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Constitutive formulation of strain gradient plasticity for geomaterials via a thermomechanical approach
is investigated in this paper. It is demonstrated that, by defining two thermodynamical potentials (a free-
energy function and a rate of dissipation function), the entire constitutive behavior of a decoupled strain-
gradient-dependent material may be determined. The elastic relations are dependent on the free-energy
function, while the plastic yielding and flow rule are determined by the dissipation function in conjunc-
tion with the free-energy function. Yield surfaces in both dissipative stress and true stress spaces may
be derived without difficulty. Nonassociative flow rules and possible micromechanical mechanisms for
the difference between plastic work and rate of plastic dissipation are interpreted for gradient-dependent
materials. Using the obtained formulations and choosing appropriate thermodynamical functions, a wide
variety of strain gradient plasticity models in the literature are recovered. Typical features associated with
geomaterials, such as pressure and Lode-angle dependency, are addressed in detail. This paper provides
a general thermodynamically-consistent framework of developing strain gradient plasticity models for
geomaterials.

1. Introduction

A large number of microscale experiments on metallic materials have been done in recent years and
have demonstrated strong size effects in solids (see [Fleck et al. 1994; Nix and Gao 1998; Tsagrakis
and Aifantis 2002] and references therein). In most cases, the introduction of one or more gradient-
dependent internal length scales of the deformation field is necessary to qualitatively and quantitatively
interpret the behavior of size effects. Classical continuum theories fail to address the problem due to
their local assumptions and lack of length scale(s) in the constitutive descriptions. The same reason
accounts for their inability to determine the shear band size and describe the post-localization behavior
in localization problems, which are frequently observed in metals and geomaterials. Modeling of strain
localization by classical theories may generally lead to such consequences as the loss of ellipticity for
the governing equations and spurious mesh-dependency problems in computation. In fact, length scales
exist prevalently in a material and the loads applied to it, in the form of either the characteristic size of
the homogeneous deformation domain (internal length scale), or the wavelength of a harmonic external
load (external characteristic length scale) [Eringen and Kafadar 1976]. The internal length scale is
closely related to the microscopically discontinuous structures or particles underlying a macroscopically
continuous material body, such as the atomic lattice spacing in crystals, the grain size of polycrystals,
and the grain diameter in granular materials, etc., whereas the external length scale is dependent on the
properties of a loading force. The application regime of classical continuum theories is actually bounded
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by the ratio of the external characteristic length scale over the internal length scale. When this ratio is
much larger than 1, the details of the interactions between the microstructures can be neglected, and
classical local continuum theories may be successfully applied. However, when this ratio approaches
1, the influence of microstructures is no longer negligible and classical models become inadequate to
account for the mechanical behavior. Consequently gradient-enhanced generalized continuum theories
are needed to take microstructural effects into account [Chambon et al. 2004].

A variety of gradient-enhanced theories have thus been proposed in the literature to address the prob-
lems mentioned above associated with classical theories and to account for the influence of microstruc-
tures, such as the Cosserat (micropolar) continuum theory [Cosserat and Cosserat 1909], the theory of mi-
cromorphic continua [Toupin 1962; Mindlin 1964; 1965; Germain 1973], the nonlocal gradient plasticity
pioneered in [Aifantis 1984; 1987; Zbib and Aifantis 1988b; 1988a] and Fleck and Hutchinson’s [1993;
1997] flow theory of gradient plasticity and its further extensions. For a comprehensive review of gradient
theories, see [Chambon et al. 2004; Voyiadjis and Abu Al-Rub 2005]. In general, the existing gradient
theories typically include higher-order gradient terms with coefficients that represent length-scale mea-
sures of microstructural deformation in the constitutive equations, and are mostly employed to investigate
metal plasticity behavior. Compared with metals, the gradient-dependent characteristics in geomaterials
are also evident. Geomaterials often contain microstructures such as grains, microvoids and microcracks.
The basic micromechanical particles in geomaterials are much larger than the corresponding particles in
metals, so microstructure is of much greater significance to continuum models of geomaterials than it is to
metals. Higher gradient theories with internal length scales that relate the microstructures in geomaterials
with the macroscopic mechanical behavior are thus necessary. The gradient dependency in geomaterials
is also experimentally evident. For example, the experimental observation of localization phenomena in
granular soils has indicated that the deformed material is usually characterized by strong spatial density
variation. Formation of shear bands, a finite-thickness material zone with increased porosity, has been
observed in sands [Vardoulakis and Graf 1985]. In such a region of strong spatial variation, higher
gradients of appropriate physical properties of the material should be of vital importance. In addition,
many other features of geomaterials can be attributed to micromechanical behaviors of structures on the
microscale. By using gradient-dependent constitutive models with internal length scales, the influence
of these microstructures may be appropriately addressed.

However, due to the distinctive features exhibited by geomaterials in contrast with metals, direct
application of the gradient theories developed for metals to geomaterials may result in great deviations.
Typical geomaterials like rocks, soils and some other granular materials have long been recognized
to be associated with special properties and mechanical behaviors, such as the property of multiphase
media, nonlinear elasticity, isotropic hardening behavior, pressure-sensitive frictional behavior, plastic
volumetric changes during plastic loading course, nonassociated flow laws, and progressive strength
degradation. In developing gradient models for geomaterials, these features have to be addressed.

There have been a limited number of gradient-enhanced constitutive models specially developed for
and applied to geomaterials. In this connection, micropolar Cosserat continuum theories have long
been applied to granular materials [Mühlhaus 1986; Mühlhaus and Vardoulakis 1987; Pijaudier-Cabot
and Bazant 1987] by including microrotational terms into constitutive formulations. However, introduc-
ing only microrotational terms in a micropolar continuum is not sufficient since it cannot describe the
dilative deformation in a shear band or other localized bifurcation modes such as compaction bands
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[Olsson 1999]. Vardoulakis and Aifantis [1989; 1991; 1994] extended the gradient plasticity model to
account for frictional/dilatant materials by incorporating the second-order strain gradients into the flow
rule, yield condition, and/or dilatancy condition. The principle of virtual work is used to derive the
appropriate extra boundary conditions. Mühlhaus and Aifantis [1991] derived a variational formulation
for the Aifantis’ gradient plasticity in connection with shear band analysis. Fremond and Nedjar [1996]
proposed a combined gradient and rate-dependent damage model for quasibrittle materials. Chambon
et al. [1996; 1998; 2001; 2004] developed a single and multimechanism flow theory of gradient plasticity
for geomaterials as a possible approach to the analysis of localized failure, based on the framework of
[Germain 1973]. Matsushima et al. [2000; 2002] further presented a finite deformation version of their
theory. Aifantis et al. [1999] and Oka et al. [2002] proposed a gradient-dependent viscoplastic constitutive
model for water-saturated clay, with gradients of the volumetric viscoplastic strain being included in the
constitutive equations, while di Prisco et al. [2002] modified a preexisting elastoviscoplastic model for
granular soils according to gradient and nonlocal approaches. Based on the framework of [Mindlin
1964; Fleck and Hutchinson 1993; 1997], Zhou and coworkers [Zhou et al. 2002; Zhao et al. 2005]
developed a strain-gradient-enhanced damage model for rock-like geomaterials with application to shear
band analysis. [Zhao and Sheng 2006] further constructed a framework of strain gradient plasticity by
an internal-variable approach with normality structures to account for the influence of microstructures
on the overall macroscopic mechanical behavior of gradient-dependent solids. Effects of strain gradient
have also been used to account for the friction-controlled interparticle slip and particle rearrangement
for granular materials [Valanis 1996; Walsh and Tordesillas 2004].

