 1980] and [Chandrasekharaiah 1986], modified the Fourier law of heat conduction
and constitutive relations to obtain a hyperbolic equation for heat conduction. These models include
the time needed for acceleration of heat flow in addition to the coupling between temperature and strain
fields. According to the investigations of [Ackerman et al. 1966; Guyer and Krumhansl 1966; Ackerman
and Overton 1969], these theories have also been supported with the experimental exhibition of actual
occurrence of ‘second sound’ at low temperature and small intervals of time. [Banerjee and Pao 1974]
investigated the propagation of plane harmonic waves in infinitely extended anisotropic thermoelastic
solids by taking into account the thermal relaxation time. Extensive studies of wave propagation in heat
conducting elastic solids under the influence of thermal relaxation time in “infinite velocity” and “finite
velocity” descriptions, have been carried out by many investigators such as [Scott 1989; Chadwick 1979;
Sharma et al. 2000; Sharma 1986] and [Sharma and Singh 1989; 1990].

The present article is aimed at giving a detailed account of the plane harmonic generalized thermoe-
lastic waves in infinite semiconductor materials in context of the mathematical model formulated by
[Maruszewski 1989]. The basic equations are first nondimensionalized and then solved by adopting
the approach of [Achenbach 1973] after decoupling the shear waves’ (purely transverse) motion. The
shear waves are not affected by thermal and charge carrier fields and also remain independent from the
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rest of the motion. The frequency equation for rest of the motion reveals that, in general, there are
four longitudinal waves namely, a quasithermoelastic (QTE), a quasithermal (T-mode) and two quasid-
iffusive (elastodiffusive QEN/QEP and thermodiffusive QTN/QTP waves), which can propagate in such
semiconductor media. These waves are coupled and get modified due to thermal variations, thermal
relaxation time, and life/relaxation times of electron and hole fields. The complex secular equation of
coupled waves is then solved by using Descartes’ algorithm along with irreducible Cardan’s method.
The analytical results so obtained have been verified numerically and illustrated graphically in case of
Ge and Si materials.

2. Formulation of the problem

We consider an unbounded, homogeneous, isotropic, thermoelastic semiconductor at a uniform tempera-
ture T0 in an undisturbed state. Let Eu(x1, x2, x3, t)= (u1, u2, u3) and θ(x1, x2, x3, t) be the displacement
vector and temperature change of the medium at any time t , respectively. The basic governing equations
of motion and heat conduction, in the absence of body forces and heat sources, for such materials as
given by [Maruszewski 1989] are

µui, j j + (λ+µ)u j,i j − ρüi − λ
n N ,i −λp P,i − λT θ,i = 0, (1)

K θ,i i +mnq N,i i +m pq P,i i

−

(
1+ t Q ∂

∂t

)
(ρCeθ̇ + ρT0α

n Ṅ + ρT0α
p Ṗ + T0λ

T u̇k,k)− ρ(an
1 Ṅ + a p

1 Ṗ)

=

(
an

1

( ρ
t+n

)
N + a p

1

( ρ
t+p

)
P
)
, (2)

ρDn N,i i +mqnθ,i i − ρ
(

1− an
2 T0α

n
+ tn ∂

∂t

)
Ṅ − an

2
(
ρCeθ̇ + ρT0α

p Ṗ + T0λ
T u̇k,k

)
= −

(
1+ tn ∂

∂t

)( ρ
t+n

)
N , (3)

ρD p P,i i +mqpθ,i i − ρ
(

1− a p
2 T0α

p
+ t p ∂

∂t

)
Ṗ − a p

2

(
ρCeθ̇ + ρT0α

n Ṅ + T0λ
T u̇k,k

)
=−

(
1+ t p ∂

∂t

)( ρ
t+p

)
P, (4)