In developing the above gradient-dependent constitutive relations for geomaterials, a general routine
for constitutive development has been followed by proposing observation-based constitutive relations
first and then imposing the laws of thermodynamics on these relations. However, the modern theory
of thermomechanics, as expounded, for example, in [Ziegler 1975; 1983; Houlsby 1981; Maugin 1992;
Coussy 1995; Collins and Houlsby 1997; Rajagopal and Srinivasa 1998a; 1998b; Houlsby and Puzrin
2000; Puzrin and Houlsby 2001], develops constitutive models by first guaranteeing the fulfillment of
these laws. Additional internal variables other than the general state variables such as plastic strain or
generalized stress variables will then be used to characterize the material behavior. It is suggested that the
total constitutive relations be determined by merely two thermodynamic potentials: a specific free-energy
function and a dissipation function. This theory places strong emphasis on the use of internal variables
to describe the past history of the material. The first and second laws of thermodynamics are enforced in
the formulation to accommodate the requirements for most of the constitutive models. This theory has
also been systematically applied to soil mechanics modeling; see [Houlsby 1981; 1982; Collins 2005]
and references therein). In particular, the thermomechanical framework has been proven to be useful
in accommodating models for geotechnical materials which generally exhibit nonassociated plastic flow
behavior, pressure-sensitivity, nonlinear elasticity and dilatancy. A variety of plasticity models like the
Drucker–Prager criterion and critical state models have been recovered and extended.

Even though arguments still exist on some issues, this thermomechanical approach has shown great
generality in constitutive developments with solid thermodynamic considerations. In recognition of the
advantages associated with this approach, we will apply it to develop a framework of gradient theory
for geomaterials, covering some of the important features of geomaterials associated with the influence
of microstructures. This theory is essentially a continuum one in that the discrete granular structure
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for granular materials is not specially treated. However, by taking into account gradient terms and
introducing a length scale, the microstructures in the materials as well as the microscale inhomogeneities
may be appropriately reflected. It is demonstrated that by the thermomechanical formulations developed
in the next section, a large range of gradient-dependent constitutive models existing in literature may be
recovered and special features of geomaterials may be conveniently addressed.

Due to the introduction of gradient terms, some second-order tensors that correspond to microlevel
strains, as well as third-order tensors corresponding to microlevel strain gradients, may be chosen as
state variables. However, it should be noted that, because of the dependence of elastic compliances on
the stresses and internal variables for some materials (‘coupled’, as will be noted subsequently), the
strain rates and strain gradient rates may be dependent on the current values of the microdeformations
within the material body, such that their integrations, which make up the total strains and strain gradients,
are generally path-dependent. In this case, elastic and plastic strains and strain gradients are no longer
appropriate for selection as independent state variables. The only exception is for decoupled materials
where the elastic compliances are independent of the internal variables. Such materials include most
ductile metals and the critical state models with linear relationships in the double logarithmic ln e-ln p
space [Lubliner 1972; Collins and Houlsby 1997]. To avoid the excessive complication of the coupled
case for materials, we hereafter restrict our discussions to decoupled materials only, for which the free-
energy function may be defined by two separate terms that characterize the elastic free energy and stored
plastic energy components. In this case, the elastic and plastic terms for both strain and strain gradient
may be regarded as state variables.

2. Thermomechanical formulation for gradient-dependent geomaterials

2.1. Development of constitutive relations. In the following formulation, isothermal, small strain defor-
mation and rate-independent processes are assumed. The mechanical behavior of a material is assumed
to be determined once the (Helmholtz) free-energy function 9 and the rate of dissipation function 8̂ are
specified. The former represents the stored energy, the latter the rate at which energy is being converted
irreversibly into heat. Both functions are defined for unit volume. Since the dissipation rate is generally
path dependent, it is different from the pure time-rate as expressed by 8̇. Following the framework
of strain gradient theory in [Mindlin 1964; Germain 1973; Fleck and Hutchinson 1993; 1997], the
mechanical behavior of the material is assumed to be described by the strain ε and strain gradients
η, and their respective work-conjugate thermodynamic forces: Cauchy stress σ and higher-order stress
τ . The first law of thermodynamics states that a variation in the free energy is equal to the variation in
the work done on the unit domain and the heat flux into the domain such that

σi j ε̇i j + τi jk η̇i jk = 9̇ + 8̂, (1)

where the free energy is a state function dependent on a set of state variables that can describe the past
history of the material: α = α(α1,α2, . . . ,αn). Here the internal variable αi (i = 1, · · · , n) may be in
the form of a scalar, vector, or tensor (of second order or higher). The generalized n internal variables
in tensor form, as stated in [Collins and Houlsby 1997] and [Puzrin and Houlsby 2001], preserve the
ability to model compression and shear effects separately in granular geomaterials, model anisotropy
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features through use of multiple kinematic hardening laws, and describe the past history of an elastic-
plastic material. A more general form of the free-energy function has been suggested by Rice [1971]
to be a functional of the time history of the internal variables. The Helmholtz free-energy function
9 = 9(ε, η,α) is expressed in the compound space of strain and strain gradients. If expressed in an
alternative space of Cauchy stress and higher-order stress, a Gibbs free energy function �=�(σ , τ ,α)
may be found, related to the Helmholtz free-energy function by an appropriate Legendre transformation,
such as

�=�(σ , τ ,α)=9(ε, η,α)− σ : ε− τ
...η. (2)

The rate of dissipation function is assumed to be dependent on dissipative internal variables α as well
as their rates α̇. For rate independent materials, 8̂ is a homogeneous first-degree functional in the space
of α̇. For purely frictional materials, the strength parameters are dimensionless frictional angles, which
is different from the yield stress for metals. It is thus necessary to include some component(s) of the
current stress and/or higher-order stress in the expression for the rate of dissipation function [Collins
and Kelly 2002; Collins 2005]. In consequence, the rate of dissipative function for gradient-dependent
materials is assumed to have an expression of this form: 8̂= 8̂(σ , τ ,α, α̇).

The key assumption of the thermomechanical approach for constructing constitutive relations is that
they are fully determined by two functions: a thermodynamic potential, such as the Helmholtz free-
energy function, or any of the related potentials derived from Legendre transformations, and the rate of
dissipation function. Here it is assumed that all aspects of the isothermal constitutive behavior of such
rate-independent gradient-enhanced materials may be uniquely defined by the two functions 9(ε, η,α)
and 8̂(σ , τ ,α, α̇). Thus Equation (1) may be rewritten as

σi j ε̇i j + τi jk η̇i jk =
∂9

∂εi j
ε̇i j +

∂9

∂ηi jk
η̇i jk +

(
∂9

∂αk
⊗ α̇k +

∂8̂

∂α̇k
⊗ α̇k

)
,

where Euler’s theorem for homogeneous functions has been used to rewrite 8̂, and where ⊗ denotes an
appropriate inner tensor operator according to the order of the internal variables. For example, if the
second-order tensor is adopted for the internal variables, ⊗ implies the dyadic inner production operator
‘:’. It is then simple to obtain

σi j =
∂9

∂εi j
, τi jk =

∂9

∂ηi jk
, qk

= −
∂9

∂αk
=
∂8̂

∂α̇k
(3)

and

8̂= qk
⊗ α̇k for α̇k 6= 0, (4)

where the Cauchy stress σ and the higher-order stress τ are sometimes called quasiconservative stresses
[Ziegler and Wehrli 1987], which are conjugate with the state variables of strains and strain gradients,
and the dissipative stresses qk are the work conjugates of the internal variables. The dissipation surfaces
represented by 8̂ in the (compound) space of α̇k are star-shaped with respect to the origin and convex,
and the dissipative stresses qk lie in their outward normal [Ziegler and Wehrli 1987]. In deriving these
relations, a weak form of Ziegler’s orthogonality hypothesis has been used.
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Recalling the Gibbs free-energy function defined in Equation (2) and the results obtained in (3) and
(4), one may easily obtain

σi j =
∂9

∂εi j
, ηi jk =

∂9

∂τi jk
, qk

=
∂�

∂αk
. (5)

Hence decomposition of the rates of strain and strain gradient leads to

ε̇i j = ε̇
e
i j + ε̇

p
i j , η̇i jk = η̇

e
i jk + η̇

p
i jk,

where

ε̇e
i j =

∂2�

∂σi j∂σkl
σ̇kl, η̇e

i jk =
∂2�

∂τi jk∂τlmn
τ̇lmn, (6)

ε̇
p
i j =

∂2�

∂σi j∂αk
⊗ α̇k, η̇

p
i jk =

∂2�

∂τi jk∂αk
⊗ α̇k, (7)

denote the elastic and plastic rates for strains and strain gradients, respectively. The coefficients before
σ̇kl and τ̇lmn in Equation (6) are the instantaneous elastic and higher order elastic compliances for the
material. They are generally dependent on the Cauchy stresses, higher-order stresses and on the internal
variables as well. Total elastic and plastic parts of strains and strain gradients may be obtained by
integrations of the expressions (6) and (7) over the entire loading course.