where the notation

an
1 =

aQn

aQ , a p
1 =

aQp

aQ , an
2 =

aQn

an , a p
2 =

aQp

a p ,

P = p− p0, N = n− n0, λT
= (3λ+ 2µ)αT ,

is used. The field variables have been subjected to only those assumptions (except (v), (vi) and (viii))
of [Maruszewski 1989] that are applicable and relevant in the present context of an infinite description
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of semiconductors. Here λ,µ are Lame parameters; ρ is the density of the semiconductor; λn, λp are
the elastodiffusive constants of electrons and holes; αT is the coefficient of linear thermal expansion of
the material; K is the thermal conductivity; α p, αn are thermodiffusive constants of holes and electrons;
aQn, aQp, aQ, an, a p are the flux-like constants; and Dn, D p are the diffusion coefficients of electron and
holes. The quantities mnq ,m pq ,mqn,mqp are the Peltier–Seebeck–Dufour–Soret-like constants; t Q, tn

and t p are the relaxation times of heat, electron and hole fields, respectively; Ce is the specific heat; t+n , t+p
denotes the life times of the carriers’ fields; and n, p and n0, p0 are the nonequilibrium and equilibrium
values of electrons and holes, respectively. The comma notation is used for spatial derivatives and a
superposed dot represents differentiation with respect to time.

We define the quantities

x ′i =
ω∗xi

c1
, t ′l = ω∗t, θ ′ =

θ

T0
, P ′ =

P
p0
,

N ′ =
N
n0
, u′i =

ρω∗c1

λT T0
ui , t Q′

= t Qω∗, t p′
= t pω∗,

tn′
= tnω∗, t+

′

n = t+n ω
∗, t+

′

p = t+p ω
∗, δ2

=
c2

2

c2
1
,

εT =
λT 2

T0

ρCe(λ+ 2µ)
, ω∗ =

Ce(λ+ 2µ)
K

, c2
1 =

λ+ 2µ
ρ

,

c2
2 =

µ

ρ
, k =

K
ρCe

, λ̄n =
λnn0

λT T0
, λ̄p =

λP p0

λT T0
,

εqn
=

mqnT0

ρDnn0
, εqp

=
mqpT0

ρD p p0
, εn =

an
2 K T0

ρn0 Dn , εp =
a p

2 K T0

ρp0 D p ,

ε pq
=

m pq p0

K T0
, εnq

=
mnqn0

K T0
, an

0 =
an

1 n0

CeT0
, a p

0 =
a p

1 p0

CeT0
,

αn
0 =

αnn0

Ce
, α

p
0 =

α p p0

Ce
.

(5)

Here εT and k are the thermoelastic coupling parameter and thermal diffusivity. Upon introducing the
scalar point potential function φ and vector point potential function Eψ defined by the relations

Eu =∇φ+∇ × Eψ, ∇ · Eψ = 0 (6)

into Equations (1)–(4), along with the quantities in (5), we obtain

∇
2φ− φ̈− λn N − λp P − θ = 0, (7a)
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− εT∇
2(φ̇+ t Qφ̈)+ εnq

∇
2 N −

{
αn

0 t Q∂2

∂t2 +
(
an

0 +α
n
0
) ∂
∂t
+

an
0

t+n

}
N

+ε pq
∇

2 P −
{
α

p
0 t Q∂2

∂t2 + (a p
0 +α

p
0 )
∂

∂t
+

a p
0

t+p

}
P +∇2θ −

(
θ̇ + t Q θ̈

)
= 0,

(7b)

−εnεT∇
2φ̇+∇2 N −

K
ρCe Dn

(
−

1
t+n
+

(
1−
∈n α

n
0 Dn

k
−

tn

t+n

) ∂
∂t
+

tn∂2

∂t2

)
N

−εnα
p
0 Ṗ − εn θ̇ + ε

qn
∇

2θ = 0,
(7c)

−εpεT∇
2φ̇+∇2 P −

K
ρCe D p

(
−

1
t+p
+

(
1−
∈p α

p
0 D p

k
−

t p

t+p

) ∂
∂t
+

t p∂2

∂t2

)
P

−εpα
n
0 Ṅ − εp θ̇ + ε

qp
∇

2θ = 0,

(7d)

∇
2 Eψ =

1
δ2
Ëψ. (7e)

The last equation of (7e) corresponds to purely transverse waves which get decoupled from rest of the
motion and are not affected by the thermal and charge carrier fields. These waves travel with nondimen-
sional velocity ′δ′ without dispersion, attenuation, or damping. We drop this motion in the following
analysis unless stated otherwise. Equations (7c) and (7d) can be further simplified under the assumption
that the considered semiconductor is of relaxation type. For such materials, according to [Maruszewski
1989], the diffusion approximation of the physical process ceases to be obligatory and the relaxation/life
times tn, t+n (t

p, tp+) become comparable to each other in their values (tn
= tn+, t p

= tp+).