As far as decoupled materials are concerned, we further choose ε p
i j and ηp

i jk to be the internal variables.
A general form of free-energy function depends on both the elastic and plastic strains and strain gradients
like this: 9 = 9(εe

i j , ε
p
i j , η

e
i jk, η

p
i jk). For the decoupled case, it can be written as the sum of an elastic

term 9e(εe
i j , η

e
i jk), which depends on the elastic strains and elastic strain gradients only, and a plastic

term 9 p(ε
p
i j , η

p
i jk), which depends only on the plastic strains and plastic strain gradients. That is,

9(εe
i j , ε

p
i j , η

e
i jk, η

p
i jk)=9

e(εe
i j , η

e
i jk)+9

p(ε
p
i j , η

p
i jk). (8)

As ε p
i j and ηp

i jk have been chosen as the internal variables, from Equation (3), their thermodynamic
conjugate dissipative stresses σ d

i j and τ d
i jk may be written as

σ d
i j =

∂8̂

∂ε̇
p
i j
, τ d

i jk =
∂8̂

∂η̇
p
i jk
. (9)

With the preceding assumptions, the instantaneous elastic moduli for both strains and strain gradients
are independent of the plastic strains and plastic strain gradients. Consequently, the total work rate may
be decomposed into two parts:

Ŵ = Ŵ e
+ Ŵ p, (10)

where Ŵ e
= 9̇e(εe

i j , η
e
i jk) and Ŵ p

= 9̇ p(ε
p
i j , η

p
i jk)+ 8̂.

We have
9̇e(εe

i j , η
e
i jk)= σi j ε̇

e
i j + τi jk η̇

e
i jk;

thus

σi j =
∂9e

∂εe
i j
, τi jk =

∂9e

∂ηe
i jk
. (11)
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The last several equations since Equation (8) lead to the relations

σi j = ρi j + σ
d
i j , τi jk = πi jk + τ

d
i jk, (12)

where

ρi j =
∂9 p

∂ε
p
i j

and πi jk =
∂9 p

∂η
p
i jk

(13)

are the shift stress and higher-order shift stress, which may present sound physical interpretations in
developing anisotropic, kinematic hardening gradient models.

As we can see, several stress measures have been defined in the course of this section, including Cauchy
stress, higher-order stress, dissipative stress, shift stress and higher-order shift stress. It is necessary to
clarify these stresses here. First, as is well known, in conventional theories, Cauchy stress refers to
the stress term at infinitesimal deformation, and is used to express Cauchy’s first and second laws of
motion (for the latter case, together with couple stress). Cauchy stress denotes force per unit area of the
deformed solid. Other definitions of stress also appear in constitutive descriptions, including Kirchhoff,
nominal (First Piola–Kirchhoff) and Material (Second Piola–Kirchhoff) stress tensors. The latter three
stress measures consider forces acting on the undeformed solid, and require knowledge not only of the
behavior of the deformed state, but also of the predeformation state. For a problem involving infinitesimal
deformation, all the aforementioned stress measures are equal. However, here in this paper, we use
Cauchy stress to represent the usual stress as in conventional theory, merely in distinguishing from
the higher-order stresses that are introduced afterward, not distinguishing it from the aforementioned
Kirchhoff and other stresses. In addition, the assumption of small strain made in the beginning of this
section also cancels the differences between Cauchy stress and the other three terms.

Second, the term higher-order stress follows the usage of [Toupin 1962; Mindlin 1964; 1965; Fleck
and Hutchinson 1997], and addresses the additional stresses required by strain gradient theories in addi-
tion to Cauchy stress. This higher-order stress is a more general stress that includes the couple stress as
a subset case, as it may address both cases of rotation gradient and stretch gradient, while couple stress
applies to rotation gradient case only. The third point regards dissipative stress. In passing, the dissipative
stresses are defined as the conjugates of internal variables [Ziegler and Wehrli 1987]. In conventional
thermomechanics, it may denote a vector, a second order tensor such as Cauchy stress, or a set of such
vectors and tensors. While in the framework of strain gradient theory, third-order tensors may also appear
(as is shown in Equation (9)), depending on the choice of internal variables. The occurrence of shift
stress and higher-order shift stress is due to the nonidentity of true compound stress space (constituted
by Cauchy stress and higher-order stress) and compound dissipative stress space (constituted by usual
dissipative stress and higher-order dissipative stress). More information regarding this point can be found
in [Collins and Houlsby 1997].

Plastic work and plastic dissipation. The plastic work rate and the rate of dissipation are generally dif-
ferent from each other, contrary to the long-held understanding in soil mechanics [Collins and Kelly
2002; Collins 2005]. The second law of thermodynamics states that the rate of dissipation can never be
negative, but the sign of the plastic work increment is not restricted [Mroz 1973; Lubliner 1990]. Thus,
the two rates are not equal to each other in the general case. The difference between them was called the
stored plastic work, and was thought to be related to the frozen elastic energy on the microscale. As for
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strain gradient characterized materials, the plastic work and dissipation rates are given by

Ŵ p
= σi j ε̇

p
i j + τi jk η̇

p
i jk = σi j

∂2�

∂σi j∂αk
⊗ α̇k + τi jk

∂2�

∂τi jk∂αk
⊗ α̇k,

8̂= qk
⊗ α̇k =

∂�

∂αk
⊗ α̇k .

(14)

For a decoupled material, the plastic strain ε p
i j and plastic strain gradient ηp

i jk are chosen to be the
internal state variables, with

σ d
i j and τ d

i jk

being their conjugate dissipative stresses. The difference between the plastic work rate and dissipation
rate is

Ŵ s
= Ŵ p

− 8̂=

(
σkl

∂2�

∂σkl∂ε
p
i j
− σ d

i j

)
ε̇

p
i j +

(
τlmn

∂2�

∂τlmn∂η
p
i jk
− τ d

i jk

)
η̇

p
i jk,

where Ŵ s is the stored plastic work rate for the gradient-dependent material. For the fully decoupled
case, Ŵ s

= 9̇ p, or alternatively, Ŵ p
= 9̇ p

+8̂. From a micromechanical point of view, the stored plastic
work in gradient-dependent materials may depend on the microscopic material properties as well as the
imposed deformation state. As discussed in [Benzerga et al. 2003], for brittle or quasibrittle materials that
may be characterized by single crystals, the behavior of stored plastic work during unloading processes
is essentially controlled by the density of statistical stored dislocations (SSDs) as well as geometrical
necessary dislocations (GNDs), of which the latter have long been attributed to the micromechanical
origin of strain gradient effects. As for granular Cosserat materials, part of plastic work may be used to
drive the interparticle rotation, and upon unloading, part of the rotation deformation remains unrecovered.
The unrecoverable plastic work associated with this rotation part together with the frozen part contributed
from strains makes up the total stored plastic work for granular Cosserat materials.