3. Solution of the problem

We may take plane harmonic wave solutions as

(φ, θ, N , P)= (φ,θ,N , P ) exp
{
iω(v−1xr nr − t)

}
, r = 1, 2, 3. (8)

The use of solution (8) in the coupled system of equations (7a)–(7d), after straightforward algebraic
reductions and manipulations, leads to the following characteristic equation

ξ 4
− Aξ 3

+ Bξ 2
−Cξ + D = 0, ξ = v−2, (9)
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where

A =
1+

(
11+12+ (1+ εT )13

)
1

,

B =

(
1′1+ (1+ εT )(1

′

2+1
′

3)+1
′

4+1
′

5+1
′

6

)
1

,

C =

(
(1+ εT )1

′′

1+1
′′

2+1
′′

3+1
′′

4
)

1
,

D =
1′′′1
1
.

(10)

Here the quantities 1i (i = 1, 2, 3), 1′i (i = 1, 2, 3, 4, 5, 6), 1′′i (i = 1, 2, 3, 4), 1′′′1 and 1 are defined in
the Appendix. Equation (9), being a fourth degree polynomial equation in ξ , has four roots, and hence
in general, there are four ETNP waves: a QTE, a T-mode, and two quasidiffusive waves (QEN/QEP and
QTN/QTP), in addition to purely transverse waves which can propagate in such semiconductive materi-
als. The secular equation (9) with complex coefficients A, B, C , and D contains complete information
regarding the wave number, frequency, phase velocity and attenuation coefficient of these waves. In
order to solve the complex secular equation (9) we use Descartes’ algorithm outlined below:

Shifting the roots of secular equation (9) by a factor of A
4 to eliminate the second term, we obtain

ζ 4
+ Hζ 2

+Gζ + I = 0, (11)

where

ζ = ξ −
A
4
, H = B−

3A2

8
, G =

AB
2
−

A3

8
−C, I = D+

A2 B
16
−

3A4

256
−

AC
4
.

Factoring Equation (11) into two quadratic factors, we have

ζ 4
+ Hζ 2

+Gζ + I = (ζ 2
+ lζ +m)(ζ 2

− lζ + n). (12)

Comparing the coefficients of various powers of ζ in (12) on both sides, we get

m+ n = l2
+ H, n−m =

G
l
, mn = I. (13)

Eliminating m and n from Equation (13), we obtain

Z3
+ 2H Z2

+ (H 2
− 4I )Z −G2

= 0, (14)

where Z = l2. Being cubic with complex coefficients, Equation (14) can be solved by using the irreducible
case of Cardan’s method with the help of De Moivre’s theorem. We again shift the roots of (14) by a
factor of −2H

3 in order to obtain the standard cubic as

Y 3
− 3H∗Y −G∗ = 0, (15)

where

Y = Z +
2H
3
, H∗ =

(H 2
+ 12I )
9

, G∗ = G2
−

8H I
3
+

2H 3

27
. (16)
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Let the roots of Equation (15) be of the type

Y =U + V (17)

so that U 3
+ V 3

= G∗, U 3V 3
= H∗

3
.

We may find the cube roots with the help of De Moivre’s theorem, as shown below:
Let

U 3
=

G∗+
√

G∗− 4H∗3

2
= L + i M, L ,M ∈ R. (18)

Then the values of U are given by

Uk = r1/3
(

cos
2kπ +8

3
+ i sin

2kπ +8
3

)
, k = 0, 1, 2, (19)

where r =
√

L2+M2 and 8 = tan−1
(
M/L

)
. Having determined U , the values of V can be obtained

from the relation U V = H∗ which further leads to the required values of Y and hence to the values of
l2
= Z = Y − 2H/3. One of the (convenient) values of l so obtained is then used to evaluate m and n

by Equation (13). Using the values of m, n and l, the reduced secular Equation (11) is factored into two
quadratic factors of the type (12), which are further solved to obtain the four roots ζi , i = 1, 2, 3, 4. The
complex roots of secular equation (9) are obtained from the relation ξi = ζi + A/4, for i = 1, 2, 3, 4. This
leads to the determination of the complex phase velocities as

vi =
1
√
ξi
, for i = 1, 2, 3, 4. (20)