It is easy to see, for arbitrary plastic deformation increments, that the following conditions hold if and
only if Ŵ s becomes zero:

σ d
i j = σkl

∂2�

∂σkl∂ε
p
i j
, τ d

i jk = τlmn
∂2�

∂τlmn∂η
p
i jk
. (15)

Taking (5) into account, Equation (15) may be rewritten as

qk
=
(
qσ , qτ

)
, qσ =

∂qσ
∂σi j

σi j , qτ =
∂qτ
∂τi jk

τi jk, (16)

where qσ = ∂�/∂αε, qτ = ∂�/∂αη. Equation (16) implies that qk are homogeneous functions of degree
one in the compound space of Cauchy stress σi j and higher-order stress τi jk . In consequence, the rate
of dissipation function 8̂ is also a homogeneous first degree-function of degree one in the compound
space of Cauchy stress and higher-order stress, such that the material may be called a purely frictional
material. For a purely frictional material, there is no stored plastic work frozen in the elastic energy, and
thus the plastic work is totally dissipated. Yield loci of such models always exhibit convex cones in three
dimensions, as will be demonstrated in the next section for such criteria as the generalized Coulomb,



STRAIN GRADIENT PLASTICITY FOR GEOMATERIALS 845

von Mises, Drucker–Prager and Matsuoka–Nakai criteria in the framework of the strain gradient the-
ory. However, frictional materials refer to those whose dissipation function depends not only on the
Cauchy stress and higher-order stress, but also on the function(s) of the plastic deformations (such as the
consolidation pressure in soil mechanics). In conventional soil mechanics, these materials are generally
treated by critical state models with typical yield loci of homothetic curves or surfaces, as in [Collins
and Kelly 2002]. It will also be shown in the following sections, in the compound stress space of σi j and
τi jk , that the yield loci of gradient-dependent frictional materials also exhibit a homothetic feature. A
third category of materials is termed as quasifrictional materials, which, in addition to the true stresses,
depends on material parameters that involve stresses (such as cohesion as for structured soils, or fracture
toughness as in particle crushing).

Nonassociative flow rule. The nonassociated flow rule is a distinguished characteristic of geomaterials.
In conventional plastic theory, the dissipation function is generally assumed to depend on the plastic strain
and the plastic strain rate. Consequently, the assumption that the associated flow rule is normal to the
yield surface is frequently made in this theory. However, geomaterials generally exhibit a quite different
behavior when the direction of the plastic strain rate vector is not normal to the current yield surface. The
most used associated flow rule for metals has been proved to be inadequate for geomaterials. Models
with nonassociated flow rules have thus been developed in terms of separate yield functions and plastic
potentials [Oda and Iwashita 1999; Lade 1988; Vardoulakis and Sulem 1995]. However, the general
theory of thermomechanics can still be applied with necessary nonassociated flow rules whenever the
dissipation potential depends on the current stress or on the total strain or elastic strain. It remains true
for the case of frictional gradient-dependent geomaterials. As will be shown in the following, whenever
the dissipation function has an explicit dependency on the true stresses, the normality property of flow
rules in the dissipative stress space will be lost when being transferred to true stress space.

We follow the same procedure used in [Collins 2005] to derive the nonassociative flow rule for gradient-
dependent geomaterials. As has been stated in Equation (3), the dissipative stresses qk are expressed as
the derivative of 8̂ with respect to α̇k . It is assumed a dual function F̃(σ , τ ,α, q) may be found by a
Legendre transformation of 8̂, such that α̇k may be expressed in terms of qk . As has been stated, 8̂ is a
homogeneous function of degree one in α for rate-independent materials, since there is no characteristic
time. For such a function the above transformation is singular. In such a case, the value of the Legendre
dual of 8̂ is identically zero [Collins and Houlsby 1997]:

F̃(σ , τ ,α, q)= 0. (17)

In addition, the relation between α̇k and qk is not unique. Instead of having a unique expression, the
dual relation to Equation (3) may be presented in a form for the time derivatives of the internal variables
as follows:

α̇k = λ̇
∂ F̃(σ , τ ,α, q)

∂qk . (18)

Equations (17) and (18) present a yield condition and associated flow rule in generalized stress space
(or alternatively dissipative stress space). And the yield function in Equation (17) displays an obvious
dependence on the true stresses σ and τ , which is inherited from the original form of 8̂ and is always
necessary for frictional materials. In true compound stress space of σ and τ , the yield condition may be
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obtained as follows:

F
(
σ , τ ,αk

)
= F̃

(
σ , τ ,αk, qk

=
∂�(σ , τ ,αk)

∂αk

)
= 0. (19)

As we have

∂F
∂σ
=
∂ F̃
∂σ
+

∂2�

∂σ∂αk
⊗
∂ F̃
∂qk ,

∂F
∂τ
=
∂ F̃
∂τ
+

∂2�

∂τ∂αk
⊗
∂ F̃
∂qk . (20)

In connection with Equations (6), (18), (19) and (20), the flow rule for the plastic rates of strain and
strain gradient in the true compound stress space may be obtained as

ε̇
p
i j = λ̇

∂F
∂σ
+
∂8̂

∂σ
, η̇

p
i jk = λ̇

∂F
∂τ
+
∂8̂

∂τ
, (21)

where
∂8̂

∂σ
= − λ̇

∂ F̃
∂σ
,

∂8̂

∂τ
= − λ̇

∂ F̃
∂τ
.

These relations are obtained from the Legendre transformation between 8̂ and F̃ in connection with
Equation (18). As can be seen, when ∂ F̃/∂σ and ∂ F̃/∂τ are not zero, Equation (21) clearly exhibits a
natural feature of nonassociated flow rule. This is an obvious advantage of thermomechanical approach
for addressing geomaterial behaviour.

3. Derivation of a class of J2-flow theory of strain gradient plasticity for isotropic incompressible
geomaterials

In this section, the thermomechanical formulations obtained in last section are employed to derive a
class of strain gradient plasticity models that may be regarded as extensions of J2-flow theory for typical
pressure-insensitive materials. Further implications of the formulations, including features suitable for
describing pressure-sensitive geomaterials, will be addressed in the next section. Following [Fleck and
Hutchinson 1993], it is assumed that couple stresses exist in the elastic-plastic body, with elastic strain,
plastic strain and Cauchy stress being εe

i j , ε
p
i j and σi j . The strain gradient effects are manifested in a

curvature tensor in its elastic and plastic parts:

χ e
i j = eilmη

e
mjl and χ

p
i j = eilmη

p
mjl ,

where eilm is the permutation tensor. The couple stress is denoted by mi j , which may be related to the
higher-order stress τi jk defined in last section as: mi j = eilmτmjl . In a conventional J2 flow theory, it is
generally regarded that the plastic strain is incompressible, such that the yield condition may be defined
through the von Mises effective stress by the deviatoric part of the Cauchy stress si j : σe =

√
(3si j si j )/2.

In the presence of strain gradients and couple stresses, the plastic work conjugate forces for ε p
i j and χ p

i j are
si j and mi j respectively. In addressing incompressibility in the presence of strain gradients, Smyshlyaev
and Fleck [1996] (see also [Fleck and Hutchinson 2001]) have made an orthogonal decomposition of
the strain gradient tensor and obtained an acute incompressible tensor for strain gradients, in which the
incompressibility condition for strain gradients is expressed as: ηk j j = 0 for k = 1, 2, 3. To avoid the
excessive complexity of accounting for the general case of strain gradients, however, here in this paper
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we assume the curvature tensor in conjunction with its work conjugate couple stress adequately fulfills
the incompressibility condition for gradient effects, at least for a particular range of materials (such as
Cosserat materials). In fact, due to the symmetrical nature of the strain gradient tensor, ηi jk = η j ik , the
curvature tensor χi i = 0, which implies the incompressibility of strain gradients.