In general, v is complex, and hence we may write

v−1
= V−1

+ iω−1 Q (21)

so that the exponent part exp [iω(v−1x pn p − t)] of solutions (8) can be rewritten as

exp
{
iω(V−1x pn p − t)− Qx pn p

}
.

This implies that V is the phase speed and Q the attenuation coefficient of ETNP waves.
Upon using representation (21) in Equation (20) we can obtain the phase velocity (Vi ) and the atten-

uation coefficient (Qi ) of different modes of wave propagation. We obtain

Vi =
1

Re
√
ξi
, Qi = ωIm(

√
ξi ), i = 1, 2, 3, 4. (22)

4. Special cases of wave solutions

In this section we consider some special cases of wave propagation such as EN/EP, TN/TP and ET waves,
in semiconductor materials.
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4.1. Elastodiffusive (EN/EP) waves. If we confine our discussion concerning the reciprocal dynamical
interactions of elastic and electron diffusion fields to the propagation of EN waves, the system of equa-
tions (7) in the absence of thermal and hole charge carrier fields (P = θ = 0, εT = 0= εnq , α0

n
= 0= a0

n)

along with the solution to (8) leads to the secular equation

(ξ − p2
1)(ξ − p2

2)= 0, (23)

where p2
1 + p2

2 = 1+ τ ∗
′

n , p2
1 p2

2 = τ
∗
′

n .
Here τ ∗

′

n is obtained from τ ∗n defined in the Appendix, on setting αn
0 = 0. In general, the roots ξ = p2

1, p2
2

are complex and hence waves are attenuated in space. The corresponding phase velocity depends directly
on the relaxation and life times of the electrons. For relaxation type semiconductors (tn

= t+n ), the
quantity τ ∗

′

n becomes real and so are the roots ξ = p2
1, p2

2 . Therefore for such semiconductors EN waves
propagate without dispersion, damping, and attenuation, which is in agreement with [Maruszewski 1989].
The amplitude ratios of the waves in this case are related by

N̄
φ̄
= k2(v2

− 1)/λ̄n. (24)

Upon using representation (21), the phase velocities and attenuation coefficients of EN waves are obtained
as

Vi =
1

Re(pi )
, Qi = ωIm(pi ), i = 1, 2. (25)

The EP-waves can also be discussed in a similar manner by omitting the influence of thermal and
electron fields (N = θ = 0, εT = 0= ε pq , α

p
0 = 0= a p

0 ). The corresponding results can be obtained by
replacing (N , n) with (P, p) in the above analysis.

4.2. TN/TP waves. Here we confine our discussion concerning the reciprocal dynamical interactions of
the thermal and electron diffusion fields to the propagation of TN waves, and omit the elastic and hole
charge carrier fields (φ = 0= P, α p

0 = 0= εp, ε
qp
= 0= εT ). The system of equations (7) with the help

of solution (8) in this case leads to the secular equation

(ξ − q2
1 )(ξ − q2

2 )= 0, (26)

where

q2
1 + q2

2 =
τ Q
+ τ ∗n − ε

qnτ ′n − iω−1εnε
nq

1− εnqεqn , q2
1 q2

2 =
τ Qτ ∗n − iω−1εnτ

′
n

1− εnqεqn . (27)

The complex phase velocity can be obtained from Equation (26) as

v−1
i = qi , i = 1, 2. (28)

In this case the waves are attenuated in space and damped with time even for relaxation type of semi-
conductors. Upon using representation (21) the real phase velocities and attenuation coefficients of TN
waves are obtained as

Vi =
1

Re(qi )
, Qi = ω Im(qi ), i = 1, 2. (29)
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Here the amplitude ratios are given by

θ̄

N̄
=
τ ′nv

2
− εnq

1− τ Qv2 =
τ ∗n v

2
− 1

εqn − iω−1εnv2 . (30)

The results pertaining to TP waves can be obtained from the above analysis by replacing N , n with P ,
p after setting (φ = 0= N , αn

0 = 0= εn, ε
qn
= 0= εT ) in the governing equations (7).