Free energy function and elastic relations. We first suppose that the material can be characterized by the
linear Gibbs free-energy function

�= 1
2Ci jklσi jσkl +

1
2 Mi jkll−2m j i mlk, (22)

where

Ci jkl =
1+ v
2E

(δikδ jl + δilδ jk)−
v

E
δi jδkl, Mi jkl =

1+ v
E

(
l
le

)2

δikδ jl, (23)

and E and v denote the Young’s modulus and Poisson’s ratio. The length scale l is interpreted as the
free slip distance between statistically stored dislocations, while le is introduced to divide the curvature
tensor χi j into elastic and plastic parts. It is assumed le � l such that the dominant size effect in the
material is associated with plastic rather than elastic strain gradients. It is easy to find that this definition
of the free-energy function in Equations (22) and (23) results in a dependence of the instantaneous elastic
modulus on the elastic state variables only, which corresponds to the special case of decoupled materials,
where the shift stresses contributed from free energy are zero and the dissipative stresses coincide with
the true stresses. In this case, the elastic behavior of the material may be totally determined by the
Gibbs free-energy function, while the plastic behavior may be completely determined by a dissipative
rate function. In view of Equation (6), we obtain from (22) the elastic incremental relations

ε̇e
i j = Ci jkl σ̇kl, χ̇ e

i j = Mi jkll−2ṁlk . (24)

Dissipation function and plastic relations. In defining a function for the rate of plastic dissipation, it is
further assumed that the plastic parts of the strains and strain gradients ε p

i j and χ p
i j , may be regarded

to be the internal variables. The following general form for the rate-dissipation function is assumed to
be capable of appropriately describing the dissipative processes for a class of strain-gradient-dependent
materials:

8̂= B
(

A1(ε̇
p
i j ε̇

p
i j )+ A2(l2χ̇

p
i j χ̇

p
i j )
)1/2

, (25)

where the coefficients A1, and A2 are dimensionless constants. B is a scalar with a dimension of stress,
with the possibility of being further extended to a complex function depending on plastic strains and
strain gradients. Equation (25) is a generalization of the dissipation function for von Mises materials in
[Ziegler and Wehrli 1987, Equation 6.2, p. 208], where the dissipation function is assumed to depend on
the second invariant of the plastic strain rate only. In view of Equation (9), the dissipation stresses may
be obtained by differentiating the dissipation function (25) with respect to the plastic strain increments
and the curvature increments respectively, such that

σ d
i j =

∂8̂

∂ε̇
p
i j
=

A1 B2

8̂
ε̇

p
i j , md

ji =
∂8̂

∂χ̇
p

i j
=

A2 B2l2

8̂
χ̇

p
i j . (26)

The rate of dissipation function can always be written as

8̂= σ d
i j ε̇

p
i j +md

ji χ̇
p

i j . (27)
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Eliminating the rates of strain and strain gradient from Equations (26) and (27), we obtain for the
yield function in dissipative stress space

F̃ =
(σ d

i jσ
d
i j )

A1
+
(l−2md

i j m
d
i j )

A2
− B2

= 0. (28)

We will demonstrate here that a variety of strain gradient plasticity models proposed in the literature
may be recovered by selecting different values for the coefficients A1, A2 and B for the dissipation
function and, in conjunction, the elastic relations presented in (24), We identify several cases:

Case 1. A1 = A2 = 2/3, B is a scalar and B ≥ 0.

In this case, the dissipative stresses are identical with the true stresses: σ d
i j = si j , md

i j = mi j . Manipu-
lation of Equation (28) easily leads to the following yield surface in the true stress space:

F =6e− B = 0, (29)

where 6e is a generalized effective stress defined by

6e =

√
3
2 si j si j +

3
2 l−2mi j mi j . (30)

In conjunction with (26), the normality of the plastic flow rule of (29) results in

ε̇
p
i j = λ̇

∂F
∂si j
= λ̇

∂F
∂6e

∂6e

∂si j
, χ̇

p
i j = λ̇

∂F
∂mi j

= λ̇
∂F
∂6e

∂6e

∂mi j
,

where λ̇= 6̇e/h and the instantaneous hardening rate h = h(6e) are chosen so that the uniaxial tensile
response may be reproduced. We thus obtain, for the incremental plastic strains and strain gradients,

ε̇
p
i j =

3
2h

si j

6e
6̇e, χ̇

p
i j =

3
2h

l−1m j i

6e
6̇e. (31)

In view of the elastic incremental relations defined in Equation (24), the yield surface defined in (29),
and the plastic incremental parts defined in (31), one may readily find that the J2 flow version of the
[Fleck and Hutchinson 1993] strain gradient theory is fully recovered (see Equations (52), (53), (52a),
(52b), (52c) and (45) therein). This case can actually be termed an elastic-perfectly plastic gradient
material, as noted in [Ziegler and Wehrli 1987].

Suppose the principal deviator stresses and principal couple stresses are s1, s2, s3 and m1, m2, m3

respectively. Define

S(I )e =

√
(s2

1 + l−2m2
1) sgn(s1),

S(II )
e =

√
(s2

2 + l−2m2
2) sgn(s2),

S(III )
e =

√
(s2

3 + l−2m2
3) sgn(s3).

(32)

Obviously the yield locus defined by (29) is a circle with a radius
√

6B/3 in the π-plane defined by
S(I )e , S(II )

e and S(III )
e , as is shown in Figure 1. The scalar B serves here as a generalized yield stress

in tension, which is
√

3 times the generalized yield stress in pure shear. For the case being considered
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here, the dissipation stress space coincides with the true stress space so that the yield surfaces in the two
stress spaces are identical. Based on similar formulations for the above J2-flow theories with generalized
von Mises yield criteria, other yielding criteria such as Tresca and maximum tension failure can also be
formulated with ease, by defining different dissipation rate functions. For example, if we defined the rate
of dissipation function as

8̂= B
(∣∣γ̇ p

1

∣∣+ ∣∣γ̇ p
2

∣∣+ ∣∣γ̇ p
3

∣∣),
where γ̇ p

1 = ėp
1 + lω̇p

1 , γ̇ p
2 = ėp

2 + lω̇p
2 , γ̇ p

3 = ėp
3 + lω̇p

3 , and ėp
i and ω̇p

i (i = 1, 2, 3) are the principal
distortion strains and deviatoric curvatures. Denoting the principal deviator stresses and principal couple
stresses by s1, s2, s3 and m1, m2, m3, we have

si =
∂8̂

∂ ėp
i
=
∂8̂

∂γ̇
p

i

∂γ̇
p

i

∂ ėp
i
= B sgn

(
γ̇

p
i

)
,

mi =
∂8̂

∂ω̇
p
i
=
∂8̂

∂γ̇
p

i

∂γ̇
p

i

∂ω̇
p
i
= Bl sgn

(
γ̇

p
i

)
.

Adopting the same definition as in (32) and noting that sgn(si )= sgn(γ̇ p
i ), we have

S(I )e − S(II )
e = B

(
sgn(γ̇ p

1 )− sgn(γ̇ p
2 )
)
,

S(II )
e − S(III )

e = B
(
sgn(γ̇ p

2 )− sgn(γ̇ p
3 )
)
,

S(I )e − S(III )
e = B

(
sgn(γ̇ p

1 )− sgn(γ̇ p
3 )
)
.

The yield surface thus defined is obviously a generalized Tresca Hexagon. If B again serves as a
generalized yield stress in tension, in the π -plane defined by S(I )e , S(II )

e and S(III )
e , this hexagon circum-

scribes the generalized von Mises circle as shown in Figure 1. In this case B is twice the generalized
yield stress in pure shear, just as in the conventional Tresca condition.

Given the J2 flow version of strain gradient theory as listed above, the deformation version of strain
gradient theory of Fleck and Hutchinson [1993] may also be easily attained. In fact, if we assume that
the equivalent plastic strain has the form

ε̄e =

√
2
3ε

p
i jε

p
i j +

2
3 l2χ

p
i jχ

p
i j , (33)

the rate of dissipation function has the expression

8̂= B ˙̄εe.