4.3. ET waves. When a complete equilibrium state of electron and hole concentration is established
the system becomes charge-free. Here, we confine our discussion concerning the reciprocal dynamical
interactions of elastic and thermal fields in the absence of electron and hole fields (N = 0 = P, εn =

εp = 0, εqn
= 0= εqp) to the propagation of ET waves.

In this case the system of equations (7) governing the interaction along with solution (8) leads to the
secular equation for ET waves as under

(ξ − a2
1)(ξ − a2

2)= 0, (31)

where
a2

1 + a2
2 = 1+ (1+ εT )τ

Q, a2
1a2

2 = τ
Q (32)

and τ Q is defined in the Appendix. The secular equation (31) gives us v−1
i =±ai , i = 1, 2.

These quantities are also complex so the waves are attenuated in space and damped with time. Upon
using representation (21) the real phase velocities and attenuation coefficients of ET waves are obtained
as

Vi =
1

Re(ai )
, Qi = ω Im(ai ), i = 1, 2. (33)

In this case the amplitude ratios are given by

θ̄

φ̄
= k2(v2

− 1). (34)

This type of wave motion has already been discussed by many authors such as [Chandrasekharaiah 1986;
Chadwick 1979; Chadwick and Seet 1970; Sharma et al. 2000; Sharma 1986; Sharma and Singh 1989;
1990; Scott 1989].

5. Numerical results and discussion

In this section the values of phase velocity and attenuation coefficient of various partial wave modes have
been computed numerically from the analytical results obtained above for Ge and Si materials under
the assumption that the semiconductor considered is of relaxation type. In such a case, the diffusion
approximation of the physical processes ceases to be obligatory, and tn, t+n , tp, t+p become comparable
to each other in their values so that tn = t+n , tp = t+p . The physical data for these materials is given
in Table 1. To understand the interactions of various fields considered in thermoelastic semiconductors,
the nondimensional phase velocities and attenuation coefficients of different modes of wave propagation
have been obtained and computed numerically for Ge and Si materials, and their profiles are plotted
on log-linear scale against nondimensional frequency (ω) in Figures 1, 2–7, 8. The phase velocity and
attenuation coefficient profiles in special cases of ET, EN/EP and TN/TP waves have also been computed
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Coefficient Unit Value (Ge) Value (Si) Reference

λ Nm−2 0.48× 1011 0.64× 1011 [Maruszewski 1989]

µ Nm−2 0.53× 1011 0.65× 1011 [Maruszewski 1989]

ρ Kgm−3 5.3× 103 2.3× 103 [Maruszewski 1989]

t+n s < 10−5 < 1.4× 10−6 [Maruszewski 1989]

t+p s < 10−5 < 10−5 [Maruszewski 1989]

Dn m2s−1 10−2 0.35× 10−2 [Maruszewski 1989]

D p m2s−1 0.5× 10−2 0.125× 10−2 [Maruszewski 1989]

K ωm−1K−1 60 150 [Sze 1981]

Ce jKg−1K−1 310 700 [Sze 1981]

αT K−1 5.8× 10−6 2.6× 10−6 [Sze 1981]

n0 = p0 m−3 1020 1020 [Zambuto 1989]

α p m2 / s 1.3× 10−3 5× 10−3 [Zambuto 1989]

αn m2 / s 3.4× 10−3 1× 10−2 [Zambuto 1989]

mnq vk−1 1.4× 10−5 1.4× 10−5 [Lal 1995]

m pq vk−1
−0.004× 10−6

−0.004× 10−6 [Lal 1995]

mqn vk−1 1.4× 10−5 1.4× 10−5 [Lal 1995]

mqp vk−1
−0.004× 10−6

−0.004× 10−6 [Lal 1995]

Table 1. Physical data of germanium and silicon.

and represented graphically on log-linear scales in Figures 9–15. The numerical results are found to be
in close agreement with the theoretical analysis.

Figure 1 shows the phase velocity (V1) profiles of QTE waves with frequency in Ge and Si semicon-
ductor materials. The variations of phase velocity at low frequency (ω� 1) limits are quite small as
compared to that at high-frequency (ω� 1). The phase velocity in both the cases increases sharply in
the frequency range 0.3 ≤ ω ≤ 100 to attain its maximum value at ω = 100 for Ge and at ω = 30 in
case of Si, and then becomes steady after a slight decline in its value for ω ≥ 100. Although the effect
of relaxation time of heat transportation is negligibly small, it is still more significant at high frequency
(isothermal) conditions than at low frequency (isentropic) limits, especially when ω≥ 10. This also shows
that thermal relaxation (second sound) effects are short lived. The behavior of dispersion curves for Ge
and Si materials is similar except that the magnitude of velocity in the latter one is quite small. Figure
2 shows nondimensional attenuation-frequency curves of QTE waves. As evident from Figures 1 and 2,
the behavior of nondimensional attenuation coefficient (Q1) is similar to that of nondimensional velocity
(V1) for Ge. It assumes maximum value at ω = 100 in higher frequency regime and is significantly
affected by thermal relaxation time of heat transportation. The attenuation profile of silicon (Si) is linear
everywhere except in the range 1≤ ω ≤ 100, where it has Gaussian character with mean value at ω = 10.
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Figure 1. Phase velocity profile of QTE waves.
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Figure 2. Attenuation coefficient profile of QTE waves.

Figure 3 shows nondimensional phase velocity (V2) profiles of QEN/QEP waves with nondimensional
frequency (ω) in Ge and Si semiconductor materials. For the 0≤ ω ≤ 10 frequency range, the variations
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Figure 4. Attenuation coefficient profile of QEN/QEP waves.

of phase velocity are almost linear in Ge material and increase logarithmically at higher values of the
frequency afterwards. The phase velocity profile for silicon (Si) semiconductor is slightly dispersive for
0≤ ω ≤ 10 in contrast to that of Ge which is linear and hence nondispersive in this range of frequency
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Figure 6. Attenuation coefficient profile of QTN/QTP waves.

values. The effect of thermal relaxation on the transportation of charge carrier fields is observed to be
prominent for higher values (ω ≥ 10) of the frequency. From Figure 4, we see that the behavior of
attenuation coefficient (Q2) is same as that of the phase velocity in Figure 3, except that the thermal
relaxation has negligibly small effect in this case. The variations of the attenuation coefficient are
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linear for the frequency range 0 ≤ ω ≤ 10 and increase logarithmically afterwards in both Ge and Si
semiconductors. Here the attenuation profiles for thermal relaxation and nonrelaxation cases overlap
each other, meaning that thermal relaxation phenomenon does not affect the attenuation coefficient. The
critical value of frequency pertaining to the change of this behavior of phase velocity and attenuation
coefficient in both the semiconductors (Ge and Si) is observed to be at ω = 30 rather than at ω = 1.0.

Figure 5 shows the phase velocity (V3) profile of QTN/QTP waves in Ge and Si semiconductors. It
is observed that the phase velocity is almost negligible in the frequency range 0≤ ω ≤ 0.3, and suffers
a sharp increase in its value in 0.3 < ω ≤ 10. This slightly decreases after attaining its maximum
value at ω = 100 for Ge and at ω = 30 in the case of Si to become steady afterwards. The effect of
thermal relaxation time is quite pertinent to phase velocity at higher frequencies in the case of Ge, but
it has virtually no effect on Si semiconductors. The magnitude of phase velocity in the germanium
semiconductor is much higher than that of the silicon one. Figure 6 represents attenuation coefficient
profiles of QTN/QTP waves for Ge and Si materials. The behavior of the attenuation coefficient (Q3)

in this case is more or less similar to that of Q2 as represented by Figure 4 except for the variations in
magnitude.