One can easily verify that

si j =
∂8̂

∂ε̇
p
i j
=
∂8̂

∂ ˙̄εe

∂ε̄e

∂ε
p
i j
=

3
2

B
ε̄e
ε

p
i j ,

mi j =
∂8̂

∂χ̇
p

i j
=
∂8̂

∂ ˙̄εe

∂ε̄e

∂χ
p

i j
=

3
2

B
ε̄e

l2χ
p

i j ,



850 JIDONG ZHAO, DAICHAO SHENG AND IAN F. COLLINS

Figure 1. Yield loci of (a) the generalized von Mises and (b) generalized Tresca
gradient-dependent materials in the π -plane.

where the coefficient B is actually equal to the generalized effective stress defined in Equation (30).
Thus the deformation version of strain gradient theory proposed by Fleck and Hutchinson [1993] is
again recovered.

For the J2 flow version of strain gradient theory just obtained, a generalized form of Drucker’s stability
postulate [Drucker 1951] has been suggested by Fleck and Hutchinson when h > 0:

σ̇i j ε̇
p
i j + ṁi j χ̇

p
i j ≥ 0.

This result was formerly developed by Koiter [1960] for phenomenological plasticity theories with
multiple yield functions, and by Hill [1966] in a more general form for a metal crystal deforming in
multislip. From a thermomechanical view, the above inequality actually implies the change of plastic
dissipative work is always pointing to the dissipating direction and this dissipative process is irreversible.
While the widely used normality law is justified by Drucker’s postulate, a more general stability postulate
that may cover the nonnormality case has been proposed by Ziegler and Wehrli [1987], which, if extended
to strain gradient theory, has the formulation

σ̇i j ε̇
i
i j + τ̇i jk η̇

i
i jk ≥ 0, (34)

where

ε̇i
i j =

(
∂2�

∂σi j∂ε
p
kl

)
ε̇

p
kl,

η̇i
i jk =

(
∂2�

∂τi jk∂η
p
lmn

)
η̇

p
lmn

may be termed as the irreversible strain rate and the irreversible strain gradient rate, respectively. Equation
(34) applies to coupled materials as well as decoupled materials.
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Case 2. B = 0.

As an extreme instance of Case 1, this case implies zero dissipation in the material. Consequently, no
plastic strains and strain gradients occur in the deformation, and

l = le, εi j = ε
e
i j , χi j = χ

e
i j .

The total constitutive behavior may be determined by the elastic relations in (24) only. This is similar
to the linear elastic strain gradient theory of [Mindlin 1964], where a higher-order elastic compliance
tensor of the sixth order, Mi jklmn , was defined to relate the higher-order elastic stress τlmn with elastic
strain gradient ηi jk , in the form ηi jk = Mi jklmnτlmn . Equation (24) in this condition may be regarded as a
special case of couple stress theory. For a general isotropic elastic case, the tensor Mi jklmn is dependent
on five material constants and has general symmetry of Mi jklmn = Mlmni jk [Mindlin 1964].

Case 3. A1 = 2, A2 = 0, and B is a nonnegative function to be specified.

In this case, ε p
i j is regarded as the only internal variable. Incompressible solids are considered to have

only the deviatoric stress si j contributing to the plastic work. χ p
i j does not explicitly enter the rate of

dissipation function as an independent internal variable. Instead, it is assumed to enter the coefficient
function B in accounting for the accumulated plastic strain gradient effects. In other words, though the
strain gradient may appear in the final constitutive formulations, no work-conjugate force is specified for
it. Consequently, the terms containing gradients in the free energy function will also be dropped and the
free-energy function in Equation (23) turns out to be

�= 1
2Ci jklσi jσkl .

Only the first equation in (24) remains valid, and it can be recast as

σ̇kl = C−1
i jkl i jkl

ε̇e
i j .

The rate of dissipation function defined in (25) becomes 8̂= B
(

A1(ε̇
p
i j ε̇

p
i j )
)1/2. And the dissipative stress

conjugate with ε̇ p
i j is

σ d
i j =

∂8̂

∂ε̇
p
i j
=

A1 B2

8̂
ε̇

p
i j . (35)

Hence the yield function in the dissipation stress space becomes

F =
√
(σ d

i jσ
d
i j )/A1− B = 0.

Here we have assumed that B is a nonnegative function related with the history of plastic strain and
plastic strain gradient. However, no rates of plastic strain and strain gradient are involved in B, so that
Equation (35) always holds true.

In this case, the dissipative stress σ d
i j coincides with the deviatoric stress si j . If the effective stress is

defined as
τ =

√
si j si j/2,

the yield function in the true stress presents the form

F = τ − B = 0. (36)
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Here B is further assumed to be of the form

B = τ0
(

f (γ p)r1 + g(`nηn)
r2 + k(γ0)

r3
)1/mr4, (37)

where τ0 is a measure of the hardening modulus in simple shear. f is a function of the effective plastic
strain γ p, and g is the measure of the effective plastic strain gradient η of any order, while k denotes a
function of the initial yield strain in shear γ0. The power n relates to the order of the gradient used to
represent η. If the first order gradient is used then n = 1. r1, r2, r3 and r4 are assumed as phenomenolog-
ical material constants (or interaction coefficients). This expression in (37) actually corresponds to an
extending form of the hardening law proposed by Voyiadjis and Abu Al-Rub [2005], where a function for
the initial yield stress is expressed in terms of the initial yield shear strain, which enters the bracket as a
function k. These authors have demonstrated this hardening law is not phenomenological but physically
based and is derived from a set of dislocation mechanics-based considerations. Variable internal length
scales instead of constant ones have also been used in the same reference in developing a strain gradient
plasticity model. However, most of the current strain gradient theories still retain the method of using
constant length scales, due to the simplicity and convenience that it affords.

Consequently, if we choose

r1 = r2 = r3 = 1, r4 = 1/m, f (γ p)= c0(γ
p)1/m,

g(`nηn)= c1`η+ c2`
2η2, with n = 2,

where c0 is a constant but c1 and c2 may depend on γ p, the gradient terms are expressed as

c1`η = c1`
∣∣∇γ p

∣∣= c1`
√
∇γ p · ∇γ p and c2`

2η2 = c2`
2
∇

2γ p,

where ∇ and ∇2 are the forward gradient and Laplacian operators respectively. As a result, the yield
function of (36) can be rewritten as

F = τ − τ0
(
h(γ0)+ c0(γ

p)1/m
+ c1`

∣∣∇γ p
∣∣+ c2`

2
∇

2γ p)
= 0. (38)

It is easy to prove that a yield function presenting a form of (38) may cover a family of Aifantis
and his coworkers’ gradient plasticity models, by appropriately simplifying the coefficients c0, c1 and
c2 [Aifantis 1984; 1987; Zbib and Aifantis 1988b; 1988a; Mühlhaus and Aifantis 1991 and references
therein].

Otherwise, if we adopt the parameters

r1 = r2 = r3 = 2, n = 1, r4 = 2/(3m), f (γ p)= c0(γ
p)1/m,

g(`nηn)= c1`α, h(γ0)= γ0,

where α =
√

2χ p
i jχ

p
i j =
√

2η, and c0 and c1 are constants, we obtained the yield surface

F = τ − τ0
(
(γ0)

2
+ c1(γ

p)2+ c1(`α)
2)3/2
= 0. (39)
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If the differential of strain gradients over γ p can be neglected, the consistency condition of Equation
(39) results in the instantaneous hardening rate:

h =
τ̇

γ̇ p = 3τ0c0γ
p((γ0)

2
+ c0(γ

p)2+ c1(`α)
2)1/2

. (40)

Or alternatively

h =
τ̇

γ̇ p = Gξ
(

1+
c1(`α/γ0)

2

1+ c0(γ p/γ0)2

)1/2

, (41)

where G = τ0/γ0 is the elastic shear modulus, and

ξ(γ p)= 3c0γ
p
√

1+ c0(γ p/γ0)2.