Figure 7 shows the phase velocity (V4) profiles of T-mode waves in Ge and Si semiconductor materials
with respect to nondimensional frequency. The phase velocity in silicon (Si) material has Gaussian
behavior with mean value at ω = 10 in the frequency range 0.3 ≤ ω ≤ 30. The phase velocity profile
of Ge has linear variations in 0 ≤ ω ≤ 3 but is subject to dispersion beyond ω ≥ 3. The effect of
thermal relaxation on phase velocity is clearly visible in the case of Si, but is quite small for the Ge
semiconductor. Figure 8 represents the attenuation coefficient profile of T-mode waves for Ge and Si
materials. The behavior of attenuation coefficient (Q4) profiles in this case is more or less similar to
that of Q3 represented by the profiles in Figure 6 except for certain variations in magnitude and its
prominence in this case.

Figure 9 shows phase velocity and attenuation coefficient profiles for EN/EP waves with respect to
frequency. The nondimensional phase velocity in Ge and Si increases sharply in the frequency range
0≤ ω ≤ 1 and becomes linear for ω ≥ 1 in both materials. This means that the elasto-diffusive waves are
significantly influenced by electron and hole charge carrier fields in the low frequency limit, but remain
unaffected by such fields at higher frequencies in both materials. The variations of attenuation coefficient
are noticed to be significant, but quite small, in the frequency range 0≤ ω ≤ 0.1 for Ge and Si materials.
The magnitude of the attenuation coefficient in the silicon (Si) semiconductor is greater than that of the
Ge, but it varies in Gaussian manner with mean value at ω = 0.01 in both materials. The attenuation
coefficient profiles disappear for ω ≥ 0.1 in the materials seen in Figure 9.

Figure 10 represents the nondimensional phase velocity and attenuation coefficient profiles of elec-
tron/hole diffusive (N/P) waves with frequency. We see that the phase velocity varies linearly with the
frequency in the range 0≤ ω ≤ 0.1, and then increases logarithmically for 0.1≤ ω ≤ 10 before becoming
steady/fixed at ω ≥ 10. The amplitude of phase velocity in Ge is larger than that of the case of Si
material. The behavior of the attenuation coefficient of electron/hole diffusive (N/P) waves is similar
to that of phase velocity for electron/hole diffusive waves except for the fact that the magnitude of the
former has larger values in the case of Si as compared to those of the Ge semiconductor. Thus, in the Si
semiconductor these waves are subjected to more attenuation than in the case of Ge.
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Figure 10. Phase velocity and attenuation coefficient profiles of electron/hole diffusive
(N/P) waves.
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Figure 11. Phase velocity and attenuation coefficient profiles of thermodiffusive
(TN/TP) waves.

Figure 11 depicts phase velocity and attenuation coefficient profiles of N/P waves. In the frequency
range 0 ≤ ω ≤ 10, a zigzag type of behavior of phase velocity profiles is noticed and it varies linearly
for ω ≥ 10. For higher frequency (ω ≥ 10) velocity, the profiles for both materials overlap each other,
meaning that there is no physical distinction between Ge and Si profiles. It is further observed that
there is a sharp increase in the values of attenuation coefficient in the frequency range 0.01 ≤ ω ≤ 10,
which become steady/fixed at ω ≥ 10 in both semiconductors. Figure 12 shows the phase velocity and
attenuation coefficient profiles of electron and hole (N/P) diffusive waves with respect to nondimensional
frequency. The behavior of these profiles is more or less similar to that in Figure 9, except for some
variations in the behavior of phase velocity in 0 ≤ ω ≤ 0.03 and that in the magnitude of attenuation
coefficient in addition to its existence beyond ω ≥ 0.1 here. The peak values of attenuation are observed
to be at ω = 0.03 and ω = 0.1 for Ge and Si, respectively, instead of ω = 0.01 in Figure 9.