The hardening rate presented in Equation (41) shares a similarity with that proposed in [Acharya and
Bassani 1996; 2001, (13)]. Given the function ξ(γ p) in (41) is further generalized such that the power-
law based hardening rate in the latter reference may be included as a special case, in conjunction with
the elastic relations in (34b), the J2-flow theory of strain gradient plasticity formulated in both references
may be immediately recovered. Note that for crystal metals undergoing incompatible lattice distortion, as
stated in [Bassani 2001], the physical implications of the hardening rate present in (41) may be interpreted
as follows: the term in the numerator of the square bracket may be regarded to reflect the increase in
hardening due to incompatibility induced by Geometrically Necessary Dislocations (GNDs), while the
term in the denominator gives rise to a greater effect of incompatibility in the early stages of deformation
and approximately account for a significant initial density of GNDs.

A common difference between the gradient plasticity theories pioneered by Aifantis and coworkers
and other gradient theories such as those based on micromorphic, micropolar or second gradient continua
is that the description of the kinematics of the deformation at a given material point by the latter theories
is generally enriched by the introduction of the microdeformations along with a work-conjugate thermo-
dynamic quantity playing the role of a higher-order stress tensor. The introduction of these extra terms
into the equilibrium equations requires additional boundary conditions to be specified in the solution of
practical boundary value problems. While in the models based on gradient plasticity of Aifantis and
coworkers, the yield function, the flow rule and/or the dilatancy condition are assumed to depend on the
Laplacian of some suitable scalar measure of the accumulated plastic strain or a set of internal variables.
No higher-order stress tensors are introduced into the constitutive description. Comparisons of these
theories have been addressed in [Chambon et al. 2004].

4. Derivations of constitutive models for isotropic pressure-sensitive gradient-dependent
geomaterials

4.1. Yield functions in the dissipative stress space. As is well known, geomaterials are generally sensi-
tive to hydrostatic pressure. The failure modes of these materials are quite different for small stress level
and high mean compressive stresses. Under high hydrostatic pressure, they can yield and flow like metal
in such a way that if gradient effects are considered, the aforementioned generalized J2-flow theories
are capable of addressing them. However, in the low and intermediate compressive stress stage, the
failure criteria of geomaterials are sensitive to hydrostatic states of stress. The yield criteria described
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above are no longer adequate to address the plastic deformation process in this case, and thus pressure-
dependent failure models are required. Typical pressure-dependent conventional plasticity models are
the Mohr–Coulomb, Drucker–Prager and the critical-state Cam–Clay failure criteria. In considering
pressure-dependence, it is appropriate to let pressure-terms (typically the first invariants of stresses) enter
the dissipation function. As for gradient-dependent materials, here we only consider the first invariants
of Cauchy stress, neglecting the first invariant of higher-order stresses. This assumption is generally
acceptable and convenient for most geomaterials since, in most cases, the hydrostatic part for the Cauchy
stress is easily physically interpreted while that of the higher-order stress is not. In gradient theories, the
higher-order stress is frequently related with higher-order boundary traction. However, except in such
special cases as pure bending where only momentum force boundary conditions are imposed (in this case
the first invariant of couple stress is zero), physical meanings of other higher-order boundary tractions are
yet to be comprehended. Thus in the following formulations, only the first invariant of Cauchy stress is
considered whenever the explicit dependence of dissipation function on the true stresses is addressed. We
note that in this subsection, the influence of intermediate stress on the failure behavior or, alternatively,
on the Lode-dependence, is not considered, but will be addressed in next subsection.

In view of these assumptions, we consider the following general form for the pressure-dependent
dissipation function rate for gradient materials:

8̂= (B0+ B1 I1+ B2 I 2
1 )

1/2(A1(ε̇
p
i j ε̇

p
i j )+ A2(l2η̇

p
i jk η̇

p
i jk)
)1/2

, (42)

where I1 = σkk . A1, A2, B0, B1 and B2 are constants, where

A1 ≥ 0, A2 ≥ 0, B0 ≥ 0, B1 ≤ 0, B2 ≥ 0, |B1| ≥ 2
√

B0 B2.

It should also be noted that if A2 = 0 in (42), it is equivalent to the expression proposed by [Ziegler and
Wehrli 1987, Equation 7.11] for conventional pressure-sensitive materials without gradient effects. The
dissipative stresses may thus be obtained from (42) by

σ d
i j =

∂8̂

∂ε̇
p
i j
=

A1(B0+ B1 I1+ B2 I 2
1 )

8̂
ε̇

p
i j ,

τ d
i jk =

∂8̂

∂η̇
p
i jk
=

A2(B0+ B1 I1+ B2 I 2
1 )l

2

8̂
η̇

p
i jk .

(43)

Consequently, the following yield function in the dissipative stress space is obtained

F̃ =
(σ d

i jσ
d
i j )

A1
+
(l−2τ d

i jkτ
d
i jk)

A2
− (B0+ B1 I1+ B2 I 2

1 )= 0. (44)

For convenience, we assume further that A1 = A2 = 2/3, and we define the following generalized J2

and principal invariants:

J̃2 =
3
2(σ

d
i jσ

d
i j + l−2τ d

i jkτ
d
i jk), tII =

√
3
2

(
(σ d

II )
2+ l−2τ 2

II

)
,

tI =

√
3
2

(
(σ d

I )
2+ l−2τ 2

I

)
, tIII =

√
3
2

(
(σ d

III )
2+ l−2τ 2

III

)
.
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The following relations hold for the most general case.

I1 ≤
−B1−

√
B2

1 − 4B0 B2

2B2
. (45)

In the compound dissipative stress, Equation (44) describes a hyperboloid shape, whose axis is

tI = tII = tIII , I1 =
−

√
B2

1 − 4B0 B2− B1

2B2
. (46)

The intersection of this cone with the π -plane defined by tI , tII and tIII is a circle with radius√
B0+ B1 I1+ B2 I 2

1 ,

as shown in Figure 2, left. The longitudinal section of this hyperboloid cone, defined by I1/
√

3 and√
2 J̃2, by analogy to the traditional meridian plane for conventional models, is illustrated in Figure 2,

right. As a special case, if

B1 = − 2
√

B0 B2,

the yield surface (44) may be further rewritten as

F̃ =
3(σ d

i jσ
d
i j )

2
+

3(l−2τ d
i jkτ

d
i jk)

2
−
(√

B0−
√

B2 I1
)2
= 0, (47)

with I1 ≤
√

B0/B2. Equation (47) is actually a generalized Drucker–Prager criterion for the pressure-
sensitive gradient-dependent materials. It denotes a conoid-shaped cone in the compound dissipative
stress space, with a circle of radius √

B0−
√

B1 I1

in the intersected π -plane defined by tI , tII and tIII . The section in the meridian plane defined by I1/
√

3
and

√
2 J̃2 is two lines (Figure 2, right), which are intersected with the curves defined by (46) at J̃2 = B0.

Based on the generalized Drucker–Prager criterion in Equation (47), if it is further assumed that
B2 = 0, the generalized von Mises case as summarized in Section 3 will be recovered. This is a natural
consequence, since in conventional plasticity theories, the Drucker–Prager criterion is an extension of
von Mises generalized to the pressure-sensitive case. Based on (47), further simplifications may be made
by considering that B0 = 0, so the yield surface becomes

F̃ =
√

J̃2±
√

B2 I1 = 0. (48)

As a result, a generalized form of the cohesionless Coulomb criterion that cannot sustain tension is
obtained, which has a similar cone in the π -plane defined by tI , tII and tIII as the generalized Drucker–
Prager criterion and also two lines in the meridian plane, except that the corner of the two lines is located
at O ′ for (48) (Figure 2). Here

√
B2 acts as a frictional coefficient and may be regarded as

√
B2 = tanφ0,

where φ0 is the frictional angle of the material.
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(47)

(48)

(44)

Figure 2. Yield loci for the generalized pressure-sensitive gradient materials defined by
(47) (solid line), (48) (double dashed line) and (44) (dashed line) respectively. Left: view
in the π -plane defined by tI , tII and tIII . Right: view in the meridian plane.