Figure 13 deals with the phase velocity profiles of ET waves in Ge and Si materials. The nondimen-
sional phase velocity in Ge materials has value unity at low frequency (ω� 1) range, which comes
down to its isothermal value at high-frequency (ω� 1) limits. Thus in the Ge semiconductor, the phase
velocity lies between isentropic and isothermal values as already established by many authors, such as
[Chadwick 1979; Chadwick and Seet 1970; Sharma et al. 2000] and [Sharma and Singh 1989]. For the
Si material the phase velocity varies linearly throughout with value unity at all frequencies and hence ET
waves in this case travel without dispersion, irrespective of isentropic or isothermal conditions. Figure 14
represents attenuation coefficient profiles of ET waves. The nature of the attenuation profiles is the same
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Figure 12. Phase velocity and attenuation coefficient profiles of electron/hole diffusive
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Figure 14. Attenuation coefficient profile of ET waves.

as that in Figure 10 except that waves have less attenuation in the case of Si than Ge here, in addition
to negligible magnitude of attenuation coefficient. The nondimensional phase velocity and attenuation
coefficient profiles in the case of Ge and Si semiconductors are given in Figure 15. Both the quantities
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Figure 15. Phase velocity and attenuation coefficient profiles of T-mode waves.
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are observed to vary logistically and the phenomenon is closer to wave motion than diffusion one. The
profiles in case of Ge and Si materials overlap each other because of negligibly small distinction in their
behavior and difference in their values.

The comparison of Figures 1, 2, 9, 13, and 14 suggests that the interactions of mechanical, thermal
and electron/hole charge carrier fields have attributed to significant modifications in the values of phase
velocity and attenuation coefficients of elastic, thermal and diffusive waves in the low and high frequency
ranges. While the phase velocity has been lower down in its value in both germanium and silicon semi-
conductors, the attenuation coefficient has increased manifold and shifts in the value of critical frequency
(ωc) from ωc

= 1 to ωc
= 10 in case of Si and to ωc

= 100 for Ge semiconductor. Similarly, the comparison
of Figures 3, 4, 10 and 12 leads to the conclusion that the interaction of all the above fields with each
other results in a fourfold increase in the phase velocity and an increase of four orders of magnitude in
the attenuation coefficient of QEN/QEP waves in addition to phase shifts/changes. Figures 5, 6, 7, 8, 11,
and 15 reveal that the magnitude of nondimensional phase velocity and attenuation coefficient of thermal
waves has increased tenfold to that of T-mode due to the considered effect of various fields. The nature
of this quantity has become closer to wave phenomena in contrast to diffusion as in Figure 15.

Appendix

The quantities

1i , i = 1, 2, 3,

1′i , i = 1, 2, 3, 4, 5, 6,

1′′i , i = 1, 2, 3, 4,

1′′′1 and 1,

used in equations (10) are defined as

1= 1− εnqεqn
− ε pqεqp, 13 = τ

Q
− εnε

nq
− εpε

pq ,

11 = (1− εqnεnq)(τ ∗p + iω−1εpεTλp )

− εqp{τ ′p + λpτ
QεT − iω−1εnε

nq(αn
0 + λpεT )

}
,

1′2 = (τ
Q
− εnε

nq)(τ ∗p + iω−1εpεTλp )

− εp
{
τ ′p + λpτ

QεT − iω−1εnε
nq(αn

0 + λpεT )
}
,

1′4 = τ
∗

p(1− ε
qnεnq)− εqp(τ ′p − iω−1εnε

nqαn
0 ),

1′6 = τ
Q
− iω−1(εnε

nq
+ εpε

pq),

1
′′

3 = τ
∗

p(τ
Q
− iω−1εnε

nq)− iω−1εp(τ
′

p − iω−1εnε
nqαn

0 ),

1
′′

2 = (τ
∗

n − ε
qnτ ′n)(τ

∗

p − ε
qpτ ′p)

−
{
(iω−1εpα

p
0 − ε

qpτ ′n)(iω
−1εnα

n
0 − ε

qnτ ′p)
}
,
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1′1 =
{
(τ ∗p + iω−1εpεTλp )− ε

qp(τ ′p + εTλpτ
Q)
}

×
{
(τ ∗n + iω−1εnεTλn )− ε

qn(τ ′n + εTλnτ
Q)
}

−
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0 + λnεT )− ε
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}
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1
′′′
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p
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′
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where

τ Q
= t Q

+ iω−1,

εn
′
=
εn
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′
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0 D p

k
−

t p

t+p

)
+
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.

The other coefficients 12, 1′3, 1′5 and 1′′4 can be written from 11 , 1′2 , 1′4 and 1′′3 respectively, by
replacing n with p and vice-versa.
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