4.2. Lode-angle-dependence of isotropic pressure-sensitive gradient materials. Experimental investi-
gations indicate that the third stress invariant of Cauchy stress affects significantly the behavior of pres-
sure sensitive materials, such that the mechanical behavior of geomaterials may be better described by a
Lode-angle-dependence relation. In conventional soil mechanics, this is attained by adding a function of
the Lode angle into the yield functions. To achieve this aim for pressure-sensitive gradient materials, we
will demonstrate in this section that Lode-angle-dependence may be easily manipulated by including the
Lode angle in the expression for the rate of dissipation function. Bardet [1990] has tried to generalize the
lode dependence for pressure-sensitive materials without gradient effects. In conventional soil mechanics,
the Lode angle ϑ is defined by

ϑ = −
1
3

arcsin
(

3
√

3
2

s3

J 3

)
, (49)

where s =
(
si j s jkski/3

)1/3, J =
(
si j si j/2

)1/2. ϑ varies between −π/6 and π/6. In line with the experi-
mental origin of Lode angle, including the influence of the deviatoric parts of higher-order stresses (e.g.,
incorporating the second invariant of higher-order stresses) into the definition of ϑ will be somewhat
misleading. Thus even in the presence of strain gradients, the definition for ϑ will not be modified, and
remains in form of (49). Accordingly, we use the general function of ϑ proposed by Eekelen [1980]

g(ϑ)= a(1+ b sin 3ϑ)−c,

where a, b and c are constants. By appropriately selecting values for a, b and c, a large variety of failure
criteria such as von Mises, Tresca, Mohr–Coulomb, Matsuoka and Nakai [1974] and Lade and Duncan
[1975] may be approximated.
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Starting from (42), it is assumed the rate of dissipation function is

8̂= (B0+ B1 I1+ B2 I 2
1 )

1/2g(ϑ)
(

A1(ε̇
p
i j ε̇

p
i j )+ A2(l2η̇

p
i jk η̇

p
i jk )

)1/2
. (50)

Repeating the derivation in last subsection one readily obtains various Lode-dependence criteria. As
an illustrative example, when B1 = − 2

√
B0 B2, a Lode-dependence generalized Drucker–Prager yield

surface in the compound dissipative stress space may be obtained, yielding

F̃ =
√

J̃2−
(√

B0−
√

B2 I1
)
g(ϑ)= 0. (51)

In the π-plane defined by tI , tII and tIII , the deviatoric curve for Equation (51) will depend on the
selection of g(ϑ). For example, when

a = sinφ0 (forφ0 the frictional angle),

b = 4a/3
√

3,

c = 0.25,

a generalized deviatoric curve like that of [Lade and Duncan 1975] is obtained. If, instead,

a = sinφ0,

b = 2a(3− a2)/3
√

3,

c = 0.25,

for Equation (45), we get a generalized deviatoric curve [Matsuoka and Nakai 1974]. When g(ϑ)= 1,
the generalized compression Drucker–Prager curve is obtained. These curves are compared in Figure 3.

Figure 3. Deviatoric curves for various generalized criteria for pressure-sensitive gradi-
ent geomaterials in the π-plane defined by tI , tII and tIII . (a) Generalized compression
Drucker–Prager criterion. (b) Generalized Lade–Duncan criterion. (c) Generalized Mat-
suoka and Nakai criterion.
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4.3. Example of a constitutive relation derivation for a particular case. To derive the constitutive rela-
tions, yield function, and flow rule in the true stress space for pressure-sensitive gradient geomaterials,
the free energy function must be specified. Without loss of generality, it is assumed here that the free-
energy function may be decoupled into an elastic part and a plastic part as in Equation (9). In particular,
we assume for the two parts the expressions

9e
=

1
2 De

i jklε
e
i jε

e
kl +

1
2 N e

i jklmnl−2ηe
i jmη

e
lkn,

9 p
=

1
2 D p

i jklε
p
i jε

p
kl +

1
2 N p

i jklmnl−2η
p
i jmη

p
lkn,

where

De
i jkl and D p

i jkl

are elastic and plasticity stiffness, while

N e
i jklmn and N p

i jklmn

are higher-order elastic and plasticity stiffness. The rate of dissipation function uses the special case
of (50) when B1 = − 2

√
B0 B2 so that the Lode-dependent generalized Drucker–Prager surface in the

dissipative stress space in (51) may be attained. In view of (11), it is readily found that the elastic
behavior of the material is governed by

σi j =
∂9e

∂εe
i j
= De

i jklε
e
kl, τi jk =

∂9e

∂ηe
i jk
= N e

i jmlknl−2ηe
lmn,

while the back stresses defined in (13) are

ρi j =
∂9 p

∂ε
p
i j
= D p

i jklε
p
kl, πi jk =

∂9 p

∂η
p
i jk
= N p

i jmlknl−2η
p
lkn.

In connection with Equations (12) and (51), the yield function in the true compound stress space of
σi j and τi jk is

F =
√

J̄2−
(√

B0−
√

B2 I1
)
g(ϑ)= 0,

where

J̄2 =
3
2

(
(σi j − ρi j )(σi j − ρi j )+ l−2(τi jk −πi jk)(τi jk −πi jk)

)
.

By analogy with Equation (43), normality relations hold in the dissipative stress space:

σ d
i j =

A1
(√

B0−
√

B2 I1
)2(g(ϑ))2

8̂
ε̇

p
i j ,

τ d
i jk =

A2
(√

B0−
√

B2 I1
)2(g(ϑ))2l2

8̂
η̇

p
i jk,
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where A1 = A2 = 2/3. Therefore, in considering (13), the plastic strain and plastic strain gradient
increments satisfy

ε̇
p
i j = 8̂

σi j − ρi j

A1
(√

B0−
√

B2 I1
)2(g(ϑ))2 ,

η̇
p
i jk = 8̂

l−2(τi jk −πi jk)

A2
(√

B0−
√

B2 I1
)2(g(ϑ))2 .

In combination with (21), the plastic multiplier may be determined, and thus the plastic incremental
relations are obtained. While differentiating the yield surface equation, attention should be paid to the
dependence of the Lode angle function g(ϑ) on the stresses. Thus far, the total constitutive relations for
the Lode-angle-dependence pressure-sensitive gradient material are derived from the free-energy function
and the rate of dissipation function.

5. Conclusions

Strain gradient plasticity constitutive models for gradient-dependent geomaterials can be constructed
systematically from two thermodynamical potentials via the thermomechanical approach. In this way,
the first and second thermodynamic laws are satisfied simultaneously, and yield surface in the dissipative
stress space as well as the true stress space may be attained without difficulty. Both associated and
nonassociated flow rule can be achieved. Appropriate selection of free-energy function and dissipation
rate function makes it possible to recover a large range of strain gradient plasticity models proposed
in the literature. In the framework of strain gradient theory, the flexibility of defining dissipation rate
functions makes it easy to account for special features associated with geomaterials, such as pressure-
sensitivity and Lode-angle dependency. Various failure criteria in geomechanics, such as those of von
Mises, Tresca, Drucker–Prager, Coulomb, Lade–Duncan and Matsuoka–Nakai, have been generalized
to include the strain gradient effects. Further extension of the obtained formulation to other criteria,
such as critical state models, may also be obtained with relative ease. Further investigation will be
directed towards incorporating the coupling between plasticity and damage for a range of geomaterials,
like quasibrittle rocks, within the framework of strain gradient theory and thermomechanics. It is also
noted that, regarding the numerical implementations of the gradient-dependent models developed from
the current framework, some of the existing finite element methods proposed for strain gradient plasticity
can be used and there is no need to develop new algorithms [Shu et al. 1999; Zervos et al. 2001; Abu
Al-Rub and Voyiadjis 2005].
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